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Abstract

We investigate surjective solutions of the functional equation

G+ OIS = SO = {llx + ¥l [l = yll} - (x,y € X),

where f: X — Y is a map between two real L°(I')-type spaces. We show that all such solutions are
phase equivalent to real linear isometries. This can be considered as an extension of Wigner’s theorem on
symmetry for real £ (I')-type spaces.
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1. Introduction

Let X and Y be real normed spaces. We say that a mapping f : X — Y is an isometry
if it satisfies the equality

) =Dl =llx=yll (xyeX).

This equality implies strong structural properties for the mapping f. The classical
Mazur-Ulam theorem [5] states that every surjective isometry between X and Y is
affine. We say that a mapping f : X — Y is phase equivalent to a linear isometry if there
exists a function € : X — {—1, 1} such that f is a linear isometry. The fundamental
theorem of Wigner on symmetry characterises the mappings that are phase equivalent
to linear isometries in real Hilbert spaces. That is, when X and Y are real Hilbert
spaces, all mappings f : X — Y that are phase equivalent to linear isometries are
precisely the solutions of the functional equation

[KfCo), fODI =Kz, (x,y € X).

Wigner’s theorem plays a fundamental role in quantum mechanics and has several
equivalent formulations and extensions (see, for example, [1, 2, 4, 6-10, 12]). In [4],
a real version of Wigner’s theorem was given by using the functional equation

f )+ FOIL LG = fDII} = {llx + yll, llx =y} (x,y € X). (1.1)
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It is easy to see that, when X and Y are real normed spaces, all mappings f: X —» Y
that are phase equivalent to real linear isometries are also the solutions of the functional
equation (1.1). In [4], Maksa and Pales proved that the converse also holds provided
that X and Y are real inner product spaces, and they posed the question: what are
the solutions f: X — Y of (1.1) when X and Y are normed but not necessarily inner
product spaces? Huang and Tan [3] gave a partial answer to the above question for
real atomic L, spaces with p > 0.

The aim of this note is to answer the above question for real L*°(I')-type spaces. We
will show that the surjective solutions of (1.1) are phase equivalent to linear isometries
provided that X and Y are real £*(I')-type spaces. Indeed, we give a representation
theorem of surjective mappings which are phase equivalent to linear isometries in
L>()-type spaces.

2. Main results

Throughout this section, all spaces are over the real field R. Let X and Y be normed
spaces. We use Sy and Sy to denote their respective unit spheres. The space of all
bounded real-valued functions on an index set I equipped with the supremum norm
is denoted by £(I') and any of its subspaces containing all e,’s (y € I') are called
L>()-type spaces. For example, the spaces co(I), c(I), £ (I'), particularly, cy, c, £,
are L (I')-type spaces. The £ (I')-space is

£50) = {x = (& hyer : lInll = Supléy| < e0. £ €. y € r).
For every x = {&,}yer € L7(I), we write x = {£,} and omit the subscripts y € I for
simplicity of notation. We denote the support of x by I',, that is,
I'y={yel:x(y)+0}.
The star of x with respect to Sz~ is defined by
St(x) ={y 1 y € Sz, lly + xIl = 2}
We first cite a basic result for star sets in £ (I)-type spaces.

Lemma 2.1 [11, Lemma 2]. Let x be in Sy~r). If there exists an xy € St(x) satisfying
lly = xoll < 1 for all y € St(x), then 'y, is a singleton.

In order to prove the first main result, we need the following lemma.

Lemma 2.2, Let X = L) and Y = L>(A). Suppose that f: X — Y is a surjective
mapping satisfying (1.1). Let y € I and denote by Ay, the support of f(e,). Then
Afe,) is a singleton.

Proor. Suppose that Ag., ) contains more than one point. Since f is surjective, by
Lemma 2.1 there is a vector x € X with f(x) € St(f(e,)) such that || f(x) — f(e,)Il > 1.
This implies that

ILf (0 + fle)ll + 11f(x) = flepll > 3.
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By (1.1), f is norm preserving and thus x € Sx. Hence, for every y € I,

Q) + flell + 1/ (x) = flep)ll = llx + eyll + llx — e, |l < 3,
which is a contradiction. The proof is complete. O

The following theorem is a representation theorem for surjective mappings between
two real L7(I')-type spaces satisfying (1.1). For any a,b € R, we shall write a V b =
max{a, b}.

THeorREM 2.3. Let X = L) and Y = L>(A). Suppose that f : X — Y is a surjective
mapping satisfying (1.1). Then there exists a bijection  : I — A such that for every
x=1{&,} € X, we have f(x) = {nxy)} € Y with [Nzl = |§,| for every y € T.

Proor. From Lemma 2.2, we can define a map 7 : I' = A by {m(y)} = Ay, for each
v € I'. We now prove that 7 is bijective. If n(y;) = n(y,), by (1.1) and Lemma 2.2,

2=|1f(ey) = flep)ll V IIf(ey) + flep)ll
=lley, — el V lley, + eyl < 2.
So, lley, — eyl V lle,, + e,,ll =2, which implies that y; = ,. To see that 7 is surjective,

suppose on the contrary that there is a dg € A/n(I'). As f is surjective, there exists
x € Sx such that f(x) = es,. Forevery y €T,

llx + ey ll + llx — e, =11/ (x) + fle)Il + I/ (x) — flepll
= lles, + fepll + lles, — f(e,)ll
=2.
The equation ||x + e, || + [|x — e, || = 2 for all y € I" implies that x = +e,, for some y; €I’
or x = 0. Since ¢y € A/n(I"), we must have x = 0, which is a contradiction.
We shall prove that f has the desired property. Since f is norm preserving, we need

only consider the vectors in the unit sphere of X. For every x = {£,} € Sx, we can write
f(x) =1{nx)} € Y. For every y € I', we have f(e,) = £ex(,) and so

L+ 1§ 1=1x+eyll Vix —ell
=1 (x) + fle) VI f(x) = flell
=1+ [faey)l-
Thus, |&,| = |17z()| for every y € I. The proof is complete. O

For our second main result, we need one more lemma. For x = {£,} € L7(I), we
shall use the notation e, = {6,}, where 6, = sign(¢,) for every y € I (if &, = 0, we put
6, = 0 throughout what follows). Obviously, e,., = e, + ey, e_, = —e, and e, = e, for
all x,y e L) withI', NI’y =0 and A > 0.

Lemmva 2.4, Let X = L) and Y = L=(A). If f: X — Y is a surjective mapping
satisfying (1.1), then ef = +f(e,) for every x € L7(I).
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Proor. By (1.1),

{lf(ex) + fllixlleoll, llf(ex) = flllxllell} = {llex + llxllexll, llex — [lxllexll}
= {1+ [lx(l, 11 = [lxlll}. 2.1)

From Theorem 2.3, for every v € I'y, | f(ex)(m(y))| = 1 and | f(||x]|lex)(7w(y))| = ||x]|. This
together with (2.1) implies that

€f(lixlen = £ (€x).
On the other hand,

{lfdlxllex) + fFOL 1L Alxllex) = fFoll}

{IllIxllex + xII, [ [lxllex — xII}
= {211l lx]l - inf |x()I}.
vely
Note that | f(x)(7(y))| = |x(y)| for any vy € I',. This implies that

€fx) = Tef(lnfley) = TS (€x). O

The next result shows that a surjective mapping satisfying (1.1) is close to linear.

Lemma 2.5. Let X = L) and Y = L7(A). Suppose that f: X — Y is a surjective
mapping satisfying (1.1). Then:

(@) f(Ax) =xAf(x) foreveryxe X, 1eR;
(b) there exist two real numbers a and B with |a| = |8] = 1 such that

fx+y) =af(x)+Bf»)
for all nonzero vectors x andy in X with ', N T’y = 0.

Proor. (a) It suffices to show that the conclusion holds for every x in the unit sphere of
X. From (1.1), f(—ey) = £f(e,). Applying Lemma 2.4,

eray = f(ex) = £f(ex) = xepy).
This and Theorem 2.3 imply that

fAx) = 2 f(x).
(b) By Theorem 2.3, we only need to check that

efry) = @) + B
for some real numbers « and 8 with |a| = || = 1. This is equivalent to showing that

Sflex+ ey) = f(ex+y) = af(ey) +ﬁf(ey)

for some real numbers @ and 8 with |a| = |5] = 1. Write

Fed = e fle) =lmh  flex+e) = ) + M)
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where If;r’(y)l = |§7’r(y)| =1 for every y €I, and |
Lemma 2.4 and (1.1),

{sup g7, + &)V 1, sup €7, = &1 V 1)
yvel'y vel,

={llf(ex +ey) + fleDll. lf (ex + ey) = flell} = {2, 1}

It follows that {f;r’(y)} = *f(e,) and, similarly, {’7;:@)} = +f(ey). This completes the
proof. O
THEOREM 2.6. Let X = L>(I') and Y = L(A). Suppose that f : X — Y is a surjective

mapping satisfying (1.1). Then f is phase equivalent to a linear isometry.

;T’(y)l = |yl = 1 for every y € I'y. By

Proor. We first show that f is phase equivalent to a homogeneous map. It follows
from the axiom of choice that there is a set L C X such that for any x € X with x # 0,
there exists exactly one element y € L such that x = Ay for some 1 € R. The desired
map f’ : X — Y can be defined by

f'(x)=f(ly)=Af(y) forall x=AyeX.
Therefore, we may assume that f is homogeneous. Fix yy € I and let
Z={xeX :TyNn{y} =0}
By Lemma 2.5, for every z € Z, we can write
fz+ey) =a@f(2) +B(2)f(ey), la@)]=|8)]=1.
‘We shall show that for all z € Z with z # 0 and A € R with 2 # 0,
a(2)B(z) = a(12)B(1z). (2.2)
It suffices to show that (2.2) holds for every z in the unit sphere of Z. Then, by (1.1), if
> 1,
{IA(a(2) + a(12))| V [4B(z) + B(A2)], [AUa(2) — a(A2))] V |4B(z) — B(A2)I}
={llf (Az + Aey,) + f(Az + ey )l I f (A2 + Aey,) — f(Az + ey )ll}
= {l1 - 1], 2]14]}.
This proves the equation (2.2) in the case of |1] > 1. If |1 < 1, by considering
f(Az +ey) and f(z + e,,) instead of f(Az + Ade,,) and f(Az + e,,), respectively, we

can also derive (2.2). The case |1| = 1 follows from these two cases.
Define a mapping g : X — Y as follows:

8(2) = a(DP)f(2), gz + dey) = g(2) + Af(ey,)
forall z € Z and A € R with A # 0. By (2.2), g is phase equivalent to f and, for all z;, z»
in Z with ||zl < 1, ||z2ll < 1,
{2, llg(z1) = g(@)II} = {llg(z1 + ey,) + 8(z2 + eyl [I8(z1 + €y) = 822 + ey}
={llz1 + 22 + 2ey,l, llz1 — 22ll}
={2,llz1 = 22ll}-

Since g is homogeneous, we conclude from this that ||g(z;) — g(z2)|| = ||z1 — 22]| for all
21,22 € Z. This and its definition are enough to show that g is an isometry from X onto
Y. The Mazur—Ulam theorem implies that g is a linear isometry. O
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