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ON AN UPPER BOUND FOR THE HEAT KERNEL
ON SU*(2n)/ Sp(n)

P. SAWYER

ABSTRACT.  Jean-Philippe Anker made an interesting conjecture in [2] about the
growth of the heat kernel on symmetric spaces of noncompact type. For any symmetric
space of noncompact type, we can write

Pyx) = CeMoPt=a/2=m 10 gy )

where ¢y is the Legendre function and g, “the dimension at infinity”, is chosen such that
lim, 00 V;(x) = 1 for all x. Anker’s conjecture can be stated as follows: there exists a
constant C > 0 such that
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where L is the set of positive indivisible roots. The behaviour of the function ¢y is
well known (see [1]).

The main goal of this paper is to establish the conjecture for the spaces
SU*(2n)/ Sp(n).

Introduction. In [2], Jean-Philippe Anker proves his conjecture for the spaces
U(p, )/ U(p) x U(g) and points out that it is also true for all symmetric spaces of rank 1.
The conjecture is immediately verified in the complex case since V,(x) is then identically
equal to 1 (see [7]).

1 —
M Vi) < C ] (1 + _+Q)(mv,+mz,,)/2 1
nEL} t

We proved in [13] that for the space Pos(3,R), V,(x) is bounded above and below by
constant multiples of the right hand side of (1). The corresponding results for the heat
kernels of the real hyperbolic spaces have been obtained by E. B. Davies and N. Man-
douvalos (see Theorem 5.7.2 in [6]). These last results, and the fact that this upper bound
is the sharpest suggested for such spaces, make the conjecture particularly interesting.
The space SU*(2n)/ Sp(n) can be realized as the space of positive definite matrices of
determinant 1 over the quaternions (Posl(n, H)). We will instead work with Pos(n, H),
the space of positive definite matrices over the quaternions. It is simple to translate our
results from one space to the other. The Riemannian structure will be induced by the
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bilinear form (X, Y) = R tr XY (a scalar multiple of the Killing form). Similar remarks
apply to the other symmetric spaces of noncompact type that correspond to A,—;.

It is known that P, = A~Y(W,) where 4 is the Abel transform and W,
= CelolP1r=n/2¢=7/@) We will devote a good part of the paper in showing that 4!
is a differential operator with appropriate properties. The work of O. A. Chalykh and
A. P. Veselov in [14] is particularly relevant here. They arrive at an explicit expression
for the inverse of the Abel transform for the space SU*(2n)/ Sp(n). The focus of their
paper is to find a shift operator (as explained in [3]). The aim is to reduce the problem
of finding A~ for the root system A,_; with multiplicities m = 4 to the case m = 2.
We, on the other hand, shift the problem to the root system A,—; with m = —2 and go on
from there (Lemma 1.3 explains what the shift is). Moreover, the inverse is expressed in
a different manner. We will point out the similarities and differences in our approaches
in the conclusion. We would like to thank Jean-Philippe Anker for drawing our attention
to this recent development.

We take the opportunity to thank Carl S. Herz for his suggestion that showing V, has
a finite expansion in £~! would be a good starting point.

1. The inverse of the Abel transform for the root system A,_;. In what follows,
the root system under study is A,—; and m is any complex number (the “multiplicity” of
the roots). The Abel transform of f is A(f; e) = e#™ [y f(¢"n) dn (also denoted Fy(e)
in [8]). It is natural, using the usual Hilbert space structure on L? spaces, to define the
dual or adjoint of the Abel transform (see [9] and [13]) for functions invariant under the
Weyl group W:

(A ). frzapwy = (b A ) 2w /x)-

Using the definition of A and the integral formulas corresponding to the
Iwasawa and the Cartan decompositions (refer to [8]), we find that A*(f;ef) =
Jx e~ PHEO)F(HE D) gk Tn particular, the spherical functions are ¢y = A*(e™;-). This
is valid for any symmetric space of noncompact type G /K.

In [12], we gave a recursive integral equation for the dual of the Abel transform for
the spaces of positive definite matrices over the real numbers, the complex numbers and
over the quaternion numbers (Theorem 1.1). It allows us to discuss the generalized Abel
transform (or rather its dual) on the root system A,—; as long as Rm > 0.

DEFINITION 1.1. Let us fix m (Rm > 0). For H € a*, the diagonal matrices with
strictly decreasing entries, we can define the dual of the generalized Abel transform 4™
for the root system on A,_i:

(A™y*(1,f; ey = f(e") and, forn >2,
@ T 2 H, H, rH
(AP (0. f: ) = Z%(d(’ﬂ)l_m by GO = Vferi ey

n n—1 m/2—1
[E 11 I sinhci —Bp| ™ ) de

j=1i=1
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410 P. SAWYER

where fiy(diag[xi,...,x,—1]) = f(diag[x,...,xu—1,tr H — E;’;ll x), diH) =
I sinh(H; — H;) and = is chosen so that 1T, [T/} sinh(§; — H;) > 0 whenever
Hi+1 S E,’ S H,' for all i. )

Note that p™ = 1 ,;m(H; — H;) and the radial part of the generalized Laplace-
Beltrami operator is defined as

n 9? d d
3 LM=% —+ th(H; — H; (———)
@ 23 L cothH — ) (5 — 5
We will see that (A™)*(1, e?™; ef) = 1 for all H.
The following result is a consequence of Theorem 1.1 in [12] if the space in question
is Pos(n, F) where F = R, C or H and m = dimg F.

THEOREM 1.2. Suppose Rm > 0 and f is a smooth Weyl invariant function. Then,
(A™Y*(n,f;-) is smooth on a* and

LA™Y (n.£37) = (A™)* (n, TL™)f;)
(TL™) = La = 6"™IP)

PROOF. The result can be proven by induction on n. The idea is to take Rm large
enough in order to use integration by parts without adding new terms. By analytic con-
tinuation, the result is true for m > 0. The proof is similar, but simpler (the integration
being here on a bounded set), to that of Theorem 2.5 in [13]. n

We extended the definition of (A")* to complex values of m other than 1, 2, 4 and 8
(n = 3) in order to exploit the following fact:

LEMMA 1.3.

(L(m) + ”p(m)”2) ° dl—m — dl—m(L(Z—m) + “p(2-m)”2).

In the language Opdam uses in [10], this says that multiplication by d'~™ shifts from
m to 2 — m. In particular, the situation that concerns us mostly, m = 4, shifts tom = —2.
We will see in Corollary 1.7, that (A™)* corresponds to a differential operator when
m < 0 is an even integer.

The expression in (2) reminds one of fractional integrals. We will want to exploit this.

LEMMA 1.4. Letn > 2 be an integer and assume that f is a smooth complex valued

function on R. Consider
['(np) ! —1 (—p—1
Pf = ————"—"—— OF (1 =" P dt
! T((n — 1)p)T(p) b

for Rp > 0.
IPf is an analytic function of p and possesses an analytic continuation in the region
S=C-— {—ﬁ : r > 0 is an integer not a multiple of n}. If f depends smoothly or
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analytically on parameters, the same is true of IPf. Furthermore, when p < 0 is an
integer, I’f is a linear combination of the values of f and of its derivatives at 0 and at 1.
PROOF.
T 1
(np) / FOF1 (1 — prDe1 gy
I((n — p)T(p) o
_ 1"(np)[ 1
I'(p) F((n — l)p)

_Lmp) [ 1 g2 byt ]
+F(<n—1>p)[r<p)/o (Fx1 —pr=r 1)1 .

Note that I'(z) = m if z is not an integer. The rest follows from the theory of
Riemann-Liouville integrals (see [11]). ]

A.;Z(f(t)f—l)(l — t)(n_])P—l dt]

LEMMA 1.5. Letn > 2 be an integer. Assume that f is a smooth function of R" and
consider -

I'(n, _
Jf = ﬁ /E??thx,f(t)(tltz P dt
forRp > 0.

JPf is an analytic function of p and possesses an analytic continuation in the region
R =C-— {——;’ : s = 2,3,...,nand r > 0 is an integer not a multiple of s}. If f
depends smoothly or analytically on parameters, the same is true of JPf. Furthermore,
when p < 0 is an integer, JPf is a linear combination of partial derivatives of f at the
pointst = (t1,...,t,) where one of the t; is 1 and all the others are 0. Moreover, JP1 = 1

forallp € R.

PROOF. The proof relies on induction on n > 2. The case n = 2 is a special case of
Lemma 1.4. The inductive step is as follows:

[(np) »
(T@))" /Z,L, petszo) Ot LY dt
S ) —
I((n— Dp)T(p)
I((n—1
/o‘ [w /E?=2:.~=1_:1,f(t)(tz et PNty dtn_l]tzl)—l dn
520
S ) N—
r((n = Dp)T)
I((n—1
Al [w /Z?=1Xi=l,f(tl, (1—- tl)si)(sz . sn)p-—ldsz L dsn_l]
5i>0
A7 (1 =0y dn,
It suffices to apply Lemma 1.4 another time. .
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These lemmas are of interest to us since

(ﬂ(m))*(n,f, eH) - em(n—l)/2t.rHJm/2(e—mn/Ztrﬁ(t)(ﬂ(m))*(n _ 1>ftrH; e{(t)))

1 (o2 — M . . .
lI-If ((:w : ll)) Moreover, if t = (t1,...,1,) is such that one of the #; is 1 and
i€ T

all the others are 0, then diag[£(¢), tr H — tr £(¢)] corresponds to the image of H by an
element of the Weyl group.

where #; =

THEOREM 1.6. Let f be a smooth function on A. Then, (A"™)*(n,f; e!) is a smooth
function on a* and, by analytic continuation, is an analytic function of m in the region
T=C—{-%:5=2,3,...,nand r > 0 is an integer not a multiple of s}. For m €
T, we have L' (A™Y*(n,f; M) = (AM™)* (n, T(LI)f; e ) and (A™Y*(n, e?™; ) =
1 for all H € a*. Furthermore, if m < 0 is an even integer, then (A™)*(n,f; H) =
Ssew(Dsf)(sH) where the Dy are differential operators of the form

1 A

Dy = — "0y
where N is an integer, J a finite set of indices j = (ji, . . ., ja—1), Qs is a polynomial in the
exponentials of the roots for eachj and, ifj = (j1, . .., ju—1), thend = I}Z] (DLHA. — ﬁ,@;)".

PROOF. Much of the result has been proven above. That L™(A™)*(n,f;e!) =
(Amyx (n, TL)f; et ), follows from Theorem 1.2 and from analytic continuation.

Let us assume now that m < 0 is an even integer. We verify the form of the operators
D; using induction. For n = 1, the result is clear since D; = 1 (|W| = 1). Assume that
the result is true for n — 1, n > 2. Take any smooth function f. To avoid confusion, we
will use the subscript n — 1 to refer to objects corresponding to the case n — 1.

We have

(ﬂ(m))*(n’f, eH) — em(n—l)/2trHJm/2(e—m"/ztfﬁ(t)(ﬂ(m))*(n — l,f"H;eg(t)))
@) — mn=D/2uH ) Jm/2(e—mn/2tr£(t)(Dn_l)&qu).

SEW,—

It is clear from Lemma 1.5 that J™/ 2(e"""/ 2‘r'g(’)(D,,_,)fo,y) depends only on the
values of e~™"/2"¢0(D, )iy in the neighbourhoods of the points t = (1,...,1,)
where one of the #; is 1 and all the others are 0. In these neighbourhoods, we can write
(Du—1)sfiert = (p1. - .. pn1) Where py = Y cipc.nciy €61% %4 (the elementary sym-
metric polynomials in the variables e). IT'Z] (e% — &) = [T(e? — )y for
1 <j < nisequivalent to E;;(l)[—e2”/]"*lfqpq = [Liz(e* — e)1; for 1 < j < n. This
in turn implies that p, = 7, pyt; where pl; = pg(e®, ... et et ). Now,
e—mn/2t.r£(t)g — p;:"l"/“g - e—mn/ZtrH[zl(t:l e—2l~1jtj]—mn/4g((zr}=l piztj)lqun—l)-

Recall that J™/? is a linear combination of partial derivatives with respect to the #; at

the points t = (¢, ...,1,) where one of the #; is 1 and all the others are 0. These points,
in terms of the function £, correspond to points on the orbit of e/ under the action of the
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Weyl group. J™/ 2(e‘""’/ 208D, ) fer H) is then a linear combination of partial deriva-
tives of g with respect to the variables p,. The coefficients of these derivatives are poly-
nomial functions of e*#. On the other hand, for each g, 5% =yl (pq,(e261 Y
[Micj(e® — %4 )]) 3—27 where the p,, are polynomials.

Using the integral formula given in (2) and analytic continuation, we find that for
m e 7, (ﬂ(m))*(n, (gotr)-f; eH) = g(tr H)(A™)*(n,f;e) and, for any n € R,
(AMY*(n,f; ey = (A™)*(n,f o T,; ef) where T,(H) = diag[H; +1,...,H, + ).
These observations allow us to conclude the proof. n

COROLLARY 1.7. If m < 0 is an even integer and f is a smooth Weyl invariant
function then (A™)*(n,f;-) = D™f where D™ is a differential operator. Moreover,

1 .
D™ = P Z ;o
jeJ
where N > Ois an integer, J afinite set of indicesj = (jy, . . ., ju—1), Qj is polynomialin the

exponentials of the roots for eachjand, ifj = (j1, . .. ,ju-1), thend = T2} (ain - a}z " Ye.

PROOF. It follows directly from the theorem. n

THEOREM 1.8. Iff is a smooth function on A* and m < 0 is an even integer then

LMpm = D(m)r( L(m)).

PROOF. The result is true when f is Weyl invariant (Corollary 1.7). Equality of dif-
ferential operators is a local property, so the result follows. u

To identify further the operator D™, we need to discuss the eigenfunctions of the
operator L™ . We adapt here the terminology of Chapter IV, §5 in Helgason’s [8].

THEOREM 1.9. Let A be the set of all linear combinations of the positive roots having
non-negative integer coefficients. We define 'a to be the set of complex-valued linear
functionals on a such that i(sA —t\) ¢ A (the set of all linear combinations of the positive
roots having integer coefficients) for s # tin W and (p, ) # 2i{p, X) forall p € A—{0}
and s € W. 'a{. is a dense open connected subset of ag, the set of complex-valued linear
functionals on a. For X € 'ag, let

5) q)E\m)(H) = = ™)H) Z rflm)(,\)e‘ﬂ(H)
HEA
where
©)  {{m 1) — 20\ 1) ITPO) = 2m Zm;(u — 2ka+p™ —iX, )T, ()
a>0k>

and To(\) = 1. {®% : s € W} is a linearly independent set of eigenvectors of L™ for
the eigenvalue —({\, \) + (p™, p™)).

PROOF. It suffices to adapt the proof given in [8] for the “usual” functions ). m
Note that T7”(\) = O unless p € 2A.
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LEMMA 1.10. For A € 'a{, there exists a constant p§”(\) such that D™e =
(m)(A)(D(m)

PROOF.  According to Corollary 1.7, D™ e will have an expansion of the form given
in (5), except that the sum will be on A. Denote by l:f"")()\) the coefficient of e™* in that
expansion. We claim that f(”m)()\) = 0 for all A unless € A. Suppose that is not the
case. There can be only finitely many p exhibiting that statement. Let po be the smallest
of them (we use the lexicographic order on A = {3450 14 : n, integers}). Our choice
of po implies that f‘(“’;’)_ka()\) = O for all @ > 0, all k > 1 and for all A. The coefficients
f‘f"")()\) must satisfy (6). In particular, {{po, po)} — 2(i), uo)}fﬂz)()\) must be 0 for all \.
This means that py = 0. The rest follows easily. n

COROLLARY 1.11.  Ifm < 0 is an even integer, then

e2Np(m)/m
D — =" D R N A A
d JjeJ
where N is an integer, J a finite set of indices j = (ji,... ,],, 1), Q) is a polynomial for

eachjand, ifj = (ji,...,jn1), then & = k—I(aH‘ aHM Y.
PROOF. Just compute D™e™ using Corollary 1.7. .

COROLLARY 1.12. pg”)()\) is a nonzero polynomial in A of degree at most that of
D™. Moreover, ®™()) is a meromorphic function of X € a§. whose poles are zeros of

Pg ).

PROOF. Since (ﬂ(’") )*(n, ;) = 1, DY cannot be 0 and, consequently, DM gir
is not identically equal to O. This, together with the lemma and the previous corol-
lary, implies that p®™(X) is a nonzero polynomial (actually, if iIA(H) = >i-, agHy, then

("’)()\) Yier 90, ...,0) Hk_1 (ax — ags1 V). The rest follows easily from the fact that
D(’")e"\ is analytic in ). "

(m)

DEFINITION 1.13.  The c-function for the root system A,—; and complex multiplicity
mis [(mk/2) (i, o)
M)y = (=M= (n=Dn n (« > %0 )
) U T I sy

(a0 = af{a, a)).
c™(X) corresponds to the usual c-function when m = 1,2,4 and 8 (n = 3).

LEMMA 1.14. Let m < 0 be an even integer. Then, there exists a constant K # 0
independent of \ such that p(m)()\) = Kc™(X).

PROOF. Suppose iA(H) = X_; ayHy is such that ay > a; > --- > a, and
(ai —aj)/2 = k forsome i > jand 1 < k < —m/2. Let p € A be defined by
w(H) = 2k(H; — H;). Equation (6) becomes

0
e N e

8k [k — (a; —a) /AT (N) = 2m 3" > (1 — 2kac+ p™ —iX, )T, (M)

a>0k>1
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It is not difficult to see (using the conditions on \) that for &« > Qand k > 1, l'fl'"_)% oA >

0 (an—)zk «(A) > 0 for at least one of them), and, consequently, that the right hand side

is a positive number. By Corollary 1.12, we conclude that pg")()\) = 0 for such A.
This implies that k — (a; — a;) divides the polynomial p™(N\). Hence, pg")(,\) =

0
4N i 7 (k — (@i — a)/2), degp§”() < degD™ < (=m/2)n(n — 1)/2.
From this, we conclude that g™ (}) is a constant. .

LEMMA 1.15.  Ifmisaneven integer then there exists a constant Ap, # 0 independent
of X such that c™(X) = Apu[m(—=X)c®™(=X)]~! where 1(X) = [as0{iA, ap).

PROOF.  The result follows from applying the formula ['(7)[(1 — z) = 7/ sinnz to
the expression given in Definition 1.13. =

THEOREM 1.16. Ifm > 0 is an even integer then (A™)~! is a differential operator.

PROOE. We will show that (A)~! is a multiple of d'~"D@~™a(r) where () is
the differential operator with constant coefficients such that a(m)e™ = m(\)e?.

Note first that d"m¢f\2_m) = @{": the left hand side has the right expansion and
satisfies the appropriate differential equation (Lemma 1.3).

Using Lemmas 1.14 and 1.15, we have d'"D@93(m)e* = n(\)d!""D? e =
AnTN)E™M N = B,u[c™(—N)]"' ®™. The result follows (see [3]). "

LEMMA 1.17. If A is a complex-valued linear functional on a and m < 0 is an even
integer, then

@) DMe = ¢ 3 plP(Ne
pPEA

where pP(\) = Bu[m(=A\)c?™ (=N]"'T{(N) is a polynomial in X for each y (B, is
a constant independent of . and \).

PROOF. We already know that the sum in (7) is valid for A € ‘a. If we use Corol-
lary 1.11 to compute D™¢™, we see immediately that for every X there is an expansion
DMeir = o=p"(H) Luea P (N)e ™ where () is a polynomial. The result follows
since for each p we must have p{”(A) = p”()) whenever A € ‘at.. ' n

2. The heat kernel of the symmetric space SU*(2n)/ Sp(n): Anker’s conjecture.
SU*(2n) / Sp(n) corresponds to the root system A,—; with m = 4. We will omit the
superscript (rm) when it is equal to (4).

THEOREM 2.1. We can write the heat kernel for the space Pos(n, H) as
Pyl = Ce Moy~ 2677160 g M), ()

where ¢o(efl) = [ e PHE D) gk is the Legendre function, Vi(e") > 0 for all H and

https://doi.org/10.4153/CMB-1994-059-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1994-059-x

416 P. SAWYER

lim;_oo Vi(e"?) = 1 for all H. There exists a constant C > 0 such that if H € a* then,

1+H;,—H;
®) Vi) < CT] (14 ———).
i<j !

PROOF.  Since P, = A~!(CeIelF1r=/2¢=7140) = Ce~lelPt—n/2 L D-25(m)e= /¢,
we conclude that e™/@goe)Vi(et) = Cro-D2LIpEDY(me /¢ =
e_’z/(4’)331+—Ne(N+‘)P/2 ZZ(:O_I)/Z Ry (e")t™ (N is as in Corollary 1.11).

The functions Ry are polynomial functions in the roots and in the exponentials of the
negative roots. The functions 7ye™*?/2Ry(e’) are Weyl invariant and analytic (the
theory tells us that P, is Weyl invariant and analytic).

According to the estimate given in [1] (valid for any symmetric space of noncompact
type), there exists C > 0 such that

C'TIQ + H; — Hye ™™™ < ¢o(H) < CT[(1 + H; — Hy)e ™.

i<j i<j
To prove the theorem, it is then sufficient to show that there exists C > 0 such that
eWN+3)p(H) [2 Ri(e™)
—————1<C S [IQ+H; —Hy)"i
N+3 = i J
d¥(H) Yicjrik i<
r,»je{O,l}
for each k.
It will actually be enough to show that there exists C > 0 such that
© IRl <C > IO +H; —H)™"
Zi<j rij=k, i<j
r;€{0,1}
for each k.

To see this, one observes first that d(H) is like e”™/2 when the roots of H are away
from 0. The fact that e™*3#/2R, /dV*3 is smooth implies that some derivatives of R are
0 when the roots are 0. The “trick” can be summarized as follows: if f(x)/ x3 is smooth,
then f(x) = f(0) +f'(O)x + %f”(O)x2 + ’—‘32— B =0 P(tx)dt = 532— Jo(1 =) (tx)dt. The
rest is to make sure that the bounds in (9) also holds for the appropriate derivatives.

The main factor in the size of the functions Ry, is its degree in terms of the roots. It is im-
portant to estimate the effect of the operators 1?2} ( ain - B—H%)"k d(m) on e~"/“)_To sim-

plify the picture, we will consider a simpler situation. %e“"z /@) = ==/ sk b (o)
where degp; < i for each i. Clearly, there exists C > 0 independent of x > 0 and i such
that |pi(x)] < C(1 +x)'.

To apply this reasoning to our situation, using the notation of Lemma 1.17, we note
that if i\(H) = T, axHy then p§>(A) = CTlij(1 — (a; — a))/2). Furthermore, if we
compute the degree of p?(X) with respect to any of the differences a; — a;, we find that
degp,(\) = degp§?(\) +deg T2 < deg p§ () since from (6), deg 20 <.
This in turn limits the order of the derivatives that occur in the operator E&D<—2>a(7r). The

rest is straightforward. u
The same method can be applied to prove the corresponding result for the space
Eg—26)/Fa:
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THEOREM 2.2.  Anker'’s conjecture is valid for the space Eg—s) | Fa.

PROOF. The proof is not very different from that of Theorem 2.1 except that now
m = 8 and n = 3. For instance, A~! = £4D"99(r). The main difference is that

Py M) = Clligi(1 — (@i — a))/2)(2 — (@i — a)/2) (3 — (@i — a)) /2). .

CONCLUSION. O. A. Chalykh and A. P. Veselov give in [14] an explicit formula of
the inverse of the Abel transform in the case m = 4 (it still requires intensive computa-
tions if n is large). In their formulation and ours, the inverse of the Abel transform for the
space SU*(2n)/ Sp(n) is the composition of n — 1 differential operators with the opera-
tor d(m). Another similarity is that the inverse is computed recursively. They do not use
the dual of the Abel transformation but rather give an inductive process to compute the
eigenfunctions of the Laplace-Beltrami operator as the images of a differential operator.
Most of the work leading to these results is found in [5]. Their formulation of the inverse
of the Abel transformation would have permitted us to draw the same conclusion about
the heat kernel. Note that their approach, as far as irreducible symmetric spaces are con-
cerned, applies only to those of type A,—; with m = 2,4 and 8 (n = 3). We have used
the dual of the Abel transform, albeit indirectly, to obtain results in the case m = 1 in
[13]. It might be interesting to try the same idea on other classes of symmetric spaces.

It would have been nice to show that N in the expression for D=2 (Corollary 1.11)
can be chosen to be 0. That would imply that D2 could be given as a finite sum:

) )
D2 = (r/2 (2
PN <8H1 aH,,)

with p{?()) is as in Lemma 1.17 and the corresponding differential operator with con-
stant coefficients is defined by psz)(aiHl, s 3%7) e* = p{D(N)e. We have verified
this in some cases but have been unable to give a general proof.

We conclude by summarizing what we now know of Anker’s conjecture for the sym-
metric spaces of noncompact type corresponding to the root systems A,—;, that is, the
spaces Pos;(n, F) where F is R, C, H or O (the octonions). For the complex case, there
is nothing to do since V; is identically equal to 1. We just have settled the cases where F
is H or O. The real case is still, as far as we know, an open problem for n > 4 (an answer
to the case n = 3 can be found in [13]).
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