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SPLIT SUBDIRECT PRODUCTS AND PIECEWISE
DOMAINS

JOHN FUELBERTH AND JAMES KUZMANOVICH

1. Preliminaries. Throughout this paper all rings will have unity and all
modules will be unital.

If X C R, thenr(X) (respectively, I(X)) denotes the right (left) annihilator
of x.

An element d of R is called right (left) regular if r(d) = 0 (I(d) = 0). An
element which is both right and left regular is called regular. A ring Q is called
the 7ight classical quotient ring of R if (1) R C Q, (ii) every regular element of
R is invertible in Q, and (iii) every element of Q is of the form rd—! where 7,
d € R and d is regular in R. In this case R is called a right order in Q.

Aring R is called a piecewise domain (PWD) [11] if it possesses a complete set
of orthogonal idempotents {e,, . . ., ¢,} such that xy = 0 implies that x = 0 or
y = 0 whenever x € ¢;Re;, and y € ¢,Re,.

2. Split subdirect products. In this section we introduce a special sub-
direct product of rings which we call a (right) split subdirect product. We
show that split sub-direct products preserve many (homological) properties
of the factor rings. One unusual feature is that if R is a split subdirect product
of rings R; and R,, then every left R-module canonically decomposes as a sub-
direct product of an R;-module with an R.-module.

Now let R be the subdirect product of rings R; and R,. The following ideas
are motivated by Goodearl [5]. Define E; C Ri, E; C R, by the conditions
E;X0=RMN (R X0)and 0 X Es = RM (0 X R,). Then E; and E, are
two-sided ideals of R; and R, respectively and we have the ring isomorphisms:
R/(O X Eg) ~ Rl, R/(E1 X 0) ERQ and I{/(El X Ez) ’_\’_Rl/El ~ Rg/Ez. Let
m;: R — R; be the restriction to R of the natural projection map for 2 =1, 2.

We say that R is a (right) split subdirect product of R, and R, provided that
E; and E, are direct summands as right ideals of R; and R, respectively. In
this case E; X E.is a direct summand of R as a right ideal.

The following proposition will be our main tool in showing that split sub-
direct products preserve homological properties.

PRrROPOSITION 2.1. Let I = eR be a two-sided ideal of a ring R where e* = ¢
and let R = R/I. Then
(i) PD(Mgz) = PD(Mz) for all right R-modules M.
(i) inj. dim (zM) = inj. dim (gM) for all left R-modules M.
(iii) WD(Mz) = WD (M%) for all right R-modules M.
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Proof. (i) Let M be an arbitrary right R-module. By [1, Problem 10, p. 123],
PD(M3z) £ PD(Mz). Since Ry is projective, Extg* (M, N) ~ Extz* (M, N)
for all R-modules N by [1, Proposition 4.1.4]. Thus PD(Mz) < PD(Mg).

The proofs of (ii) and (iii) follow by similar arguments using Problem 10 on
page 123 along with Propositions 4.1.3 and 4.1.2 of [1].

We are now in a position to state our main results which relate the homo-
logical properties of R with those of R; and R, when R is a split subdirect
product of R; and R,.

THEOREM 2.2. Let R be a split subdirect product of Ri and Rs. Then r.gl.dim
R = sup {r.gldim R;}, lLgldim R = sup {l.gl.dim R, and WGD(R) =
sup {WGD(R;)}. Furthermore R 1s right semihereditary (right p.p.) if and only if
each R ;1is right semihereditary (right p.p.).

Proof. We will show that r.gl.dim R = sup {r.gl.dim R,}. By Proposition 2.1
rgldim (R;) = r.gldim R for ¢ = 1, 2. Thus sup {r.gl.dim R;} < r.gl.dim R.
To show the reverse equality let M be an arbitrary right R-module and con-
sider the exact sequence

0 >MK-—->M-—>M/MK —0
where K = E; X 0. For any right R-module X we have the exact sequence
Extpz? (M/MK, X) — Extg" (M, X) — ExtgzF (MK, X).

Since MK is a R;-module and M/MK is a Rs,-module, by Proposition 2.1
PDg (MK) = PDr(MK) while PDg,(M/MK) = PDr(M/MK). Thus if
k > sup {r.gldim R}, Extz® (MK, X) = Extg" (M/MK, X) = 0; hence
ExtzF (M,X) = 0. Thusr.gl.dim R < sup {r.gl.dim R,}.

The proofs for the left global dimension and weak dimension are similar.

Now let R be right semihereditary. Then since E; X 0 and 0 X E, are
direct summands of R asright ideals, both R; and R, are right semihereditary.
Assume that R; and R, are right semihereditary and let I be a finitely generated
right ideal of R. Then we have the exact sequence

0>INK—->I—I/UNK)—0

where K = E; X 0. Now I/(IMNK) ~ (I + K)/K is a finitely generated
Rj-ideal; hence (I + K)/K is a finitely generated projective R-module by
Proposition 2.1. Thus the sequence splits and I M K is a finitely generated
Ri-ideal. Thus again by Proposition 2.1, I M K is R-projective. Hence I is
R-projective and R is right semihereditary.

The proof for right p.p. is identical to the proof for right semihereditary.

Let R be a subdirect product of rings R; and R, with E; and E, defined as
above. R is called an essential (right) subdirect product if E; and E, are essential
as right ideals of R, and R, respectively. Essential products were introduced
by Goodearl [5]. Among many other results he showed that the essential
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product of nonsingular rings is again nonsingular and that is maximal right
quotient rings was the direct product of those of the factor rings. The following
easy lemma shows that a converse is true. This lemma will be used in the
next section.

LEMMA 2.3. Let R be a right nonsingular ring with maximal right quotient
ring Q. Suppose that Q = Q1 X Qs, and let R; be the projection of R in Q; for
1 =1, 2. Then R 1s the essential subdirect product of Ry and R,.

Proof. Write elements of Q as ordered pairs.

Clearly R is the subdirect product of Ry and R, with E; = R M R, for each <.
It remains to be shown that E; is essential in R,. Let 0 # (x, 0) € R;. Since
R is right essential in Q, there exists (7, s) € R for which (x, 0)(r, s) = (xr, 0)
is a nonzero element of R. Then (r, 0) € R;and (x7,0) is a nonzero element
of RM R, = E,. Hence E; is essential in R;. Similarly E, is essential in R..

For right split subdirect products we have the following proposition which
shows that any left R-module is a subdirect product of R; and R, modules.
For the remainder of this section R will be as in the following proposition.

ProrosiTioN 2.4. Let R be a right split subdirect product of rings R, and R,.
Then any left R-module 1s isomorphic to a subdirect product of Ri and Ry modules.

Proof. Let E; and E, be defined as above. If M is any left R-module, then
M/I;M and M/I,M are R; and R, modules respectively where I; = 0 X E,
and I, = E; X 0. Furthermore there is an R-homomorphism % of M into
M/IiM @ M/I.M defined by h(m) = ((m + [, M], [m + I.M]).

We first show that % is an R-monomorphism. Since I; and I, are direct
summands of R as right ideals, I; = e;R and s = esR for orthogonal idempo-
tents e; and e,. Suppose m € ker (h); that is, m € I;M M I, M. Since I, =
0X Es and I, = E; X0, eym = egm = m. But 0 = (eiea)m = ei(eam) =
eym = m and m = 0. Thus ker () = 0 and % is a monomorphism. Hence M
can be considered as a submodule of M/I1M @ M/I,M. Since the projection
maps restricted to M are clearly onto, M is a subdirect product of the R;-
module M /I, M with the Ry-module M/I,M.

By the above proposition every R-module is a canonical subdirect product
of Ry and R, modules. Denote this representation of a left module by (M, M)
and represent the elements of M as ordered pairs.

The following proposition shows that homomorphisms also decompose.

ProrposiTiON 2.5. Let f: M — N and g: N — P be R-homomorphisms for
left R-modules M, N, and P. Let e; and I; be as in Proposition 2.4.
(i) f decomposes as (f1, f2) where f;: M; — N, is an R;-homomorphism for
1=1,2.If m € Mand m = (m1, ms), then f(m) = (f1(m1), fo(ms)).
(i) gf decomposes as (gif1, gaf2).
(iii) If f1 and fy are monomorphisms, then f is a monomorphism.
(iv) If f 1s an epimorphism, then f1 and fo are epimorphisms.

https://doi.org/10.4153/CJM-1976-041-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-041-5

PIECEWISE DOMAINS 411

Proof: (i) Suppose that f: M — N is an R-homomorphism. For each 1
f(I;M) C I;N; thus f induces a map f;: M/I,M — N/I,N such that the
following diagram commutes.

J

M~———>N

o

Since the diagram commutes and since the vertical maps are the coordinate
maps of the subdirect product representations for M and N, it follows that
fm); = fi(m;) for i = 1, 2. Hence f(m) = (fi(m1), fo(ms)).

(ii) Let m = (m1, m2). Then g(f(m)) = g[(fi(m1), fa(m2))] = (g1f1(m1),
g2f2(m2)). Hence gf = (¢if1, g2f2).

(iii) Let f = (f1, f2) be a monomorphism and suppose that 0 = f(m) =
(fi(my), fo(mz2)). Then fi(m,) = fo(me) = 0 and hence m; = m, = 0 since
f1 and f. are monomorphisms. Therefore m = 0 and f is a monomorphism.

(iv) Let f = (f1, f2) be an epimorphism. Since f(M) = N and N =
(N4, Ns), then fi1 (M) = N;and fo(M2) = Ns. Therefore f; and f; are epimor-
phisms.

The following proposition shows that the injective modules over R are
completely determined by those over R; and R..

ProposiTION 2.6. An R-module is R-injective if and only if it is the direct sim
of an 1njective Ri-module and an injective Ro-module.

Proof. Necessity: This direction follows from Lemma 2.1(ii).
Sufficiency: Let E = (E;, E:) be an injective left R-module, and let H, be
the R;-injective hull of E;. Then H; @ H, is an injective R-module by the

above. Consider the exact sequence 0 — E — H; @ H, under the natural
embedding f. Since E is injective, there is a map ¢ : H; ® Hs — E such that
gf = idg. Then gif; is the identity function on E;. Hence E; is injective since
it's isomorphic to a direct summand of the injective module H;. The map g; is
the restriction of the map g to H,, thus E; = Im (g;) is a submodule of E.
Since E, is injective, we have £ = E; ® A. A ~ E/E, C (E: ® E»)/E; and
is hence isomorphic to an R-submodule of E,. Every R-submodule of an R,-
module is an Rs-module; therefore A is an R,-module. 4 is injective as an
R-module and hence as an R,-module by Lemma 2.1 (ii).

It should be noted that the decomposition in Proposition 2.6 is not in general
unique, since there are injective R-modules which are simultaneously R; and
R, modules.

3. Split products of piecewise domains. In this section the results of
Section 2 are applied to yield results concerning the structure of a PWD and
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its quotient rings. It is first shown that if a PWD can be represented as a split
subdirect product of rings, then most of its properties are determined and
shared by the factor rings. It is shown that split products of PWD’s occur
fairly naturally; in particular, if a PIWWD is an essential subdirect product of
rings, then the product is split (but not necessarily direct). Finally these results
are applied to obtain that the maximal quotient ring of a PWD is a direct
product of finitely many rings each of which is a prime self-injective regular
ring whose ideals form a well ordered chain.

Let R be a PWD relative to the complete set of orthogonal idempotents
{e1, ..., e,}. By the proof of the Main Theorem of [10], the relation ¢ ~ j if
eRe; # 0and ¢,;Re; # 0 is an equivalence relationon {1, ..., n}. Let Cy, . . .,
C, denote the equivalence classes and set f; = Y je¢; ;. Then the fi, ..., f,can
be ordered so that R has the triangular structure:

- P,
Py P T
-P31 -P32 P3
_Prl Pr? PT3 N ° N Pr_
where P;; = f,Rf; and P; = f,Rf;. This notation will be used throughout this
section.
For the next three technical lemmas, eR will be a two-sided ideal of R where
et =e.
LemMA 3.1. There exists {e;qy, - - ., exwn) C ley, ..., e} such that

k
eR = @ j=1 ei(j)R.

Proof. For each 7 consider e.e. Since eR is a two-sided ideal of R, e;e € eR;
thus ee,e = e;e. Hence (e.2)? = e (eee) = e;(ee) = ee and ese is an idempo-
tent element of ¢;R. Since ¢;R is indecomposable, ¢.eR = 0 or ¢eR = ¢,R.
Thus if e;e %0, then ¢,R CeR. We havee=1-e=(e1+ ...+ ¢,)e=e1e +
...+ ee. Hence e = Y {ee: ee # 0} = Y%, es;e and it follows that eR =
® {eR:ee # 0} = @'y einR.

Since ¢/ = e¢;1) + ... + eiw is an idempotent generator of eR, there is no
loss of generality in assuming that e = e;q) + ... + €p)-

LEMMA 3.2. If k, I € Cj, then exe 7% 0 if and only if e,e 5% 0. Hence there exists
{fiwy -y fim} CTlfu oo, fi) suchthat e = 351 f1p and eR = @' funR.

Proof. Suppose that k, I € C; and e # 0. By the definition of C;, there
exists ¢, s € R such that eite; # 0 and e;se, % 0. Let » = e te; + e;5¢;. Then
exre; = efe; # 0 and ee, = ese, # 0. By the above comments ee = ¢,
therefore e re.ee, = eye, # 0. Now rewee, € eR as eR is a two-sided ideal; thus
reeer = es for some s € R. Therefore ereee, = ees # 0 so ee # 0. Thus it
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follows that e = > { fi: fie = fi} = > {fs: fie # 0} and the last statement of
the lemma is immediate.

LEMMA 3.3. The f;'s can be reordered, still preserving the triangular structure of
R, in such a manner that eR = 3,5, f3:R = 3>, e.R for some k, L.

Proof. Since e = Y- { fi: fie # 0} = > {fi: fie = fi} by the proof of Lemma
3.2, let 7 be the first index for which f,e ## 0 and f,e = 0. If r < 4, f,Rf; =
f+Rfir1 = 0 by the triangular structure of R. Again by the triangular structure
of R, fiRfiy1 = 0. Now fi11Rf; = firiRfie C fip1(eR) = 0. Thus f; and [y
can be interchanged while still preserving the triangular structure of R.
Continuing this process yields the desired ordering.

It is an open question whether a PWD is a PWD relative to every complete
set of orthogonal idempotents. Hence the assumption in the following proposi-
tion that each R; is a PWD with respect to every complete set of orthogonal
idempotents.

PROPOSITION 3.4. Let R be a split subdirect product of Ry and Rs. If R is a
PWD, then each R;is a PWD. Conversely if each R; 1s a PWD relative to every
complete set of orthogonal idempotents of R;, then R is a PWD relative to every
complete set of orthogonal idempotents of R.

Proof. Let R be a PWD relative to a complete set of orthogonal idempotents
{ei,...,e,}.Since E; X 0and 0 X E;are direct summands of R as right ideals,
it follows directly that Ry >~ R/(0 X E,) and R, ~ R/(E;, X 0) are PWD'’s
relative to the complete sets of orthogonal idempotents {m;(e1), ..., mi(e,)}
and {m(e1), . .., m2(e,)} respectively.

For the converse, first note that R has a complete set of orthogonal idem-
potents. Since E; X 0 is a direct summand of R as a right ideal, E; X 0 =
eR where e = ¢. Now R/(E; X 0) >~ R, has a complete set of orthogonal
idempotents so there exists a complete set of orthogonal idempotents of
(1 — ¢)R. But E; has a complete set of orthogonal idempotents by Lemma 3.1,
so E; X 0 = eR has a complete set of orthogonal idempotents. Hence R has
a complete set of orthogonal idempotents.

Now let R have a complete set of orthogonal idempotents {ei, ..., €,}.
Since {m(e1), ..., mi(e,)} is a complete set of orthogonal idempotents of Ry,
R, is a PWD relative to this set of idempotents. E; is a direct summand of R,
as a right ideal of R; so by Lemma 3.3 there is a rearrangement of {ey, . . ., €,}
such that E; = 3 ;54 mi(e;)Ry and 71(e;)Ry m1(e;) = 0 for B < ky < I. Then
{ma(e1), ..., ma(er,)} is a complete set of orthogonal idempotents for R, so
there exists a rearrangement of {e, . . ., ¢} such that E; = Y 4 < <k, m2(e;) Ry
and wqy(e;)Roma(e;) = Ofor 2 < ks < [ by Lemma 3.3

Thus there are integers 1 < k2 < k1 = n such that E; X 0 = X5, ;R
and 0 X E; = D pycjzky €58 For bk = ky < I, e4Re; = 0and if by < k £ k1 <
!l =n,eRey, CE.NE;, =0and e Rey C E1MN E; = 0.
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Now let 0 # x € e;Re; and 0 # y € ¢;Re,. In view of the remarks in the
preceding paragraph, we need only consider two cases:

i) If 7, j, B < ky, then xy # 0 since R/(E; X 0) >~ R, is a PWD relative to
{maler), ..., maler)}.

Gi) Iz, 5,k €{1,..., ke, ks +1,...,n}, then xy # 0 since R/(0 X E;) o~
R, is a PWD relative to {mwi(e1), ..., mi(ex,), mi(ris1), - - -, T1(€n)}-

Remark. The class of rings which are PWD'’s relative to every complete set
of orthogonal idempotents includes all p.p. rings with no infinite sets of
orthogonal idempotents. Also included are those rings which have a complete
set of orthogonal idempotents and which satisfy a Krull-Schmidt type theorem
such as the semiperfect rings.

We now establish that split subdirect products arise fairly naturally. Let R
be a PWD relative to the complete set of orthogonal idempotents {ey, . . ., €,}
and suppose that R has a right flat overring Q = Q; X Q. (ring direct product).
Let 7;: Q — Q; be the natural projection map and 7;(R) = R; for 2 = 1, 2.
Since any PWD is a nonsingular ring [9], the maximal left quotient ring of R
will serve as the overring Q in many cases.

We state the following well known lemma which appears in Cartan and
Eilenberg [1, Problem 5, p. 122] for completeness.

LEMMA 3.5. Let R be a ring and A be a right R-module. If I is a left ideal of R,
then A @ g I —> A ® g R 1is a monomorphism if and only if whenever 3 ; au; = 0
for {a;} C A and {u;} C I, there exists {b;} C A and {Ni;} C R such that
S ibNi; = a; for all i and 3 Nyps = 0 for all j.

Then we have the following technical lemma.

LEmMMA 3.6. Let R be a PWD as above. If w:(e;) % 0 and 0 # x € erRey, then

Proof. Without loss of generality, let us assume that mi(e;) # 0 and 0 #
x € exRe,. If mi(x) = 0, then x = (0, 7o) where 2 € Ry. Let ¢ = (¢1, 0) € Q
be such that ge, = ¢. Then gx = 0, so by the flatness of Qpg, there exists
{b;} C Q and {N\;} C R such that ¢ = > ;0,\; and Nx = 0 for all j. Since
ger = gand x € ¢ Re;, we may assume that \; € Re, for all j. Right multiplica-
tion by x induces a monomorphism [10] of Re, into Re,. Since A\jx = 0, \; = 0
for all j, a contradiction.

COROLLARY 3.7. Let R be a PWD as above. If w;(e;) # 0 and w(e;) = 0, then
6kRel = 0.

Proof. Assume that 0 # x € ¢.Re,. Since 7;(¢;) = 0 and x is a left multiple
of e;, m;(x) = 0. But this contradicts Lemma 3.6.

We now show that R is a split subdirect product of Ry and R..
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ProrosiTiON 3.8. Let R be a PWD and suppose R has a right flat overring
Q = Q1 X Q2. Then R 1s a split subdirect product of PWD’s Ry and Rs.

Proof. Let R be a PWD relative to the complete set of orthogonal idempo-
tents {ei, ..., e,} and let {f1, ..., f,} be defined as in the beginning of this
section. Then f; = > jc¢; e; where e, Re;, 5% 0 and ¢;,Re, % 0 for all k, [ € C,.
Then by Corollary 3.7, w;(e;) % 0if and only if 7;(e;) # Oforallk, ] € C,. Let
7 be the first index for which 7;(f;) = 0 and 7;(f;41) ¥ 0. Then for ¢, € C;yy
and e¢; € C;, mi(er) # 0 and 7;(e;) = 0so ¢,Re, = 0 by Corollary 3.7. There-
fore f;;1Rf; = 0so that the ordering of the idempotents { f1, . . ., fir1, fir -+, f7}
still preserves the triangular structure of R. Then we can find integers 1 <
ks < ky < msuch that f; € E; if and only if ¢ > k; and f; € E, if and only if
ks < 1 = k1. By Lemma 3.6, it follows that E; = 3~ 5, f3Rand Es = 3 p,cj<i
f;R. Thus R is a split subdirect product of R; and R,. By Proposition 3.4 R, and
Ry are PWD'’s.

The following corollary follows directly from Propositions 3.4 and 3.8.

CoROLLARY 3.9. Let R have a right flat overring Q = Q1 X Q2. Then R is «
PWD relative to every complete set of orthogonal idempotents of R if and only if
R 1s a split subdirect product of Ry and Ry which are PWD’s relative to every
complete set of orthogonal idempotents of Ry and R, respectively.

We now let R bea PWD and let R have aright flatoverringQ = Q; X ... X
Q.. Let R, be the image of R under the projection map Q — Q;. We then have
the following theorem.

THEOREM 3.10. Let R be a PWD possessing a right flat overring Q = Q1 X . ..
X Q, where t = 2. Then r.gldim R = sup {rgldim R;}, lgldim R =
sup {l.gl.dim R;}, and WGD(R) = sup {WGD(R;)}. Furthermore R 1is right
semihereditary (right p.p.) if and only if each R ; is right semihereditary (right p.p.).

Procof. We will prove the theorem by induction on ¢ If t = 2, then R is a
split subdirect product of R; and R,. Hence the result is just that of Theorem
2.2. Now assume the result is true for f = randlet Q = Q; X ... X Q,41. Set
A=C0C: X ... X Qr1and let 71 : Q — Q1, 2 : Q — A be the natural projec-
tion maps. Then by Proposition 3.8, R is a split subdirect product of PWD'’s
m1(R) = R, and 7 (R) = S. Q; and 4 are right R-flat modules as they are
direct summands of Qg. Hence by Proposition 2.1 Q; and A are respectively
right R, and S-flat. Hence by induction, the theorem is valid for S. Thus, in
particular, r.gldim S = sup {r.gldim R;:7 = 2}. Again by induction,
rgldim R = sup {r.gl.dim Ry, r.gl.dim S} = sup {r.gl.dim R,:7 = 1}. The
other conclusions follow in a similar manner.

Remark. For the theorem to be of value, the ring R must have a right flat
overring Q. Since any PWD is nonsingular [9], an obvious candidate for Q
is the maximal left quotient ring. Cateforis [2] has given necessary and suf-
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ficient conditions for the maximal left quotient ring to be right flat. Left semi-
hereditary rings are included in this class of rings. In fact the maximal quotient
ring need not be flat for a similar theorem to hold as is shown by the next
proposition.

Prorosition 3.11. Let R be an essential right subdirect product of rings Ry and
Re. If R is a PWD, then so are Ry and Ry and the product is split (left).

Proof. Let E; and E; be as above. Since R is an essential product of R; and
R,, E; is an essential right ideal of R;. Identify E, with E; X 0. Without loss of
generality it is sufficient to show that E; is a direct summand of zR. We will
do this by showing that e; € E; whenever Ese; # 0, where R is a PWD with
respect to the complete set of idempotents {ey, . . ., e,}. Suppose that Ee; # 0
and e¢; ¢ E;. Then there exists ¢; such that ¢,;Ee; # 0. Since e¢; ¢ E;, the pro-
jection of e; in R, is not zero. E, is an essential right ideal of R, thus e¢;Es # 0
since R, is right nonsingular. Hence there exists ¢, € R such that e;E.e; # 0.
As a result (e;Ee;) (e;Eq¢;) % 0since R isa PWD. This is a contradiction, for
(e;Ee;)(eiEqer) C E1Ey C E; N E; = 0. Therefore e; € E,. Hence E; =
@ {Re;: Eie; ## 0} and is a direct summand of gR.

Ry, and R, are PWD'’s by Proposition 3.4.

COROLLARY 3.12. Let R be a PWD with maximal right quotient ring Q. If
Q = Q1 X Qs then R s a split subdirect product of R, and R, where R; is the
projection of R in Q.

Proof. By Lemma 2.3, R is the right essential subdirect product of R, and R,.
Then by Proposition 3.11 the subdirect product is split.

The following corollary shows that information about Q can sometimes be
used to represent R as a ring direct product.

ProrositioN 3.13. Let R, Q, Q1, Q2, R1, and R, be as in Corollary 3.12. If Q
is also the maximal left quotient ring of R, or if Qg is flat, then R = R; X R,.

Proof. Each E; is right essential by Lemma 2.3. If Q is the maximal left
quotient ring of R (or Qp is flat), then E; is a right direct summand of R by
Corollary 3.12 (Proposition 3.8). This can only happen if E; = R;; it follows
that R = Rl X R2.

The following theorem characterizes the maximal right quotient ring of a
PWD.

THEOREM 3.14. Let R be ¢ PWD with maximal right quotient ving Q. Then
Q=01 X...XQ, where each Q; is an indecomposable prime self-injective
regular ring whose ideals form a well ordered chain.

Proof. We will first show that Q is a ring direct product of finitely many
indecomposable rings. Let #(R) be the smallest positive integer for which R
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has a complete set of #(R) idempotents with respect to which R is a PWD.
The proof is by induction on #(R).

If n(R) = 1, then R is a domain since R is a PWD. If Q = Q; X Q., then
by Corollary 3.12 R is the split subdirect product of rings R; and R,. This can-
not happen since R is a domain.

Inductively assume the result for all PWD’s S for which #(S) < n(R). If the
maximal right quotient ring of R is indecomposable, then the result trivially
holds. Otherwise Q = Q1 X Qs, and by Corollary 3.12 R is a split subdirect
product of rings R; and R,. It is easy to see using reasoning similar to that of
Lemma 2.3 that Q; is the maximal right quotient ring of R; for each 7. Also,
it is shown in the proof of Proposition 3.4 that n(R;) < n(R). Hence the
induction hypothesis implies that Q; and Q. are each ring direct products of
finitely many indecomposable rings. It follows that Q is a direct product of
finitely many rings, say Q = Q1 X ... X Q, where each Q; is indecomposable.

Since a PWD is nonsingular [9], Q is a right self-injective regular ring [3].
Hence each Q; is a self-injective regular ring. By Goodearl [6, Proposition 3]
each Q; is a prime ring since it is indecomposable. By [6, Theorem 6] the ideals
of Q; are linearly ordered. The zero ideal is a closed prime ideal in Q;, hence by
[6, Theorem 8] the ideals of Q, are well ordered.

The following definitions are those of Handelman and Lawrence [11]. A
(right) insulator of an element a of R is a finite subset S C R such that7(aS) =
0. The ring R is called (right) strongly prime (SP) if every nonzero element of R
has a right insulator.

The maximal right quotient ring of a domain is simple. The next proposition
shows that this property is shared by a prime piecewise domain.

ProrositiON 3.15. If R is a prime PWD with maximal right quotient ring Q,
then Q 1s a simple right self-injective regular ring.

Proof. As in Theorem 3.14 Q is a right self-injective regular ring.

Let R be a prime PWD with respect to the complete set of idempotents
{ei, ..., e,}. Since R is prime, e;Re; # 0 for all 7 and j. Let a € R. There
exists an e; such that ae; # 0. For all & there exists 7, € R such that e;7;e;, # 0.
Since R is a PWD, aegre, # 0 for each k. Let S = {eier : k=1, ..., n}.
Since R is a PWD, r(aerer) = @ ju ;R = A;. Hence r(aS) = Ni=1 4, = 0.
Thus S is a right insulator for the arbitrary element @, and the ring R is
strongly prime. The ring Q is then simple by Proposition 1.1 of Goodearl and
Handelman [7].

We now turn our attention to the classical right quotient ring of a PWD.
Gordon [8] has given necessary and sufficient conditions for a PWD to be a
right order in a semiprimary ring. We will make use of the next theorem which
is due to Gordon [8, Theorem A].

THEOREM 3.16. Suppose e and f are nonzero idempotents in a ring R which is
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a right order in a semiprimary ring Q. Then eQf = eRffQf and the semiprimary
ring fQf is the classical right quotient ring of fRf.

The next theorem shows that the classical quotient ring of a PIWWD which is
a split product can be represented as a split product of the quotient rings of
the factor rings.

THEOREM 3.17. Let a PWD R be a split subdirect product of PWD’s R1 and Ro.
Then R has a semiprimary classical right quotient ring Q if and only if each R;
has a semiprimary classical right quotient ring Q. Each Q;is a PWD, and Q is
a split subdirect product of Q1 and Qs.

Proof. Since R is a split product of R, and R,, E; = ¢;R for i = 1, 2 where
each e;is an idempotent. Letes = 1 — e; — €3, by = €1 + €3, and hy = €2 + e3.
Then R has the following triangular structure:

€1R€1
R~ 0 ezRez
63R61 63R€2 €3R€3

Furthermore R; can be identified with %Rk,

All of the Q’s are PWD'’s since by Gordon [8, page 40] a semiprimary classical
quotient ring of a PWD is again a PWD.

Suppose R has a classical right semiprimary quotient ring Q. Then by
Theorem 3.16 Q; = k;Qh; is the classical right quotient ring of R; = h;Rh,.

Conversely suppose that each R; has a semiprimary classical right quotient
ring Q;. We may identify e3Q,e; with e3Q.¢;3 since each is the classical quotient
ring of e;Re;. Consider the collection Q of ‘““matrices’” of the following form:

81Q1€1
Q = 0 62Q2€2
630161 63Q282 63@163 (= 63Q2€3)

Q is a semiprimary ring since it is merely the ‘“‘matrix”’ representation of the
split subdirect product of Q: and Q. via the identification of e;Qie; with

ay
a .
e3Qqe3. Letd = | 0 a2 be a regular element of R. Then [cl " :l is a
1 3
C1 Cy Qg3

3]
right regular element of R,, for if [al ] I:xl jl =0,then |0 a
c1 Qs X2 X3
C1 Co as
X1
0 0 = 0. Similarly I:‘C“
2

:I is a right regular element of R,. Since
Xo 0 X3

as

: 1
R, and R, have classical right quotient rings Q; and Q. respectively, [zl " _’
1 3
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and [?2 " :I are right regular in Q; and Q. respectively. They are then in-
2 3

vertible since each Q; is semiprimary. Let their respective inverses be [ d] . :|
1 3

and [x2 ] (we are using the identification of e;Qie; and e3Qqe3). Then

dy %3
a; X1 1
0 a. 0 =10 1 in Q; Q is semiprimary so right in-
C1 Co Q3 d1 dz X3 0 0 1
vertible elements are invertible and d has an inverse in Q.
X11
Letx = 0 x9 be an element of Q. Applying Theorem 3.16

X31  X32 X33
separately to Q; and Qs yields that e;Qe;, = e;Re,e;Qe; for all 7 and j; hence
%45 = a0~ where by; is a regular element of e;Re; and a;; € e Re;. Let d; be
a common denominator for b;; and b3 (an element such that b;;7'd; and
b1~ d; are elements of R), let d: be a common denominator for bs; and b3,, and

dy
letd =0 d, . The element d is invertible in Q and hence must be
0 0 b

regular in R. By the choice of d, xd = r an element of R. Hence x = rd—.

We've now shown that every regular element of R is invertible in Q and that
every element of Q is of the form rd=! for r € R and d a regular element of R;
hence Q is the classical right quotient ring of R. Hence if each R; has a semi-
primary classical right quotient ring, then so does R; furthermore, if R is a split
subdirect product, then so is its classical quotient ring.
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