WIGNER'S THEOREM IN $\mathcal{L}^{\infty}(\Gamma)$ -TYPE SPACES

WEIKE JIA and DONGNI TAN™

(Received 31 July 2017; accepted 6 August 2017; first published online 4 December 2017)

Abstract

We investigate surjective solutions of the functional equation

$$\{||f(x) + f(y)||, ||f(x) - f(y)||\} = \{||x + y||, ||x - y||\} \quad (x, y \in X),$$

where $f: X \to Y$ is a map between two real $\mathcal{L}^{\infty}(\Gamma)$ -type spaces. We show that all such solutions are phase equivalent to real linear isometries. This can be considered as an extension of Wigner's theorem on symmetry for real $\mathcal{L}^{\infty}(\Gamma)$ -type spaces.

2010 Mathematics subject classification: primary 46B03; secondary 46B04.

Keywords and phrases: $\mathcal{L}^{\infty}(\Gamma)$ -type spaces, Wigner's theorem, phase equivalent.

1. Introduction

Let X and Y be real normed spaces. We say that a mapping $f: X \to Y$ is an isometry if it satisfies the equality

$$||f(x) - f(y)|| = ||x - y|| \quad (x, y \in X).$$

This equality implies strong structural properties for the mapping f. The classical Mazur–Ulam theorem [5] states that every surjective isometry between X and Y is affine. We say that a mapping $f: X \to Y$ is phase equivalent to a linear isometry if there exists a function $\varepsilon: X \to \{-1, 1\}$ such that εf is a linear isometry. The fundamental theorem of Wigner on symmetry characterises the mappings that are phase equivalent to linear isometries in real Hilbert spaces. That is, when X and Y are real Hilbert spaces, all mappings $f: X \to Y$ that are phase equivalent to linear isometries are precisely the solutions of the functional equation

$$|\langle f(x), f(y) \rangle| = |\langle x, y \rangle| \quad (x, y \in X).$$

Wigner's theorem plays a fundamental role in quantum mechanics and has several equivalent formulations and extensions (see, for example, [1, 2, 4, 6–10, 12]). In [4], a real version of Wigner's theorem was given by using the functional equation

$$\{||f(x) + f(y)||, ||f(x) - f(y)||\} = \{||x + y||, ||x - y||\} \quad (x, y \in X). \tag{1.1}$$

The authors are supported by the Natural Science Foundation of China, Grant Nos. 11371201, 11201337, 11201338 and 11301384.

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

It is easy to see that, when X and Y are real normed spaces, all mappings $f: X \to Y$ that are phase equivalent to real linear isometries are also the solutions of the functional equation (1.1). In [4], Maksa and Páles proved that the converse also holds provided that X and Y are real inner product spaces, and they posed the question: what are the solutions $f: X \to Y$ of (1.1) when X and Y are normed but not necessarily inner product spaces? Huang and Tan [3] gave a partial answer to the above question for real atomic L_p spaces with p > 0.

The aim of this note is to answer the above question for real $\mathcal{L}^{\infty}(\Gamma)$ -type spaces. We will show that the surjective solutions of (1.1) are phase equivalent to linear isometries provided that X and Y are real $\mathcal{L}^{\infty}(\Gamma)$ -type spaces. Indeed, we give a representation theorem of surjective mappings which are phase equivalent to linear isometries in $\mathcal{L}^{\infty}(\Gamma)$ -type spaces.

2. Main results

Throughout this section, all spaces are over the real field \mathbb{R} . Let X and Y be normed spaces. We use S_X and S_Y to denote their respective unit spheres. The space of all bounded real-valued functions on an index set Γ equipped with the supremum norm is denoted by $\ell^{\infty}(\Gamma)$ and any of its subspaces containing all e_{γ} 's $(\gamma \in \Gamma)$ are called $\mathcal{L}^{\infty}(\Gamma)$ -type spaces. For example, the spaces $c_0(\Gamma)$, $c(\Gamma)$, $\ell^{\infty}(\Gamma)$, particularly, c_0 , c, ℓ^{∞} , are $\mathcal{L}^{\infty}(\Gamma)$ -type spaces. The $\ell^{\infty}(\Gamma)$ -space is

$$\ell^{\infty}(\Gamma) = \Big\{ x = \{\xi_{\gamma}\}_{\gamma \in \Gamma} : \|x\| = \sup_{\gamma \in \Gamma} |\xi_{\gamma}| < \infty, \ \xi_{\gamma} \in \mathbb{R}, \ \gamma \in \Gamma \Big\}.$$

For every $x = \{\xi_{\gamma}\}_{{\gamma} \in \Gamma} \in \mathcal{L}^{\infty}(\Gamma)$, we write $x = \{\xi_{\gamma}\}$ and omit the subscripts ${\gamma} \in \Gamma$ for simplicity of notation. We denote the support of x by Γ_x , that is,

$$\Gamma_x = \{ \gamma \in \Gamma : x(\gamma) \neq 0 \}.$$

The star of x with respect to $S_{\mathcal{L}^{\infty}(\Gamma)}$ is defined by

$$St(x) = \{y : y \in S_{\mathcal{L}^{\infty}(\Gamma)}, ||y + x|| = 2\}.$$

We first cite a basic result for star sets in $\mathcal{L}^{\infty}(\Gamma)$ -type spaces.

Lemma 2.1 [11, Lemma 2]. Let x be in $S_{\mathcal{L}^{\infty}(\Gamma)}$. If there exists an $x_0 \in St(x)$ satisfying $||y - x_0|| \le 1$ for all $y \in St(x)$, then Γ_{x_0} is a singleton.

In order to prove the first main result, we need the following lemma.

Lemma 2.2. Let $X = \mathcal{L}^{\infty}(\Gamma)$ and $Y = \mathcal{L}^{\infty}(\Delta)$. Suppose that $f: X \to Y$ is a surjective mapping satisfying (1.1). Let $\gamma \in \Gamma$ and denote by $\Delta_{f(e_{\gamma})}$ the support of $f(e_{\gamma})$. Then $\Delta_{f(e_{\gamma})}$ is a singleton.

PROOF. Suppose that $\Delta_{f(e_{\gamma})}$ contains more than one point. Since f is surjective, by Lemma 2.1 there is a vector $x \in X$ with $f(x) \in St(f(e_{\gamma}))$ such that $||f(x) - f(e_{\gamma})|| > 1$. This implies that

$$||f(x) + f(e_{\gamma})|| + ||f(x) - f(e_{\gamma})|| > 3.$$

By (1.1), f is norm preserving and thus $x \in S_X$. Hence, for every $\gamma \in \Gamma$,

$$||f(x) + f(e_{\gamma})|| + ||f(x) - f(e_{\gamma})|| = ||x + e_{\gamma}|| + ||x - e_{\gamma}|| \le 3,$$

which is a contradiction. The proof is complete.

The following theorem is a representation theorem for surjective mappings between two real $\mathcal{L}^{\infty}(\Gamma)$ -type spaces satisfying (1.1). For any $a, b \in \mathbb{R}$, we shall write $a \vee b = \max\{a, b\}$.

П

THEOREM 2.3. Let $X = \mathcal{L}^{\infty}(\Gamma)$ and $Y = \mathcal{L}^{\infty}(\Delta)$. Suppose that $f: X \to Y$ is a surjective mapping satisfying (1.1). Then there exists a bijection $\pi: \Gamma \to \Delta$ such that for every $x = \{\xi_{\gamma}\} \in X$, we have $f(x) = \{\eta_{\pi(\gamma)}\} \in Y$ with $|\eta_{\pi(\gamma)}| = |\xi_{\gamma}|$ for every $\gamma \in \Gamma$.

PROOF. From Lemma 2.2, we can define a map $\pi : \Gamma \to \Delta$ by $\{\pi(\gamma)\} = \Delta_{f(e_{\gamma})}$ for each $\gamma \in \Gamma$. We now prove that π is bijective. If $\pi(\gamma_1) = \pi(\gamma_2)$, by (1.1) and Lemma 2.2,

$$2 = ||f(e_{\gamma_1}) - f(e_{\gamma_2})|| \lor ||f(e_{\gamma_1}) + f(e_{\gamma_2})||$$

= $||e_{\gamma_1} - e_{\gamma_2}|| \lor ||e_{\gamma_1} + e_{\gamma_2}|| \le 2.$

So, $||e_{\gamma_1} - e_{\gamma_2}|| \lor ||e_{\gamma_1} + e_{\gamma_2}|| = 2$, which implies that $\gamma_1 = \gamma_2$. To see that π is surjective, suppose on the contrary that there is a $\delta_0 \in \Delta/\pi(\Gamma)$. As f is surjective, there exists $x \in S_X$ such that $f(x) = e_{\delta_0}$. For every $\gamma \in \Gamma$,

$$||x + e_{\gamma}|| + ||x - e_{\gamma}|| = ||f(x) + f(e_{\gamma})|| + ||f(x) - f(e_{\gamma})||$$
$$= ||e_{\delta_0} + f(e_{\gamma})|| + ||e_{\delta_0} - f(e_{\gamma})||$$
$$= 2$$

The equation $||x + e_{\gamma}|| + ||x - e_{\gamma}|| = 2$ for all $\gamma \in \Gamma$ implies that $x = \pm e_{\gamma_1}$ for some $\gamma_1 \in \Gamma$ or x = 0. Since $\delta_0 \in \Delta/\pi(\Gamma)$, we must have x = 0, which is a contradiction.

We shall prove that f has the desired property. Since f is norm preserving, we need only consider the vectors in the unit sphere of X. For every $x = \{\xi_{\gamma}\} \in S_X$, we can write $f(x) = \{\eta_{\pi(\gamma)}\} \in Y$. For every $\gamma \in \Gamma$, we have $f(e_{\gamma}) = \pm e_{\pi(\gamma)}$ and so

$$\begin{aligned} 1 + |\xi_{\gamma}| &= ||x + e_{\gamma}|| \lor ||x - e_{\gamma}|| \\ &= ||f(x) + f(e_{\gamma})|| \lor ||f(x) - f(e_{\gamma})|| \\ &= 1 + |\eta_{\pi(\gamma)}|. \end{aligned}$$

Thus, $|\xi_{\gamma}| = |\eta_{\pi(\gamma)}|$ for every $\gamma \in \Gamma$. The proof is complete.

For our second main result, we need one more lemma. For $x = \{\xi_\gamma\} \in \mathcal{L}^\infty(\Gamma)$, we shall use the notation $e_x = \{\theta_\gamma\}$, where $\theta_\gamma = \text{sign}(\xi_\gamma)$ for every $\gamma \in \Gamma$ (if $\xi_\gamma = 0$, we put $\theta_\gamma = 0$ throughout what follows). Obviously, $e_{x+y} = e_x + e_y$, $e_{-x} = -e_x$ and $e_{\lambda x} = e_x$ for all $x, y \in \mathcal{L}^\infty(\Gamma)$ with $\Gamma_x \cap \Gamma_y = \emptyset$ and $\lambda > 0$.

Lemma 2.4. Let $X = \mathcal{L}^{\infty}(\Gamma)$ and $Y = \mathcal{L}^{\infty}(\Delta)$. If $f: X \to Y$ is a surjective mapping satisfying (1.1), then $e_{f(x)} = \pm f(e_x)$ for every $x \in \mathcal{L}^{\infty}(\Gamma)$.

PROOF. By (1.1),

$$\{||f(e_x) + f(||x||e_x)||, ||f(e_x) - f(||x||e_x)||\} = \{||e_x + ||x||e_x||, ||e_x - ||x||e_x||\}$$

$$= \{1 + ||x||, |1 - ||x|||\}. \tag{2.1}$$

From Theorem 2.3, for every $\gamma \in \Gamma_x$, $|f(e_x)(\pi(\gamma))| = 1$ and $|f(||x||e_x)(\pi(\gamma))| = ||x||$. This together with (2.1) implies that

$$e_{f(||x||e_x)} = \pm f(e_x).$$

On the other hand,

$$\begin{aligned} \{||f(||x||e_x) + f(x)||, ||f(||x||e_x) - f(x)||\} &= \{||||x||e_x + x||, ||||x||e_x - x||\} \\ &= \Big\{2||x||, ||x|| - \inf_{\gamma \in \Gamma_x} |x(\gamma)|\Big\}. \end{aligned}$$

Note that $|f(x)(\pi(\gamma))| = |x(\gamma)|$ for any $\gamma \in \Gamma_x$. This implies that

$$e_{f(x)} = \pm e_{f(||x||e_x)} = \pm f(e_x).$$

The next result shows that a surjective mapping satisfying (1.1) is close to linear.

Lemma 2.5. Let $X = \mathcal{L}^{\infty}(\Gamma)$ and $Y = \mathcal{L}^{\infty}(\Delta)$. Suppose that $f: X \to Y$ is a surjective mapping satisfying (1.1). Then:

- (a) $f(\lambda x) = \pm \lambda f(x)$ for every $x \in X$, $\lambda \in \mathbb{R}$;
- (b) there exist two real numbers α and β with $|\alpha| = |\beta| = 1$ such that

$$f(x + y) = \alpha f(x) + \beta f(y)$$

for all nonzero vectors x and y in X with $\Gamma_x \cap \Gamma_v = \emptyset$.

PROOF. (a) It suffices to show that the conclusion holds for every x in the unit sphere of X. From (1.1), $f(-e_x) = \pm f(e_x)$. Applying Lemma 2.4,

$$e_{f(\lambda x)} = \pm f(e_{\lambda x}) = \pm f(e_x) = \pm e_{f(x)}$$

This and Theorem 2.3 imply that

$$f(\lambda x) = \pm \lambda f(x)$$
.

(b) By Theorem 2.3, we only need to check that

$$e_{f(x+y)} = \alpha e_{f(x)} + \beta e_{f(y)}$$

for some real numbers α and β with $|\alpha| = |\beta| = 1$. This is equivalent to showing that

$$f(e_x + e_y) = f(e_{x+y}) = \alpha f(e_x) + \beta f(e_y)$$

for some real numbers α and β with $|\alpha| = |\beta| = 1$. Write

$$f(e_x) = \{\xi'_{\pi(y)}\}, \quad f(e_y) = \{\eta'_{\pi(y)}\}, \quad f(e_x + e_y) = \{\xi''_{\pi(y)} + \eta''_{\pi(y)}\},$$

where $|\xi''_{\pi(\gamma)}| = |\xi'_{\pi(\gamma)}| = 1$ for every $\gamma \in \Gamma_x$ and $|\eta''_{\pi(\gamma)}| = |\eta'_{\pi(\gamma)}| = 1$ for every $\gamma \in \Gamma_y$. By Lemma 2.4 and (1.1),

$$\begin{split} & \left\{ \sup_{\gamma \in \Gamma_{x}} |\xi_{\pi(\gamma)}^{\prime\prime} + \xi_{\pi(\gamma)}^{\prime}| \vee 1, \sup_{\gamma \in \Gamma_{x}} |\xi_{\pi(\gamma)}^{\prime\prime} - \xi_{\pi(\gamma)}^{\prime}| \vee 1 \right\} \\ &= \left\{ ||f(e_{x} + e_{y}) + f(e_{x})||, ||f(e_{x} + e_{y}) - f(e_{x})|| \right\} = \{2, 1\}. \end{split}$$

It follows that $\{\xi''_{\pi(\gamma)}\}=\pm f(e_x)$ and, similarly, $\{\eta''_{\pi(\gamma)}\}=\pm f(e_y)$. This completes the proof.

THEOREM 2.6. Let $X = \mathcal{L}^{\infty}(\Gamma)$ and $Y = \mathcal{L}^{\infty}(\Delta)$. Suppose that $f: X \to Y$ is a surjective mapping satisfying (1.1). Then f is phase equivalent to a linear isometry.

PROOF. We first show that f is phase equivalent to a homogeneous map. It follows from the axiom of choice that there is a set $L \subset X$ such that for any $x \in X$ with $x \neq 0$, there exists exactly one element $y \in L$ such that $x = \lambda y$ for some $\lambda \in \mathbb{R}$. The desired map $f': X \to Y$ can be defined by

$$f'(x) = f'(\lambda y) = \lambda f(y)$$
 for all $x = \lambda y \in X$.

Therefore, we may assume that f is homogeneous. Fix $\gamma_0 \in \Gamma$ and let

$$Z = \{x \in X : \Gamma_x \cap \{\gamma_0\} = \emptyset\}.$$

By Lemma 2.5, for every $z \in Z$, we can write

$$f(z + e_{\gamma_0}) = \alpha(z)f(z) + \beta(z)f(e_{\gamma_0}), \quad |\alpha(z)| = |\beta(z)| = 1.$$

We shall show that for all $z \in Z$ with $z \neq 0$ and $\lambda \in \mathbb{R}$ with $\lambda \neq 0$,

$$\alpha(z)\beta(z) = \alpha(\lambda z)\beta(\lambda z). \tag{2.2}$$

It suffices to show that (2.2) holds for every z in the unit sphere of Z. Then, by (1.1), if $|\lambda| > 1$,

$$\begin{aligned} &\{|\lambda(\alpha(z) + \alpha(\lambda z))| \vee |\lambda\beta(z) + \beta(\lambda z)|, |\lambda(\alpha(z) - \alpha(\lambda z))| \vee |\lambda\beta(z) - \beta(\lambda z)|\} \\ &= \{||f(\lambda z + \lambda e_{\gamma_0}) + f(\lambda z + e_{\gamma_0})||, ||f(\lambda z + \lambda e_{\gamma_0}) - f(\lambda z + e_{\gamma_0})||\} \\ &= \{|\lambda - 1|, 2|\lambda|\}. \end{aligned}$$

This proves the equation (2.2) in the case of $|\lambda| > 1$. If $|\lambda| < 1$, by considering $f(\lambda z + e_{\gamma_0})$ and $f(z + e_{\gamma_0})$ instead of $f(\lambda z + \lambda e_{\gamma_0})$ and $f(\lambda z + e_{\gamma_0})$, respectively, we can also derive (2.2). The case $|\lambda| = 1$ follows from these two cases.

Define a mapping $g: X \to Y$ as follows:

$$g(z) = \alpha(z)\beta(z)f(z), \quad g(z + \lambda e_{\gamma_0}) = g(z) + \lambda f(e_{\gamma_0})$$

for all $z \in Z$ and $\lambda \in \mathbb{R}$ with $\lambda \neq 0$. By (2.2), g is phase equivalent to f and, for all z_1, z_2 in Z with $||z_1|| \le 1, ||z_2|| \le 1$,

$$\begin{aligned} \{2, ||g(z_1) - g(z_2)||\} &= \{||g(z_1 + e_{\gamma_0}) + g(z_2 + e_{\gamma_0})||, ||g(z_1 + e_{\gamma_0}) - g(z_2 + e_{\gamma_0})||\} \\ &= \{||z_1 + z_2 + 2e_{\gamma_0}||, ||z_1 - z_2||\} \\ &= \{2, ||z_1 - z_2||\}. \end{aligned}$$

Since g is homogeneous, we conclude from this that $||g(z_1) - g(z_2)|| = ||z_1 - z_2||$ for all $z_1, z_2 \in Z$. This and its definition are enough to show that g is an isometry from X onto Y. The Mazur–Ulam theorem implies that g is a linear isometry.

References

- [1] Gy. P. Gehér, 'An elementary proof for the non-bijective version of Wigner's theorem', *Phys. Lett. A* **378** (2014), 2054–2057.
- [2] M. Györy, 'A new proof of Wigner's theorem', Rep. Math. Phys. **54** (2004), 159–167.
- [3] X. Huang and D. Tan, 'Wigner's theorem in atomic L_p -spaces (p > 0)', *Publ. Math. Debrecen*, to appear.
- [4] G. Maksa and Z. Páles, 'Wigner's theorem revisited', *Publ. Math. Debrecen* **81**(1–2) (2012), 243–249.
- [5] S. Mazur and S. Ulam, 'Sur les transformations isométriques d'espaces vectoriels normés', C. R. Math. Acad. Sci. Paris 194 (1932), 946–948.
- [6] L. Molnár, 'Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn's version of Wigner's theorem', J. Funct. Anal. 194(2) (2002), 248–262.
- [7] A. Mouchet, 'An alternative proof of Wigner theorem on quantum transformations based on elementary complex analysis', *Phys. Lett. A* **377** (2013), 2709–2711.
- [8] J. Rätz, 'On Wigner's theorem: remarks, complements, comments, and corollaries', *Aequationes Math.* **52**(1–2) (1996), 1–9.
- [9] C. S. Sharma and D. L. Almeida, 'A direct proof of Wigner's theorem on maps which preserve transition probabilities between pure states of quantum systems', *Ann. Phys.* 197(2) (1990), 300–309.
- [10] R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan, 'Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics', *Phys. Lett. A* 372(46) (2008), 6847–6852.
- [11] D. N. Tan, 'Nonexpansive mappings on the unit spheres of some Banach spaces', Bull. Aust. Math. Soc. 80 (2009), 139–146.
- [12] A. Turnšek, 'A variant of Wigner's functional equation', Aequationes Math. 89(4) (2015), 1–8.

WEIKE JIA, Department of Mathematics, Tianjin University of Technology, 300384 Tianjin, China e-mail: jiaweike2017@163.com

DONGNI TAN, Department of Mathematics, Tianjin University of Technology, 300384 Tianjin, China

e-mail: tandongni0608@sina.cn