
Ergod. Th. & Dynam. Sys., (2024), 44, 569–593 © The Author(s), 2023. Published by Cambridge
University Press.
doi:10.1017/etds.2023.20

569

Relative uniformly positive entropy of induced
amenable group actions

KAIRAN LIU† and RUNJU WEI‡

† College of Mathematics and Statistics, Chongqing University,
Chongqing 401331, P. R. China
(e-mail: lkr111@cqu.edu.cn)

‡ Department of Mathematics, University of Science and Technology of China,
Hefei, Anhui 230026, P. R. China

(e-mail: wrj3219@mail.ustc.edu.cn)

(Received 15 November 2022 and accepted in revised form 10 February 2023)

Abstract. Let G be a countably infinite discrete amenable group. It should be noted that
a G-system (X, G) naturally induces a G-system (M(X), G), where M(X) denotes the
space of Borel probability measures on the compact metric space X endowed with the
weak*-topology. A factor map π : (X, G) → (Y , G) between two G-systems induces a
factor map π̃ : (M(X), G) → (M(Y ), G). It turns out that π̃ is open if and only if π is
open. When Y is fully supported, it is shown that π has relative uniformly positive entropy
if and only if π̃ has relative uniformly positive entropy.
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1. Introduction
In the process of studying the classification of topological dynamical systems, entropy as
a conjugacy invariant plays an important role which divides them into two classes. For
Z-systems, the notion of uniformly positive entropy (u.p.e. for short) was introduced by
Blanchard in [6] as an analogue in topological dynamics for the notion of a K-process in
ergodic theory. He then naturally defined the notion of entropy pairs and used it to show
that a u.p.e. system is disjoint from all minimal zero entropy systems [7]. Further research
concerning u.p.e. systems and entropy pairs can be found in [8, 9, 13, 16, 17, 27].

Recently, there has been a lot of significant progress in studying relative entropy via
local relative entropy theory for Z-systems. For a factor map between two Z-systems,
Glasner and Weiss [14] introduced the relative uniformly positive entropy (rel-u.p.e.) and
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the notion of relative topological Pinsker factor based on the idea of u.p.e. extensions.
Later, Park and Siemaszko [30] interpreted another relative topological Pinsker factor,
defined by Lemańczyk and Siemaszko [27], using relative measure-theoretical entropy and
discussed the relative product. In [19], Huang, Ye and Zhang introduced the notions of
relative entropy tuples in both topological and measure-theoretical settings. They showed
that the finite product of rel-u.p.e. extensions has rel-u.p.e. if and only if the factors are
fully supported (for definitions see §2.3). They also proved some classical results about
the rel-u.p.e. extension. We will refer readers to [10, 11, 18, 26] for more results related to
local relative entropy theory.

Bauer and Sigmund [3] initiated a systematic study of the connections between
dynamical properties of a Z-system and its induced system (whose phase space consists
of all Borel probability measures on the original space, for details see §2). A well-known
result due to Glasner and Weiss [15] in 1995 reveals that if a system has zero topological
entropy, then so does its induced system. Later, this connection was further developed by
Kerr and Li in [23]. They obtained that a system is null if and only if its induced system is
null. More research concerning relations of these systems was developed in [1, 2, 33, 37].
Recently, Bernardes et al [4] proved that a Z-system has u.p.e. if and only if its induced
system does.

After Ornstein and Weiss’s pioneering work for amenable group actions in 1987 [29],
there have been many developments in the process of studying the amenable group action
systems. We will refer the reader to the related papers [20, 28, 31, 35, 36, 38]. In this
paper, we always assume that G is a countably infinite discrete amenable group. By a
G-system (X, G), we mean a compact metric space X together with G acting on X by
homeomorphisms, that is, there exists a continuous map � : G × X → X, satisfying:
• �(eG, x) = x for every x ∈ X;
• �(g, �(h, x)) = �(gh, x) for each g, h ∈ G and x ∈ X.
We write �(g, x) as gx for every g ∈ G and x ∈ X.

Motivated by those works which were previously mentioned for Z-systems and the local
entropy theory developed for countable discrete amenable group action systems due to
Huang, Ye and Zhang [20], and Kerr and Li [24], the present paper aims to investigate the
properties of the relative uniformly positive entropy (rel-u.p.e.) for an induced factor map
of a factor map between two G-systems (see §2 for definitions).

More precisely, let (X, G) be a G-system, BX be the set of Borel subsets of X and M(X)

be the space of Borel probability measures on the compact metric space X endowed with
the weak*-topology. Then the G-system (X, G) induces a system (M(X), G) (see §2 for
details). For any x ∈ X, let δx denote the Dirac measure on x and

Mn(X) =
{

1
n

n∑
i=1

δxi
: x1, x2, . . . , xn ∈ X

}

for each n ∈ N. Then Mn(X) is closed and invariant under G (that is, gMn(X) = Mn(X)

for every g ∈ G). Hence, we can consider the subsystems (Mn(X), G) of (M(X), G)

for each n ∈ N. For a factor map π : (X, G) → (Y , G) between two G-systems, when
supp(Y ) = Y (for definitions see §2.3), we have the following result.
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THEOREM 1.1. Let π : (X, G) → (Y , G) be a factor map between two G-systems, π̃ :
(M(X), G) → (M(Y ), G) be the factor map induced by π and π̃n : (Mn(X), G) →
(Mn(Y ), G) be the restriction of π̃ on Mn(X). When supp(Y ) = Y , the following are
equivalent:
(1) π has relative uniformly positive entropy;
(2) π̃n has relative uniformly positive entropy for some n ∈ N;
(3) π̃n has relative uniformly positive entropy for every n ∈ N;
(4) π̃ has relative uniformly positive entropy.

Notice that when Y is a singleton, we obtain that (X, G) has u.p.e. if and only if the
induced system (M(X), G) has u.p.e. (when G = Z, see [4, Theorem 4]).

We say a map π : X → Y between two topological spaces is open if the images of open
sets are open. Then we have the following result.

THEOREM 1.2. Let π : X → Y be a surjective continuous map between two compact
metrizable spaces, and π̃ : M(X) → M(Y ) be the induced map of π . Then π is open
if and only if π̃ is open.

This paper is organized as follows. In §2, we will list some basic notions and results
needed in our argument. In §§3 and 4, we will give a proof of Theorem 1.1. Finally, we
prove Theorem 1.2 in §5.

2. Preliminaries
In this section, we recall some basic notation and results which will be used repeatedly in
our paper. Denote by N and R the set of natural numbers and real numbers, respectively.
For n ∈ N, we write [n] for {1, 2, . . . , n}.

2.1. Amenable group. We say a countably infinite discrete group G is amenable if there
always exists an invariant Borel probability measure when it acts on any compact metric
space. In the case where G is a countably infinite discrete group, amenability is equivalent
to the existence of a Fφlner sequence: a sequence of non-empty finite subsets {Fn}∞n=1 of
G such that

lim
n→∞

|Fn�gFn|
|Fn| = 0

for all g ∈ G. One should refer to Ornstein and Weiss’ paper [29] for more details about
an amenable group. In this paper, we always assume that G is a countably infinite discrete
amenable group and denote by F(G) the collection of non-empty finite subsets of G. The
following result is well known (see [25, Theorem 4.48]).

THEOREM 2.1. Let φ be a real-valued function on F(G) satisfying:
(1) φ(Fs) = φ(F ) for all F ∈ F(G) and s ∈ G; and
(2) φ(F ) ≤ (1/k)

∑
E∈E φ(E) for every k ∈ N, F ∈ F(G) and finite collection

E ⊆ F(G) with
⋃

E∈E E ⊆ F and
∑

E∈E 1E ≥ k1F .
Then φ(F )/|F | converges to a limit as F becomes more and more invariant and this limit
is equal to infF φ(F )/|F |, where F ranges over all non-empty finite subsets of G.
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2.2. Induced systems. Assume that X is a compact metric space. Let BX be the
collection of Borel subsets of X, C(X) be the space of continuous maps from X to R
endowed with the supremum norm ‖ · ‖∞ and M(X) be the set of Borel probability
measures on X endowed with the weak∗-topology, which is the smallest topology making
the map

Dg : M(X) → R, μ 
→
∫

X

g dμ

continuous for every g ∈ C(X), and the topology basis of weak∗-topology consists of the
following sets:

V(μ; f1, . . . , fk; ε) :=
{
ν ∈ M(X) :

∣∣∣∣
∫

X

fi dμ −
∫

X

fi dν

∣∣∣∣ < ε for all i ∈ [k]
}

,

(2.1)

where μ ∈ M(X), k ≥ 1, ε > 0 and fi : X → R are continuous functions for i ∈ [k]. The
Prohorov metric on M(X),

dP (μ, ν) := inf{δ > 0 : μ(A) ≤ ν(Aδ) + δ and ν(A) ≤ μ(Aδ) + δ for all A ∈ BX},
where Aδ = {x ∈ X : d(x, A) < δ}, is compatible with the weak*-topology. We will refer
the readers to the books [5, 12, 22] for the knowledge of space M(X). Moreover,

dP (μ, ν) = inf{δ > 0 : μ(A) ≤ ν(Aδ) + δ for all A ∈ BX}
(see [5, p. 72]). Proposition 2.2 describes a basis for the weak*-topology on M(X) due to
Bernardes et al (see [4, Lemma 1]).

PROPOSITION 2.2. The set of the form

W(U1, U2, . . . , Uk : η1, η2, . . . , ηk) := {μ ∈ M(X) : μ(Ui) > ηi for i ∈ [k]},
where k ≥ 1, U1, U2, . . . , Uk are non-empty disjoint open sets in X and η1, η2, . . . , ηk are
positive real numbers with η1 + η2 + · · · + ηk < 1, form a basis for the weak*-topology
on M(X).

A G-system (X, G) induces a system (M(X), G), where g : M(X) → M(X) is
defined by (gμ)(A) := μ(g−1A) for every g ∈ G, μ ∈ M(X) and A ∈ BX. We call
(M(X), G) the induced system of (X, G).

Let (X, G) and (Y , G) be two G-systems. A continuous map π : (X, G) → (Y , G) is
called a factor map between (X, G) and (Y , G) if it is onto and π ◦ g = g ◦ π for every
g ∈ G. Here, π can induce a factor map π̃ : (M(X), G) → (M(Y ), G) by

(π̃μ)(B) = μ(π−1B)

for every μ ∈ M(X) and B ∈ BY . For every n ∈ N, we denote

π̃n := π̃ |Mn(X) : Mn(X) → Mn(Y )

by the restriction of π̃ on Mn(X). Note that π̃n is also a factor map for each n ∈ N.
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2.3. Support. Let (X, G) be a G-system, (M(X), G) be the induced G-system of
(X, G). We denote by M(X, G) the set of all G-invariant measures. For μ ∈ M(X), we
denote by supp(μ) the support of μ, that is, the smallest closed subset W ⊆ X such that
μ(W) = 1. We denote by supp(X, G) the support of (X, G), that is,

supp(X, G) =
⋃

μ∈M(X,G)

supp(μ).

Here, (X, G) is called fully supported if there is an invariant measure μ ∈ M(X, G) with
full support (that is, supp(μ) = X), equivalently, supp(X, G) = X.

2.4. Relative uniformly positive topological entropy. For a given G-system (X, G), a
cover of X is a family of Borel subsets of X, whose union is X. Denote the set of finite
covers by CX. For n ∈ N and U1, U2, . . . , Un ∈ CX, we denote

n∨
i=1

Ui = {A1 ∩ A1 ∩ · · · ∩ An : Ai ∈ Ui , i ∈ [n]}.

Let π : (X, G) → (Y , G) be a factor map between two G-systems and U ∈ CX. For any
non-empty subset E of X, let N(U , E) be the minimum among the cardinalities of the
subsets of U which cover E, and define

N(U |π) = sup
y∈Y

N(U , π−1(y)).

The topological conditional entropy of U with respect to π is defined by

htop(U , G|π) = lim
n→∞

1
|Fn| log N(UFn |π),

where UFn = ∨
g∈Fn

g−1U and {Fn}∞n=1 is a Fφlner sequence of G. It is well known that
htop(U , G|π) is well defined and is independent of the choice of the Fφlner sequences of G.

Let π : (X, G) → (Y , G) be a factor map between G-systems. Here, U =
{U1, . . . , Un} ∈ CX is said to be non-dense-on-π -fibre if there is y ∈ Y such that π−1(y)

is not contained in any element of U which consists of the closures of elements of U in X.
Clearly, if an open cover U = {U1, U2} is non-dense-on-π -fibre, then π(U1) ∩ π(U2) = ∅.
We say (X, G) or π has relative uniformly positive entropy (rel-u.p.e. for short) if for any
non-dense-on-π -fibre open cover U of X with two elements, we have htop(U , G|π) > 0.

For n ∈ N and G-systems (Zi , G), i ∈ [n], we set∏
i∈[n]

Zi = {(z1, z2, . . . , zn) : zi ∈ Zi ; i ∈ [n]}

and

g(z1, z2, . . . , zn) = (gz1, gz2, . . . , gzn)

for every g ∈ G and zi ∈ Zi for i ∈ [n]. Clearly, (
∏

i∈[n] Zi , G) is also a G-system. When
Zi = Z for all i ∈ [n], we write

∏
i∈[n] Zi as Z(n). Let πi : (Xi , G) → (Yi , G) be factor
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maps between G-systems for i ∈ [n]. Then {πi}i∈[n] induce a factor map

∏
i∈[n]

πi :
( ∏

i∈[n]

Xi , G

)
→

( ∏
i∈[n]

Yi , G

)

by ∏
i∈[n]

πi(x1, x2, . . . , xn) = (π1x1, π2x2, . . . , πnxn)

for every (x1, x2, . . . , xn) ∈ ∏
i∈[n] Xi . When πi = π for all i ∈ [n], we write

∏
i∈[n] πi

as π(n). In [19], Huang, Ye and Zhang showed that the finite product of rel-u.p.e. factor
maps between Z-systems has rel-u.p.e. It also holds for G-systems.

THEOREM 2.3. Let πi : (Xi , G) → (Yi , G) be a factor map between two G-systems and
supp(Yi) = Yi for i = 1, 2. Then π1 and π2 have rel-u.p.e. if and only if π1 × π2 : (X1 ×
X2, G) → (Y1 × Y2, G) has rel-u.p.e.

We will give a proof of Theorem 2.3 in Appendix A (see Theorem A.5).

3. π has rel-u.p.e. if and only if π̃n has rel-u.p.e.
Let X be a compact metric space and ρX be a compatible metric for X. We denote
BρX

(x, δ) = {y ∈ X : ρX(x, y) < δ} for x ∈ X and δ > 0, and denote

�(X) = {(x, x) : x ∈ X}.
For (x1, x2) ∈ X × X\�(X) and U = {U1, U2} ∈ CX, we say U is an admissible cover
of X with respect to (x1, x2) if for any i ∈ [2], one has {x1, x2} � Ui . Let π : (X, G) →
(Y , G) be a factor map between two G-systems. Here, (x1, x2) ∈ X × X\�(X) is called
an entropy pair relevant to π if for any admissible cover U with respect to (x1, x2), we
have htop(U , G|π) > 0. Denote by E(X, G|π) the set of all entropy pairs relevant to π .
Let

Rπ = {(x1, x2) ∈ X × X : π(x1) = π(x2)}.
It is easy to see that E(X, G|π) ⊆ Rπ \ �(X), and π has rel-u.p.e. if and only if
E(X, G|π) = Rπ \ �(X).

The concept of dynamical independence is introduced in [24, Definition 2.1]. Now
we consider its relative version. Let π : (X, G) → (Y , G) be a factor map between two
G-systems. For any n ∈ N and a tuple V = (V1, V2, . . . , Vn) of subsets of X, we say J ⊆ G

is an independence set of Vwith respect to π if for every non-empty finite subset I ⊂ J ,
there exists y ∈ Y such that

π−1(y) ∩
⋂
g∈I

g−1Vσ(g) = ∅

holds for every σ ∈ [n]I . We denote by Pπ
V the set of all independence sets of V with

respect to π .
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Remark 3.1. For every n ∈ N and a tuple V = (V1, V2, . . . , Vn) of subsets of X, if we set

IV : F(G) → R; IV (F ) := max
I⊆F ,I∈Pπ

V
|I |,

then by Theorem 2.1, IV (F )/|F | converges as F becomes increasingly more invariant and
this limit is equal to infF (IV (F )/|F |), where F ranges over F(G). When this limit is
positive, we say V is independent with respect to π .

The next lemma follows [24, Lemma 3.4] (see also [17, Theorem 7.4]).

LEMMA 3.2. Let π : (X, G) → (Y , G) be a factor map between two G-systems, and
V1, V2 be two disjoint subsets of X. If we set U = {X \ V1, X \ V2}, then htop(U , G|π) > 0
if and only if {V1, V2} is independent with respect to π .

Let π : (X, G) → (Y , G) be a factor map between two G-systems. For any (x1, x2) ∈
X × X\�(X), disjoint open subsets V1, V2 of X with xi ∈ Vi for i ∈ [2], V = {X \ V1,
X \ V2} is an admissible cover of X with respect to (x1, x2). Then by Lemma 3.2, we
immediately have the following corollary.

COROLLARY 3.3. Let π : (X, G) → (Y , G) be a factor map between two G-systems and
(x1, x2) ∈ X × X\�(X). Then (x1, x2) ∈ E(X, G|π) if and only if for any disjoint open
subsets V1, V2 of X with xi ∈ Vi for i = 1, 2, {V1, V2} is independent with respect to π .

We note that for any two non-empty finite sets H, W, if H ⊆ W and S ⊂ {1, 2}W ,
one has

|S|H | ≥ |S|
2|W |−|H | , (3.1)

where S|H is the restriction of S on H, that is,

S|H = {σ ∈ {1, 2}H : there exists σ ′ ∈ S such that σ(h) = σ ′(h) for all h ∈ H }.
The following consequence of Karpovsky and Milman’s generalization of the
Sauer–Perles–Shelah lemma [21, 32, 34] is well known, and one can also refer to [24,
Lemma 3.5].

LEMMA 3.4. Given k ≥ 2 and λ > 1, there exists a constant c > 0 such that for all
n ∈ N, if S ⊆ [k][n] satisfies |S| ≥ ((k − 1)λ)n, then there is an I ⊆ [n] with |I | ≥ cn and
S|I = [k]I .

Theorem 1.1 follows from Theorems 3.5, 4.2 and 4.3.

THEOREM 3.5. Let n ∈ N, π : (X, G) → (Y , G) be a factor map between two G-systems,
π̃ : (M(X), G) → (M(Y ), G) be the factor map induced by π and π̃n : (Mn(X), G) →
(Mn(Y ), G) be the restriction of π̃ on Mn(X). When supp(Y ) = Y , the following are
equivalent:
(1) π has rel-u.p.e.;
(2) π̃n has rel-u.p.e. for some n ∈ N;
(3) π̃n has rel-u.p.e. for every n ∈ N.
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Proof. (3) ⇒ (2) is trivial. We will prove (1) ⇒ (3) and (2) ⇒ (1).
(1) ⇒ (3). Assume that π has rel-u.p.e. For every fixed 1 ≤ n < ∞, to obtain that

π̃n has rel-u.p.e., it is sufficient to prove that E(Mn(X), G|π̃n) ⊇ Rπ̃n(Mn(X), G) \
�(Mn(X)).

Let (μ1, μ2) ∈ Rπ̃n(Mn(X), G)\�(Mn(X)), and Ṽ1 and Ṽ2 be two disjoint open
subsets of Mn(X) with μi ∈ Ṽi for i ∈ [2]. By Corollary 3.3, we shall show that {Ṽ1, Ṽ2}
is independent with respect to π̃n.

For i ∈ [2] and j ∈ [n], there exist points xi
j ∈ X such that μi = (1/n)

∑n
j=1 δxi

j
. We

note that the map  : X(n) → M(X), defined by

(z1, z2, . . . , zn) = 1
n

n∑
i=1

δzi

is continuous. Thus, for every i ∈ [2] and j ∈ [n], there exists open neighbourhoods V i
j of

xi
j such that

μi ∈
{

1
n

n∑
j=1

δzj
: zj ∈ V i

j , j ∈ [n]
}

⊆ Ṽi .

Since Ṽ1 ∩ Ṽ2 = ∅, if we set Wi = V i
1 ×V i

2 × · · · ×V i
n for i = 1, 2, one has W1 ∩W2 = ∅.

Without loss of generality, we can assume that π(x1
j ) = π(x2

j ) for all j ∈ [n] since
π̃n(μ1) = π̃n(μ2). Let ωi = (xi

1, xi
2, . . . , xi

n) ∈ Wi for i = 1, 2. Then

(ω1, ω2) ∈ Rπ(n) \ �(X(n)) = E(X(n), G|π(n))

as π(n) has rel-u.p.e. by Theorem 2.3. Thus, {W1, W2} is independent with respect to π(n).
We note that Pπ(n)

{W1,W2} ⊆ P π̃n

{Ṽ1,Ṽ2}. This implies {Ṽ1, Ṽ2} is independent with respect to π̃n.

(2) ⇒ (1). We assume that π̃n has rel-u.p.e. for some positive integer 1 ≤ n < ∞. In
the following, we prove that Rπ \ �(X) ⊆ E(X, G|π). Let (x1, x2) ∈ Rπ \ �(X), V1 and
V2 be two disjoint open subsets of X with xi ∈ Vi , i = 1, 2. By Corollary 3.3, we only
need to show that {V1, V2} is independent with respect to π .

We set

Ṽi =
{
μ ∈ Mn(X) : μ(Vi) > 1 − 1

2n

}

for i = 1, 2. Clearly, Ṽ1 and Ṽ2 are disjoint open subsets of Mn(X) with δxi
∈ Ṽi for

i = 1, 2. Since π̃n has rel-u.p.e., and (δx1 , δx2) ∈ Rπ̃n \ �(Mn(X)) = E(Mn(X), G|π̃n),
{Ṽ1, Ṽ2} is independent with respect to π̃n. Then there exists a constant c > 0, such that
for every fixed F ∈ F(G), there exist I ⊆ F with |I | > c|F | and ν = (1/n)

∑n
i=1 δyi

∈
Mn(Y ) for some yi ∈ Y such that

Aσ := π̃−1
n (ν) ∩

⋂
g∈I

g−1Ṽσ (g) = ∅

for every σ ∈ {1, 2}I .
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For every σ ∈ {1, 2}I and μσ = (1/n)
∑n

i=1 δzσ
i

∈ Aσ , we can assume π(zσ
i ) = yi for

i ∈ [n]. Moreover, for every g ∈ I , one has gμσ = (1/n)
∑n

i=1 δgzσ
i

∈ Ṽσ (g). That is,

1
n

n∑
i=1

δgzσ
i
(Vσ(g)) > 1 − 1

2n
,

which implies gzσ
i ∈ Vσ(g) for every i ∈ [n]. In particular,

zσ
1 ∈ π−1(y1) ∩

⋂
g∈I

g−1Vσ(g)

for every σ ∈ {1, 2}I . Thus, {V1, V2} is independent with respect to π . This ends our
proof.

4. π is rel-u.p.e. if and only if π̃ is rel-u.p.e.
In this section, we will prove π is rel-u.p.e. if and only if π̃ is rel-u.p.e. We need the
following lemma.

LEMMA 4.1. Let π : X → Y be a continuous surjective map between two compact metric
spaces, π̃ : M(X) → M(Y ) be the map induced by π and π̃n : Mn(X) → Mn(Y ) be
the restriction of π̃ on Mn(X). Then

⋃
n∈N Rπ̃n is dense in Rπ̃ .

Proof. Fix compatible metrics ρX for X and ρY for Y. Let (μ1, μ2) ∈ Rπ̃ . Without loss of
generality, we can assume μ1 = μ2. For any two disjoint open subsets Ṽ1, Ṽ2 of M(X)

with μi ∈ Ṽi for i ∈ [2], by (2.1), there exist a constant r > 0 small enough, integers L1

and L2, f1, . . . , fL1 ∈ C(X) and g1, . . . , gL2 ∈ C(X) such that

μ1 ∈ W̃1 :=
{
μ ∈ M(X) :

∣∣∣∣
∫

X

fi dμ −
∫

X

fi dμ1

∣∣∣∣ < r , i ∈ [L1]
}

⊆ Ṽ1

and

μ2 ∈ W̃2 :=
{
μ ∈ M(X) :

∣∣∣∣
∫

X

gj dμ −
∫

X

gj dμ2

∣∣∣∣ < r , j ∈ [L2]
}

⊆ Ṽ2.

It is sufficient to prove that (W̃1 × W̃2) ∩ Rπ̃N
= ∅ for some N ∈ N.

Without loss of generality, we can assume ‖fi‖ ≤ 1 and ‖gj‖ ≤ 1 for i ∈ [L1] and
j ∈ [L2]. Moreover, since fi , gj ∈ C(X) for i ∈ [L1] and j ∈ [L2], there exists ε > 0
such that for any x, z ∈ X with ρX(x, z) < ε, one has

|fi(x) − fi(z)| <
r

2
for every i ∈ [L1],

|gj (x) − gj (z)| <
r

2
for every j ∈ [L2].

(4.1)

For every y ∈ Y , since π is continuous, one can find an open neighbourhood Vy ⊆ Y

such that

π−1(y) ⊆ π−1(Vy) ⊆ π−1(Vy) ⊆ (π−1(y))ε/2,

https://doi.org/10.1017/etds.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.20


578 K. Liu and R. Wei

where (π−1(y))ε/2 = {x ∈ X : ρX(x, {π−1(y)}) < ε/2}. Moreover, since Y is compact,
there exist K ∈ N and pairwise different points y1, . . . , yK of Y such that Y =⋃K

i=1 Vyi
. Then one can find t > 0 such that yi ∈ BρY

(yi , t) ⊂ Vyi
for any i ∈ [K] and

{BρY
(y1, t), . . . , BρY

(yK , t)} are pairwise disjoint. We set

W1 = Vy1 \
K⋃

i=2

BρY
(yi , t) and Wi = Vyi

\
( i−1⋃

j=1

Vyj
∪

K⋃
j=i+1

BρY
(yj , t)

)

for i = 2, . . . , K . Then {W1, . . . , WK} is a partition of Y and yi ∈ Wi ⊆ Vyi
for i ∈ [K].

Moreover, {π−1(W1), . . . , π−1(WK)} is a partition of X which satisfies

π−1(yi) ⊆ π−1(Wi) ⊆ π−1(Vyi
) ⊆ (π−1(yi))

ε/2

for every i ∈ [K]. Then for every i ∈ [K], there exist Pi ∈ N and pairwise different
xi

1, xi
2, . . . , xi

Pi
∈ π−1(yi), such that {xi

j : j ∈ [Pi]} is a ε/2-net of π−1(Wi). Then one
can choose Borel subsets Ai

j of X for i ∈ [K] and j ∈ [Pi], such that:

(i) diam(Ai
j ) < ε for every i ∈ [K], j ∈ [Pi];

(ii) xi
j ∈ Ai

j for every i ∈ [K], j ∈ [Pi];
(iii) {Ai

j : j ∈ [Pi]} is a partition of π−1(Wi) for every i ∈ [K].

For every i ∈ [K], j ∈ [Pi], we set aij = μ1(A
i
j ) and bij = μ2(A

i
j ). Since π̃(μ1) =

π̃(μ2), we have

Pi∑
j=1

aij =
Pi∑

j=1

μ1(A
i
j ) = μ1(π

−1(Wi)) = μ2(π
−1(Wi)) =

Pi∑
j=1

μ2(A
i
j ) =

Pi∑
j=1

bij

for i ∈ [K]. Then for any i ∈ [K] and j ∈ [Pi], there exist integers qij , q̃ij , Qi and N ∈ N
large enough satisfying the following conditions:

(i*) qij /N ≤ aij < (qij + 1/N);
(ii*) q̃ij /N ≤ bij < q̃ij + 1/N ;

(iii*) Qi/N ≤ ∑Pi

j=1 aij = ∑Pi

j=1 bij < (Qi + 1)/N .
Now, we choose an x0 ∈ X arbitrarily and set

μ̃1 = 1
N

( K∑
i=1

( Pi−1∑
j=1

qij δxi
j
+

(
Qi −

Pi−1∑
j=1

qij

)
δxi

Pi

))
+ N − ∑K

i=1 Qi

N
δx0

and

μ̃2 = 1
N

( K∑
i=1

( Pi−1∑
j=1

q̃ij δxi
j
+

(
Qi −

Pi−1∑
j=1

q̃ij

)
δxi

Pi

))
+ N − ∑K

i=1 Qi

N
δx0 .

It is clear that (μ̃1, μ̃2) ∈ Rπ̃N
. Now we shall show that μ̃i ∈ W̃i for i ∈ [2].
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In fact, for any � ∈ [L1], one has∣∣∣∣
∫

f� dμ1 −
∫

f� dμ̃1

∣∣∣∣ =
∣∣∣∣

K∑
i=1

Pi∑
j=1

∫
Ai

j

fl dμ1 − 1
N

K∑
i=1

( Pi−1∑
j=1

qij fl(x
i
j )

+
(

Qi −
Pi−1∑
j=1

qij

)
fl(x

i
Pi

)

)
− N − ∑K

i=1 Qi

N
fl(x0)

∣∣∣∣
≤

∣∣∣∣
K∑

i=1

Pi∑
j=1

∫
Ai

j

fl dμ1 − 1
N

K∑
i=1

Pi∑
j=1

qij fl(x
i
j )

∣∣∣∣
+

∣∣∣∣ 1
N

K∑
i=1

(Qi −
Pi∑

j=1

qij )fl(x
i
Pi

)

∣∣∣∣ +
∣∣∣∣N − ∑K

i=1 Qi

N
fl(x0)

∣∣∣∣.
(4.2)

Since diam(Ai
j ) < ε for i ∈ [K] and j ∈ [Pi], by (4.1) and (i∗), we have

∣∣∣∣
K∑

i=1

Pi∑
j=1

∫
Ai

j

fl(x) dμ1 − 1
N

K∑
i=1

Pi∑
j=1

qij fl(x
i
j )

∣∣∣∣
≤

K∑
i=1

Pi∑
j=1

∫
Ai

j

|fl(x) − fl(x
i
j )| dμ1 +

K∑
i=1

Pi∑
j=1

(
aij − qij

N

)
|fl(x

i
j )|

≤ r

2
+

∑K
i=1 Pi

N
. (4.3)

By (i∗) and (iii∗), one has

K∑
i=1

∣∣∣∣Qi

N
− 1

N

Pi∑
j=1

qij

∣∣∣∣ ≤
K∑

i=1

∣∣∣∣Qi

N
−

Pi∑
j=1

aij

∣∣∣∣ +
K∑

i=1

∣∣∣∣
Pi∑

j=1

aij − 1
N

Pi∑
j=1

qij

∣∣∣∣
≤ K

N
+

∑K
i=1 Pi

N
(4.4)

and ∣∣∣∣N − ∑K
i=1 Qi

N

∣∣∣∣ =
∣∣∣∣

K∑
i=1

Pi∑
j=1

aij − 1
N

K∑
i=1

Qi

∣∣∣∣ ≤
K∑

i=1

∣∣∣∣
Pi∑

j=1

aij − Qi

N

∣∣∣∣ ≤ K

N
.

When N is large enough such that K/N + ∑K
i=1 Pi/N ≤ r/6, by (4.2), (4.3) and (4.4),

we have μ̃1 ∈ W̃1. Similarly, we can prove that μ̃2 ∈ W̃2. This ends our proof.

THEOREM 4.2. Let π : (X, G) → (Y , G) be a factor map between two G-systems with
supp(Y ) = Y and π̃ : (M(X), G) → (M(Y ), G) be the induced map of π . Suppose π

has rel-u.p.e., then π̃ also has rel-u.p.e.

Proof. Assume that π has rel-u.p.e. To show π̃ has rel-u.p.e., it suffices to prove that
Rπ̃ \ �(M(X)) ⊆ E(M(X), G|π̃). Let (μ1, μ2) ∈ Rπ̃ \ �(M(X)) and Ṽ1, Ṽ2 be two
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disjoint open subsets of M(X) with μi ∈ Ṽi for i ∈ [2]. By Lemma 4.1, there exist n ∈ N
and (μ′

1, μ′
2) ∈ Rπ̃n ∩ (Ṽ1 × Ṽ2). Notice that, since π has rel-u.p.e., by Theorem 3.5, π̃n

has rel-u.p.e. Then {Ṽ1 ∩ Mn(X), Ṽ2 ∩ Mn(X)} is independent with respect to π̃n, which
implies {Ṽ1, Ṽ2} is independent with respect to π̃ . This ends our proof.

We note that for any non-empty finite subsets A, H of N with A ⊆ H and S ⊆ {1, 2}H ,
one can find S0 ⊂ S with |S0| ≥ |S|/2|H |−|A| such that for every σ1 = σ2 ∈ S0, there exists
a ∈ A with

σ1(a) = σ2(a). (4.5)

In fact, if we let W = S|A, then |W| ≥ |S|/2|H |−|A|. For each w ∈ W , there exists σw ∈ S

such that σw|A = w. Put S0 := {σw : w ∈ W} ⊆ S. Then |S0| = |W| ≥ |S|/2|H |−|A|, and
for every σ1 = σ2 ∈ S0, one has σ1|A = σ2|A.

THEOREM 4.3. Let π : (X, G) → (Y , G) be a factor map between two G-systems and π̃ :
(M(X), G) → (M(Y ), G) be the induced map of π . If π̃ has rel-u.p.e., then so does π .

Proof. Assume that π̃ has rel-u.p.e. To show π has rel-u.p.e., we shall show that
Rπ \ �(X) ⊆ E(X, G|π). Let (x1, x2) ∈ Rπ \ �(X), V1, V2 be two non-empty disjoint
open subsets of X with xi ∈ Vi for i ∈ [2]. By Corollary 3.3, it is sufficient to show that
(V1, V2) is independent with respect to π .

Take ε ∈ (0, 1
2 ) with

21−ε2 · (1 − ε2)(1−ε2) · (ε2)(ε
2) > 1. (4.6)

We set

Ṽi = {μ ∈ M(X) : μ(Vi) > 1 − ε4} (4.7)

for i ∈ [2]. Clearly, δxi
∈ Ṽi . Since (δx1 , δx2) ∈ Rπ̃ and π̃ has rel-u.p.e., (Ṽ1, Ṽ2) is

independent with respect to π̃ . That is, there exists c > 0 such that for every F ∈ F(G),
there exists an independence set E ⊆ F of (Ṽ1, Ṽ2) with respect to π̃ with |E| > c|F |.

Fix an F ∈ F(G) and an independence set E ⊆ F of (Ṽ1, Ṽ2) with respect to π̃ with
|E| > c|F |. Then there exists ν ∈ M(Y ), such that for every σ ∈ {1, 2}E ,

˜V σ :=
( ⋂

g∈E

g−1Ṽσ (g)

)
∩ π̃−1(ν) = ∅. (4.8)

For every σ ∈ {1, 2}E , we take μσ ∈ ˜V σ . Then μσ ∈ g−1Ṽσ (g) for every g ∈ E and
σ ∈ {1, 2}E , which implies μσ (g−1Vσ ) > 1 − ε4 for every g ∈ E and σ ∈ {1, 2}E . Thus,∫

X

1
|E|

∑
g∈E

1g−1Vσ(g)
(x) dμσ = 1

|E|
∑
g∈E

μσ (g−1Vσ(g)) > 1 − ε4

and μσ (X̃σ ) > 1 − ε2 for every σ ∈ {1, 2}E , where

X̃σ =
{
x ∈ X :

1
|E|

∑
g∈E

1g−1Vσ(g)
(x) > 1 − ε2

}
. (4.9)
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By the inner regular of measure, we can find a closed subset

Xσ ⊆ X̃σ with μσ (Xσ ) > 1 − ε2 (4.10)

for every σ ∈ {1, 2}E . Since π is continuous, for every σ ∈ {1, 2}E , we have

Yσ := π(Xσ ) (4.11)

is a closed subset of Y and

ν(Yσ ) = π̃μσ (Yσ ) ≥ μσ (Xσ ) > 1 − ε2.

Then ∫
Y

1
2|E|

∑
σ∈{1,2}E

1Yσ (y) dν > 1 − ε2.

Put

Y
′

:=
{
y ∈ Y :

1
2|E|

∑
σ∈{1,2}E

1Yσ (y) > 1 − ε

}
, (4.12)

then ν(Y
′
) > 1 − ε > 1

2 .
Now, we fix a point y0 ∈ Y

′
and set

E := {σ ∈ {1, 2}E : y0 ∈ Yσ }. (4.13)

Then |E | > (1 − ε) · 2|E| by (4.12). For any σ ∈ E , by (4.13), (4.11), (4.10) and (4.9), there
is xσ ∈ Xσ with

1
|E|

∑
g∈E

1g−1Vσ(g)
(xσ ) > 1 − ε2

such that π(xσ ) = y0. For every σ ∈ E , we set

A(σ) = {g ∈ E : xσ ∈ g−1Vσ(g)},
then |A(σ)| > (1 − ε2)|E|. Now we define

� := {H ⊆ E : |H | = �(1 − ε2) · |E|�}
and

Q(H) = {σ ∈ E : H ⊆ {g ∈ E : gxσ ∈ Vσ(g)}}
for every H ∈ �. Then |�| = ( |E|

�(1−ε2)·|E|�
)

and
⋃

H∈� Q(H) = E . Thus, there exists

H0 ∈ � such that |Q(H0)| ≥ |E |/|�| ≥ (1 − ε)2|E|/
( |E|
�(1−ε2)·|E|�

)
. By (4.5), we can choose

S ⊆ Q(H0) such that

|S| ≥ (1 − ε)2|E|

2|E|−�(1−ε2)·|E|� · ( |E|
�(1−ε2)·|E|�

) (4.14)

and for any σ ′ = σ ′′ ∈ S, there exists g ∈ H0 that satisfies σ ′(g) = σ ′′(g). That is,
|S|H0 | = |S|. Let t = 1 − ε2 and λ = log2(2

t · t t · (1 − t)(1−t)) > 0. Then by Stirling’s

https://doi.org/10.1017/etds.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.20


582 K. Liu and R. Wei

formula, when |E| is large enough, one has

|S|H0 | ≈ 2�t |E|�−1 · √
2πt(1 − t)|E| · t t |E| · (1 − t)(1−t)|E|

≥ 2t |E|−2 · √2πt(1 − t)|E| · t t |E| · (1 − t)(1−t)|E|

≥ (2t · t t · (1 − t)(1−t))|E| > 2λ|E|.

By Lemma 3.4, there exists a subset H1 ⊆ H0 with |H1| > d|H0| such that S|H1 =
{1, 2}H1 , where d is a positive constant independent with E when |E| is large enough.
By Remark 3.1, (V1, V2) is independent with respect to π . This ends our proof.

5. π is open if and only if π̃ is open
In this section, we will prove Theorem 1.2. In fact, we have the following result.

THEOREM 5.1. Let π : X → Y be a surjective continuous map between two compact
metrizable spaces, π̃ : M(X) → M(Y ) be the induced map of π and π̃n : Mn(X) →
Mn(Y ) be the restriction of π̃ on Mn(X). Then the following are equivalent:
(1) π is open;
(2) π̃ is open;
(3) π̃n is open for each n ∈ N;
(4) π̃n is open for some n ∈ N.

Proof. (3) ⇒ (4) is trivial. We will show (2) ⇒ (1), (4) ⇒ (1), (1) ⇒ (3) and (1) ⇒
(2). Fix compatible metrics ρX for X and ρY for Y.

(2) ⇒ (1). Suppose that π̃ is open. For every non-empty open subset U of X, we shall
show that π(U) is an open subset of Y. That is, for every y ∈ π(U), there exists r > 0 such
that BρY

(y, r) ⊆ π(U).
Now fix y0 ∈ π(U). Since U is open, there exist x0 ∈ U and δ > 0 with π(x0) = y0

and BρX
(x0, δ) ⊆ U . Then by Urysohn’s lemma, there exists a countinuous map f : X →

[0, 1] with f (z) = 1 when z ∈ BρX
(x0, δ/2) and f (z) = 0 when z ∈ X\BρX

(x0, δ). We
set

Ũ :=
{
μ ∈ M(X) :

∫
f dμ >

2
3

}
.

Clearly, Ũ is an open subset of M(X) and δx0 ∈ Ũ .
Since π̃ is open, π̃(Ũ ) is an open subset of M(Y ). Note that δy0 = π̃(δx0) ∈ π̃(Ũ ).

Thus, there exists r > 0 such that

{δy : y ∈ BρY
(y0, r)} ⊂ π̃(Ũ ).

Then for every y′ ∈ BρY
(y0, r), there exists μy′ ∈ Ũ such that π̃(μy′) = δy′ . On the one

hand, since μy′({π−1(y′)}) = δy′({y′}) = 1, we have

supp(μy′) ⊆ π−1({y′}). (5.1)

On the other hand, since μy′ ∈ Ũ , we have
∫

f dμy′ > 2
3 . Thus,

∅ = supp(μy′) ∩ BρX
(x0, δ) ⊆ supp(μy′) ∩ U .
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By (5.1), we have U ∩ π−1({y′}) = ∅. That is, y′ ∈ π(U). Then by the arbitrariness of
y′ ∈ BρY

(y0, r), one has BρY
(y0, r) ⊆ π(U). Thus, π(U) is an open subset of Y and π is

open.
(4) ⇒(1). We assume that there exists n ∈ N such that π̃n is open. Let U be an

open subset of X. We shall show that for every y ∈ π(U), there exists r > 0 such that
y ∈ BρY

(y, r) ⊆ π(U).
Let y ∈ π(U), there exists x ∈ U with π(x) = y. We set

Ũ = Mn(X) ∩ {μ ∈ M(X) : μ(U) > 0}.
Here, Ũ is an open subset of Mn(X) which contains δx . Since π̃n is open, π̃n(Ũ ) is open
which contains δy . Then there exists r > 0 such that {δz : ρY (z, y) < r} ⊆ π̃n(Ũ ). Hence,
for every z ∈ BρY

(y, r), there exist x1, x2, . . . , xn ∈ X such that

μ = 1
n

n∑
i=1

δxi
∈ Ũ and π̃n(μ) = δz.

Then one has π(xi) = z for every i ∈ [n]. Since μ ∈ Ũ , there exists i0 ∈ [n] with xi0 ∈ U .
That is, z = π(xi0) ∈ π(U). Hence, BρY

(y, r) ⊆ π(U). This implies π is open.
(1) ⇒(3). Now we assume that π is open. Let n ∈ N and Ũ be an open subset of Mn(X).

We shall show that for every ν ∈ π̃n(Ũ) ⊆ Mn(Y ), there exists an open neighbourhood of
ν in Mn(Y ) contained in π̃n(Ũ ).

For any ν ∈ π̃n(Ũ ) ⊆ Mn(Y ), there exist positive integers h, k1, k2, . . . , kh with∑
i∈[h] ki = n and pairwise distinct y1, y2, . . . , yh ∈ Y such that

ν = 1
n
(k1δy1 + k2δy2 + · · · + khδyh

).

Since ν ∈ π̃n(Ũ), there exists μ ∈ Ũ ⊆ Mn(X) such that π̃n(μ) = (1/n)
∑h

i=1 kiδyi
.

Then for every i ∈ [h], there exist integers �i , mi,j , and points xi,j ∈ X for j ∈ [�i]
satisfying:
(a) mi,1 + mi,2 + · · · + mi,�i

= ki for every i ∈ [h];
(b) xi,1, xi,2, . . . , xi,�i

are pairwise distinct and π(xi,j ) = yi for every i ∈ [h] and
j ∈ [�i];

(c) μ = (1/n)
∑

i∈[h]
∑

j∈[�i ] mi,j δxi,j .

Since Ũ is an open neighbourhood of μ, there exists r0 > 0 such that if z1
i,j , z2

i,j , . . . ,

z
mi,j
i,j ∈ BρX

(xi,j , r0) for every i ∈ [h], j ∈ [�i], then

1
n

∑
i∈[h]

∑
j∈[�i ]

( ∑
t∈[mi,j ]

δzt
i,j

)
∈ Ũ . (5.2)

Note that y1, y2, . . . , yh are pairwise distinct, then there exists δ > 0 such that
{BρY

(yi , δ)}i∈[h] are pairwise disjoint. By item (b) and the continuity of π , there exists
r ∈ (0, r0) such that

π(BρX
(xi,j , r)) ⊆ BρX

(yi , δ) and BρX
(xi,t , r) ∩ BρX

(xi,j , r) = ∅ (5.3)

for every i ∈ [h] and different j , t ∈ [�i].
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Since π is open,
⋂�i

j=1 π(BρX
(xi,j , r)) for every i ∈ [h] is open. We set

Ṽ :=
{
τ ∈ Mn(Y ) : τ

( �i⋂
j=1

π(BρX
(xi,j , r))

)
>

ki

n
− 1

2n
, i ∈ [h]

}
.

It is an open subset of Mn(Y ). Moreover, for every i0 ∈ [h],

ν

( �i0⋂
j=1

π(BρX
(xi0,j , r))

)
= 1

n

∑
i∈[h]

kiδyi

( �i0⋂
j=1

π(BρX
(xi0,j , r))

)

= 1
n
ki0δyi0

( �i0⋂
j=1

π(BρX
(xi0,j , r))

)

= 1
n
ki0 >

ki0

n
− 1

2n
.

Thus, ν ∈ Ṽ . Next, we shall show that Ṽ ⊆ π̃n(Ũ).
Now fix any τ ∈ Ṽ ⊆ Mn(Y ). We have τ = (1/n)

∑n
s=1 δus for some us ∈ Y . For

every i ∈ [h], we set

L(i) :=
{
s ∈ [n] : us ∈

�i⋂
j=1

π(BρX
(xi,j , r))

}
. (5.4)

By τ ∈ Ṽ , one has

|L(i)| = n · τ

( �i⋂
j=1

π(BρX
(xi,j , r))

)
> ki − 1

2
(5.5)

for every i ∈ [h]. Since |L(i)| ∈ N, by (5.5), |L(i)| ≥ ki . We note that L(i), i ∈ [h] are
pairwise disjoint since

⋂�i

j=1 π(BρX
(xi,j , r)), i ∈ [h] are pairwise disjoint. Moreover, by∑

i∈[h] ki = n, one has |L(i)| = ki for every i ∈ [h]. Hence,

⋃
i∈[h]

L(i) =
⊔
i∈[h]

L(i) = [n] and τ = 1
n

∑
i∈[h]

( ∑
s∈L(i)

δus

)
. (5.6)

For every i ∈ [h], since |L(i)| = ki
(a)= ∑

j∈[�i ] mi,j , we can rewrite L(i) =
{s1, s2, . . . , ski

}. For every i ∈ [h] and j ∈ [�i], we denote Ri(j) = ∑j

t=1 mi,t

and Ri(0) = 0. Then Ri(�i) = ki . By (5.4), for every j ∈ [�i] and integer q with
Ri(j − 1) + 1 ≤ q ≤ Ri(j), there exists x′

i,q ∈ B(xi,j , r) such that π(x′
i,q) = usq . Then

by (5.2), one has

μ′ := 1
n

∑
i∈[h]

∑
j∈[�i ]

R(j)∑
q=Ri(j−1)+1

δx′
i,q

∈ Ũ
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and

π̃n(μ
′) = 1

n

∑
i∈[h]

∑
j∈[�i ]

Ri(j)∑
q=Ri(j−1)+1

δusq
= 1

n

∑
i∈[h]

∑
q∈[ki ]

δusq

= 1
n

∑
i∈[h]

∑
s∈L(i)

δus

(5.6)= τ .

This implies Ṽ ⊂ π̃n(Ũ ). Hence, π̃n(Ũ ) is an open subset of Mn(Y ) and π̃n is open.
(1) ⇒ (2). Now we assume that π is open. Let Ũ be an open subset of M(X). We shall

show π̃(Ũ ) is open in M(Y ).
For every ν ∈ π̃(Ũ ), there exists μ ∈ Ũ such that ν = π̃(μ). Next we shall show that

there exists δ > 0 small enough such that if we set

Ṽ := {τ ∈ M(Y ) : dP (ν, τ) < δ},
where

dP (τ , ν) := inf{δ > 0 : τ(A) ≤ ν(Aδ) + δ and ν(A) ≤ τ(Aδ) + δ for all A ∈ BY },
then Ṽ is an open neighbourhood of ν contained in π̃(Ũ ).

Since Ũ is open, by Proposition 2.2, there exist k ∈ N and an open set of the
form W(U1, U2, . . . , Uk; η1, η2, . . . , ηk) of M(X), where U1, U2, . . . , Uk are disjoint
non-empty open subsets of X and η1, η2, . . . , ηk are positive real numbers with η1 + η2 +
· · · + ηk < 1, such that

μ ∈ W(U1, U2, . . . , Uk; η1, η2, . . . , ηk) ⊂ W(U1, U2, . . . , Uk; η1, η2, . . . , ηk) ⊂ Ũ .

For any t1, t2 ∈ {0, 1}[k], we denote t1 > t2 if t1 = t2 and t1(i) ≥ t2(i) for every i ∈ [k].
For every σ ∈ {0, 1}[k], we set

Vσ :=
⋂
i∈[k]

σ(i)=1

π(Ui), V ′
σ := Vσ \

⋃
α∈{0,1}[k]

α>σ

Vα

and

E := {t ∈ {0, 1}[k] : ν(V ′
t ) > 0}. (5.7)

Recall that for any subset A of Y and a > 0, we denote Aa = {y ∈ Y : ρY (y, A) < a},
where ρY is the compatible metric on Y. For every i ∈ [k], since π is open and Ui is open
in X, then π(Ui) is an open subset of Y. Then by inner regularity, there exist ε > 0 small
enough, δ ∈ (0, ε) and compact subsets Ci of Y for i ∈ [k] such that:
(c1) μ(Ui) > ηi + 6kε for every i ∈ [k];
(c2) ν(V ′

σ ) > 5kε, for every σ ∈ E ;
(c3) Ci ⊆ Cδ

i ⊆ C2δ
i ⊆ π(Ui) for every i ∈ [k];

(c4) ν(Ci) > ν(π(Ui)) − ε for i ∈ [k].
Now we set

Ṽ := {τ ∈ M(Y ) : dP (ν, τ) < δ}.
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Clearly, Ṽ is an open subset of M(Y ) containing ν. Now it is sufficient to prove that
Ṽ ⊂ π̃(Ũ ).

For every σ ∈ {0, 1}[k], we set

Cσ (δ) :=
⋂
i∈[k]

σ(i)=1

Cδ
i and C′

σ := Cσ (δ)\
⋃

α∈{0,1}[k]
α>σ

Cα(δ).

Then for every σ ∈ {0, 1}[k], by items (c3) and (c4), we have

ν(Vσ ) = ν

( ⋂
i∈[k]

σ(i)=1

π(Ui)

)

(c3)= ν

( ⋂
i∈[k]

σ(i)=1

((π(Ui)\Ci) ∪ Ci)

)
(c4)≤ ν

( ⋂
i∈[k]

σ(i)=1

Ci

)
+ kε. (5.8)

We note that for any t1 = t2 ∈ {0, 1}[k], one has C′
t1

∩ C′
t2

= ∅. In fact, if we define
t1 ∨ t2 ∈ {0, 1}[k] by

(t1 ∨ t2)(i) = max{t1(i), t2(i)}
for every i ∈ [k], then it is clear that t1 ∨ t2 > t1 or t1 ∨ t2 > t2. Without loss of generality,
we can assume t1 ∨ t2 > t1, then C′

t1
⊆ Ct1(δ)\Ct1∨t2(δ). However,

C′
t1

∩ C′
t2

⊆ Ct1(δ) ∩ Ct2(δ) = Ct1∨t2(δ).

Hence, C′
t1

∩ C′
t2

= ∅.
Now for any fixed τ ∈ Ṽ , we shall show τ ∈ π̃(Ũ ). By dP (ν, τ) < δ, one has τ(Aδ) ≥

ν(A) − δ for every A ∈ BY . Then for every σ ∈ E ,

τ(Cσ (δ)) = τ

( ⋂
i∈[k]

σ(i)=1

Cδ
i

)
≥ τ

(( ⋂
i∈[k]

σ(i)=1

Ci

)δ)

≥ ν

( ⋂
i∈[k]

σ(i)=1

Ci

)
− δ

(5.8)≥ ν(Vσ ) − kε − δ. (5.9)

Moreover, for every σ ∈ {0, 1}[k],( ⋃
α∈{0,1}[k]

α>σ

Cα(δ)

)δ

=
⋃

α∈{0,1}[k]
α>σ

(Cα(δ))δ =
⋃

α∈{0,1}[k]
α>σ

( ⋂
i∈[k]

α(i)=1

Cδ
i

)δ

⊆
( ⋃

α∈{0,1}[k]
α>σ

( ⋂
i∈[k]

α(i)=1

C2δ
i

))
(c3)⊆

( ⋃
α∈{0,1}[k]

α>σ

( ⋂
i∈[k]

α(i)=1

π(Ui)

))

=
⋃

α∈{0,1}[k]
α>σ

Vα . (5.10)
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Since dP (ν, τ) < δ, one has

τ(A) ≤ ν(Aδ) + δ for every A ∈ BY . (5.11)

Note that for every α, σ ∈ {0, 1}[k] with α > σ , one has Cα(δ) ⊆ Cσ (δ) and Vα ⊆ Vσ .
Then for every σ ∈ E ,

τ(C′
σ ) = τ(Cσ (δ)) − τ

( ⋃
α∈{0,1}[k]

α>σ

Cα(δ)

)

(5.9)≥ ν(Vσ ) − kε − δ − τ

( ⋃
α∈{0,1}[k]

α>σ

Cα(δ)

)

(5.11)≥ ν(Vσ ) − kε − δ − ν

(( ⋃
α∈{0,1}[k]

α>σ

Cα(δ)

)δ)
− δ

(5.10)≥ ν(Vσ ) − kε − 2δ − ν

( ⋃
α∈{0,1}[k]

α>σ

Vα

)

= ν(V ′
σ ) − kε − 2δ ≥ ν(V ′

σ ) − 3kε > 0. (5.12)

By
⋃

n∈N Mn(Y ) = M(Y ), there exist τn = (1/n)
∑n

j=1 δyn,j ∈ Mn(Y ) for n ∈ N

and some yn,j ∈ Y , j ∈ [n], such that τn → τ as n → ∞. Moreover, since Ṽ is open in
M(Y ), we can find N0 ∈ N such that τn ∈ Ṽ for n ≥ N0.

Let n ≥ N0. For every σ ∈ {0, 1}[k], we set

Sn
σ := {h ∈ [n] : yn,h ∈ C′

σ }.

Since τn ∈ Ṽ , by (5.12) and recall that for any t1 = t2 ∈ {0, 1}[k], one has C′
t1

∩ C′
t2

= ∅,
then:
(i) Sn

t1
∩ Sn

t2
= ∅ for any t1 = t2 ∈ {0, 1}[k];

(ii) |Sn
σ | ≥ n(ν(V ′

σ ) − 3kε) for every σ ∈ E , where E is defined as (5.7).
Now, for every σ ∈ {0, 1}[k] and i ∈ [k], we set

Ui,σ := Ui ∩ π−1(V ′
σ ) and ai,σ := μ(Ui,σ ). (5.13)

Fix any σ ∈ {0, 1}[k]. We can rewrite {i ∈ [k] : σ(i) = 1} as {i1 < i2 < · · · < iq}
for some q ∈ N. For i1, we choose arbitrarily a subset Sn

σ ,i1 of Sn
σ with |Sn

σ ,i1 | =
�ai1,σ /

∑
�∈[k],σ(�)=1 a�,σ |Sn

σ |�, where we note: 0
0 = 0. For i2, we choose arbitrarily

a subset Sn
σ ,i2 of Sn

σ \ Sn
σ ,i1 with |Sn

σ ,i2 | = �ai2,σ /
∑

�∈[k],σ(�)=1 a�,σ |Sn
σ |�. We continue

inductively obtaining

Sn
σ ,ij ⊆ Sn

σ \ (Sn
σ ,i1 ∪ Sn

σ ,i2 ∪ · · · ∪ Sn
σ ,ij−1

)
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for j = 3, 4, . . . , q − 1, with |Sn
σ ,ij | = �aij ,σ /

∑
�∈[k],σ(�)=1 a�,σ |Sn

σ |�. We set Sn
σ ,iq =

Sn
σ \ (

⋃q−1
j=1 Sn

σ ,ij ). Additionally, we note that

yn,h ∈ C′
σ ⊆

⋂
i∈[k]

σ(i)=1

π(Ui) =
q⋂

�=1

π(Ui�)

for every h ∈ Sn
σ . Then we have the following properties for Sn

σ ,i , i ∈ [k].
(i*) |Sn

σ ,i | ≥ �ai,σ /
∑

�∈[k],σ(�)=1 a�,σ |Sn
σ |� for every i ∈ [k] with σ(i) = 1.

(ii*) For every i ∈ [k] with σ(i) = 1, if h ∈ Sn
σ ,i , then there exists xσ

n,h ∈ Ui satisfying
π(xσ

n,h) = yn,h.
(iii*) Sn

σ ,i′ ∩ Sn
σ ,i′′ = ∅ for every i′ = i′′ ∈ {i ∈ [k] : σ(i) = 1} and

⋃
i∈[k],σ(i)=1

Sn
σ ,i = Sn

σ .
Since π is surjective, for every h′ ∈ Sn

0 := [n]\(⋃σ∈{0,1}[k] Sn
σ ), there exists xn,h′ ∈ X such

that π(xn,h′) = yn,h′ . Now we set

μn : = 1
n

( ∑
σ∈{0,1}[k]

∑
h∈Sn

σ

δxσ
n,h

+
∑

h′∈Sn
0

δxn,h′

)

(iii*)= 1
n

( ∑
σ∈{0,1}[k]

∑
i∈[k]

σ(i)=1

∑
h∈Sn

σ ,i

δxσ
n,h

+
∑

h′∈Sn
0

δxn,h′

)
. (5.14)

Clearly, π̃(μn) = τn. We claim that μn(Ui0) > ηi0 for every i0 ∈ [k] when n is
sufficiently large. Once it is true, we have

μn ∈ W(U1, U2, . . . , Uk; η1, η2, . . . , ηk).

Then we can find a sequence n1 < n2 < · · · such that limi→∞ μni
= μ′ for some

μ′ ∈ M(X). Thus,

μ′ ∈ W(U1, U2, . . . , Uk; η1, η2, . . . , ηk) ⊂ Ũ

and π̃(μ′) = limi→∞ π̃(μni
) = limi→∞ τni

= τ . By the arbitrariness of τ , one has
Ṽ ⊆ π̃(Ũ ). This will end our proof.

Now, we shall show the claim: μn(Ui0) > ηi0 for every i0 ∈ [k] when n is sufficiently
large. To show that, for any fixed i0 ∈ {1, 2, . . . , k}, we need the following facts.

Fact 1:
∑

σ∈E ,σ(i0)=1 μ(Ui0 ∩ π−1(V ′
σ )) = μ(Ui0 ∩ ⋃

σ∈E ,σ(i0)=1 π−1(V ′
σ )). In fact,

for any t1 = t2 ∈ {0, 1}[k], if y ∈ V ′
t1

∩ V ′
t2

⊆ Vt1 ∩ Vt2 , then y ∈ Vt1∨t2 . Since t1 ∨ t2 >

t1 or t2, one has y /∈ V ′
t1

or y /∈ V ′
t2

, which is a contradiction of y ∈ V ′
t1

∩ V ′
t2

. Hence,
V ′

t1
∩ V ′

t2
= ∅. Then Fact 1 follows.

Fact 2: ν((
⋃

σ∈E
σ(i0)=1

V ′
σ )�(

⋃
σ∈{0,1}[k]

σ(i0)=1
Vσ )) = 0, where A�B denotes (A \ B) ∪

(B \ A) for every A, B ∈ BY . In fact, it is clear that⋃
σ∈E

σ(i0)=1

V ′
σ ⊆

⋃
σ∈{0,1}[k]

σ(i0)=1

Vσ . (5.15)
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Since σ ∈ {0, 1}[k]\E implies ν(V ′
σ ) = 0, one has

ν

( ⋃
σ∈E

σ(i0)=1

V ′
σ

)
= ν

( ⋃
σ∈{0,1}[k]

σ(i0)=1

V ′
σ

)
. (5.16)

Clearly,
⋃

σ∈{0,1}[k]

σ(i0)=1
Vσ ⊇ ⋃

σ∈{0,1}[k]

σ(i0)=1
V ′

σ . Moreover, for any given x ∈ ⋃
σ∈{0,1}[k]

σ(i0)=1
Vσ , if we

define σ ′ as

σ ′(i) = max{t (i) : t ∈ {0, 1}[k] with x ∈ Vt }

for every i ∈ [k], then σ ′(i0) = 1 and x ∈ V
′
σ ′ ⊆ ⋃

σ∈{0,1}[k]

σ(i0)=1
V ′

σ . Hence,

⋃
σ∈{0,1}[k]

σ(i0)=1

Vσ =
⋃

σ∈{0,1}[k]

σ(i0)=1

V ′
σ . (5.17)

By (5.15), (5.16) and (5.17), Fact 2 holds.
Fact 3: For every σ ∈ E ,

∑
�∈[k],σ(�)=1 a�,σ ≤ ν(V ′

σ ). Note that U1, U2, . . . , Uk are
disjoint. Then by (5.13), we have

∑
�∈[k],σ(�)=1

a�,σ
(5.13)=

∑
�∈[k],σ(�)=1

μ(U�,σ )

(5.13)=
∑

�∈[k],σ(�)=1

μ(U� ∩ π−1(V ′
σ )) = μ

(( ⋃
�∈[k],σ(�)=1

U�

)
∩ π−1(V ′

σ )

)

≤ μ(π−1(V ′
σ )) = ν(V ′

σ ).

Thus, Fact 3 holds.
Now by Facts 1–3, we have

∑
σ∈E ,σ(i0)=1

ai0,σ
(5.13)=

∑
σ∈E ,σ(i0)=1

μ(Ui0 ∩ π−1V ′
σ )

(Fact 1)= μ

(
Ui0 ∩

⋃
σ∈E ,σ(i0)=1

π−1(V ′
σ )

)
(5.18)

(Fact 2)= μ

(
Ui0 ∩ π−1

( ⋃
σ∈{0,1}[k]

σ(i0)=1

Vσ

))
.

We define t ∈ {0, 1}[k] as t (i0) = 1 and t (i) = 0 for each i ∈ [k]\{i0}. Then π(Ui0) =
Vt ⊆ ⋃

σ∈{0,1}[k]

σ(i0)=1
Vσ . Thus, Ui0 ⊆ π−1(

⋃
σ∈{0,1}[k]

σ(i0)=1
Vσ ) and by (5.18), we have

∑
σ∈E ,σ(i0)=1

ai0,σ = μ(Ui0). (5.19)
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Then for any n > N0, we have

μn(Ui0)
(5.14)≥ 1

n

∑
σ∈{0,1}[k]

∑
i∈[k]

σ(i)=1

∑
h∈Sn

σ ,i

δxσ
n,h

(Ui0) ≥ 1
n

∑
σ∈E

∑
i∈[k]

σ(i)=1

∑
h∈Sn

σ ,i

δxσ
n,h

(Ui0)

(ii*)≥ 1
n

∑
σ∈E

σ(i0)=1

|Sn
σ ,i0 |

(i*)≥ 1
n

∑
σ∈E

σ(i0)=1

⌊
ai0,σ∑

�∈[k],σ(�)=1
a�,σ

|Sn
σ |

⌋

≥ 1
n

( ∑
σ∈E

σ(i0)=1

(
ai0,σ∑

�∈[k],σ(�)=1
a�,σ

|Sn
σ |

))
− 2k

n

(ii)≥ 1
n

( ∑
σ∈E

σ(i0)=1

(
ai0,σ∑

�∈[k],σ(�)=1
a�,σ

n(ν(V ′
σ ) − 3kε)

))
− 2k

n

≥
∑
σ∈E

σ(i0)=1

(
ai0,σ∑

�∈[k],σ(�)=1
a�,σ

ν(V ′
σ )

)
− 2k · 3kε − 2k

n

(Fact 3)≥
∑
σ∈E

σ(i0)=1

ai0,σ − 2k · 3kε − 2k

n

(5.19)= μ(Ui0) − 2k · 3kε − 2k

n
.

Then by letting n → ∞, for every i0 ∈ [k] since μ(Ui0) > ηi0 + 6kε by (c1), we have
μn(Ui0) > ηi0 . This ends the proof of the claim.
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A. Appendix. Proof of Theorem 2.3
Let π : (X, G) → (Y , G) be a factor map between two G-systems. For any n ∈ N and a
tuple V = (V1, V2, . . . , Vn) of subsets of X, recall that we denote by Pπ

V the set of all
independence sets of V with respect to π .

Identifying subsets of G with elements of {0, 1}G by taking indicator functions, we may
think of Pπ

V as a subset of {0, 1}G. Endow {0, 1}G with the shift given by

(sσ )(t) = σ(ts)

for all σ ∈ {0, 1}G and s, t ∈ G. It is clear that Pπ
V is shift-invariant. Moreover, when

V1, V2, . . . , Vn are closed subsets of X, Pπ
V is also closed in {0, 1}G.

We say a closed and shift-invariant subset P ⊆ {0, 1}G has positive density if there
exists constant c > 0 such that for every non-empty subset F of G, there exists I ∈ P with
I ⊆ F such that |I | > c|F |. Then by Corollary 3.3, we immediately have the following
property.
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PROPOSITION A.1. Let π : (X, G) → (Y , G) be a factor map between two G-systems,
(x1, x2) ∈ X × X\�(X). Then (x1, x2) ∈ E(X, G|π) if and only if for any disjoint open
subsets V1, V2 of X with xi ∈ Vi for i = 1, 2, Pπ

{V1,V2} has positive density.

The following lemma is useful.

LEMMA A.2. [25, Lemma 12.6] Let A be a closed subset of X. Then PA := {I ⊆ G :⋂
g∈I g−1A = ∅} has positive density if and only if there exists μ ∈ M(X, G) with

μ(A) > 0.

The following lemma is proved when G = Z in [19, Proposition 3.9]. We omit the proof.

LEMMA A.3. Let π : (X, G) → (Z, G), π1 : (X, G) → (Y , G) and π2 : (Y , G) →
(Z, G) be three factor maps such that π = π2 · π1. Then π has rel-u.p.e. implies π2

has rel-u.p.e.

For a factor map π : (X, Z) → (Y , Z) between two Z-systems, the authors in [19]
proved that if π has rel-u.p.e., then supp(Y ) = Y implies supp(X) = X (see [19,
Theorem 5.4]). For discrete countable amenable group G, we have the same result.

PROPOSITION A.4. Let π : (X, G) → (Y , G) be a factor map between two G-systems. If
π has rel-u.p.e. and supp(Y ) = Y , then supp(X) = X.

Proof. Assume that supp(X) = X, then there exist x1 ∈ X and an open neighbourhood V
of x1 such that V ∩ supp(X) = ∅. Let U = ⋃

g∈G g−1V , then U is open and μ(U) = 0
for every μ ∈ M(X, G). Thus, supp(X) ⊆ Uc, where Uc = X \ U .

Let y = π(x1). We note that π−1{y} ∩ Uc = ∅. In fact, since supp(Y ) = Y , there
exits ν ∈ M(Y , G) such that y ∈ supp(ν). Then there exists μ̃ ∈ M(X, G) such that
π̃(μ̃) = ν. If π−1{y} ⊆ U , there exists δ > 0 such that π−1B(y, δ) ⊆ U . Then
ν(B(y, δ)) = μ̃(π−1B(y, δ)) = 0. This contradicts y ∈ supp(ν). Thus, there exists
x2 ∈ Uc such that π(x2) = y.

By Urysohn’s lemma, there exists continuous function f : X → [0, 1] such that
f (x1) = 0 and f (x) = 1 for any x ∈ Uc. We set

F : X → [0, 1]G by (F (x))(g) = f (gx).

Consider the G-action on [0, 1]G defined by (gω)(h) = ω(hg) for every ω ∈ [0, 1]G and
g, h ∈ G. We define a factor map

φ : (X, G) → ([0, 1]G × Y , G) by φ(x) = (F (x), π(x)).

Let W = φ(X) and π2 : (W , G) → (Y , G) be the projection map to the second coor-
dinate. Then π = π2 ◦ φ. By Proposition A.3, π2 has rel-u.p.e. Note that π2(φ(x1)) =
π(x1) = π(x2) = π2(φ(x2)) and φ(x1) = φ(x2). Thus,

(φ(x1), φ(x2)) ∈ Rπ2 \ �(W) = E(W , G|π2).

Then, by Lemma A.2, one has φ(x1) ∈ supp(W). However, φ(x1) /∈ {1G} × Y and
for every μ ∈ M(X, G), one has supp(μ) ⊆ Uc, which implies supp(W) ⊆ φ(Uc) ⊆
{1G} × Y . Thus, φ(x1) /∈ supp(W). This is a contradiction.
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Now we are ready to give the proof of Theorem 2.3.

THEOREM A.5. Let πi : (Xi , G) → (Yi , G) be two factor maps between G-systems and
supp(Yi) = Yi for i = 1, 2. Then π1 and π2 has rel-u.p.e. if and only if π1 × π2 : (X1 ×
X2, G) → (Y1 × Y2, G) has rel-u.p.e.

Proof. For the non-trivial direction, if π1 and π2 have rel-u.p.e., for any u1 = (x1, z1)

and u2 = (x2, z2) in X1 × X2 with (u1, u2) ∈ Rπ1×π2 \ �(X1 × X2), we shall prove
(u1, u2) ∈ E(X1 × X2, G|π1 × π2). Without loss of generality, we assume x1 = x2.

Let Ũ1 = U1 × V1, Ũ2 = U2 × V2 be neighbourhoods of u1 and u2, respectively. Note
that (x1, x2) ∈ Rπ1 \ �(X1) = E(X1, G|π1) since π1 has rel-u.p.e. Then by Corollary 3.3,
there exists c1 > 0 such that for every F ∈ F(G), there exists E ⊆ F with |E| > c1|F |,
which is an independence set of {U1, U2} with respect to π1. For z1 and z2, there are two
cases.

Case 1: z1 = z2. In this case, (z1, z2) ∈ Rπ2 \ �(X2) = E(X2, G|π2) since π2 has
rel-u.p.e. Then there exists c2 > 0 such that for every F ∈ F(G), there exists F0 ⊆ F

with |F0| > c1 · c2|F |, which is an independence set of {Ũ1, Ũ2} with respect to π1 × π2.
This implies (u1, u2) ∈ E(X1 × X2, G|π1 × π2).

Case 2: z1 = z2 = z for some z ∈ X2. We set V = V1 ∩ V2. Then V is an open
neighbourhood of z. Since supp(Y2) = Y2 and π2 has rel-u.p.e., by Proposition A.4, we
have supp(X2) = X2. Thus, there exists ν ∈ M(X2, G) such that ν(V ) > 0. By Lemma
A.2, Pπ2

V has positive density. Then by similar analysis in Case 1, we can also obtain that
(u1, u2) ∈ E(X1 × X2, G|π1 × π2). This ends our proof.
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