
The Review of Symbolic Logic

Volume 17, Number 3, September 2024

BEYOND LINGUISTIC INTERPRETATION IN THEORY
COMPARISON

TOBY MEADOWS

University of California, Irvine

Abstract. This paper assembles a unifying framework encompassing a wide variety of
mathematical instruments used to compare different theories. The main theme will be the
idea that theory comparison techniques are most easily grasped and organized through the
lens of category theory. The paper develops a table of different equivalence relations between
theories and then answers many of the questions about how those equivalence relations are
themselves related to each other. We show that Morita equivalence fits into this framework and
provide answers to questions left open in Barrett and Halvorson [4]. We conclude by setting up
a diagram of known relationships and leave open some questions for future work.

§1. Introduction.

What’s in a name? That which we call a rose

By any other name would smell as sweet;

Relative interpretation is a powerful tool that allows us to compare different theories
using translations. For example, it provides us with reasonable criteria for deciding
whether two theories are for some intents and purposes the same. Nonetheless, it is
hampered by a number of seemingly draconian limitations. This is perhaps mostly
keenly felt in the philosophy of science where theories in physics are generally not
articulated using first-order logic, but rather considered as collections of mathematical
structures.1 This has recently led some philosophers of science to turn to more liberal
techniques from category theory that—among other things—make no assumption that
theories are axiomatizable in first-order logic [11, 24]. Others have thought that these
techniques are too liberal and have tried to develop the middle ground [4, 13].

In this paper, we aim to provide a means for organizing these instruments of
comparison that arguably turns the traditional picture on its head. Rather than seeing
category theoretic techniques as providing a novel and less constrained tool than
interpretability that avoids logic; we shall demonstrate that categorical equivalence
relations can be understood as the core notion from which many others can be obtained
via natural restrictions. Beyond providing a transparent way of understanding the
relationships between various techniques, it also provides helpful insights into how
these restrictions play out and whether they are appropriate in various contexts. I also
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820 TOBY MEADOWS

believe that the underlying picture provides a helpful guide to those who would like to
develop new techniques for theory comparison.

The paper is organized as follows: In Section 2, we describe the category theoretic
tools that will be used and the main kind of category considered in this paper: theory
categories. In Section 3, we review the elementary theory of relative interpretability
and then demonstrate that some common notions of equivalence from relative
interpretation are, in fact, instances of categorical equivalence relations in natural
restrictions of theory categories. In Sections 4 and 5, we extend these results to
accommodate generalizations of interpretability in multi-sorted contexts where new
domains can be added to a language. This then brings us to Section 6, where we
provide a diagram organizing the content of the paper. The strategy conscious reader
may find it helpful to flip ahead to this diagram first in order to get an idea of the lie
of the land. This section will also provide some solutions to questions left open in [4]
and then finally use the diagram to pose some new questions for future work.

§2. Theory categories. In this section, we shall recall some elementary definitions
that will be used throughout this paper. In particular, we discuss three notions of
equivalence between categories. Two of these are standard, while the third is—I
believe—novel.

2.1. Category theoretic preliminaries. We restrict our attention to categories that
are small; i.e., where the objects and arrows of the category form a set. We assume that
the reader is familiar with the basic axioms of category theory and the definitions of
functors and natural transformations.2

For our first equivalence relation, recall that categories C and D are isomorphic if
there exist functorsF : C ⇒ D andG : D ⇒ C such thatG ◦ F = IdC andF ◦G = IdD
where IdC and IdD are the respective identity functors for C and D. In other words, F
and G are such that:

• for all objects A from C, G(F (A)) = A;
• for all arrows h : A→ B from C, G(F (h)) = h;
• for all objects B from D, F (G(A)) = A; and
• for all arrows i : C → E from D, F (G(i)) = i .

Intuitively speaking, the functors take us forth and back returning us to exactly where
we started. For our second equivalence relation, we first recall the following definition.

Definition 2.1. A natural transformation � between functors F,G : C ⇒ D is a natural
isomorphism if for all objects A in C

�A : F (A) ∼= G(A).

Let us write �· : F ∼=nat G to indicate this.

Let IdC and IdD be the identity functors for C and D respectively. Then recall that
categories C and D are equivalent3 if there are functors F : C ⇒ D and G : D ⇒ C
such that IdC and G ◦ F are naturally isomorphic and so are IdD and F ◦G . In other

2 For details, the reader may wish to consult Section 7.8 of [3].
3 In contexts where confusion may arise, I will refer to this relation as categorical equivalence

or equivalence of categories.
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words, there is a natural transformation �· from IdC to G ◦ F such that for all objects
A from C

�A : A ∼= G(F (A))

and a natural transformation �· from IdD to F ◦G such that for all objects B from D
�D : B ∼= F (G(B)).

Or more compactly, �· : IdC ∼=nat G ◦ F and �· : IdD ∼=nat F ◦G .
We see that equivalence is a natural weakening of isomorphism in that the functors

take us back and forth to an object that is isomorphic to the one we started with but
not necessarily identical to it. The fact that the isomorphisms �· and �· are natural
ensures a kind of uniformity in the relationship between the isomorphism occurring at
the object level. This provides our second equivalence relation. In contrast, our novel,
third equivalence relation will abandon this uniformity requirement. We’ll describe
this in a moment, but first we note a convenient alternative definition of equivalence
between categories that will be useful later.

Proposition 2.2. Categories C and D are equivalent if and only if there is a functor
F : C ⇒ D that is full, faithful and essentially surjective.4

For our third equivalence relation, we move off the main menu. Informally speaking,
my goal is to weaken categorical equivalence in such a way that we go back and forth
to an isomorphic object, but we do not demand that the isomorphism is natural or
uniform. I note—up front—that in most categorical settings this equivalence relation
will be too weak to be of much significance. However, in the setting of categories based
on theories it has a natural counterpart in relative interpretability. This is our reason
for introducing it here.5

Definition 2.3. We say that categories C and D are objectively equivalent if there are
functors F : C ⇒ D and G : D ⇒ C such that:

(1) A ∼= G(F (A)) for all objects A from C; and
(2) B ∼= F (G(B)) for all objects B from D.

Since functors preserve isomorphism, it is easy to see that this is an equivalence relation on
categories. It is similar to a categorical equivalence in that we go back and forth between
categories and return to an isomorphic object. But in contrast, we make no demands that
this isomorphism be natural: it need not be distributed uniformly over the objects of the
category by a natural transformation. Moreover, this equivalence places no constraints at
all on what happens to the arrows. This is why I’ve called it objective.

In the fully general setting where arbitrary categories are permitted, this equivalence is
extremely weak. For an example, suppose C is a category with one object A and just its
identity arrow idA. Then suppose D is another category with just one object B, but there
are two arrows, idB and f : B → B . Suppose that f ◦ f = idB , although the example
also works if we suppose f ◦ f = f. It is the not difficult to see that C and D are neither
isomorphic nor equivalent as categories. However, they are objectively equivalent. Let

4 See Proposition 7.25 of [3].
5 I’m extremely grateful to an anonymous referee for spotting a grievous error in my initial

approach to this equivalence relation. Their helpful comments and suggestions have allowed
me to simplify things greatly.
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F : C ⇒ D be such that F (A) = B and F (idA) = idB ; and let G : D ⇒ C be such that
G(B) = A, G(idB) = idA and G(f) = idA. It can then be seen that Definition 2.3 is
satisfied. Of course, this is not a very interesting example. Nonetheless, it should be clear
that the sense in which these categories are equivalent is particularly weak. In the next
sections, we shall see that in the context of theory categories constrained using definability,
this equivalence becomes more interesting.

To close the current section we observe that—in general—these equivalence relations
are organized in a strict hierarchy:

Proposition 2.4. Let C and D be categories:

(1) If C and D are isomorphic, then they are equivalent.
(2) If C and D are equivalent, then they are objectively equivalent.

Moreover, there are equivalent categories that are not isomorphic; and objectively
equivalent categories that are not equivalent.

Proof. We leave the proof of (1) and (2) to the reader since they essentially follow
by definition. For a relatively concrete example of equivalent categories that are not
isomorphic, see Awodey’s discussion of the categories of finite ordinals and hereditarily
finite sets in Section 7.8 of [3]. We provided a pair of categories that are objectively
equivalent but not categorically equivalent above and will provide another example in
Proposition 2.7.

2.2. Categories of theories. In the previous section, we described three equivalence
relations between categories: isomorphism; equivalence; and objective equivalence.
We now aim to apply these tools to makes comparisons between theories. As such, we
define a natural category for the purposes of representing theories. To facilitate this,
we assume for the rest of the paper that there is an inaccessible cardinal and that Ω
is the least of them. This will allow us to treat our theory categories as small when
their most obvious definition does not. Thus, unless otherwise stated our background
theory for the rest of this paper will be ZFC plus the assumption that an inaccessible
cardinal exists.6

Definition 2.5. Let T be a theory. Thenmod (T ) is the theory category consisting of:

• objects: models M of theories T from VΩ;7 and
• arrows: elementary embeddings between those models.

Given a semantic outlook, the choice of objects for this category is—more or less—
forced upon us, but with regard to arrows more options are available. For example
one might also consider using: homomorphisms; embeddings or isomorphisms. Some
helpful discussion around this is provided in [4], however, for our purposes elementary
embeddings provide a very natural fit with relative interpretability. We also note
that at various times in the paper, we shall have cause to restrict our attention to
various subcategories ofmod (T ) as in some contexts it will be appropriate to consider
particular kinds of models or embeddings. We now recall our equivalence relations as
they are instantiated between theory categories.

6 This approach will not be to everyone’s taste and for this reason I will discuss this further in
Section 2.2.2.

7 This is the Ωth level of the cumulative hierarchy of sets.
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Definition 2.6. Suppose there are functors t : mod (T ) → mod (S) and s : mod (S) →
mod (T ).8 We say that t and s witness that mod (T ) and mod (S) are:

• isomorphic if s ◦ t(M) = M and t ◦ s(N ) = N when M |= T and N |= S;
and s ◦ t(f) = f and t ◦ s(g) when f and g are elementary embeddings between
models of T and S respectively;

• equivalent if s ◦ t ∼=nat 1mod (T ) and t ◦ s ∼=nat 1mod (S); and
• objectively equivalent if s ◦ t(M) ∼= M and t ◦ s(M) ∼= N when M |= T and

N |= S.

We say that mod (T ) and mod (S) are isomorphic (respectively, equivalent and
objectively equivalent) if there are pair of functors witnessing this. Below we’ll frequently
say T and S are, for example, equivalent rather than saying that mod (T ) and mod (S)
are equivalent.

2.2.1. Hierarchy? It is then natural to ask whether the hierarchy described in
Proposition 2.4 remains strict in context of theory categories. We now show that there
are objectively equivalent theories that are not equivalent, but every pair of equivalent
theories turns out to be isomorphic.

Proposition 2.7. There is a pair of theories that are objectively equivalent but not
equivalent as categories.

Proof. Let T be the theory that says there are exactly two objects; and let S be
the theory that says that there is exactly one object. To see that they are objectively
equivalent, we describe functors F : mod (T ) ⇔ mod (S) : G satisfying Definition 2.3.
Since both T and S have exactly one isomorphism class, we may let the action of F on
the objects of C be given by an arbitrary bijection between the models of T and S. Note
that for any models M and N of S, there is exactly one elementary embedding between
them. Thus, given f : M → N in mod (T ), we let F (f) be the unique arrow between
F (M) and F (N ). In the other direction, we let G(A) = F –1(A) for models A of S.
For arrows, we need to make some decisions. For any arrow g : A → B in mod (S),
there will be two arrows between G(A) and G(B) in mod (T ). To address this, we
simply pick an arrow and its inverse between any two models of T. We then let G(g)
be that arrow; and for the arrow g–1 : B → A, we let G(g–1) be its inverse. This makes
sense since every elementary embedding between finite models is an isomorphism and
thus has an inverse. It can then be seen that F and G are functors that witness an
objective equivalence. We leave it to the reader to verify that mod (T ) and mod (S) are
not equivalent as categories.

We now show that equivalence between theory categories implies isomorphism.
To see this, first observe that in any theory category mod (T ) the cardinality of any
isomorphism class is Ω. More precisely, for any object M from mod (T )

|[M ]| = Ω.

To see this, consider, for example, the category of models of Peano arithmetic,
mod (PA). It is easy to see that for every ordinal α < Ω, there will be a model of PA

8 Note that there is no requirement that t or s be in any way definable or determined by
translations.
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that includes α in its domain. This means that following lemma suffices to prove this
theorem.

Lemma 2.8. Suppose C and D are equivalent as categories and suppose that each of
the isomorphism classes of these categories has the same cardinality; i.e., for all objects
A from C and B from D

|[A]| = |[B]|.
Then C and D are isomorphic.

Proof. Suppose F : C → D is a functor witnessing the categorical equivalence; i.e., F
is full, faithful and essentially surjective. We shall use F to define an isomorphismH :
C ∼= D. To do this we shall pick a distinguished element from each of the isomorphism
classes of C use the action of F on these elements to generate H’s action on the rest of C.

We start by defining two endo-functors and natural transformations. First let ·∗ :
C → C be an endo-functor that takes objects A from C and returns a distinguished
element A∗ of [A] such that for all objects A0, A1 from C, A∗

0 = A∗
1 whenever A0

∼= A1.
Then let �A : A ∼= A∗ be an isomorphism such that �A∗ = idA∗ .9 For arrowsf : A→ B
from C, let f∗ : A∗ → B∗ be

�B ◦ f ◦ �–1
A .

Note that �· is a natural isomorphism from the identity functor on C to ·∗.
Next we define a similar endo-functor ·† : D → D that is tailored to match up with ·∗.

Note that since F establishes categorical equivalence it is essentially surjective and thus
for any object E from D we may fix an object A from C such that F (A) ∼= E. So
for all objects E from D, let E† = F (A∗) where A is some object from C such that
F (A) ∼= E.10 Then observe that

E† = F (A∗) ∼= F (A) ∼= E

so E† ∈ [E]. For each object E from D, let �E : E ∼= E†.11 For an arrow g : E → D
from D, let g† : E† → D† be

�D ◦ g ◦ �–1
E .

Note that �· is a natural isomorphism between the identity functor on D and ·†.
Our goal now is to define H using ·∗, ·†, �· and �·. For allA∗ from C, letHA∗ : [A∗] →

[F (A∗)] be a bijection such that HA∗and F agree on A∗; i.e., HA∗(A∗) = F (A∗). This
makes sense given our assumptions about the cardinality of isomorphism classes in C
and D. Now letH : C → D be defined as follows. For objects A from C, we let

H (A) = HA∗(A).

For arrows f : A→ B from C, let H (f) : H (A) → H (B) be

�–1
H (B) ◦ F (f∗) ◦ �H (A).

9 It may be worth noting that the axiom of choice is used here.
10 Choice is also used here.
11 And choice is used here.
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To see that this makes sense, the following diagram is helpful.

B B∗ F (B∗) H (B)

A A∗ F (A∗) H (A)

f f∗ F (f∗) H (f)

�B

�A

�H (B)

�H (A)

F

F

Now we claim that H is a functor and that H witnesses that C and D are isomorphic
as categories. We leave the reader to verify that H is a functor.

Claim. H establishes an isomorphism between C and D.

Proof. By design we know that H is a bijection on objects, so it suffices to show that
H is full and faithful.

To see that H is full, suppose g : H (A) → H (B) is an arrow from D. It will suffice
to show there is some f : A→ B such that H (f) = g. To see this first observe that
�H (B) ◦ g ◦ �–1

H (A) is an arrow fromH (A∗) toH (B∗). Then sinceH (A∗) = F (A∗) and
H (B∗) = F (B∗) and F is full, we may fix some arrow i : A∗ → B∗ from C such that
F (i) = �H (B) ◦ g ◦ �–1

H (A). We then letf = �–1
B ◦ i ◦ �A and observe that this is an arrow

from A to B. We then see chase the diagram observing that

H (f) = �–1
H (B) ◦ F (f∗) ◦ �H (A)

= �–1
H (B) ◦ F (�B ◦ f ◦ �–1

A ) ◦ �H (A)

= �–1
H (B) ◦ F (i) ◦ �H (A)

= �–1
H (B) ◦ (�H (B) ◦ g ◦ �–1

H (A)) ◦ �H (A) = g.

To see that H is faithful, suppose f, g : A→ B are such that H (f) = H (g). We
claim that f = g. To see this first recall that

H (f) = �–1
H (B) ◦ F (f∗) ◦ �H (A) & H (g) = �–1

H (B) ◦ F (g∗) ◦ �H (A)

and so we see that F (f∗) = F (g∗). And since F is faithful, we see that f∗ = g∗. Then
recall that

f∗ = �B ◦ f ◦ �–1
A & g∗ = �B ◦ g ◦ �–1

A

and so f = g as required.

Our main claim then follows directly.

Corollary 2.9. If mod (T ) is equivalent to mod (S), then they are also isomorphic.

Thus, we see that when we restrict our attention to theory categories, the hierarchy
we had in Proposition 2.4 is no longer strict. This may cause us to question the value
separating them in our framework. I have a couple of things to say about this. First a
small point: it is sometimes said in defense of categorical equivalence that it is superior
to isomorphism in that it wipes away detail that is not pertinent when it comes to theory
comparison. The corollary above tells us that, when it comes to theories, we are—in
fact—concerned with isomorphism because it is the same thing as equivalence. Second
and more substantively, we shall see in Section 3 that there are natural restrictions of
this framework in which this hierarchy question becomes more difficult and interesting.
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2.2.2. The inaccessible cardinal. To conclude this section, we revisit the issue of
our assumed inaccessible cardinal Ω. We took this up as it provides a simple way
to stay within a standard set theoretic background theory like ZFC while avoiding
issues around the size of theory categories. If we had not made such an assumption
and instead took the objects of mod (T ) to be the all of the models satisfying T, then
mod (T ) could not be a set and thus, a theory like ZFC would not suffice for our
work here.12 By taking all of the models and elementary embeddings from VΩ we
are able to ensure that theory categories, the functors between them and the natural
transformations between them are all sets and thus gloss over this issue. In a moment,
we shall note some problems with this approach, but first we observe that this kind of
solution emerged in contexts close to the heart of category theory. In particular, it is
well-known that VΩ is essentially a Grothendieck universe [5].

A simple objection to our move is to note that assuming the existence of an
inaccessible cardinal goes beyond the resources that—by convention—we take for
granted in mathematical contexts; i.e., ZFC . This is correct; ZFC cannot prove that
an inaccessible cardinal exists. However, the increase in consistency strength—while
not entirely trivial—is very modest in comparison with the kinds of large cardinal
generally considered by set theorists today.13 Beyond this, it is also possible to provide
a schematic axiomatization of VΩ that is equiconsistent with ZFC and which for
almost all intents and purposes is just as good as assuming that the existence of an
inaccessible cardinal [9].

A deeper worry emerges from the free use of the axiom of choice above. The attentive
reader will have noted that in the proof of Lemma 2.8, I apply the choice three times in
ways that could not be eliminated if I had used ZFC and demanded that the functors
and natural transformations associated with them were definable classes rather than
sets. Personally, I do not think this is a problem. If I want to treat functors and
natural transformations as mathematical objects about which we may prove theorems,
then they should be objects like sets and not metatheoretical substitutes for them.
Nonetheless, constructivist attitudes are hardly uncommon and for these people such
uses of choice are likely to be distasteful, at the least. Nonetheless, I suspect most
constructivists will already have reservations given that I have assumed ZFC as the
background theory of this paper. This prompts the question: how much of this work
can be done in constructive settings without choice? We leave that question open here.

As to alternatives, there are at least a couple of other options that would also work.
For example, we could use the theory GBC .14 This is a theory that extends ZFC
with an extra sort for classes. It then adds a predicative comprehension axiom, a class
replacement axiom and the axiom of global choice. While a little more awkward to
use than a single sorted theory like ZFC , it will make light work of Lemma 2.8.
Another option is to select a smaller structure from which the models and elementary
embeddings may be be procured. For example, one might consider HC, the set of
hereditarily countable sets. By the downward Löwenheim–Skolem theorem we know

12 One might attempt to say that the functors associated with theory categories are merely
virtual classes; i.e., definable from parameters. We’ll discuss this further below.

13 Moreover, while it is within the realms of possibility that ZFC is consistent but the addition
of an inaccessible cardinal is not, it seems that, in such an unlikely event, it would be more
likely that they were both be inconsistent together.

14 See page 35 of [15].
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that every model of a theory T has an elementary substructure in HC. Thus, it seems
that there will be few places where the comparison of theories requires uncountable
structures. An example where this does matter is provided in Proposition 3.15, but it is
the only example I am aware of. While other examples will certainly be out there, they
appear to capture something vanishingly rare and with unexamined philosophical
importance. But even taking this into account, there is nothing stopping us from
choosing a larger structure where these effects have been removed. It seems very unlikely
that anything near an inaccessible cardinal would be required to achieve this.

§3. Relative interpretation. In this section, we bring relative interpretation into the
picture and we examine the relationship between equivalence relations in category
theory and relative interpretability. In particular, we’ll show that the relations from
interpretability are instances of the category theoretic relations. We start by recalling
some basic definitions and results about relative interpretation. This exposition is
heavily indebted to Visser’s [21] and the reader should consult this resource for further
details. For convenience, in this section we’ll only consider languages containing
relation symbols and thus, no function or constant symbols. We shall work in first-
order logic and generally follow the notational conventions of model theory as can be
found in [12, 17] or [7].

Definition 3.1. Let T and S be theories in LT and LS respectively. We say that t is a
translation from the sentences of LS to those of LT if:

• there is a formula �t of LT with at most v0 free; and
• for all relation symbols R of LS there is a formula t(R) of LT where n is the arity

of R and t(R) has at most the variables v0, ... , vn–1 free,

such that for every formulae ϕ of LS , t(ϕ) is defined recursively in such a way that:

• if ϕ := Rx̄, then t(ϕ) = t(R)(x̄) where t(R)(x̄) is the result of replacing the
variables v0, ... , vn–1 with those in x̄ while changing bound variables when required
to avoid clashes;15

• if ϕ := ¬	, then t(ϕ) = ¬t(	);
• if ϕ := 	 ∧ 
, then t(ϕ) = t(	) ∧ t(
); and
• ifϕ := ∀x	, then t(ϕ) = ∀x(�t(x) → t(	)) where �t(x) is the result of replacing
v0 with x and changing bound variables is required.

We say that T interprets S via t if for all sentences ϕ ∈ LS16

S 
 ϕ ⇒ T 
 t(ϕ).

Informally speaking, we see that when T interprets S, T is able to simulate the
behavior of S by proving everything that S can through the lens of the translation.
Indeed, this simulation metaphor can be take further by observing that when T

15 For example, if t(R)(v0) is ∃x x = v0, then t(R)(x) is ∃y y = x for some sensibly chosen
variable y.

16 To save some space and help with visual clarity, we shall frequently abuse notation and write
ϕ ∈ LS when strictly LS is just the underlying non-logical vocabulary, not its formulae. This
should not cause any confusion, but in places where it might we shall take care to remark
upon it.
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interprets S via t, this gives rise to a function t∗ from the models of T to the models
of S.

Theorem 3.2. Suppose T interprets S via t. Then t determines a function

t∗ : mod (T ) → mod (S)

such that for all M |= T , m̄ ∈Mlh(m̄) and ϕ ∈ LS
M |= t(ϕ)(m̄) ⇔ t∗(M) |= ϕ(m̄)

when for all i < lh(m̄), M |= �t(mi).

Proof (Sketch only). Let t∗(M) be the model of LS whose domain

t∗(M ) = {x ∈M | M |= �t(x)}
and whose interpretation of relation symbols R from LS is such that

Rt
∗(M) = {x̄ ∈Mn | M |= t(R)(x̄)}.

We then prove the equivalence claim (i.e., the ⇔ claim) by induction on the
complexity of formulae. Finally, we show that t∗(M) ∈ mod (S) by observing that
the interpretation ensures that M |= t(ϕ) for all ϕ ∈ S using the equivalence.

For reasons that will become clear in the next section, we call t∗ a mod-functor.17

Note that in the example above t takes us from the language of S to the language of
T, while t∗ takes us in the other direction from models of T to models of S. To avoid
clutter I’ll just write t instead of t∗ from now on. It should not cause any confusion.

Remark 3.3. Note that we are only considering identity-preserving translations here.
Thus, we are not making use of products or quotients. This is arguably a divergence from
orthodoxy, but it will be important when we come to Section 5 and we’ll discuss this issue
further there. See [18] for an excellent discussion of this.

We now recall three standard notions of equivalence between theories defined using
relative interpretability. For the second of these we require a preliminary definition.

Definition 3.4. For a theory T in language LT , we say that a formula 	(x, y) of LT
defines a function over T if

T 
 ∀x∃! y	(x, y).

We say that	(x, y) defines an isomorphism over T if T proves that	 is a bijection and
that for all relation symbolsR ∈ LT with arity n + 1, T proves that ∀x0 ...∀xn∀y0 ... ∀yn
if

∧
i≤n 	(xi , yi) then

R(x0, ... , xn) ↔ R(y0, ... , yn).

We are now in a position to describe three standard notions of equivalence between
theories.18

17 Strictly, we are yet to describe the action of t∗ on arrows so we do not have a functor yet.
This will be described in Lemma 3.6.

18 See [21] for more details.
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Definition 3.5. Suppose T and S are theories in the languages LT and LS respectively.
Suppose that we have mod-functors t : mod (T ) → mod (S) and s : mod (S) → mod (T ).
Then we say that s and t witness that:

(1) T and S are definitionally equivalent if:
• M = s ◦ t(M) for all models M of T; and
• N = t ◦ s(N ) for all modes N of S.

(2) T and S are strictly bi-interpretable if there exist definable isomorphisms �t(x, y)
and �s(x, y) over T and S respectively such that:
• �t(x, y) witnesses that M ∼= s ◦ t(M) for all models M of T; and
• �s (x, y) witnesses that N ∼= t ◦ s(N ) for all models N of T.

(3) T and S are iso-congruent if:
• M ∼= s ◦ t(M) for all models M of T; and
• N ∼= t ◦ s(N ) for all modes N of S.

We then say T and S are definitionally equivalent (respectively, strictly bi-interpretable
and iso-congruent) if there are a pair of mod-functors witnessing that this property holds.

Before we move back to category theory, some remarks about these definitions
are warranted.19 One reason for this is that there is no real consensus around the
terminology regarding interpretability. For example, it is common to hear people
confuse bi-interpretability with the much weaker relationship of mutual interpretability.
Of course, once we have provided precise definitions of these terms the ambiguity is
removed. However, there are also different ways of stating these definitions and different
terminological traditions within the field that can lead to further confusion.

Many authors aim to provide syntactic definitions of the equivalence relations of
Definition 3.5. So rather than using mod-functors to define these equivalences they
simply use the translations. For example, Barrett and Halvorson describe definitional
equivalence between theories by saying that such theories can be definitionally
expanded to become the same theory [4]. It turns out that these two approaches
are—in essence—equivalent.20 In this paper, I’ve opted to take a more model-based
approach for three reasons. First, this is almost always the easiest way to understand
how an interpretation works and, in general, most theorems are more easily proven
from this perspective.21 When trying to provide an interpretation, the natural way to
think of this is that we are trying to define an internal model. Second, and as we
shall discuss in the next section, the model theoretic perspective seems to provide a
clearer analogy between equivalence relations based on interpretability and those used
in category theory. And finally, I do not believe that a syntactic counterpart can be
provided for iso-congruence.

Many authors also take up a more liberal approach to definability in describing
these relations. For example, Button and Walsh make use of quotient structures in
their definition of bi-interpretability [6]. And similarly, Visser and Friedman make

19 I’m grateful to a referee for suggesting the addition of this section.
20 See Proposition 7.1 in the Appendix for a quick proof of this. Note, however, that the

equivalence requires that the languages of the respective theories are disjoint. See [16] for
a detailed discussion of this issue. For an example of natural equivalence relations that is
similar but weaker than definitional equivalence, see [2].

21 The only case—that I’m aware of—where the syntactic approach is superior is in the proofs
of Section 5 in [22].
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use of multi-dimensional interpretations in [22]. Using these approaches, objects
from an interpreted theory can be represented by equivalence classes of sequences
of objects from the theory that is providing the interpretation. By contrast, in this
paper we have restricted our attention to one-dimensional and identity preserving
interpretations where the objects of the interpreted theory are simply represented by
objects of the theory doing the interpreting. For this reason we use the term strict bi-
interpretability instead of ordinary bi-interpretability. This means that the definitions
above are stronger and thus, more difficult to satisfy. Our main reason for doing this
is that the work done by multi-dimensional interpretations and quotients can almost
always be recovered by the use of Morita interpretation.22 Moreover, a primary goal
of this paper is to clarify the relationship between equivalences based on Morita
approaches and those of category theory. We might say that Morita interpretation is a
competitor to the approaches used by Button and Walsh [6]. While our goal here is not
to adjudicate that debate, I think the reader will see in Section 5 that there is certain
efficiency to the Morita technique that warrants further investigation.

3.1. Back to category theory. We are now ready to compare the equivalence
notions of category with those from relative interpretability. We start by observing
that functions between models of one theory and another that are determined by
interpretations give rise to functors.

Lemma 3.6. If t : mod (T ) → mod (S) is derived from an interpretation, then t
determines a functor.

Proof. t takes models of T and returns models of S. To obtain a genuine functor
we need to also explain the action of t on arrows in the mod (T ) category. Given an
elementary embedding j : M → N , we let t(j) be the restriction of j to t(M ). To see
t(j) : t(M) → t(N ) is an elementary embedding consider a sequence m̄ from t(M )
and a formula ϕ(x̄) from LS . Then we see that

t(M) |= ϕ(m̄) ⇔ M |= t(ϕ)(m̄)

⇔ N |= t(ϕ)(jm̄)

⇔ t(N ) |= ϕ(jm̄).

It is then easy to see that t preserves the identity arrow and composition.

It is worth nothing that this is a place where we make essential use of our requirement
that arrows in a theory category are elementary embeddings.23

This tells us that interpretations determine functors and thus we can see the relative
interpretations as special cases of functors between theory categories. However in

22 For an excellent discussion of how Morita interpretation relates to interpretations based on
quotient structure approaches, see [18].

23 To see this suppose thatf : M → N is not an elementary embedding where M is a model of
ZFC – (i.e., ZFC without the powerset axiom). Then we may fix some ϕ(x) in the language
of arithmetic and some sequence m ∈M<� such that

M |= ϕ(m) & N |= ¬ϕ(f(m)).

We use the fact that M is a model of ZFC – to ensure that ϕ(x) only requires one free
variable. Let t then be the interpretation that merely restricts the domain by letting �t(x) be
ϕ(x). Then f � t(M ) is not a function from t(M ) to t(N ) so it cannot be an elementary
embedding.
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general, many functors will not be determined by interpretations. For example any
functor that takes a model and returns a model with greater cardinality cannot be
determined by an interpretation. We address this by showing that the background
framework for our interpretative equivalences can be seen as a very natural restriction
of the framework we used for our equivalences between theory categories. To make this
idea clearer, we shall first abstract away a formal framework in which the equivalences
of Section 2 can be understood. First recall that a 2-category is a generalization of the
ordinary notion of category obtained by adding an extra sort of arrows and governing
their interaction with objects and ordinary arrows with new axioms.24 In this section,
we shall call; ordinary arrows, 1-morphisms; and the new arrows, 2-morphisms. From
our point of view the key point is that 2-morphisms can be seen as arrows between
1-morphisms, while 1-morphisms are arrows between objects. We can then define 1-
isomorphisms and 2-isomorphisms in the obvious way. We shall say that two (small)
categories are 1-equivalent, if there are functors going back and forth between them
that are 2-isomorphic; in other words, they are categorically equivalent. The classic
example of a 2-category is obtained by taking: every small category C as an object;
functors F between categories as 1-morphisms; and natural transformations �· between
those functors as 2-morphisms.25 Let us call this 2-CAT. This motivates the following
definition.

Definition 3.7. Let TH be the 2-category of theory categories with:

• objects: categories mod (T ) for some theory T;
• 1-morphisms: functors between those categories; and
• 2-morphisms: natural transformations between the functors.

Let’s call this the theory framework. It is then easy to see that isomorphism and
categorical equivalence can be articulated using TH. More specifically, we see that:

Proposition 3.8. Let mod (T ) and mod (S) be theory categories. Then:

(1) mod (T ) is categorically isomorphic to mod (S) if they are 1-isomorphic in TH.
(2) mod (T ) is categorically equivalent to mod (S) if they are 1-equivalent in TH.

With this in hand, we can now define a restriction of the theory framework that fits
perfectly with our definitions from interpretability.

Definition 3.9. Let THDef be the sub-2-category of TH where:

• 1-morphisms are the mod-functors determined by interpretations; and
• 2-morphisms are the natural transformations that are given by definable

functions.26

Let us call this the definable theory framework. We the observe that the equivalence
relations given by interpretability fit very naturally here.

24 A precise definition of a 2-category can be found in [14], although we’ll make no use of this
here.

25 There are of course problems around size here. So let us assume for our purposes that a small
category is one whose objects objects all come from VΩ and which is such that for any pair
of objects the arrows between them form a set in VΩ.

26 In the sense of Definition 3.4.
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Theorem 3.10. Let T and S be theories in LT and LS , respectively. Then:

(1) T and S are definitionally equivalent iff mod (T ) and mod (S) are 1-isomorphic
in THdef .

(2) T and S are strictly bi-interpretable iff mod (T ) and mod (S) are 1-equivalent in
THdef .

(3) T and S are iso-congruent iff mod (T ) and mod (S) are objectively equivalent as
witnessed by functors from THdef .

Proof. (1) and (3) are immediate. (2) Suppose that T and S are strictly bi-
interpretable. Then let t : mod (T ) → mod (S) and s : mod (S) → mod (T ) be such
that there exist formulae 	t(x, y) ∈ LT and 	s(x, y) ∈ LS defining isomorphisms
over T and S respectively that witness the strict bi-interpretation. For a model M of
T, let M : M ∼= s ◦ t(M) be the isomorphism defined by 	t(x, y) in M. Similarly,
for models N of S, let �N : N ∼= t ◦ s(N ). This satisfies the back and forth condition
for bi-interpretation, it suffices to show that · and �· are natural transformations. We
just prove this for · as the proof for �· is similar. Thus, it will suffice to show that the
following diagram commutes.

s ◦ t(M) s ◦ t(N )

M N

�M

s ◦ t(j)

j

�N

To see this first observe that for x ∈ s ◦ t(M ), j(x) = s ◦ t(j)(x), since s ◦ t(j) is
just a restriction of j. Now suppose that x ∈M . Then we see that

s ◦ t(j)(�M(x)) = j(�M(x)) = �N (j(x))

as required.

I’d like to suggest that this result motivates a somewhat subtle conceptual turning of
the tables. While relative interpretability has had a long history in mathematical logic,
categorical equivalence relations between theory categories are relatively new on the
scene. As such, it seems natural to think of categorical approaches as generalizations
of the core notions from interpretability. The results above suggest a different story.
The categorical equivalence relations can be seen as the prototype from which the
interpretative picture can be derived by a natural restriction on the theory framework.
We shall put this idea to work in Section 5, by considering a further natural restriction
of the theory framework.

3.1.1. Hierarchy? As was the case with the categorical equivalence relations, it is
natural to ask whether the equivalences given in Definition 3.5 are arranged in a strict
hierarchy. I have only been able to provide partial answers to these questions. First we
observe.

Proposition 3.11. (1) If T and S are definitionally equivalent, then they are
strictly bi-interpretable.

(2) If T and S are strictly bi-interpretable, then they are iso-congruent.

We now consider whether the top two positions collapse.
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Problem 3.12. Is there a pair of theories that are strictly bi-interpretable but not
definitionally equivalent?

We note first that there is a beautiful result from Visser and Friedman [22] that could
appear to establish that there is such a pair. However, it turns out that this is not the
case since the interpretations used there are not identity-preserving. More specifically,
they make use of a quotient interpretation.27 Nonetheless, the main theorem of that
paper gives an indication of how rare such an example would be.

Theorem 3.13 [22]. If T and S are sequential28 theories that are strictly bi-interpretable,
then T and S are definitionally equivalent.

The result is established using an internalization of the Cantor–Bernstein theorem.
This tells us that if we are interested in comparing theories that can provide a foundation
for mathematics, then they will certainly be sequential; and thus, whenever they are
strictly bi-interpretable they are definitionally equivalent. This brings us to the lower
two rungs on the ladder.

Problem 3.14. Is there a pair of theories that are iso-congruent but not strictly bi-
interpretable?

The following provides a partial answer.

Proposition 3.15. If we restrict theory categories to countable models, there is a pair
of theories that are iso-congruent but not strictly bi-interpretable.

Proof. Let D be the theory in the language LD = {<, dn}n∈� which says that < is
a dense linear order without end points and that dn < dn+1 for all n ∈ �. Let B be a
theory in the language LB = {≺, bn}n∈� that ≺ is dense linear order with no top point
but with a bottom point that is d0 and that bn < bn+1 for all n ∈ �.29

First we show that iso-congruence. Let t : mod (D) → mod (B) discard everything
below d0 and preserve everything else. More precisely, let

�t(x) := d0 < x ∨ x = d0

t(x ≺ y) := x < y

t(dn) := dn, ∀n ∈ �.
Let s : mod (B) → mod (D) discard the bottom element b0 and then shift each dn

up to the next remaining constant bn+1. More precisely, let

�s(x) := x �= b0

�s(x < y) := x ≺ y
t(dn) := bn+1, ∀n ∈ �.

Let A be a model of D. We claim that s ◦ t(A) ∼= A. To see this note that s ◦ t(A) is the
submodel of A obtained by removing those elements ≤ dA0 . Observe A and s ◦ t(A)

27 See Remark 3.3. We give a version of their example using Morita techniques below in Section
5.2.2.

28 This means it interprets AS (see Section 5.2.2). In fact, the weaker notion of a conceptual
theory suffices.

29 Of course, we could have used the same language for both, but this tends to make things
more confusing.
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can be seen as infinite sequences of countable dense linear orders without endpoints
demarcated by their interpretations of the 〈dn〉n∈� sequence. Since these orders are
countable, it can then be seen, via Cantor, that every such linear order on the sequence
of A is isomorphic to every such linear order on the sequence in s ◦ t(A). Thus A and
s ◦ t(A) are clearly isomorphic. Similarly in the other direction, given a model B of
B, we see that t ◦ s(B) is the submodel of B obtained by removing from the domain
those elements below bB0 and so it can be seen that t ◦ s(B) and B are isomorphic as
required.

Remark Note, however, that these interpretations do not witness a strict bi-
interpretation. This is because the isomorphism betweenA and s ◦ t(A) cannot be defined
in A. To get some insight into this note that a formula �(x, y) representing such an
isomorphism would need to be such that D entailed �(cn, cn+1) for every n ∈ �.

To see that D and B are not strictly bi-interpretable, suppose toward a contradiction
that they. Then fix f : mod (D) → mod (B), g : mod (B) → mod (D) and formulae
ϕD(x, y) and ϕB(x, y) from LD and LB respectively where:

• A ∼= g ◦ f(A) for all models A of D; and
• B ∼= f ◦ g(B) for all models B of B

and the relevant isomorphisms are defined by ϕD and ϕB respectively.
Now we observe that B and D are are too weak to define many functions.

Claim D cannot define any non-trivial isomorphisms.

Proof. Let A be a model of D. Then the only definable elements of A are those dAn
for n ∈ �. This means that the only bijections that can be defined in A are those that
permute a finite some finite subsets of {dAn }n∈� . But any bijection that gives such a
finite permutation is not an isomorphism since it will break the required ordering on
the dn sequence.

This means that if B and D are strictly bi-interpretable, then they are definitionally
equivalent and so, in particular, D must be able to interpret B in such a way that the
domain is preserved. Thus, the following claim suffices to establish the proposition.

Claim D cannot interpret B with a domain preserving translation.

Proof. See Appendix.

Note that proof illustrates a quite draconian limitation of interpretative techniques.
We are blocked by what in this context seem like arbitrary restrictions on our ability to
provide interpretations. This provides some motivation for the more general relations
like categorical equivalence and Morita equivalence. We’d like to free ourselves of at
least some of these bonds.

§4. Multi-sorted interpretation. In this section and the next, we develop some of
the space between categorical equivalences and their restricted interpretative cousins.
This will be achieved by letting theories define new domains (or sorts) over which they
may then quantify. The approach taken here is essentially from Barrett and Halvorson
[4]. However, we shall aim to generalize their framework by defining a notion of Morita
interpretation from which Morita equivalence can then be derived. This will allow us
to demonstrate that Morita equivalence is also a natural restriction of categorical
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equivalence relations. In order to develop this approach, we first recall some basic facts
about multi-sorted languages and interpretations between them.

4.1. Multi-sorted languages. Our exposition here is very similar to Barrett and
Halvorson [4] and we’ll mainly aim to note divergences rather than provide a full
exposition. A multi-sorted language L will consist of sorts, relations symbols and
function symbols. We use �, , �0, 0, �1, 1, ... for sorts. Relation symbols have an arity
of the form �0 × ··· × �n, where �0, ... , �n are sorts from L. Function symbols f have
an arity of the form �0 × ··· × �n → �.30 For each sort � ∈ L we shall have countably
many variable symbols labeled with their sort v�0 , v

�
1 , ....

31 And we shall use x�, y� as
metavariables of sort �.

A model M for L, will be a structure with a domain M� for each sort � from L.
Moreover for each relation symbol R from L with arity �0 × ··· × �n, the interpretation
of R in M, abbreviatedRM, will be a subset ofM�0 × ··· ×M�n ; and for each function
symbol with arity �0 × ··· × �n → �, fM will be a function fromM�0 × ··· ×M�n to
M� . The terms and formulae of L can then be defined inductively in the obvious way as
are the term denotation and satisfaction relations.32 We’ll use ϕ,	, 
 as metavariables
for formulae and s0, ... , sn as metavariables for terms.

4.2. Interpretation. We now define interpretation in the context of multi-sorted
languages. This is a little more fiddly than Definition 3.1 since our work with
Morita extensions pushes us to be very explicit in our treatment of function
symbols. To facilitate this, we first translate formulae of a language L into a
normal form that ensures that the only atomic formulae in which function symbols
occur are of the form x� = f(x�0

0 , ... , x
�n
n ); i.e., we can never have an atomic

formula of the form x� = f(g(x�0 ). Let us call this function normal form. Once a
formula is in this form, the usual translation process works smoothly. The following
proposition establishes that nothing is lost if we just use formulae in function normal
form.

Proposition 4.1. Let L be a multi-sorted language. For any formula ϕ(x�0
0 , ... , x

�n
n )

from L there is a logically equivalent formula ϕ†(x�0
0 , ... , x

�n
n ) that is in function normal

form.

We leave it to the reader to establish this, however, an example could be helpful
to illustrate the effect. For simplicity, suppose L has just one sort and suppose ϕ :=
∃x(R(x,f(x)) ∧ g(x) = f(x)) is a formula of L. Then we see that ϕ is equivalence to
the following formula in function normal form:

∃x(∀y(y = f(x) → Rxy) ∧ ∀z(z = g(x) ∧ y = f(x))).

Given the proposition above, let us assume without loss of generality for the
remainder of this section that we only deal with formulae in function normal form. We
can now provide our definition of an interpretation between multi-sorted languages.

30 Note that �0 × ··· × �n and �0 × ··· × �n → � are not, in general, sorts of L themselves.
31 Barrett and Halvorson [4] label their quantifies rather than their variables. This makes no

substantive difference, although perhaps makes the mechanism of translation a little more
transparent.

32 See Section 2 of [4].
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Definition 4.2. Let T and S be theories in multi-sorted languagesLT andLS respectively.
We say that a function t is a translation from the sentences of LS to those of LT if: for
all sorts � ∈ LS , t(�) is a sort in LT ; and

• for all sorts � ∈ LS , there is a formula �t,� of LT with at most vt(�)
0 free,

• for all relation symbols R of LT of arity �0 × ··· × �n, there is a formula t(R)
with at most the variables vt(�0)

0 , ... , vt(�n)
n free, and

• for all function symbols g of LT of arity �0 × ··· × �n → �n+1, there is a formula

t(g) with at most the variables vt(�0)
0 , ... , v

t(�n+1)
n+1 free,

such that for formulae ϕ of LS (in function normal form), t(ϕ) is defined recursively as
follows:

• ifϕ := Rx�0
0 ... x

�n
n whereR ∈ LS is a relation symbol of arity �0 × ··· × �n, then

t(ϕ) = t(R)(xt(�0)
0 , ... , xt(�n)

n ),

• if ϕ := (x�n+1
n+1 = g(x�0

0 , ... , x
�n
n )) where g ∈ LS is a function symbol of arity

�0 × ··· × �n → �, then

t(ϕ) = t(g)(xt(�0)
0 , ... , x

t(�n+1)
n+1 ),

where t(g) is a formula of LT such that

T 
 ∀xt(�0)
0 ...∀xt(�n)

n ∃!x�n+1 t(g)(xt(�0)
0 , ... , x

t(�n+1)
n+1 ),

• t(¬ϕ) = ¬t(ϕ);
• t(ϕ ∧ 	) = t(ϕ) ∧ t(	); and
• t(∀x� ϕ) = ∀xt(�)(�t,�(xt(�)) → t(ϕ),

where t(R)(x�0
0 , ... , x

�n
n ) is the result of replacing each vt(�i )i with xt(�i )i while changing

bound variables when required to avoid clashes, and analogous remarks apply to
t(g)(xt(�0)

0 , ... , x
t(�n+1)
n+1 ) and �t,�(xt(�)).

We say that T interprets S via a translation t, if for all sentences ϕ ∈ LS we have

S 
 ϕ ⇒ T 
 t(ϕ).

Then as with ordinary interpretation, we see that an interpretation gives rise to
a function from models of T to models of S. The following example shows how a
single-sorted theory ZFC can be used to interpret a multi-sorted theory.

Example 4.3. ACA0 is a theory in a language with two sorts: ob for natural
numbers; and cl for classes of numbers. It can be axiomatized by extending PA with: a
comprehension schema that says that any formula that avoids quantification over class
variables determines a class of natural numbers; and an induction axiom saying that
every class has a least element. A detailed description can be found in [20], however, the
basic idea is that we take a model of arithmetic and a new sort for subsets of the natural
numbers. In contrast ZFC is a theory with the single sort of sets . ZFC can be used to
interpret ACA0 with an interpretation t such that t(ob) = t(cl) = sets . So both sorts of
ACA0 are sent to the only sort for ZFC , sets . We then define number domain with a
formula �t,ob(x) that says x ∈ �; and the class domain with a formula �t,cl (x) that says
x ⊆ �. We leave the rest of the interpretation to the reader.
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The following theorem generalizes our earlier Theorem 3.2 linking interpretations
to mod-functors.

Theorem 4.4. If T interprets S via t : LS → LT , then t determines a function

t∗ : mod (T ) → mod (S)

such that for all models M of T, formulae ϕ(x�0
0 , ... , x

�n
n ), we have

M |= t(ϕ)(m0, ... , mn) ⇔ t∗(M) |= ϕ(m0, ... , mn)

when for all i ≤ n, M |= �t,�i (mi).

We omit the proof, which is similar to that of Theorem 3.2. As above, we shall
just write t∗ instead of t below. We can now define analogues of the interpretative
equivalences described in Section 3. Everything works much the same, however, we
shall take a little care to explain how isomorphisms and elementary equivalences work
in this setting.

Definition 4.5. Let us say that f : M → N is a homomorphism if f :
∏
�∈L(M� →

N�) is such that: for all relation symbols R of arity �0 × ··· × �n and m0, ... , mn from
M�0 , ... ,M�n respectively,33

M |= Rm0 ... mn ⇒ N |= Rf�0(m0) ... f�n (mn),

and for all function symbols g of arity �0 × ··· × �n → � and m0, ... , mn from
M�0 , ... ,M�n respectively,

gM(m0, ... , mn) = gN (f�0 (m0), ... , f�n (mn)).

We say that f : M → N is an embedding if f is a homomorphism and for all relation
symbols (including identity) R of arity �0 × ··· × �n and m0, ... , mn from M�0 , ... ,M�n
respectively,

M |= Rm0 ... mn ⇔ N |= Rf�0(m0) ... f�n (mn).

We say thatf : M → N is an isomorphism if there is some homomorphism g : N → M
such that

g ◦ f = idM and f ◦ g = idN .

We say that f : M → N is an elementary embedding if for all formulae ϕ(x�0 , ... , x�n )
of L and m0, ... , mn fromM�0 , ... ,M�n respectively,

M |= ϕ(m0 ... mn) ⇔ N |= ϕ(f�0 (m0) ... f�n (mn)).

For a theory T in a multi-sorted language L, we now letmodmult(T ) be the category
whose objects are models of T and whose arrows are elementary embeddings between
them. The following proposition establishes that interpretations also determine
functors in the multi-sorted setting. The proof is similar to that of Lemma 3.6.

Proposition 4.6. If t : modmult(T ) → modmult(S) is derived from an interpretation,
then t determines a functor.

33 Note that f takes a sort � and returns a function f� :M� → N� .
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Then in preparation for the more general notion of strict bi-interpretability, we define
what it means for an isomorphism to be definable over some theory.

Definition 4.7. Suppose L is a multi-sorted language with sorts {�i}i∈I . Let T be an
L-theory. We say that {	i(x, y)}i∈I defines a function over T if for all models N and
M of T where N is a submodel of M there is some f : M ∼= N such that for all i ∈ I
and all m0, m1 ∈M�i

f�i (m0) = m1 ⇔ M |= 	i(m0, m1).

Finally, we are can define the restricted framework suitable for multi-sorted
interpretation.

Definition 4.8. Let THmult be the 2-category with:

• objects: categoriesmodmult(T ) where T is a theory in a multi-sorted language L;
• 1-morphisms: functors between those categories; and
• 2-morphisms: natural transformations between those functors.

LetTHmult–def be the sub-2-category ofTHmult where: the 1-morphisms are given by mod-
functors given by interpretations; and the 2-morphism are given by definable functions.

We may then define the standard equivalence relations in much same way as we did
above. This time we take the category theoretic equivalences as the prototype from
which the ordinary definitions are obtained.

Definition 4.9. Suppose T and S are theories in the multi-sorted languages LT and LS
respectively. We say that:

• T and S are definitionally equivalent if they are 1-isomorphic in THmult–def ;
• T and S are strictly bi-interpretable if they are 1-equivalent in THmult–def ; and
• T and S are iso-congruent ifmodmult–def(T ) andmodmult–def(S) are objectively

equivalent as witnessed by functors from THmult–def .

Thus we have the natural generalization of the theory of interpretability to multi-sorted
languages.

§5. Morita interpretation.

5.1. Morita extension. The framework reviewed in the previous section allows us
to compare theories articulated in multi-sorted languages. However, there are many
occasions where we might want to compare, say, a single-sorted theory with a multi-
sorted theory but the tools above do not—in general—allow for this.34 For example,
we might want to compare the axiomatization of category theory with sorts for arrows
and objects with its axiomatization using only arrows. In this section, we describe a
framework developed by Barrett and Halvorson [4] for exactly this purpose. We have
two main goals in this section. First, we aim to generalize their approach so that we not
only get a new notion of equivalence, but further a new notion of interpretation: Morita
interpretation. Second, we use this to show that there is another natural restriction of
TH that gives us Morita equivalence and more. I’m going to depart a little from

34 For an instance where it does work, recall Example 4.3.
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the presentation of Barrett and Halvorson [4], although most of the deviations are
minor. The definition below describes a way of taking a theory T articulated in some
language L and adding a new sort � corresponding to one of four common type
constructions.

Definition 5.1. Let T be a theory in a (possibly) multi-sorted language L. We say that
T ∗ is a pure Morita successor of T in L∗ � L where � ∈ L∗\L is the new sort if one of
the following holds:

• (Product) There exist sorts �0, �1 ∈ L, L∗ = L ∪ {�, �0, �1} where �0 : � → �0
and �1 : � → �1; and T ∗ is T extended by

∀x�0
0 ∀x�1

1 ∃! y�(�0(x�0
0 ) = y� ∧ �1(x�1

1 ) = y�).

• (Co-product) There exist sorts �0, �1 ∈ L, L∗ = L ∪ {�, �0, �1} where �0 : �0 →
� and �1 : �1 → �; and T ∗ is T extended by

∀y�(∃x�0
0 �0(x�0

0 ) = y� ∨ ∃x�1
1 �1(x�1

1 ) = y�)∧
∀x�0

0 ∀x�1
1 (�0(x�0

0 ) �= �1(x�1
1 )).

• (Subsort) There exists a sort �0 ∈ L and a formula ϕ(x�0) from L; L∗ = L ∪
{�, �} where � : � → �0; and T ∗ is T extended by

∀x�0(ϕ(x�0) ↔ ∃z� �(z�) = x�0))∧
∀x�0 , x�1 (�(x�0 ) = �(x�1 ) → x�0 = x�1 ).

• (Quotient) There exists sort �0 and a formula ϕ(x�0 , y�0 ) in L and T proves
ϕ(x�0 , y�0 ) represents an equivalence relation; L∗ = L ∪ {�, �} where � : �0 →
�; and T ∗ is T extended by

∀x�0
0 , x

�0
1 (�(x�0

0 ) = �(x�0
1 ) ↔ ϕ(x�0

0 , x
�0
1 ))∧

∀y�∃x�0(�(x�0) = y�).

Let T+ be a theory in a language L+ extending L∗ with possibly new relation and
function symbols. We say that T+ is a mixed Morita successor of T if T+ interprets
T ∗ in the sense of Definition 4.2.35

Thus, we are allowed to add new sorts corresponding to products, co-products,
subsorts and quotients. For example, if I am working in the PA in the language of
arithmetic, I could add a subsort corresponding to the prime numbers. The distinction
between pure and mixed Morita successors is introduced for a technical reason. Barrett
and Halvorson [4] define a Morita extension to be what we have called a mixed Morita
successor. However, we shall do things a little differently by only using pure Morita
successors and then using a multi-sorted interpretation at the end. We demonstrate
below that this makes no substantive difference. However, the approach taken here
makes for an easier comparison with the categorical approach above. We shall generally
omit the “pure” and call pure Morita successors, “Morita successors,” unless confusion
could arise.

35 This means that a mixed Morita extension can add new relation symbols, in addition to new
sorts (and their accompanying functions).
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Definition 5.2. We say thatT ∗ is a pure (and respectively mixed) Morita expansion of
T if T ∗ is the theory resulting after taking finitely many pure (mixed ) Morita successors
of T.36

We then note that when T ∗ is a Morita expansion of T any model of T can be
expanded to obtain a model of T ∗ that is unique up to isomorphism.

Theorem 5.3 [4]. Let T be a theory articulated in a language L. If T ∗ is a mixed (or
pure) Morita successor of T, then for any model M of T, there is model M∗ of T ∗ whose
reduct to L is M. Moreover, any two such models are isomorphic.

From this it follows that T ∗ is model-theoretic conservative extension of T. Thus,
we might say that whatever is added by a Morita expansion comes at a relatively low
cost.

5.2. Morita interpretation and equivalence(s). Using Morita expansions, we can
now describe a notion of Morita interpretation that is implicit in Barrett and Halvorson
[4]. The main work of this section will be establishing that these interpretations can be
understood as giving rise to functors in THmult–def .

Definition 5.4. Let us say that T Morita interprets S, if T has a Morita expansion T+

that interprets S. Let us say that T and S are mutually Morita interpretable if T and S
have Morita expansions T+ and S+ that interpret each other.

Observe that unlike ordinary relative interpretation, Morita interpretation has two
components. First we make a Morita expansion, then we make the (usually multi-
sorted) interpretation. We’d like now to define something like a mod-functor for Morita
interpretation, however, the initial Morita expansion poses a problem: since we are
adding new domains, there will be many different ways to populate them. Thus a
Morita interpretation does not determine a particular functor but rather a family of
them.

Definition 5.5. Let T and S be theories in LT and LS respectively. Suppose T Morita
interprets S via the Morita expansion T+ in LT+ and the translation t : LS → LT+ . Let
us say that a functor t† : mod (T ) → mod (S) is compatible with t, if for all models M
of T, there is some model M′ of T+ such that:

• for all sorts � from the ground language LT , (M+)� =M� ; and
• t†(M) = t∗(M′).37

Note that t† takes models of T while t∗ takes models of T+. The idea here is that we
restrict our attention to functors t† that yield models that could have been obtained
by taking a pure Morita extension and then applying the mod-functor t∗. Notice,
however, that while we have a definition of compatible functors, we are yet to show
that any such functors exist. To establish this, we first define what we call the canonical

36 I’m using the term “expansion” rather than “extension” for a couple of reasons. First, I want
to make a clear distinction between the concepts defined here and those defined in Barrett
and Halvorson [4]. Second, model theorists tend to use “expansion” to refer to the process
of adding vocabulary and “extension” for augmenting the domain of a model [12]. A Morita
expansion is primarily an addition of vocabulary, so “expansion” seems apropos. That said,
Morita expansions also involve adding new domains, so either name could work.

37 t∗ : mod (T+) → mod (S) is the function defined in Theorem 4.4.
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Morita expansion of a model M of T. The basic idea is to use the obvious operations
on the original sort domains to define the new sort domains.

Definition 5.6. Suppose T+ ⊆ LT+ is a (pure) Morita successor of T ⊆ LT and let M
be a model of T. We let the canonical (Morita) expansion ofM, denotedM+, be a model
of LT+ defined as follows. For sorts � from LT , we let—as required—(M+)� =M� . If
� is the new sort in LT+\LT defined from sorts �0, �1 from LT , we defineM+

� based on
how � is formed:

• if � is a product formed from �0, �1, let

M+
� =M�0 ×M�1 ,

�M
+

0 (〈m0, m1〉) = m0 and �M
+

1 (〈m0, m1〉) = m1;
• if � is a co-product sort formed from �0, �1, let

M+
� = (M�0 × {0}) ∪ (M�1 × {1}),

�M
+

0 (m) = 〈m, 0〉 and �M
+

1 (m) = 〈m, 1〉;
• if � is a subsort of �0 formed using ϕ(x�0), let

M� = {m | m ∈M�0 ∧ M |= ϕ(m)},

and �M
+

(m) = m;
• if � is a quotient on �0 formed using ϕ(x�0 , y�0 ), let

M+
� = {[m]ϕ | m ∈Mk�0

},

and �M
+

(m) = [m]ϕ , where [m]ϕ = {m0 ∈M� | M |= ϕ(m,m0)} .

If T ∗ ⊆ LT∗ is a (pure) Morita expansion of T ⊆ LT , then the canonical Morita
expansion of M, denoted M∗ is formed by taking successive canonical expansions of
M corresponding to the new sorts that are added in the Morita expansion.

We now aim to prove that functors compatible with interpretations exist. To do this,
we first recall a technical theorem from [4] that will be used further during this paper.
In order for this theorem to make sense, we first need to explain the notion of a code.
A detailed discussion of this is provided after Example 4.5 in [4], but we’ll content
ourselves here with a brief overview. Suppose that T+ ⊆ LT+ is a Morita successor
of T ⊆ LT and that � is the new sort that was added. Despite being a new sort, we
can still understand the behavior of objects of sort � using objects from sorts from the
original language LT . For example, if � is formed as a product of sorts 0 and 1, using
projection functions �0 and �1, then we see that any x� is determined by a unique pair
z
0
0 and z10 . More precisely, we see that

�0(x�) = z00 ∧ �1(x�) = z11

and we call such a formula a code for variables of sort �. A code provides a kind of
bridge between the old sorts of LT and the new sorts of LT+ . Similarly, a code for
each of the other three sort types can also be defined. The following theorem then
shows how the behavior of the new sorts can be understood from the perspective of
the original language.

Theorem 5.7 [4]. Suppose T+ ⊆ LT+ is a Morita successor of T ⊆ LT . Suppose
ϕ(x�0 , ... , x

�
m, y

�0
0 , ... , y

�n
n ) where � ∈ LT+\LT and �0, ... , �m ∈ LT . Suppose that for
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i ≤ m, �i(x�, z
0
0 , z

1
1 ) is a code for variables of sort � where 0 and 1 are sorts from LT .

Then there is a formula ϕ∗(z00,0, z
1
0,1, ... , z

0
m , z

1
m,1, y

�0
0 , ... , y

�n
n ) of LT such that T+ proves

that for all x�0 , ... , x
�
m, y

�0
0 , ... , y

�n
n , z

0
0,0, z

1
0,1, ... , z

0
m , z

1
m,1 if

∧
i≤m �i(x

�
i , z

0
i,o, z

1
i,1), then

ϕ(x�0 , ... , x
�
m, y

�0
0 , ... , y

�n
n ) ↔ ϕ∗(z00,0, z

1
0,1, ... , z

0
m , z

1
m,1, y

�0
0 , ... , y

�n
n ).

Informally speaking, we are using the code formulae �i to form a bridge between
the formula ϕ of LT+ and an equivalent formula ϕ∗ of the original language LT .38 A
little more formally, we are replacing all the variables of sort � with pairs of variables
of sort 0 and 1 and then modifying the formula ϕ to accommodate this change.
Given the appropriate coding formulae, we end up with a formula ϕ∗ from the original
language, LT , that is equivalent to ϕ according to T+. The upshot of this is that we
see that T is capable of simulating what happens in T+. Thus, it might be argued that
the expansion is—in some sense—harmless. We then use this result in the following
lemma to establish the existence of compatible functors for Morita expansions.

Lemma 5.8. If T+ ⊆ LT+ is a Morita successor of T ⊆ L and j : M → N is an
elementary embedding between models of T, then there is an elementary embedding
j+ : M+ → N+ such that for all sorts � from L, j+

� = j� .

Proof. First we define j+ : M+ → N+ where j+
� = j� for all � from L and then we

show that j+ is an elementary embedding. If � is a sort from L we let j+
� = j� . So

suppose � is the new sort from LT+\LT defined from sorts �0, �1 from LT . We we
define j+

� depending on how it was formed:

• if � is a product formed from �0, �1, and 〈m0, m1〉 ∈M+
�

j+
� (〈m0, m1〉) = 〈j+

�0
(m0), j+

�1
(m1)〉;

• if � is a co-product sort formed from �0, �1 and 〈m, i〉 ∈M+
�

j+
� (〈m, i〉) =

{
〈j+
�0

(m), i〉, if i = 0,
〈j+
�1

(m), i〉, if i = 1;

• if � is a subsort of �0 formed using ϕ(x�0 ) and m ∈M+
�

j+
� (m) = j+

�0
(m); and

• if � is a quotient on �0 formed using ϕ(x�0 , y�0 ), let

j+
� ([m]ϕ) = [j+

�0
(m)]ϕ.

We then claim that j+ gives an elementary embedding. Let ϕ(x�0 , ... , x
�
m, y

�0
0 , ... , y

�k
k )

be a formula of LT+ and m0, ... , mn, a0, ... , ak where m0, ... , mn are from M� and
a0, ... , ak are fromM�0 , ... ,M�k respectively. We claim that

M+ |= ϕ(m0, ... , mn, a0, ... , ak) ⇔ N+ |= ϕ(j+
� (m0), ... j+

� (mn), j+
�0

(a0), ... , j+
�k

(ak)).

We’ll just do the case when � is a co-product sort formed from sorts 0, 1 from
LT . ThenM� = (M0 × {0}) ∪ (M1 × {1}). For each i ≤ n, let �i(x�i , z

0
i,0, z

1
i,1) be: the

38 Note that we may need more than one code formula for a particular sort in order to deal
with the case of co-products. This emerges in the proof of Lemma 5.8 and is addressed in
more detail in the final part of the proof of Theorem 4.6 in [4].
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formula �0(z0i,0) = x�i ifmi = 〈m∗
i , 0〉 for somem∗

i ∈M0 ; and �1(z1i,1) = x�i otherwise.
Each of these formulae �i is a code for the sort �. We then see that for all i ≤ n, we
may fix ci,0 ∈M0 and ci,1 ∈M1 such that M+ |= �i(mi, ci,0, ci,1). Thus we see that

M+ |=
∧
i≤n
�i(mi, ci,0, ci,1).

Moreover, using the definition of j+ and it can be seen that N+ |=
∧
i≤n �i(j

+

� (mi),
j0(ci,0), j1 (ci,1)).

By the previous lemma we may fix a formula ϕ∗(z00,0, z
1
0,1, ... , z

0
n,0, z

1
n,1, y

�0
0 , ... , y

�k
k )

such that T+ proves that for all x�0 , ... , x
�
m and z00,0, z

1
0,1, ... , z

0
n,0, z

1
n,1, y

�0
0 , ... , y

�k
k if∧

i≤n �i(x
�
i , z

0
i,0, z

1
i,1) then

ϕ(x�0 , ... , x
�
m, y

�0
0 , ... , y

�k
k ) ↔ ϕ∗(z00,0, z

1
0,1, ... , z

0
n,0, z

1
n,1, y

�0
0 , ... , y

�k
k ).

Finally, we put this together to see that

M+ |= ϕ(m0, ... , mn, a0, ... , ak)

⇔M |= ϕ∗(c0,0, c0,1, ... , cn,0, cn,1, a0, ... , ak)

⇔N |= ϕ∗(j0 (c0,0), j1 (c0,1), ... , j0 (cn,0), j1 (cn,1), j�0(a0), ... , j�k (ak)

⇔N+ |= ϕ(j+
� (m0), ... j+

� (mn), j+
�0

(a0), ... , j+
�k

(ak))

as required.

It is easy to see that Lemma 4.6 gives us the successor case in a proof by induction
establish the result above holds for Morita expansions more generally. Finally, we can
use this to show that Morita interpretations are compatible with functors between
theory categories.

Theorem 5.9. Let T and S be theories in LT and LS respectively. Suppose T Morita
interprets S via the Morita expansion T ∗ in LT∗ and translation t : LS → LT∗ . Then
there is a functor t† that is compatible with t.

Proof. First we define t† : modmult(T ) → modmult(S). Give M a model of T, we
let t†(M) = t(M∗) where: M∗ is the canonical expansion of M to a model of T ∗

described above; and t : modmult(T ∗) → modmult(S). This describes the action of t†

on the objects of modmult(T ). For arrows, suppose that j : M → N is an elementary
embedding between models of T. By Lemma 5.8, we may fix j∗ : M∗ → N ∗. And by
Proposition 4.6 we see that t(j∗) : t(M∗) → t(N ∗) is an elementary embedding such
that t(j∗) restricted to domains from T is the same as j. Thus we let t†(j) = t(j∗). It
is then easy to see that this function preserves identity arrows and composition. Thus
t† is a function compatible with t as required.

This puts us in position, analogous to that in Section 3, to define a framework in
which Morita interpretation can be understood as another natural restriction of the
theory framework based in category theory.

Definition 5.10. Let THMor be the subcategory of THmult where:

• 1-morphisms are mod-functors compatible with Morita interpretations; and
• 2-morphisms are natural transformations given by definitions over the relevant

theory.
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And then we may define our standard equivalences in this restricted framework.

Definition 5.11. Let T and S be theories in LT and LS respectively. Then:

(1) T and S are definitionally Morita equivalent if mod (T ) and mod (S) are 1-
isomorphic in THMor ;

(2) T and S are bi-Morita-equivalent if mod (T ) and mod (S) are 1-equivalent in
THMor ; and

(3) T and S are Morita iso-congruent if mod (T ) and mod (S) are objectively
equivalent as witnessed by functors from THMor .

Once again, we see that the category theoretic framework provides a clean housing
of a notion of interpretation. However, we must note that Barrett and Halvorson
[4] define a different notion, Morita equivalence, which raises the question: where
does their notion Morita equivalence fit above? The answer is that it is the same as
definitional Morita equivalence and we shall now prove this. As mentioned above, the
key issue is whether we use pure or mixed Morita successors. Let us recall the definition
of what we shall call standard Morita equivalence.

Definition 5.12 [4]. Let T and S be theories in multi-sorted language LT and LS
respectively. We say that T and S are standard Morita equivalent if T and S have mixed
Morita expansions T ∗ ⊆ LT∗ and S∗ ⊆ LS∗ that are definitionally equivalent.

It is easy to see that T and S are definitionally Morita equivalent if T and S have
pure Morita expansions T ∗ and S∗ such that they are definitionally equivalent. One
might thus worry that by using a succession of mixed Morita expansions rather than
pure ones, we may be able to interpret more and thus obtain more standard Morita
equivalences than definitional Morita equivalences. The following lemma show that
this worry is misplaced.

Lemma 5.13. If T ∗ is a mixed Morita expansion of T, then T ∗ can be obtained by a
single interpretation from a pure Morita expansion T+ of T.

Proof. We proceed by induction the Morita successors of T that culminate in T ∗.
We suppose for our induction hypothesis that we have a sequence T = T ∗

0 , T
∗
1 , ... , T

∗
n

of mixed Morita successors of T in languages L = L∗
0 , ... ,L∗

n ; and for each i ≤ n, there
is a Morita expansion T+

i in L+
i such that an interpretation of T+

i that is T ∗
i . Let

T ∗
n+1 be a mixed Morita expansion of T ∗

n in the language L∗
n+1. We claim that there

is a Morita expansion of T+
n such that T ∗

n+1 can be obtained by interpretation. Thus,
it suffices to show that for the new sort � added to L∗

n+1, this sort can also added as
a Morita expansion of T+

n . First, we note that L∗
n and L+

n must have the same sorts.
Thus, it is easy to see that any product or coproduct sort added to L∗

n could also be
added to L+

n .
Things are a little more difficult with subsorts and quotient sorts since they are

defined using a formula of L∗
n that may contain more relation and function symbols

than L+
n . We focus on the quotient sort case as it is more complex. We suppose that � is

a quotient sort formed from the sort �0 from L∗
n formed using the formula ϕ(x�0 , y�0)

from L∗
n . It then suffices to show that there is a formula ϕ∗(x�0 , y�0) such that

T ∗
n 
 ∀x�0∀y�0(ϕ(x�0 , y�0) ↔ ϕ∗(x�0 , y�0)).
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This follows directly from Theorem 5.7. Thus, T+
n is also able to define � and so we

may form T+
n+1 by adding the quotient sort � using the formula ϕ∗(x�0 , y�0). Then any

new relation symbols involving � can be procured by interpretation as required.

Putting this together, we see that whenever we have a series of mixed Morita
interpretations witnessing standard Morita equivalence, those interpretations can be
recovered using a pure Morita expansion following by an interpretation. Thus, we get
the following.

Corollary 5.14. T and S are definitionally Morita equivalent if and only if they are
standard Morita equivalent.

Thus, we now see that the equivalence relation of [4] fits very comfortably into the
framework provided by this paper. Let us now look at some examples of definitional
Morita equivalence.

5.2.1. A simple example. Our first example establishes a well-known kind of
redundancy in multi-sorted approaches to theories.

Proposition 5.15. Any two-sorted theory T in a language with just relation symbols
is Morita equivalent to a single sorted theory.

The proof below is easily adapted to accommodate theories with any finite number
of sorts and languages that use function and constant symbols. However, it mostly
just makes the notation harder to read and the underlying concepts more difficult to
discern.

Proof. Suppose T is articulated in the languageLT with sorts �0, �1 and a set {Ri}i∈I
of relation symbols. Let S be be the theory articulated in the language LS that has one
sort �; one-place relation symbols P0, ... , Pn; and the same set of relation symbols.
Before we describe the content of S, it is convenient to define a translation function
s : LT → LS that works by letting:

• s(�i ) = � for all i < 2;
• s(Ri ) = Ri for all i ∈ I ; and
• �s,�i = Pi for all i < 2.

The idea here is that we let the 1-place relations symbols Pi play the role of the sorts �i
by restricting quantification to Pi where we were once quantifying within �i . We then
let S be the pointwise image of T via s. Thus, by its definition we see that S interprets T.

We now define the Morita interpretations. First we Morita interpret S in T by taking
successive Morita expansions that add subsorts �0 and �1 defined by the formulae
saying P0x and P1x respectively. Call the result T+. We then let the interpretation that
follows be the identity. In the other direction we obtain a Morita interpretation of T in
S by taking a Morita successor S+ that adds a coproduct sort � that combines �0 and
�1 and letting the interpretation again be trivial. Thus, both T+ and S+ are theories
that both have the same sorts �, �0 and �1. Moreover, it is easily seen that these theories
are logically equivalent.

Thus, we have established a sense in which it doesn’t matter whether we work in
multi-sorted theories or restrict our attention to single-sorted theories. Of course, this
doesn’t mean that it can’t be extremely convenient to work in a multi-sorted theory,
but this kind of difference is beyond the scope of the tools developed here.

https://doi.org/10.1017/S1755020323000321 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000321


846 TOBY MEADOWS

5.2.2. A more interesting example. We now employ this framework on an example
from Visser and Friedman [22] that we mentioned above. In the context of
interpretations that are not identity preserving (and thus, not that of this paper), this
example was used to provide a pair of theories that were (non-strictly) bi-interpretable
but not definitionally equivalent. In the context of this paper, it makes for a pleasing
example of Morita equivalence.

Let AS be the theory in the language LAS with a single sort ob and a two place
relation symbol ∈. Let it have the following two axioms:

• ∃x∀y y /∈ x; and
• ∀x∀y∃z∀w(w ∈ z ↔ w ∈ x ∨ w = y).

Let ACF be the theory in the language LACF with two sorts ob and cl where we use
lower case variables for the ob sort and upper case variables for the cl sort. Let the
non-logical vocabulary consist of: a relation symbol ε of arity ob × cl ; and a function
symbol F of sort ob → cl . Let it be axiomatized by the following axioms:

• ∃X∀y ¬yεX ;
• ∀X∀y∃Z∀w(wεZ ↔ wεX ∨ w = y);
• ∀X∀Y (∀z(zεX ↔ zεY ) → X = Y );
• ∀X∃y F (y) = X .

Proposition 5.16. AS is Morita equivalent to ACF .

Proof. We let AS+ be a Morita expansion of AS with a quotient sort on ob given
by the formula ϕ(x, y) := ∀z(z ∈ x ↔ z ∈ y). Call this new sort � and let � : ob → �
be the associated function. Use upper case letters for �-variables.

It suffices to show that AS+ is definitionally equivalent to ACF . Let t : LACF →
LAS+ be such that t(ob) = ob and t(cl) = �. Let

t(x = y) := x = y

t(X = Y ) := X = Y

t(xεY ) := ∃z(�(z) = Y ∧ x ∈ z)
t(F (x) = Y ) := �(x) = y.

Let s : LAS+ → LACF be such that s(ob) = ob and s(�) = cl . Let

s(x = y) := x = y

s(X = Y ) := X = Y

s(x ∈ y) := xεF (y)

s(�(x) = Y ) := F (x) = Y.

It’s easy to see that this gives a definitional equivalence.

§6. A tableau of interpretability. In this final section, we take some stock and put
the work of the preceding sections into a Hasse diagram that is intended to give a
clearer idea of the logical landscape. An arrow from one vertex to another indicates
that whenever we have two theories satisfying the root position, then those theories
also satisfy the relationship of the target position.
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Definitional Equivalence Morita Equivalence Categorical Isomorphism

Bi-interpretable Morita Bi-interpretable Categorical Equivalence

Iso-congruence Morita-congruence Objective Equivalence

Mutually Interpretable Morita Mutual Category Mutual

Cor 2.9

We include a bottom row in this table to accommodate mutual interpretability
and its Morita and categorical counterparts. This will be useful for understanding
of the results below that demonstrate that some of these arrows cannot be reversed.
Each of the downward implications follow essentially by their definitions. The arrows
from positions in the leftmost column to those in the middle column follow since the
single sorted cases are clearly instances of their Morita counterparts. The arrows from
position in the middle column to those in the rightmost column follow from Theorem
5.9. The only reversal we have obtained was established in Corollary 2.9.

The diagram arguably above provides a richer picture than was available in Barrett
and Halvorson [4], which focuses on what we might now think of as the top row.
Thus, when they come to consider the question of whether arrows reverse they are only
focused on the two arrows in the top row of the diagram. Nonetheless, the proofs of
their non-reversal claims deliver strengthened claims in current framework. We sketch
these results below, using the following definition and lemma.

Definition 6.1. Let us say that T is rigid if no model of M of T has an embedding
f : M → M that is not the identity function on each of its sort domains.

Any theory that implies that there is only one object will be rigid since any function
between a model of that theory and itself must be the identity. Note also that when f :
M → N is an embedding f is an isomorphism between M and the obvious structure
formed from its range. This entails that the composition of functors witnessing strict bi-
interpretability or iso-congruence will be an embedding that is also an endomorphism.
The following lemma entails us that embeddings between models of some theory have
can be uniquely lifted to embeddings of models of its Morita expansions.

Lemma 6.2. SupposeT+ is a Morita successor T, M is a model of T andf : M → M
is an embedding. Then for any modelM+ ofT+ extendingM there is a unique embedding
f+ : M+ → M+ that extends f.

Proof. The proof is routine so we just verify the result for the case of product sorts.
Supposef : M → M is an embedding. Suppose � is a product sort formed from sorts
�0 and �1 from LT , the language of T. Let f+ : M+ → M+ be such that f+

 = f for
all sorts  from LT . Then for m ∈M� let
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f+
� (x) = y

when: �0(x) = x0, �1(x) = x1, �0(y) = y0, �1(y) = y1 are satisfied in M+; and
f�0(x0) = y0 and f�1(x1) = y1. Now toward uniqueness suppose g : M+ → M+ is
an embedding that extends f but g �= f+. Then there must be some x inM� such that
f+
� (x) �= g�(x). But then g cannot be an embedding. To see this note that we must

have either

M+ |= �0(g�(x)) �= g�o (x0) or M+ |= �1(g�(x)) �= g�o (x1)

when we already know that M+ |= �0(x) = x0 and M+ |= �1(x) = x1.

Corollary 6.3. If T is rigid and T+ is a Morita expansion of T, then T+is also rigid.

Proof. Let M+ be a model of T+ and M be the retract of M+back to the language
LT of T. Letf+ : M+ → M+ be an embedding and letf : M → M be the restriction
of f back to sorts in LT . Since T is rigid, we see that f must be the identity. Then using
Lemma 5.8, we see that there is a unique embedding extending the identity function
and so this must bef+. Since the identity function is clearly an embedding from M+to
itself, we see that f+ must be the identity on its sort domains.

Here then are the results from Barrett and Halvorson [4] establishing that arrows
cannot be reversed. We include brief sketches of the proofs of the generalizations of
these results to the current framework, however, the underlying machinery remains the
same.

Theorem 6.4.

(1) (Essentially [4]) There are first-order theories that are Morita equivalent but not
mutually interpretable.

(2) (Essentially [4]) There are first-order theories that are categorically isomorphic,
but not Morita iso-congruent.

Proof. (1) Let T be the theory saying there is exactly one object in the empty
language. Let S be the theory in the language LS = {R, a, b} where R is a 2-place
relation symbol and a, b are constant symbols. Let S say that Rab and that for no
x, y do we have Rxy unless x = a and y = b. It is easily seen that T cannot interpret
S since an interpretation t : mod (T ) → mod (S) would need to give a submodel of a
model of T that contains two objects. On the other hand, it can be seen that T will
be Morita equivalent to any theory satisfying the conditions set out for S. For T to
Morita interpret S, we take a Morita successor T+ taking the disjoint union of the
domain with itself. Then we use the associated embedding functions �0, �1 to define a
relation between �0(x) and �1(x) for the only object x. For S to interpret T we take
a subsort that picks out one of the objects from the domain. Call this S+. It can then
be seen that these interpretations give us definitional equivalence between T+and S+

and thus Morita equivalence between T and S.
(2) Let T be the theory that says there is exactly one object in the language L =

{Pn, a}n∈� where each Pn is a one-place relation symbol and a is a constant symbol.
Let S be the theory in L which extends T with the axioms

P0a → Pna
for all n ∈ �. Barrett and Halvorson show that these theories are equivalent as
categories but not Morita equivalent. Since they are equivalent, we see by Corollary 2.9
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that mod (T ) and mod (S) are also isomorphic as categories. To see that T and
S are not Morita iso-congruent, we suppose toward a contradiction that there are.
Now fix Morita expansions T+ and S+ of T and S respectively and interpretations
t : mod (T+) ↔ mod (S+) : s witnessing the iso-congruence. Thus we have:

• s ◦ t(M) ∼= M for all models M of T+; and
• t ◦ s(N ) ∼= N for all models N of S+.

Note that T and S are both rigid. This is because both theories demand that there
is only one object and thus, any function between a model of T (respectively S) and
itself will be the identity. Let M be a model of T+and let M– be the reduct of M
back to the language L. Then note that since the only embedding f : M– → M– is the
identity, we see by Corollary 6.3 that any embedding between M and itself witnessing
that M ∼= s ◦ t(M) must also be the identity. Similarly, any automorphism between
N and t ◦ s(N ) for a model N of S must also be the identity. Thus, T+ and S+ are
definitionally equivalent; and so T and S are Morita equivalent, which we know cannot
be the case.

The table below highlights the failures of reversal that we have described so far.
The square at the end of the line between two points is intended to indicate that
one cannot always infer that theories satisfying the kind of equivalence in the root
position also satisfy the equivalence described in the square position. Note that since
there is a pair of theories that are Morita equivalent but not mutually interpretable
entails that this pair of theories is also not iso-congruent, strictly bi-interpretable or
definitionally equivalent. We have used a dashed line between iso-congruence and strict
bi-interpretability to indicate that this is a partial result that only holds when we restrict
our attention to countable models.

Definitional Equivalence Morita Equivalence Categorical Isomorphism

Bi-interpretable Morita Bi-interpretable Categorical Equivalence

Iso-congruence Morita-congruence Objective Equivalence

Mutually Interpretable Morita Mutual Category Mutual

Prop 3.15 Prop 2.7

Thm 6.4(2)

Thm 6.4(1)

6.1. Open questions. We now explore the failure of reversals in the table a little
further by addressing the following open questions posed by Barrett and Halvorson
[4].39

39 A third open question was also posed by Barrett and Halvorson concerning whether Theorem
6.4(2) can be established using theories with finite vocabularies. We established some partial

https://doi.org/10.1017/S1755020323000321 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000321


850 TOBY MEADOWS

Problem 6.5 [4].

(1) Suppose T is a single sorted theory that is Morita equivalent to PA (respectively
ZF ). Then is T definitionally equivalent to PA (respectively ZF )?

(2) For sufficiently strong single-sorted theories, does Morita equivalence imply
definitional equivalence?

These problems focus on whether the differences between Morita equivalence and
definitional equivalence collapse when we consider theories that are sufficiently strong.
In other words, they ask whether the relationships along the top of the table reverse.
We answer these two questions below.

Problem 6.5(2). We answer this question negatively by providing a theory that is
Morita equivalent to ZF but is not definitionally equivalent to ZF . Let ZFtwin be ZF
with the axiom of extensionality replaced by axiom stating that for any set there is
exactly one other set with the same members. More specifically,

∀x∃!x∗(x �= x∗ ∧ ∀w(w ∈ x ↔ w ∈ x∗)).

Thus, we have a strange modification of ZF in which every set has a twin. Note that
ZFtwin is unable to define an element of any of its models since there will always be
a twin. For this reason, we also demand that our axiomatization of ZF includes the
axiom of collection instead of replacement. In ZF this makes no difference but in
contexts where extensionality fails it is important since genuine class functions are
difficult to find.40

Theorem 6.6. (1) ZFtwin is Morita equivalent to ZF .
(2) ZFtwin is not definitionally equivalent to ZF .

Proof. (1) To Morita interpretZFtwin inZF add the subsort with domain X defined
by transfinite recursion such that

X0 = {〈0, ∅〉, 〈1, ∅〉}
Xα+1 = {〈0, y〉 | y ∈ P(Xα)}∪

{〈1, y〉 | y ∈ P(Xα)} ∪ Xα
X� =

⋃
α<�

Xα for limit �

and X =
⋃
α∈Ord Xα . We then define a relation ∈X on this sort which is such that for

〈i, x〉, 〈j, y〉 ∈ X
〈i, x〉 ∈X 〈j, y〉 ⇔ x ∈ y.

The idea is to build in the twins by tagging sets with the natural numbers 0 and 1. This
is clearly a model of ZFtwin. Call this Morita expansion ZF +. To Morita interpret ZF
in ZFtwin we define a quotient sort following [19]. In ZFtwin, let us say that a set x
is extensional if whenever y and z have the same members, then y ∈ x iff y ∈ z. We
ϕ1(x) say that there is a transitive set Y such that x ∈ Y and every element of Y is

results in this regard by comparing a restricted class of models ofZFC andGBN . However a
simpler and complete solution has now been provided by Andréka et al. [1] using techniques
based on automorphisms.

40 For some pathological results in this regard, see [19].
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extensional. Then let ϕ0(x, y) say that x and y have the same members. It can then be
seen that the quotient sort given by ϕ0 over ϕ1 gives a model ofZF . Call the expansion
ZF +
twin. One can then see that ZF +

twin and ZF + are definitionally equivalent and so
ZFtwin and ZF are Morita equivalent.

(2) We claim thatZFtwin cannot even interpretZF . Suppose toward a contradiction
that there is an interpretation t : L∈ → L∈ such that for all ϕ ∈ L∈

ZF 
 ϕ ⇒ ZF twin 
 t(ϕ).

Now consider the sentence 	 that says there is a unique set that has no members; i.e.,
∃!x∀y y /∈ x. t must translate this to a sentence of the form

∃!x(�t(x) ∧ ∀y ¬t(∈)(x, y)).

But this would mean that ZFtwin was able to define an empty set which is
impossible.

We also note that this example can be generalized to hold for PA and not just ZF .
To see this we first recall a standard result. Let ZFfin be ZF with the axiom of infinity
removed and its negation added. Moreover, suppose we use the axiom of set schema
of set induction rather than Foundation.41

Fact 6.7. PA and ZFfin are definitionally equivalent.42

It is then easy to see that the proof above made no use of the axiom of infinity,
thus there is a theory ZFfin,twin that is Morita equivalent but not definitionally
equivalent with ZFfin. Fact 6.7, then entails that PA is also Morita equivalent but
not definitionally equivalent with ZFCfin,twin.

Problem 6.5(3). We answer the question affirmatively by using a natural
condition—Morita completeness—suggested by Barrett and Halvorson [4]—that
entails that definitional equivalence follows from Morita equivalence. The idea here is
that some theories have sufficient expressive strength that they can replicate the effects
of Morita expansion by defining objects internally without the need to add new sorts.
We shall say that such a theory is Morita complete. The following definition is intended
to capture this idea.

Definition 6.8. Let us say that a theory T in a single sorted language LT is Morita
complete if each of the following hold:

(1) For all ϕ0(x), ϕ1(x) ∈ LT there exist formulae, ϕ0×1(x), �0(x, y) and �1(x, y)
of LT such that T proves �0 and �1 represent functions and T proves

∀x∀y(ϕ0(x) ∧ ϕ1(y) → ∃! z(ϕ0×1(z) ∧ �0(z, x) ∧ �1(z, y)).

(2) For all ϕ0(x), ϕ1(x) ∈ LT there exist formulae, ϕ0+1(x), �0(x, y) and �1(x, y)
of LT such that T proves �0 and �1 represent functions and

41 Alternatively, we can—equivalently—add an axiom stating that for every set x the transitive
closure of x is a set. Without this, the theory is not strictly bi-interpretable with PA. See [8]
for a detailed discussion of this issue.

42 It is well-known that these theories are strictly bi-interpretable. Theorem 3.13 from [22] then
gives us definitional equivalence.
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T 
∀z(ϕ0+1(z) → ∃x((ϕ0(x) ∧ �0(x, z)) ∨ (ϕ1(x) ∧ �1(x, z)))∧
∀x∀y∀z(ϕ0(x) ∧ ϕ1(y) → ¬(�0(x, z) ∧ �1(y, z))).

(3) For all ϕ0(x) and ϕ1(x, y) from LT if T proves that ϕ1is an equivalence relation
on ϕ0, then there exist formulae ϕ0/1(x) and �(x, y) such that T proves that �
represents a function and

T 
∀x∀y∀z(ϕ0(x) ∧ ϕ0(y) → (�(x, z) ∧ �(y, z) ↔ ϕ1(x, y)))∧
∀y(ϕ0(y) → ∃!x(ϕ0/1(x) ∧ �(y, x))).

Note that we did not include a clause for subsorts above. This is because any theory
can replicate the effect of subsorts. Then we observe thatZF is an example of a Morita
complete theory.

Proposition 6.9. ZF is Morita complete.

Proof. It will suffice to show that (1)–(3) of Definition 6.8 hold. (1) Suppose we
have formulae ϕ0(x) and ϕ1(x) from the language of set theory. We let ϕ0×1(x) be the
formula ∃y, z(ϕ0(y) ∧ ϕ1(z) ∧ x = 〈x, y〉. Then let �0(x, y) say that there is some z
such that x = 〈y, z〉, and let �1(x, z) say that there is some y such that x = 〈y, z〉.

(2) Suppose ϕ0(x) and ϕ1(x) are formulae of set theory. Let ϕ0+1(x) say that there
is some z, i such that x = 〈z, i〉 and either: i = 0 and ϕ0(z); or i = 1 and ϕ1(z). Let
�0(x, y) say that y = 〈x, 0〉 and let �1(x, y) say that y = 〈x, 1〉.

(3) Suppose that ZF proves that ϕ1(x, y) describes an equivalent relation on ϕ0(x).
Let �(x, y) say that y is the set of those z of least rank such that ϕ1(x, z).43 Let ϕ0/1(x)
say that there is some z such that ϕ0(z) and �(z, y).

To establish the result, we prove the following lemma, which is essentially a special
case of Lemma 5.7 of [18].

Lemma 6.10. If T is Morita complete in a single sorted language LT and T+ is a
Morita successor of T, then T+ and T are strictly bi-interpretable.

Proof. Given that this is essentially a special case of a more general result, we just
do the case for products. Suppose T+ is formed by adding a product sort � based on
subsorts �0 and �1 from LT defined by formulae ϕ0(x) and ϕ1(x) respectively. Let
�0 : � → �0 and �1 : � → �1 be the associated projection functions. Then since T is
Morita complete we may fix formulae ϕ0×1(x), �0(x, y) and �1(x, y) from LT such
that T proves that �0 and �1 represent functions and that

∀x∀y(ϕ0(x) ∧ ϕ1(y) → ∃! z(ϕ0×1(z) ∧ �0(z, x) ∧ �1(z, y)).

We then define an interpretation t : LT+ → LT such that t(�) is sent to the only
sort in L and �t,�(x) is ϕ0×1(x). We then let t(�0) = �0 and t(�1) = �1. In the other
direction we let t+ : LT → LT+ be the trivial interpretation.

Given a model M of T, it is easy to see that t+ ◦ t(M) = M. Essentially, t just
adds the new sort and then t+ discards it. From the other direction, suppose N+ is a
model of T+. We define an isomorphism between N+ and t ◦ t+(M) with a formula
	(x, y) of LT+ as follows. For the single sort of LT , we just use the identity. For the

43 This is commonly known as Scott’s trick.
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new product sort, we let 	(x, y) be

∃x0∃x1(�0(x) = x0 ∧ �1(x) = x1 ∧ �0(y, x0) ∧ �1(y, x1)).

It can then be seen that this defines an isomorphism.

Theorem 6.11. If T and S are sequential Morita-complete theories that are Morita
equivalent, then T and S are definitionally equivalent.

Proof. Suppose T and S are Morita equivalent, Morita complete theories. Suppose
that T ∗ and S∗ are the Morita expansions witnessing this. Given that T and S are
Morita complete we see by induction on Lemma 6.10 that T and T ∗ are strictly
bi-interpretable and so are S and S∗. Thus since S∗ are and T ∗ are definitionally
equivalent, we see that T and S are strictly bi-interpretable. So by Theorem 3.13, we
see that T and S are definitionally equivalent.

Thus, we see that for sufficiently strong theories, the distinction between Morita
equivalence and definitional equivalence collapses.

6.1.1. Some remaining questions. While we’ve come to understand a lot of the
relationships between equivalences in our table a number of questions remain. We
highlight them in the following table.

Definitional Equivalence Morita Equivalence Categorical Isomorphism

Bi-interpretable Morita Bi-interpretable Categorical Equivalence

Iso-congruence Morita-congruence Objective Equivalence

? ?
?

?
?

?
?

?

§7. Conclusion. In this paper, we have explored the relationship between a
number of instruments suitable for establishing equivalence between theories. We have
investigated the world beyond relative interpretation and the space between it and
natural equivalence relations defined using category theory. In particular, we have
developed a general framework that suggests equivalence relations stronger than those
in category theory should be thought of as natural restrictions of category theoretic
prototypes. We have then provided some classification of this space, answered some
open questions and posed a few more.

Appendix.

An equivalent formulation of definitional equivalence.

Proposition 7.1. Let T and S be articulated in the languages LT and LS respectively
where LS and LT share no vocabulary. The following are equivalent:

(1) T and S are definitionally equivalent; and
(2) There exist definitional expansions T+ and S+ of T and S to LT ∪ LS such that
T+ and S+ are the same theory.
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Before we start the proof, we first make a quick and convenient notational
convention. Given a model M of L and some sublanguage L∗ of L, we denote the
reduct of M down to L∗ by M|L∗.

Proof. To make things simpler, suppose that LT and LS each just contain one
relation symbol P and R respectively.

(1→2) Fix mod-functors t : mod (T ) ↔ mod (S) : s witnessing that T and S are
definitionally equivalent. It is easy to see that neither �t and �s alter the domain. Let
T+ be the extension of T in LT ∪ LS be the following axiom:

∀x̄(Rx̄ ↔ t(R)(x̄)).

Similarly, let S+ be the extension of S in LS ∪ LT with the axiom:

∀ȳ(Pȳ ↔ s(P)(ȳ)).

It suffices to then show that T+ and S+ have the same models. To see this, we start
by letting M be a model of T+ and show that is is also a model of S∗. First note that
M|LT is a model of T and that M|LS = t(M|LT ).

We can then expand M|LS into a model M∗ of S+ by letting PM∗
be the set of m̄

from M such that (M|LS) |= s(P)(m̄). Then it can be seen that

(M∗|LT ) = s(M∗|LS) = s ◦ t(M|LT ) = M|LT .
Putting this together with the fact that M∗|LS = M|LS we see that M∗ = M and so
M is a model of S+ as required. A similar argument establishes that every model of
S+ is a model of T+.

(2→1) Given that T+ is a definitional expansion of T to LT ∪ LS , T+ contains an
axiom of the form

∀x̄(Rx̄ ↔ ϕ(x̄))

for some formula ϕ(x̄) of LT . We let t be the translation where t(R)(x̄) is ϕ(x̄) and
�t(x) is x = x. Similarly, S+ contains an axiom of the form

∀ȳ(Pȳ ↔ 	(ȳ))

for some formula 	(ȳ) of LS . We then let s be the translation where s(P)(ȳ) is 	(ȳ)
and �s(y) is y = y.

We claim that the mod-functors associated with these translations witness that S and
T are definitionally equivalent. To see this, let M be a model of T and let M∗ be the
model of T+ that expands M. Since T+ and S+ are the same theory, we see that M∗ is
also a model of S+ and so M∗|LS is a model of S. This tells us that t witnesses that T
interprets S. Moreover, it is also clear from our definition of t that (M∗|LS) = t(M).
And similarly by our definition of s, we see that (M∗|LT ) = s(M∗|LS). Putting this
together, we see that

M = M∗|LT = s(M∗|LS) = s ◦ t(M).

A similar argument establishes that s witnesses that S interprets T and that t ◦
s(N ) = N for all models N of S.

Interpreting theories of dense linear orders. In this section we complete the proof
of the remaining claim within the proof of Proposition 3.15. This occurs in Theorem
7.6. We make heavy use of Marker [17]. In particular, we use Theorems 2.4.1 and 3.1.3

https://doi.org/10.1017/S1755020323000321 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000321


BEYOND LINGUISTIC INTERPRETATION IN THEORY COMPARISON 855

which establish that ℵ0-categoricity and quantifier elimination hold for theory of dense
linear orders. Recall the theories used in the proof of Proposition 3.15:

• Let D be the theory in the language LD = {<, dn}n∈� which says that < is a
dense linear order without end points and that dn < dn+1 for all n ∈ �.

• Let B be a theory in the language LB = {≺, bn}n∈� that ≺ is dense linear order
with no top point but with a bottom point that is b0 and that bn < bn+1 for all
n ∈ �.

First, we note that unlike the ordinary theory of dense linear orders, D and B are not
ℵ0-categorical. They are, however, very close to being so.

Proposition 7.2. D and B have three models up to isomorphism.

Proof. We describe three models D0,D1 and D1 of D each using the rationals Q

under their natural ordering:

(1) D0 is such that for all n ∈ �, dn = n;
(2) D1 is such that for all n ∈ �, dn = 1

2n ; and
(3) D2 is such that for all n ∈ �, dn = f(n) where f : � → Q is an increasing

sequence of rationals converging to
√

2.

The key point here is that the axiomatization of D doesn’t specify whether the sequence
of constant symbols is cofinal in the ordering. Indeed this is not expressible in this
language since we can’t internally quantify over the constant symbols. The three
possibilities then are that: the constants are cofinal; they are not cofinal and converge
to an element of the domain; they are not cofinal and they converge to a hole. Three
analogous models are available for B. In both cases, the ℵ0-categoricity of countable
dense linear orders ensure that every model of D (or B) will be isomorphic to one of
these three models.

The following result provides a helpful limit on the kinds of relations that are
definable in B.

Proposition 7.3. B has quantifier elimination.

Proof. The proof here is almost identical to that of Theorem 3.1.3 in [17], so we
shall mostly focus on the required changes.

We aim to show that for any formula ϕ from LB with at most n-free variables there
is a quantifier free formula 	 from LB such that:

B |= ∀x̄(ϕ(x̄) ↔ 	(x̄)).

Let ϕ be in LB and note that it just uses a finite set of constant symbols, say
ē = {e0, ... , em}, from {bn}n∈� . Without loss of generality, we’ll assume that e0 = b0

and that m > 1. Then note that the obvious restriction of B to the constant symbols
from ē is ℵ0-categorical.

For � : {〈i, j〉 | i < j ≤ n} → 3 let 
�(x0, ... , xn) be the formula:∧
�(〈i,j〉)=0

xi = xj ∧
∧

�(〈i,j〉)=1

xi < xj ∧
∧

�(〈i,j〉)=2

xi > xj.
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For  : (n + 1) → 2m + 2, let �(x0, ... , xn) be the formula:∧
j≤m

∧
(i)=2j

(xi = ej)∧

∧
j<m

∧
(i)=2j+1

(ej < xi < ej+1)∧

∧
(i)=2m+1

em < xi .

Roughly following Marker, we call such pairs 〈�, 〉 sign conditions for ē. The idea
is that 
� captures the configuration of x0, ... , xn with respect to <; and for each xi ,
�(x0, ... , xn) records whether xi is identical to one of the constants ej or within one
of the intervals that lie between them or the one that is above them all.

Let Q+ be the structure of the positive rational numbers with 0. Let Q =
〈Q+, eQ0 , ... , e

Q
m 〉 be the expansion of Q+ where eQi = i for i ≤ m. Note that Q is a

model of B.
Let Λϕ be the set of pairs 〈�, 〉 such that there is some ā ∈ Q where Q |= 
�(ā) ∧

�(ā) ∧ ϕ(ā). There are two cases to consider.
If Λϕ = ∅. Then Q |= ∀x̄¬ϕ(x̄). Thus we may let 	 be x1 �= x1.
If Λϕ �= ∅, let

	(x̄) =
∨

〈�,〉∈Λϕ

(
�(x̄) ∧ �(x̄)).

Clearly we have Q |= ϕ(x̄) → 	(x̄). In the other direction, suppose b̄ ∈ Q and
Q |= 	(x̄). Then we may fix 〈�, 〉 ∈ Λϕ such thatQ |= 
�(b̄) ∧ �(b̄). By the definition
of Λϕ we may also fix ā ∈ Q such that Q |= 
�(ā) ∧ �(ā) ∧ ϕ(ā).

It is then easy to see that whenever Q |= 
�(ā) ∧ �(ā) and Q |= 
�(b̄) ∧ �(b̄),
then there is an automorphism f on Q such that f(ā) = b̄. Thus, Q |= ϕ(b̄) and so
Q |= ϕ(b̄) ↔ 	(b̄) as required.

We now describe a condition on particular subsets of sign conditions which are
intended to give us formulae for every definable linear order on the entire domain.

We shall use the name cell to denote both intervals and constants and—somewhat
awkwardly—we’ll say that y is in a cell to mean y is either in an interval or identical to
a constant. We shall then index the cells using the natural ordering of the cells. This
entails that constants are assigned even indices while intervals are assigned odd indices.

[e0] (e0, e1) [e1] ... (em,∞)

0 1 2 2m + 1

Definition 7.4. Let X be a set of sign conditions for a formula ϕ(x0, x1) with constant
symbols {e0, ... , em} from {dn}n∈� where e0 = b0 and m > 1. We say that X is proto-
linear if:

(1) The cells are totally ordered, so the following conditions are satisfied:
(a)(Transitivity) If 〈�0, 0〉, 〈�1, 1〉 ∈ X are such that 0(0) = j0, 0(1) =
1(0) = j1 and 1(1) = j2, then there is some 〈�, 〉 ∈ X such that (0) = j0

and (1) = j1.
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(b)(Asymmetry) There are no 〈�0, 0〉, 〈�1, 1〉 ∈ X are such that 0(0) = j0,
0(1) = 1(0) = j1 and 1(1) = j0.

(c)(Connectedness) Every way in which x0 and x1 could be in different cells is
addressed by some 〈�, 〉 ∈ X . More formally, for all j0 < j1 ≤ 2m + 2, there
is some 〈�, 〉 ∈ X such that either: (0) = j0 and (1) = j1; or for some
i ∈ 2, (i) = j0, (1 – i) = j1.

(2) The points inside any cell are totally ordered. In particular, every interval is
ordered by exactly one of either> or<. More formally, for all 2j + 1 ≤ 2m + 2,
there is some 〈�, 〉 ∈ X such that (0) = (1) = 2j + 2 and �(〈0, 1〉) ∈ {1, 2},
and if 〈�∗, 〉 ∈ X , then �∗ = �.

Now we establish that pro-linearity captures what is intended.

Lemma 7.5. Let ϕ(x0, x1) be a formula of LD . The following are equivalent:

(1) ϕ(x0, x1) defines a linear order of the domain of every model of D; and
(2) Xϕ is proto-linear.

Proof. Let Xϕ be the set of sign conditions 〈�, 〉 such that

〈Q, ē〉 |= 
�(a0, a1) ∧ �(a0, a1) ∧ ϕ(a0, a1).

From the proof of Proposition 7.3, we know that

D 
 ∀x(ϕ(x0, x1) ↔
∨

〈�,〉∈Xϕ

(
�(x0, x1) ∧ �(x0, x1)).

(1→2) Contraposing suppose Xϕ is not proto-linear. Suppose (1a) fails. Then we get
a failure of transitivity. Suppose (1b) fails. Then we may fix 〈�0, 0〉, 〈�1, 1〉 ∈ Xϕ such
that 0(0) = 1(1) and 1(0) = 0(1). Fix a in the 0(0)th cell and b from the 0(1)th cell.
Then we have both a � b and b � a so we don’t have asymmetry. Suppose (1c) fails.
Then we get a failure of connectedness. Suppose (2) fails. Then we fail to order a cell.

(2→1) Suppose Xϕ is proto-linear. We claim that ϕ(x0, x1) does defines a linear
order of the domain in any model of D. Without loss of generality, we may assume Q
is such a model.

Let � = {〈q0, q1〉 ∈ Q+ | Q |= ϕ(q0, q1).
Then each of the following must hold:

(1) � is transitive;
(2) � is asymmetric; and
(3) � is connected.

(1) Suppose a � b and b � c for some a, b, c ∈ Q+. Then (2a) ensures that a � c. (2)
Suppose a � b. Then (2b) ensures that b � �a. (3) Suppose a, b ∈ Q+. Suppose a is in
the jth0 cell and b is in the jth1 cell. Then by condition (1c) of Definition 7.4 ensures that
they are related to each other. Suppose a, b are both in the same cell. Then they must
be in an interval and thus connected by (2).

Theorem 7.6. D cannot be interpreted in B with a domain preserving interpretation.

Proof. Suppose that B interprets D with a domain preserving interpretation
t : mod (B) → mod (D) where t(<) is some formula of LB using constant symbols
among {e0, ... , em} from {bn}n∈� where e0 = b0. Then Lemma 7.5, tells us that t(<)
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is equivalent to
∨
Xt(<) and since t(<) defines a linear ordering, we see that Xt(<) is

proto-linear.
Then it can be seen that t(<) can be construed as a permutation s of the cells where

the original ordering within some cells may have been inverted. Thus, we start with
cells

c1
0 + c1

1 + ··· + c1
2m+1

and obtain a new order

c
i0
s(0) + ci1

s(1) + ··· + ci2m+1
s(2m+1),

where il ∈ {– 1, 1} for l ≤ 2m + 1.
We claim that if this ordering has no endpoints, it cannot be dense. To see this note

that the ordering between the points within the intervals that are cells is not important
since these intervals have neither top nor bottom points. Thus we can think of the
original ordering being represented by a sequence of length 2m + 1

1010 ... 0,

where 1’s represent constants and 0’s represent cells. It is then obvious that there is no
permutation of this sequence which has 0’s at either end and no adjacent 1’s. But the
only way for there to be no endpoints is to have 0’s at either end and having adjacent
1’s violates density.
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