
Glasgow Math. J. 53 (2011) 401–410. C© Glasgow Mathematical Journal Trust 2011.
doi:10.1017/S0017089511000036.

ON WEAKLY M-SUPPLEMENTED SUBGROUPS OF SYLOW
p-SUBGROUPS OF FINITE GROUPS∗

LONG MIAO
School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, P. R. China

e-mail: miaolong714@vip.sohu.com

(Received 25 August 2009; revised 21 September 2010; accepted 2 November 2010)

Abstract. A subgroup H is called weakly M-supplemented in a finite group G
if there exists a subgroup B of G provided that (1) G = HB, and (2) if H1/HG is a
maximal subgroup of H/HG, then H1B = BH1 < G, where HG is the largest normal
subgroup of G contained in H. In this paper we will prove the following: Let G be a
finite group and P be a Sylow p-subgroup of G, where p is the smallest prime divisor
of |G|. Suppose that P has a non-trivial proper subgroup D such that all subgroups
E of P with order |D| and 2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there
exists D1 � E ≤ P with 2|D1| = |D| and E/D1 is cyclic of order 4) have p-nilpotent
supplement or weak M-supplement in G, then G is p-nilpotent.

2010 Mathematics Subject Classification. 20D10, 20D20.

1. Introduction. All groups considered in this paper are finite. Most of the
notations are standard and can be found in [3] and [9].

It is well known that the relationship between the properties of primary subgroups
and the structure of finite groups has been investigated extensively by many authors.
For instance, in 1980 Srinivasan [14] proved that a finite group is supersolvable if
every maximal subgroup of the Sylow subgroup is normal. By considering normal
c-supplement of some primary subgroups, Wang [16] in 1996 obtained some new
conditions for the solvability and supersolvability of a finite group. Furthermore,
Guo and Shum [7] in 2003 considered the c-normal maximal subgroups and minimal
subgroups of a Sylow p-subgroup of G, and got some new results about p-nilpotent
groups. In 2004, Guo, Sun and Shum [8] showed that if there is a maximal subgroup M
of a group G and a prime p for which every cyclic subgroup of p-power order in M is c-
supplemented in G, then G is solvable. In 2005, Guo, Shum and Skiba [6] obtained some
new properties of supersolvable groups by using conditionally permutable subgroups.

Recently, as an interesting application of these generalisations, Skiba [12, 13]
fixed in every noncyclic Sylow subgroup P of G a group D satisfying 1 < |D| < |P|,
and investigated the structure of G under the assumption that all subgroups H with
|H| = |D| are c-quasinormal or weakly s-permutable in G. Moreover, Guo [4] proposed
the conception of F-supplemented subgroup and obtained some new results about
supersolvable and solvable groups. Guo and Skiba [5] introduced s-embedded and
n-embedded subgroups, and obtained some new results about supersolvable groups.
Miao and Lempken [10] presented the definition of M-supplemented subgroup, and
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got some new information on the structure of finite groups. More recently, Miao and
Lempken [11] generalised M-supplemented and c-normal subgroups with weakly M-
supplemented subgroups, and obtained some new results about supersolvable groups.

As a continuation, we will extensively investigate the properties of the weakly
M-supplemented subgroups in a finite group G.

DEFINITION 1.1. A subgroup H of a group G is said to be weakly M-supplemented
in G if there exists a subgroup B of G such that (1) G = HB, and (2) if H1/HG is a
maximal subgroup of H/HG, then H1B = BH1 < G, where HG is the largest normal
subgroup of G contained in H; in this case, B is also called a weak M-supplement of
H in G.

Recall that a subgroup H is called M-supplemented in a finite group G [10] if
there exists a subgroup B of G such that G = HB and H1B is a proper subgroup of
G for every maximal subgroup H1 of H. Moreover, a subgroup H is called weakly
s-permutable in G [13] if there exists a subnormal subgroup K of G such that G = HK
and H ∩ K ≤ HsG, where HsG is the largest s-quasinormal subgroup of G contained
in H.

It is clear that every M-supplemented subgroup and every c-normal subgroup
are weakly M-supplemented. The following examples indicate that the weak M-
supplementation of subgroups can neither be deduced from Skiba’s result nor from
other related results.

EXAMPLE 1.2. Let G = S4 and H = 〈(1234)〉 be a cyclic subgroup of order 4. Then
G = HA4, where A4 is the alternating group of degree 4. Clearly, since A4 � G, we have
A4 permutes all maximal subgroups of H and hence H is weakly M-supplemented in
G. On the other hand, we have HsG = 1. Otherwise, if H is s-quasinormal in G, then
H is normal in G, a contradiction. If HsG = 〈(13)(24)〉 is s-quasinormal in G, then
〈(13)(24)〉 is normal in G, a contradiction. Therefore H is not weakly s-permutable
in G.

EXAMPLE 1.3. Let G = S4 and H be a Sylow 2-subgroup of G. Clearly, H is weakly
M-supplemented in G and G = HA4. Furthermore, H is not M-supplemented in G.

2. Preliminaries. For the sake of convenience, we first list here some known
results that will be useful in the sequel.

LEMMA 2.1 [11, Lemma 2.1]. Let G be a group. Then,
(1) If H is weakly M-supplemented in G, H ≤ M ≤ G, then H is weakly M-

supplemented in M.
(2) Let N � G and N ≤ H. Then H is weakly M-supplemented in G if and only if

H/N is weakly M-supplemented in G/N.
(3) Let π be a set of primes. Let K be a normal π ′-subgroup and H be a π -subgroup of

G. If H is weakly M-supplemented in G, then HK/K is weakly M-supplemented
in G/K.

(4) Let R be a solvable minimal normal subgroup of group G and R1 be a maximal
subgroup of R. If R1 is weakly M-supplemented in G, then R is a cyclic group of
prime order.

(5) Let P be a p-subgroup of G, where p is a prime divisor of | G|. If P is weakly M-
supplemented in G, then there exists a subgroup B of G such that | G : TB| = p
for every maximal subgroup T of P containing PG.
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LEMMA 2.2 [10, Lemma 2.11]. Let p be the smallest prime divisor of |G| and
P ∈ Sylp(G). Then G is p-nilpotent if and only if P is M-supplemented in G.

LEMMA 2.3 [17, Theorem 4.1]. Let F be a saturated formation containing U .
Suppose that G is a group with a solvable normal subgroup H such that G/H ∈ F .
If all minimal and all cyclic subgroups with order 4 of F(H) are c-supplemented in G,
then G ∈ F .

LEMMA 2.4 [3, Theorem 1.8.17]. Let N be a non-trivial solvable normal subgroup
of a group G. If N ∩ �(G) = 1, then the Fitting subgroup F(N) of N is the direct product
of minimal normal subgroups of G that are contained in N.

LEMMA 2.5 [18, Proposition 4.6]. If H is a subgroup of G with |G : H| = p, where
p is the smallest prime divisor of |G|, then H � G.

LEMMA 2.6 [2, main theorem]. Suppose a finite group G has a Hall π -subgroup,
where π is a set of primes not containing 2. Then all Hall π -subgroups of G are conjugate.

LEMMA 2.7 [9, IV, Theorem 5.4]. Suppose that G is a group which is not p-nilpotent
but whose proper subgroups are all p-nilpotent. Then G is a group which is not nilpotent
but whose proper subgroups are all nilpotent.

LEMMA 2.8 [3, Theorem 3.4.11]. Suppose that G is a group which is not nilpotent
but whose proper subgroups are all nilpotent. Then

(1) G has a normal Sylow p-subgroup P for some prime p and G/P ∼= Q, where Q is
a non-normal cyclic q-subgroup for some prime q �= p.

(2) P/�(P) is a minimal normal subgroup of G/�(P).
(3) If P is non-abelian and p �= 2, then the exponent of P is p.
(4) If P is non-abelian and p = 2, then the exponent of P is 4.
(5) If P is abelian, then P is of exponent p.

LEMMA 2.9 [3, Lemma 3.6.10]. Let K be a normal subgroup of G, and P be a
p-subgroup of G, where p is a prime divisor of |G|. Then NG/K (PK/K) = NG(P1)K/K,
here P1 is a Sylow p-subgroup of PK.

3. Main results.

THEOREM 3.1. Let G be a finite group and P be a Sylow p-subgroup of G, where p
is the smallest prime divisor of |G|. If every maximal subgroup of P has a p-nilpotent
supplement or a weak M-supplement in G, then G is p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of the
smallest order.

Let P1 be a maximal subgroup of P. By hypotheses, if P1 has a p-nilpotent
supplement in G, then there exists a p-nilpotent subgroup K of G such that G = P1K .
Furthermore, since K is p-nilpotent, we have K ≤ NG(Kp′), where Kp′ is a Hall p′-
subgroup of K and also of G. Therefore, G = P1K = PNG(Kp′). Clearly, P � NG(Kp′)
and P ∩ NG(Kp′ ) ≤ L2 < L1, where L1 is a maximal subgroup of P and L2 is a
maximal subgroup of L1. Otherwise, if P ∩ NG(Kp′ ) = L1, then |G : NG(Kp′)| = |P :
P ∩ NG(Kp′)| = p. By Lemma 2.5, we know that NG(Kp′ ) � G and hence Kp′ � G,
a contradiction. Furthermore, if L1 has a p-nilpotent supplement in G, then there
exists a p-nilpotent subgroup H in G such that G = L1NG(Hp′), where Hp′ is a
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Hall p′-subgroup of G. By Lemma 2.6, there exists an element g of L1 such that
NG(Kp′ ) = (NG(Hp′))g. So we have G = L1NG(Hp′) = L1(NG(Hp′))g = L1NG(Kp′) and
P = P ∩ L1NG(Kp′) = L1(P ∩ NG(Kp′)) = L1, a contradiction.

So we may assume that L1 is weakly M-supplemented in G. If L1 is normal in G,
then |G/L1|p = p and hence G/L1 is p-nilpotent by the Burnside p-nilpotent Theorem.
Let L/L1 be a normal p-complement of G/L1. By the Schur–Zassenhaus Theorem,
L = [L1]Lp′ and G = LNG(Lp′ ) = L1NG(Lp′), with the similar discussion, we get the
contradiction.

If 1 < (L1)G < L1 by the definition of a weakly M-supplemented subgroup, then
there exists a subgroup B of G such that G = L1B and TB < G for every maximal
subgroup T of L1 containing (L1)G. By Lemma 2.1(2), G/(L1)G satisfies the condition
of the theorem, the minimal choice of G implies that G/(L1)G is p-nilpotent. The same
arguments as above show that G is p-nilpotent, which also is a contradiction.

Next we may assume (L1)G = 1. By Lemma 2.1(5), |G : TB| = p for every maximal
subgroup T of L1. Particularly, |G : L2B| = p and hence L2B � G by Lemma 2.5.
Clearly, P ∩ L2B = L2(P ∩ B) is a maximal subgroup of P. By hypotheses, if L2(P ∩ B)
has a p-nilpotent supplement in G, we get a contradiction. So we have that L2(P ∩ B)
is weakly M-supplemented in G. Moreover, if (L2(P ∩ B))G �= 1, then we denote
(L2(P ∩ B))G := S and G/S is p-nilpotent, since the hypotheses hold on G/S. G/S has a
normal Hall p′-subgroup X/S and X = [S]Xp′ , where Xp′ is also a Hall p′-subgroup of
G. By the Frattini Argument we have G = XNG(Xp′) = SNG(Xp′) = L2(P ∩ B)NG(Xp′).
By Lemma 2.6, there exists an element x in L2(P ∩ B) such that NG(Kp′) = (NG(Xp′))x.
So we have G = L2(P ∩ B)NG(Xp′ ) = L2(P ∩ B)(NG(Xp′))x = L2(P ∩ B)NG(Kp′) and
P = P ∩ L2(P ∩ B)NG(Kp′) = L2(P ∩ B)(P ∩ NG(Kp′ )) = L2(P ∩ B), a contradiction.
Therefore, (L2(P ∩ B))G = 1 and the Sylow p-subgroup L2(P ∩ B) of L2B is M-
supplemented in L2B by Lemma 2.1(1). So L2B is p-nilpotent by Lemma 2.2, a
contradiction.

Therefore P1 is weaklyM-supplemented in G. With the similar argument as above,
G is p-nilpotent, a final contradiction. �

THEOREM 3.2. Let G be a finite group and P be a Sylow p-subgroup of G, where
p is the smallest prime divisor of |G|. If every minimal subgroup of P and every cyclic
subgroup of order 4 have p-nilpotent supplement or weak M-supplement in G, then G is
p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of the
minimal order.

Clearly, the hypotheses is inherited by all proper subgroups of G by Lemma 2.1(1).
Thus, G is a minimal non-p-nilpotent group. Now Lemma 2.7 implies that G is a
group which is not nilpotent but whose proper subgroups are all nilpotent. Then by
Lemma 2.8, G has a normal Sylow p-subgroup P and G = [P]Q, where Q is a non-
normal cyclic Sylow q-subgroup of G, and P/�(P) is a minimal normal subgroup of
G/�(P). We consider the following cases.

Case 1. p �= 2. By Lemma 2.8, the exponent of P is p. Let E be a minimal subgroup
of P. By hypotheses, E has a p-nilpotent supplement in G or is weaklyM-supplemented
in G. Clearly, if E has a p-nilpotent supplement in G, then we have that G is p-
nilpotent, a contradiction. Therefore E is weakly M-supplemented in G. If E is non-
normal in G, then E has a complement B in G. By Lemma 2.5, B � G and hence G is
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nilpotent, a contradiction. So every minimal subgroup of P is normal in G, we also get
a contradiction.

Case 2. p = 2. If the exponent of P is 2, then with the similar discussion as case 1,
we have the same contradiction. So we may assume P is of exponent 4 and so is non-
abelian. Let A be a cyclic subgroup of P of order 4. By hypotheses, if A has a p-nilpotent
supplement in G, then there exists a p-nilpotent subgroup L such that G = AL. Clearly,
L < G and hence L is nilpotent by Lemma 2.8. Next we consider NG(Lp), where Lp

is a Sylow p-subgroup of L. If Lp = 1, then P = A is cyclic, a contradiction. Since
L ≤ NG(Lp), we have that | G : NG(Lp)| = 2 or | G : NG(Lp)| = 1. If | G : NG(Lp)| = 2,
then NG(Lp) � G by Lemma 2.5 and hence G is 2-nilpotent, a contradiction. If | G :
NG(Lp)| = 1, then Lp � G. Since P/�(P) is the minimal normal subgroup of G/�(P),
we have P = Lp or Lp ≤ �(P). It is clear that P = Lp is impossible. If Lp ≤ �(P), then
P = ALp = A, a contradiction. So we may assume that A is weakly M-supplemented
in G. If A is normal in G, then A�(P)/�(P) = P/�(P) and A = P is abelian by
Lemma 2.8, a contradiction. If A is not normal in G, then 1 < A/�(P) < P/�(P).
Since A is weakly M-supplemented in G, there is a subgroup B of G such that AB = G
and A1B < G for every maximal subgroup A1 contained AG. Let T = A1B. Then
G = AT = PT , clearly, �(P) ≤ T since |G : T | = 2. Since P/�(P) is minimal normal
in G/�(P), G/�(P) = (P/�(P))(T/�(P)) = [P/�(P)](T/�(P)) and hence |P/�(P)| =
|G/�(P) : T/�(P)| = 2. It follows that P/�(P) is cyclic of order 2, a contradiction.

The final contradiction completes our proof. �

THEOREM 3.3. Let G be a finite group and P be a Sylow p-subgroup of G, where
p is the smallest prime divisor of |G|. Suppose that P has a subgroup D such that
1 < D < P, and all subgroups E of P with order |D| and 2|D| (if P is a non-abelian
2-group, |P : D| > 2 and there exists D1 � E ≤ P with 2|D1| = |D| and E/D1 is cyclic of
order 4) have p-nilpotent supplement or weak M-supplement in G, then G is p-nilpotent.

Proof. Assume that the Theorem is false and choose G to be a counterexample of
minimal order.

By hypotheses, P has a subgroup D such that 1 < D < P, and all subgroups E of
P with order |D| and order 2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there
exists D1 � E ≤ P with 2|D1| = |D| and E/D1 is cyclic of order 4) have p-nilpotent
supplement or weak M-supplement in G. Fix a subgroup E of P with order |D|. We
will derive a contradiction in several steps.

Step 1. Op′ (G) = 1.
If Op′ (G) �= 1, Lemma 2.1(3) guarantees that G/Op′ (G) satisfies the hypotheses of

the theorem. Thus, G/Op′ (G) is p-nilpotent by the choice of G. Then G is p-nilpotent,
a contradiction.

Step 2. |D| > p. Suppose |D| = p. By Theorem 3.2, G is p-nilpotent, a
contradiction.

Step 3. |P : D| > p. If |P : D| = p, then every maximal subgroup of P has a p-
nilpotent supplement or a weak M-supplement in G and hence G is p-nilpotent by
Theorem 3.1, a contradiction.

Step 4. If there exists a minimal normal subgroup N of G contained in P, then
|N| ≤ |D|.

If |N| > |D|, then we may choose a subgroup E of P with order |D| such that
E < N. By hypotheses, if E has a p-nilpotent supplement in G, then there exists a p-
nilpotent subgroup K of G such that G = EK . Clearly, N ∩ K ∈ {1, N}, a contradiction.
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So E is weakly M-supplemented in G. Therefore there exists a subgroup B of G such
that G = EB and E1B < G for every maximal subgroup E1 of E containing EG. Since
N is a minimal normal subgroup of G contained in P, we have EG = 1 and N ∩ B = 1
or N. If N ∩ B = 1, then N = E, a contradiction. If N ∩ B = N, then B = G, is also a
contradiction.

Step 5. G/N is p-nilpotent.
If |N| < |D|, clearly, G/N satisfies the hypotheses by Lemma 2.1(2). Therefore

G/N is p-nilpotent by the minimal choice of G. So we may assume |N| = |D|. Next we
will show that every cyclic subgroup of P/N of order p and order 4 (if P is a non-abelian
2-group) have p-nilpotent supplement or weak M-supplement in G/N.

Let K ≤ P and |K/N| = p. Clearly, N is not cyclic. Otherwise, N1 char N and
N � G, where N1 is the maximal subgroup of N, it follows that N1 � G, which is
contrary to the minimality of N. So all subgroups containing N are not cyclic. Hence,
there exists a maximal subgroup L of K such that K = LN and |D| = |L| = |N|. If L has
a p-nilpotent supplement in G, then K/N = LN/N also has a p-nilpotent supplement
in G/N. So we have L that is weakly M-supplemented in G. If L is normal in G, then
K/N is normal in G/N. If L is not normal in G, then there exists a subgroup B of G
such that G = LB and TB < G for every maximal subgroup T of L containing LG.
By Lemma 2.1(5) |G : TB| = p and hence TB � G by Lemma 2.5. By Lemma 2.1(1),
TB satisfies the condition of the theorem. Therefore TB is p-nilpotent by the minimal
choice of G and hence G is p-nilpotent, a contradiction.

If X/N is a cyclic group of order 4 and K/N is a maximal subgroup of X/N, then
K is maximal in X and |K/N| = 2. Since X is not cyclic and X/N is cyclic, there exists
a maximal subgroup L of X such that N � L. Thus, X = LN and |L| = |K| = 2|D|,
X/N = LN/N ∼= L/L ∩ N is cyclic of order 4. If L has a p-nilpotent supplement in
G, then X/N = LN/N also has a p-nilpotent supplement in G/N. By hypotheses, L is
weakly M-supplemented in G. If L is normal in G, then LN/N is also normal in G/N.
So we may assume that L is not normal in G. There exists a subgroup C of G such that
G = LC and TC < G for every maximal subgroup T of L containing LG. By Lemma
2.1(5) |G : TC| = 2 and hence TC � G by Lemma 2.5. By Lemma 2.1(1), TC satisfies
the condition of the theorem. Therefore TC is p-nilpotent by the minimal choice of G
and, hence, G is p-nilpotent, a contradiction.

Step 6. Op(G) = 1.
Suppose Op(G) �= 1. Let N be a minimal normal subgroup of G contained in Op(G).

By Step 5, G/N is p-nilpotent. Clearly, N is the unique minimal normal subgroup
of G contained in Op(G). Furthermore, Op(G) ∩ �(G) = 1 since the class of all p-
nilpotent groups is a saturated formation. By Lemma 2.4, Op(G) = N. There exists a
maximal subgroup M of G such that G = NM = NNG(Mp′), where Mp′ is the Hall
p′-subgroup of M and also of G. If Mp = M ∩ P = 1, then N = P, contrary to step
4. If |D| ≤ |M ∩ P|, then we may choose a subgroup E of M ∩ P with order |D| and
hence EG = 1. By hypotheses, if E has a p-nilpotent supplement in G, then there
exists a p-nilpotent subgroup K of G such that G = EK . On the other hand, there
exists a maximal subgroup P1 of P such that E ≤ P ∩ M ≤ P1 < P and G = EK =
P1K . Since K is p-nilpotent, we have G = P1K = P1NG(Kp′), where Kp′ is the Hall
p′-subgroup of K and also of G. By Lemma 2.6, there exists an element g of P1

such that NG(Mp′) = (NG(Kp′))g. So G = P1NG(Kp′) = P1(NG(Kp′ ))g = P1NG(Mp′) and
P = P ∩ P1NG(Mp′) = P1(P ∩ NG(Mp′)) = P1, a contradiction. So we may assume E
is weakly M-supplemented in G. There exists a subgroup B of G such that G = EB
and EiB < G for every maximal subgroup Ei of E containing EG. By Lemma 2.1(5), we
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have |G : EiB| = p and hence EiB � G. Since |P : D| > p, EiB satisfies the condition
of the theorem. The minimal choice of G implies that EiB is p-nilpotent and hence G
is p-nilpotent, a contradiction.

If |M ∩ P| < |D|, then we may choose a subgroup E containing M ∩ P with order
|D| and get a contradiction with the similar argument as above.

Step 7. Final contradiction.
If all subgroups E of P with order |D| and all cyclic subgroups of P of order

2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there exists D1 � E ≤ P with
2|D1| = |D| and E/D1 is cyclic of order 4) have p-nilpotent supplement in G, then all
maximal subgroups of P have p-nilpotent supplement in G and hence G is p-nilpotent,
a contradiction. There exists at least a subgroup E of P with order |D|, which is weakly
M-supplemented in G. Since Op(G) = 1 by step 6, E is not normal in G and hence there
exists a subgroup B of G such that G = EB and EiB < G for every maximal subgroup
Ei of E containing EG. By Lemma 2.1(5), we have |G : EiB| = p and hence EiB � G by
Lemma 2.5. Since |P : D| > p, EiB satisfies the hypotheses and EiB is p-nilpotent by
the minimal choice of G. Put R = EiB. Then Rp′ char R and R � G. Therefore Rp′ � G
and G is p-nilpotent, a contradiction.

The final contradiction completes our proof. �
THEOREM 3.4. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of

G. If NG(P) is p-nilpotent and every maximal subgroup of P is weakly M-supplemented
in G, then G is p-nilpotent.

Proof. Assume that the assertion is false and choose G to be a counterexample of
the minimal order. Furthermore, we have

(1) Op′ (G) = 1.
In fact, if Op′ (G) �= 1, then we consider the quotient group G/Op′ (G). By Lemmas

2.1(3) and 2.9, G/Op′ (G) satisfies the condition of the theorem, the minimal choice of
G implies that G/Op′ (G) is p-nilpotent and hence G is p-nilpotent, a contradiction.

(2) If S is a proper subgroup of G containing P, then S is p-nilpotent.
Clearly, NS(P) ≤ NG(P) and hence NS(P) is p-nilpotent. Applying Lemma 2.1(1),

we find that S satisfies the hypotheses of our theorem. Now, by the minimality of G, S
is p-nilpotent.

(3) G = PQ, where Q is the Sylow q-subgroup of G with q �= p.
Since G is not p-nilpotent, by Thompson [15, Corollary 1], there exists a

characteristic subgroup H of P such that NG(H) is not p-nilpotent. Since NG(P)
is p-nilpotent, we may choose a characteristic subgroup H of P such that NG(H)
is not p-nilpotent, but NG(K) is p-nilpotent for any characteristic subgroup K of
P with H < K ≤ P. Since NG(P) ≤ NG(H) and NG(H) is not p-nilpotent, we have
NG(P) < NG(H). Then by (2), we have NG(H) = G. This leads to Op(G) �= 1 and NG(K)
is p-nilpotent for any characteristic subgroup K of P such that Op(G) < K ≤ P. Now
by Thompson [15, Corollary 1], again G/Op(G) is p-nilpotent and, therefore, G is
p-solvable. Since G is p-solvable, for any q ∈ π (G) with q �= p, there exists a Sylow
q-subgroup Q of G such that PQ = QP is a subgroup of G by Gorenstein [1, Theorem
6.3.5]. If PQ < G, then PQ is p-nilpotent by (2). This leads to Q ≤ CG(Op(G)) ≤ Op(G)
by Guo [3, Theorem 1.8.18] since Op′ (G) = 1, a contradiction. Thus, we have proven
that G = PQ.

(4) Conclusion.
Since Op(G) �= 1, we may take a minimal normal subgroup L of G with L ≤ Op(G).

Clearly, G/L satisfies the condition of the theorem. Now, the minimality of G implies
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that G/L is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation,
we may assume that L is the unique minimal normal subgroup of G contained in Op(G)
and L � �(G). Thus, by Lemma 2.4, we have Op(G) = L is an elementary abelian p-
group. Furthermore, there exists a maximal subgroup M of G such that G = LM and
L ∩ M = 1. Hence, P = P ∩ LM = L(P ∩ M) and P ∩ M = P∗ is a Sylow p-subgroup
of M. If P∗ = 1, then P = L, and therefore G = NG(L) = NG(P) is p-nilpotent, which
is a contradiction. So we may assume P∗ �= 1. Pick a maximal subgroup P1 of P
with P∗ ≤ P1. If P∗ = P1, then |L| = p. If p < q, then LQ is p-nilpotent and therefore
Q ≤ CG(L) = CG(Op(G)), which contradicts CG(Op(G)) ≤ Op(G). On the other hand,
if q < p, then M ∼= G/N = NG(N)/CG(N) is isomorphic to some subgroup of Aut(N),
since CG(N) = CG(Op(G)) = Op(G) = N. Therefore Q is a cyclic group. Since Q is
cyclic and q < p, G is q-nilpotent and therefore P is normal in G. Hence, NG(P) = G is
p-nilpotent, a contradiction.

So we may assume P∗ < P1. By hypotheses, P1 is weakly M-supplemented in
G. There exists a subgroup B such that G = P1B and TB < G for every maximal
subgroup (P1)G ≤ T . If (P1)G �= 1, then we have L ≤ (P1)G ≤ P1, a contradiction. So
we have (P1)G = 1. By Lemma 2.1(5), |G : TB| = p for every maximal subgroup T of
P1. Particularly, there exists at least a maximal subgroup T of P1 such that L � TB.
We may choose a maximal subgroup T of P1 such that P∗ ≤ T . Clearly, L � TB.
Otherwise, L ≤ TB and TB = LTB = PB = G, a contradiction. Therefore, |L| = p
and we may get a contradiction with the similar discussion as above.

The final contradiction completes our proof. �
COROLLARY 3.5 [7, Theorem 3.1]. Let p be an odd prime dividing G and P a Sylow

p-subgroup of G. If NG(P) is p-nilpotent and every maximal subgroup of P is c-normal in
G, then G is p-nilpotent..

THEOREM 3.6. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of
G. If NG(P) is p-nilpotent and suppose that P has a subgroup D such that 1 < D < P,
and every subgroup E of P with order |D| is weakly M-supplemented in G, then G is
p-nilpotent.

Proof. Assume that the assertion is false and choose G to be a counterexample of
the minimal order. Furthermore, we have

(1) Op′ (G) = 1.
In fact, if Op′ (G) �= 1, then we consider the quotient group G/Op′ (G). By Lemma

2.1(3), G/Op′ (G) satisfies the condition of the theorem, the minimal choice of G implies
that G/Op′ (G) is p-nilpotent and hence G is p-nilpotent, a contradiction.

(2) If S is a proper subgroup of G containing P, then S is p-nilpotent.
Clearly, NS(P) ≤ NG(P) and hence NS(P) is p-nilpotent. Applying Lemmas 2.1(1)

and 2.9, S satisfies the hypotheses of our theorem. Then the minimal choice of G
implies that S is p-nilpotent.

(3) G = PQ, where Q is the Sylow q-subgroup of G with q �= p.
Since G is not p-nilpotent, by Thompson [15, Corollary 1] there exists a

characteristic subgroup H of P such that NG(H) is not p-nilpotent. Since NG(P)
is p-nilpotent, we may choose a characteristic subgroup H of P such that NG(H)
is not p-nilpotent, but NG(K) is p-nilpotent for any characteristic subgroup K of
P with H < K ≤ P. Since NG(P) ≤ NG(H) and NG(H) is not p-nilpotent, we have
NG(P) < NG(H). Then by (2), we have NG(H) = G. This leads to Op(G) �= 1 and NG(K)
is p-nilpotent for any characteristic subgroup K of P such that Op(G) < K ≤ P. Now
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by Thompson [15, Corollary 1], again we see that G/Op(G) is p-nilpotent and therefore
G is p-solvable. Since G is p-solvable, for any q ∈ π (G) with q �= p, there exists a Sylow
q-subgroup Q of G such that PQ = QP is a subgroup of G by Gorenstein [1, Theorem
6.3.5]. If PQ < G, then PQ is p-nilpotent by (2). This leads to Q ≤ CG(Op(G)) ≤ Op(G)
by Guo [3, Theorem 1.8.18] since Op′ (G) = 1, a contradiction. Thus, we have proven
that G = PQ.

(4) |D| > p.
Suppose |D| = p. By hypotheses, every minimal subgroup of P is weakly M-

supplemented in G; in fact, in this case every minimal subgroup of P is also c-
supplemented in G; by (1) and (3) we have F(G) = Op(G). It follows that G is super
solvable by Lemma 2.3. If p < q, then G is p-nilpotent by Theorem 3.2, a contradiction.
If p > q, then G is q-nilpotent and hence G has a normal Sylow p-subgroup P. Therefore
G = NG(P) is p-nilpotent, also a contradiction.

(5) |P : D| > p.
If |P : D| = p, then every maximal subgroup of P is weakly M-supplemented in

G and hence G is p-nilpotent by Theorem 3.4.
(6) Op(G) = N is a unique minimal normal subgroup of G and CG(N) = N.
If |N| > |D|, by hypotheses we may choose a subgroup E of P with order |D| such

that E < N. Since E is weakly M-supplemented in G, there exists a subgroup B of
G such that G = EB and TB < G for every maximal subgroup T of E. Since N is a
minimal normal subgroup of G, we have N ∩ B = 1 or N. If N ∩ B = 1, then N = E,
a contradiction. If N ∩ B = N, then B = G, which is also a contradiction.

If |N| < |D|, clearly G/N satisfies the hypotheses of the Lemma by Lemma 2.1(2).
Therefore G/N is p-nilpotent by the minimal choice of G. So we may assume |N| = |D|.
Let K ≤ P and |K/N| = p. Clearly, N is not cyclic. Otherwise, N1 char N and N � G,
where N1 is the maximal subgroup of N, it follows that N1 � G, contrary to the
minimality of N. So all subgroups containing N are not cyclic. Hence, there exists a
maximal subgroup L of K such that K = LN and |D| = |L| = |N|. If L is normal in
G, then K/N is normal in G/N. If L is non-normal in G, then there exists a subgroup
B of G such that G = LB and TB < G for every maximal subgroup T of L containing
LG. If NB = G, then G = NTB and hence |N| = |G : TB| = p, this is contrary to (4).
So we have NB < G and G/N = (LN/N)(BN/N). Therefore G/N is p-nilpotent.

Clearly, N is the unique minimal normal subgroup of G contained in Op(G).
Furthermore, Op(G) ∩ �(G) = 1 since the class of all p-nilpotent groups is a saturated
formation. By Lemma 2.4, Op(G) = N.

(7) Final contradiction.
There exists a maximal subgroup M of G such that G = NM and N ∩ M = 1.

If Mp = M ∩ P = 1, then N = P, a contradiction. Let P1 be a maximal subgroup of
P containing Mp. Clearly, P1 = P1 ∩ NMp = Mp(P1 ∩ N). If P1 ∩ N = 1, then |N| =
p. If p < q, then NQ is p-nilpotent and therefore Q ≤ CG(N) = CG(Op(G)), which
contradicts CG(Op(G)) ≤ Op(G). On the other hand, if q < p, then, since CG(N) =
CG(Op(G)) = Op(G) = N, M ∼= G/N = NG(N)/CG(N) is isomorphic to a subgroup of
Aut(N) and therefore M, and particular Q is a cyclic group. Since Q is a cyclic group
and q < p, G is q-nilpotent and therefore P is normal in G. Hence, NG(P) = G is
p-nilpotent, a contradiction.

So we may assume L = P1 ∩ N �= 1. By (6), |N| ≤ |D|. Choose a subgroup E
of P1 containing L with |E| = |D|. Clearly, N � E and E = E ∩ P1 = E ∩ LMp =
L(E ∩ Mp). By hypotheses, E is weakly M-supplemented in G and EG = 1. There
exists a subgroup B of G such that G = EB and TB < G for every maximal subgroup
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T of E, since EG = 1. Furthermore, we may choose a maximal subgroup P2 of
E such that E ∩ Mp ≤ P2. Therefore P2 = P2 ∩ (P1 ∩ N)(E ∩ Mp) = (E ∩ Mp)(P2 ∩
P1 ∩ N) = (E ∩ Mp)(P2 ∩ N). Then we may choose T = P2. If N ≤ P2B, then P2B =
NP2B = EB = G, a contradiction. So N ∩ P2B = 1 and |G : P2B| = |N| = p. With a
similar discussion as above, we get a final contradiction. �
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