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Equivariant C∗-correspondences and
compact quantum group actions on
Pimsner algebras
Suvrajit Bhattacharjee and Soumalya Joardar
Abstract. Let G be a compact quantum group. We show that given a G-equivariant
C∗-correspondence E, the Pimsner algebra OE can be naturally made into a G-C∗-algebra. We also
provide sufficient conditions under which it is guaranteed that a G-action on the Pimsner algebra
OE arises in this way, in a suitable precise sense. When G is of Kac type, a KMS state on the Pimsner
algebra, arising from a quasi-free dynamics, is G-equivariant if and only if the tracial state obtained
from restricting it to the coefficient algebra is G-equivariant, under a natural condition. We apply
these results to the situation when the C∗-correspondence is obtained from a finite, directed graph
and draw various conclusions on the quantum automorphism groups of such graphs, both in the
sense of Banica and Bichon.

1 Introduction

In his seminal paper [Pim97], Pimsner introduced a class of C∗-algebras, now referred
to as Pimsner algebras, that simultaneously generalizes crossed products by Z and
Cuntz–Krieger algebras, see [CK80]. The starting point of his construction is, in his
terminology, a Hilbert bimodule (E , ϕ) over a C∗-algebra A; this means that E is a
right Hilbert A-module together with an isometric ∗-homomorphism ϕ ∶ A → L(E)
from A to the C∗-algebra L(E) of adjointable operators on E, that provides the left A-
module structure on E. When E is full as a right Hilbert A-module, Pimsner went on to
obtain, in analogy with the Toeplitz extension proof of the Bott periodicity and the cel-
ebrated Pimsner–Voiculescu sequence, in topological K-theory, a six-term sequence
in KK-theory, relating the KK-groups of the Pimsner algebra to the KK-groups of the
C∗-algebra A. In fact, an essential ingredient in the proof is the existence of a Toeplitz
extension associated with the Pimsner algebra.
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2 S. Bhattacharjee and S. Joardar

Since their introduction, Pimsner algebras have been the subject of intense study,
from various points of view; even more so, after Katsura [Kat04b] generalized the
construction, removing the injectivity condition on ϕ. Thus, Pimsner’s construction,
as generalized by Katsura, now works for any (E , ϕ) consisting of a right Hilbert
A-module E and a ∗-homomorphism ϕ ∶ A → L(E) from A to the C∗-algebra L(E).
Such a pair is now referred to as a C∗-correspondence over A. This generalization led
Katsura [Kat04a] to further extend the already extensive list of C∗-algebras that fall in
this class, by incorporating graph C∗-algebras; moreover, it was shown in [Kat03] that
Pimsner algebras also cover what was called crossed product by Hilbert C∗-bimodules
in [AEE98]. It is to be noted that such a generalization was already considered in the
beautiful paper [MS98], also providing a plentiful of examples; see also [AA09].

Leveraging the flexibility of Pimsner’s construction, many structural properties of
the Pimsner algebra OE may be studied through a sound grip on the algebra A and
the Hilbert A-module E. Adapting such a viewpoint, [Kat07, KPW98] studied the
ideal structure of the Pimsner algebras. Various approximation properties are studied,
for example, in [SZ10]. As already mentioned above, [AA09, AEE98] studies Morita
equivalence of such algebras. Continuing along the lines initiated by Pimsner and
Katsura, [Sch15] studies K-theory of crossed products of Pimsner algebras. Crossed
products as well as (co)actions of groups are also the subject of study in [HN08,
KQR15], which we shall return to in a moment, as they form the main theme of the
present article. [MS98] exploits dilation theory and views Pimsner algebras as the
C∗-envelopes of the tensor algebra of the correspondence (E , ϕ). [LN04] provides a
detailed study of KMS states (and weights) on the Pimsner algebras, a topic which
we will again return to in a moment. Providing a connection with the theory of
quantum principal bundles, [AKL16] exhibits a class of natural examples arising from
q-deformations as Pimsner algebras. Let us mention also the recent [RRS19] and
[PR06], that makes contact with Connes’ program [Con94], the former studying
Poincaré duality of Pimsner algebras. Finally, the recent preprint [AAG+22] studies
correspondences over commutative algebras and associated Pimsner algebras from
the point of view of Elliott’s program.

At the end of his paper, Pimsner remarks [Pim97, Remark 4.10], that all his
constructions are equivariant, under an action of a locally compact, second countable
group. The action of the group on the C∗-correspondence is to be taken in the
sense of Kasparov [Kas88]. The details of the remark appear in [HN08] where the
authors consider actions of amenable locally compact groups and show that for such
groups, an equivariant C∗-correspondence induces a natural action on the Pimsner
algebra. Moreover, the crossed product can be identified as the Pimsner algebra of
the crossed product C∗-correspondence. Continuing along this line, the authors of
[KQR15] consider coactions of groups on C∗-correspondences and prove a similar
result to that of [HN08] (see also [BKQR15]). The desire to extend these results to the
quantum setting, i.e., in the situation where we have a quantum group instead of a
group, is one of the major motivations of the present article; and this brings us to the
next paragraph.

Introduced by Woronowicz in his seminal paper [Wor87], compact quantum
groups are now well established in Connes’ approach to noncommutative geometry.
The landmark discovery of SUq(2) by Woronowicz together with the dream of making

https://doi.org/10.4153/S0008414X23000810 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000810


Compact quantum group actions on Pimsner algebras 3

contact with Connes’ enterprise, resulted, following Wang’s pioneering work on
quantum symmetries of finite spaces [Wan98], in several constructions and insights.
Let us mention, albeit incompletely, the work of:
• Banica, Bichon, and collaborators on quantum symmetries of discrete structures

(see [Ban05a, Ban05b, Bic03]);
• Goswami, Bhowmick, and collaborators on quantum isometries of spectral triples

(see [BG09, BG19, GJ18, Gos20]);
• Banica, Skalski, and collaborators on quantum symmetries of C∗-algebras equipped

with orthogonal filtrations (see [BMRS19, BS13]); and
• more recently, Goswami and collaborators on quantum symmetries of subfactors

(see [BCG22]).
The study of quantum symmetries of C∗-algebras have also been rewarding enough.
Indeed, for example, it is well-known that there is no ergodic action of a compact group
on the Cuntz-algebraOn ; however,On admits an ergodic action of a compact quantum
group, namely, the (quasi-free action of the) free unitary quantum group, turning On
into a quantum homogeneous space. Similar richness of quantum symmetries has
been observed in other contexts as well. For example, compact quantum groups have
been found to preserve fewer KMS states on certain graph C∗-algebras as opposed to
compact group actions [JM21a]. As a necessarily incomplete list of references for the
reader interested in this direction, we mention [Gab14, GW16, Kat17, Pao97].

Keeping in mind, the richness of the two camps – Pimsner algebras at one hand and
actions of compact quantum groups on the other, we combine the two in the present
article. Thus, we study compact quantum group actions on Pimsner algebras, the
underlying philosophy being the same as mentioned above, i.e., studying such actions
through actions on the C∗-correspondence. To carry out this program, however,
we would need a notion of equivariant C∗-correspondences under the action of a
compact quantum group. This is based on the fundamental work of Baaj and Skandalis
[BS89], where the authors generalize Kasparov’s equivariant KK-theory [Kas88] to the
setting where there is no group anymore but a Hopf C∗-algebra. Having a notion of
equivariant C∗-correspondences at hand, our first theorem reads as follows.
Theorem 1.1 Let G be a compact quantum group, let (A, α) be a unital G-C∗-algebra,
and let (E , ϕ, λ) be a G-equivariant C∗-correspondence over the G-C∗-algebra (A, α).
Assume further that the Hilbert A-module E is finitely generated and projective. Then
there is a unique unital ∗-homomorphism

ω ∶ OE → OE ⊗ C(G)
such that

ω ○ kE = (kE ⊗ idC(G)) ○ λ, and, ω ○ kA = (kA ⊗ idC(G)) ○ α.

Moreover, the pair (OE , ω) is a G-C∗-algebra. Here, OE denotes the Pimsner algebra
associated with (E , ϕ); (kE , kA) is the defining universal covariant representation of
OE ; α is the G-action on A and λ is the G-action on E.

The above theorem also leads one, naturally, to seek for a possible converse to the
theorem. However, to identify the precise formulation of a converse, if at all possible,
requires some work. To explain in more detail, let us make the following definition.
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4 S. Bhattacharjee and S. Joardar

Definition 1.2 Let A be a unital C∗-algebra, let (E , ϕ) be a C∗-correspondence over
A (where E is assumed to be finitely generated and projective), and let G be a compact
quantum group. An action ρ ∶ OE → OE ⊗ C(G) of G on the Pimsner algebra OE is
said to be a lift if there are G-actions α and λ on A and on E, respectively, such that
the following are satisfied.
• (A, α) is a G-C∗-algebra;
• (E , ϕ, λ) is a G-equivariant C∗-correspondence over the G-C∗-algebra (A, α);
• ρ coincides with ω as in Theorem 1.1.

Now, we can state the question in precise terms.
Question 1.3 Given an action ρ of a compact quantum group G on the Pimsner algebra
OE , is ρ always a lift?

The answer to the above question is no, however, and counter-examples exist even
for group actions. And this leads to our next theorem.
Theorem 1.4 The action ρ of Tn on On given by

ρ ∶ On → On ⊗ C(Tn), ρ(S i) = (S i ⊗ 1C(Tn))u,

is not a lift. Here, On is the Cuntz algebra on n-generators, the generators being S i , i =
1, . . . , n and u is the element ∑n

k=1 Sk S∗k ⊗ zk ∈ On ⊗ C(Tn).
Nevertheless, we are able to answer Question 1.3 positively if we restrict ourselves

to the class of Pimsner algebras that are considered in [AKL16], i.e., quantum principal
T-bundles, as stated in the following theorem.
Theorem 1.5 Let (A, γ) be a unital T-C∗-algebra such that:
• the T-action γ is principal;
• the fixed point algebra A(0) is separable;
• the spectral subspaces A(1) and A(−1) are full over A(0),
so that there is an isomorphism OA(1) ≅ A. Let G be a compact quantum group, and let
ρ ∶ A → A⊗ C(G) be a gauge-equivariant G-action on A in the sense that for all z ∈ T,

(γz ⊗ idC(G)) ○ ρ = ρ ○ γz .

Then ρ is a lift in the sense of Definition 1.2.
As mentioned previously, compact quantum group actions preserve fewer KMS

states on certain graph C∗-algebras and it is thus natural to investigate what happens
when we have such an action of a compact quantum group on Pimsner algebras
as in Theorem 1.1. In [LN04], the authors show that for a quasi-free dynamics on
the Pimsner algebra OE induced by a continuous one-parameter group of unitary
isometries of the C∗-correspondence (E , ϕ), KMS states on OE are characterized by
traces on the C∗-algebra A. It is thus natural to hope that if the one-parameter group
of isometries of the C∗-correspondence is, in some natural way, compatible with the
G-structure on the C∗-correspondence then G-equivariance of KMS states on the
Pimsner algebra may also be characterized by G-equivariance of the corresponding
tracial states on A. The necessary compatibility turns out to be the G-equivariance
of the generator of the one-parameter group of isometries. Let us now state our next
theorem which sums up this paragraph.
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Theorem 1.6 Let G be a compact quantum group of Kac type, let (A, α) be a unital
G-C∗-algebra, let (E , ϕ, λ) be a G-equivariant C∗-correspondence over the
G-C∗-algebra (A, α), and let ω be the G-action on OE , as obtained in Theorem 1.1
where the Hilbert A-module E is finitely generated and projective. Let δ be the quasi-free
dynamics induced by the module dynamics U satisfying the conditions as laid out in
[LN04]. Let U be G-equivariant, i.e., for all t ∈ R,

(Ut ⊗ idC(G)) ○ λ = λ ○ Ut .

Let φ be a (δ, β)-KMS state (where β ∈ (0,∞)) on OE , and let τ = φ ○ kA be the tracial
state on A as mentioned above. Then φ is G-equivariant if and only if τ is G-equivariant.

We next apply the above general results to the concrete situation where the
C∗-correspondence arises from a finite, directed graph. In that case, the graph
C∗-algebra coincides with the Pimsner algebra, allowing us to apply the above results.
In particular, we recover the results obtained in [JM21a, JM21b, SW18]. This also
enables us to gain a more concrete understanding of most of the results concerning
the interaction between quantum symmetries of graphs and its graph C∗-algebras. For
quite a long time, there have been at least two notions of a quantum automorphism
group of a finite, simple, directed graph, namely, one due to Banica [Ban05a] and one
due to Bichon [Bic03]. The relationship between these two notions, however, is not so
conspicuous; in particular, it is in general difficult to identify the cases when these two
notions coincide. In this direction, we have at our disposal the following theorem to
offer.

Theorem 1.7 Let G be a finite, simple graph without any source. If either r or s is
injective, then Aut+Bic(G) is isomorphic to Aut+Ban(G).

Let us now briefly discuss the organization of the paper. In Section 2, we briefly
recall the necessary background on compact quantum groups and their actions on
C∗-algebras and Hilbert C∗-modules. We begin Section 3 with a careful summary
of Pimsner’s constructions and prove Theorem 1.1 (Theorem 3.9). It is in this section
that we prove Theorem 1.4 (Theorem 3.14) and Theorem 1.5 (Theorem 3.16) as well.
Section 4 is devoted to recalling some background on KMS states from [LN04] and
to proving Theorem 1.6 (Theorem 4.10). In the remaining three sections, we apply the
general results to the question of quantum symmetries of graphs. In Section 5, we
discuss the bridge that connects the general results of the previous sections with the
situation at hand. We also reprove some results on the quantum symmetries of graphs.
Section 6 is devoted to a detailed study and comparison in the case of a simple, directed
graph. It is in this section that we prove Theorem 1.7 (Corollary 6.12). The next and
the final section, Section 7 is devoted to the case of multigraphs.

To end this Introduction, let us mention that when a first draft of the present
article was being written, the preprint [Kim14] was brought to our notice. The author
proves a similar result to that of ours but goes on to another direction, along the lines
of [HN08, KQR15]. In particular, the author considers coactions of not-necessarily-
unital Hopf C∗-algebras on Pimsner algebras and identifies the crossed product as the
Pimsner algebra of the crossed product C∗-correspondence. To our surprise, our proof
of Theorem 1.1 is very different to that of [Kim14]. The author proves Theorem 1.1 for
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6 S. Bhattacharjee and S. Joardar

a general C∗-correspondence but under an invariance condition of the Katsura ideal.
Whereas, we do not require such invariance but restrict ourselves to the case when the
Hilbert C∗-module is finitely generated and projective. There are no other overlaps
with the results in [Kim14].

Notations and conventions

For an object X in some category, idX denotes the identity morphism of X. The norm-
closed linear span of a subset S of a Banach space is denoted by [S]. For a unital C∗-
algebra A, 1A denotes the unit element in A. For a right Hilbert A-module E, L(E)
denotes the C∗-algebra of adjointable operators on E, and K(E) denotes the closed
two-sided ideal of compact operators on E. The latter is the norm-closed linear span
of θ ξ,η , ξ, η ∈ E - where θ ξ,η is the rank-one operator on E given by θ ξ,η(ζ) = ξ⟨η, ζ⟩,
ζ ∈ E. We denote the algebraic tensor product by ⊙. Depending on the context, ⊗
denotes the minimal tensor product of two C∗-algebras, or external (also called
exterior) tensor product of two Hilbert C∗-modules. However, for the internal tensor
product of a Hilbert A-module E and a Hilbert B-module F, where F is endowed with
a left action of A via the ∗-homomorphism ϕ ∶ A → L(F), is denoted by E ⊗ϕ F. A
reference for the general theory of Hilbert C∗-modules is [Lan95].

All Hilbert C∗-modules considered in this paper are over unital C∗-algebras and are
assumed to be full, finitely generated, and projective.

2 Compact quantum groups and their actions

In this section, we recall the basic definitions from the theory of compact quantum
groups and their actions on C∗-algebras. Our reference is [NT13] (see also [MVD98,
Wan98, Wor87]).

Definition 2.1 A compact quantum group G is a pair (C(G), ΔG) consisting of a
unital C∗-algebra C(G) and a unital ∗-homomorphism ΔG ∶ C(G) → C(G) ⊗ C(G)
satisfying the following conditions:

• (idC(G) ⊗ ΔG) ○ ΔG = (ΔG ⊗ idC(G)) ○ ΔG (coassociativity);
• [ΔG(C(G))(1C(G) ⊗ C(G))] = [ΔG(C(G))(C(G) ⊗ 1C(G))] = C(G) ⊗ C(G)

(bisimplifiability).

Given a compact quantum group G, there is a canonical dense Hopf-∗-algebra
C[G] ⊂ C(G) on which an antipodeκ and a counit ε are defined. A morphism f ∶ G1 →
G2 between two compact quantum groups G1 and G2 is given by a ∗-homomorphism:

f ∶ C(G2) → C(G1) such that ( f ⊗ f ) ○ ΔG2 = ΔG1 ○ f .

Such a ∗-homomorphism f ∶ C(G2) → C(G1) is also called a Hopf ∗-homomorphism
and we will use these two terms interchangeably.

Let G be a compact quantum group. Then there is a unique state h, called the Haar
state, such that

(h ⊗ idC(G))ΔG(a) = (idC(G) ⊗ h)ΔG(a) = h(a)1C(G) for all a ∈ C(G).
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In general, the Haar state need not be tracial but when it is, the compact quantum
group G is said to be of Kac type.

Definition 2.2 Let G be a compact quantum group. A G-C∗-algebra is a pair (A, α)
consisting of a unital C∗-algebra A and a unital ∗-homomorphism α ∶ A → A⊗ C(G)
satisfying the following conditions:

• (α ⊗ idC(G)) ○ α = (idA ⊗ ΔG) ○ α (coassociativity);
• [α(A)(1A ⊗ C(G))] = A⊗ C(G) (Podleś condition).

Let G be a compact quantum group, and let (A, α) be a G-C∗-algebra. One
refers to α as the G-action on A. There is (see [DC17, pp. 49–50]) a norm-dense ∗-
subalgebra S(A) of A, called the spectral subalgebra (or the Podleś subalgebra after
[Pod95, Theorem 1.5]), such that α restricts to yield a Hopf-∗-algebraic coaction
α∣S(A) ∶ S(A) → S(A) ⊙C[G]. The G-action α is said to be faithful if the ∗-algebra
generated by the set

{(ω ⊗ idC(G))α(A) ∣ ω ∈ A∗}

is norm-dense in C(G). Furthermore, a G-equivariant state on A is a state τ on A
satisfying

(τ ⊗ idC(G))α(a) = τ(a)1C(G) for all a ∈ A.

Definition 2.3 [Wan98, Definition 2.3] Let A be a unital C∗-algebra. A quantum
automorphism group of A is a pair (G , αG) consisting of a compact quantum group
G and a unital ∗-homomorphism αG ∶ A → A⊗ C(G) satisfying the following condi-
tions:

• The pair (A, αG) is a G-C∗-algebra;
• the G-action αG on A is faithful;
• if (G′ , αG′) is another pair consisting of a compact quantum group G′ and a unital
∗-homomorphism αG′ ∶ A → A⊗ C(G′) such that (A, αG′) is a G′-C∗-algebra and
αG′ is faithful then there is a unique morphism f ∶ G′ → G such that (idA ⊗ f ) ○
αG = αG′ .

Remark 2.4 In general, a quantum automorphism group may fail to exist. To ensure
existence, one generally assumes that the considered actions preserve some fixed
state on the C∗-algebra. We refrain from going into further details, instead refer the
interested reader to [Wan98].

Example 2.5 [Wan98, Theorem 3.1] Let Xn be the space consisting of n points. The
quantum automorphism group of the C∗-algebra C(Xn) is the quantum permutation
group together with the permutation action, denoted by (S+n , αXn). As a C∗-algebra,
C(S+n) is the universal C∗ algebra generated by q i j , i , j = 1, . . . , n, satisfying the
following relations:

q2
i j = q i j , q∗i j = q i j ,

n
∑
j=1

q i j =
n
∑
i=1

q i j = 1.
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The comultiplication on the generators is given by ΔS+n (q i j) = ∑n
k=1 q ik ⊗ qk j , i , j =

1, . . . , n. The action αXn is given by αXn(e j) = ∑n
i=1 e i ⊗ q i j , j = 1, . . . , n, where e j is

the indicator function at the point j.

We end this section with one more definition and a remark.

Definition 2.6 [BS89, Definition 2.2] Let G be a compact quantum group, and
let(B, β) be a G-C∗-algebra. A G-equivariant Hilbert B-module is a pair (E , λ) con-
sisting of a right Hilbert B-module E and a linear map λ ∶ E → E ⊗ C(G) satisfying
the following.
• For all b ∈ B and ξ, η ∈ E, λ(ξb) = λ(ξ)β(b) and ⟨λ(ξ), λ(η)⟩ = β(⟨ξ, η⟩);
• (idE ⊗ ΔG) ○ λ = (λ ⊗ idC(G)) ○ λ (coassociativity);
• [λ(E)(1B ⊗ C(G))] = E ⊗ C(G) (Podleś condition).

Remark 2.7 Let G be a compact quantum group, let (B, β) be a G-C∗-algebra,
and let (E , λ) be a G-equivariant Hilbert B-module. One refers to λ as the G-action
on E. There is (see [Voi11, p. 1878]) a dense subspace S(E) of E, called the spectral
submodule, such that λ restricts to yield a coaction λ∣S(E) ∶ S(E) → S(E) ⊙C[G].
Moreover, S(E) is naturally a right S(B)-module and the scalar product of E restricts
to an S(B)-valued scalar product on S(E), making S(E) into a pre-Hilbert S(B)-
module. Furthermore, one constructs (see [BS89, Proposition 2.4]) a unitary operator
Vλ ∶ E ⊗β (B ⊗ C(G)) → E ⊗ C(G) by

Vλ(ξ ⊗ x) = λ(ξ)x ,

for ξ ∈ E and x ∈ B ⊗ C(G). This unitary in turn determines an action adλ ∶K(E) →
K(E) ⊗ C(G) on K(E) given by

adλ(T) = Vλ(T ⊗ id)V∗λ ,

for T ∈K(E), making (K(E), adλ) into a G-C∗-algebra. Setting T = θ ξ,η for ξ, η ∈ E,
one obtains adλ(θ ξ,η) = λ(ξ)λ(η)∗ = θλ(ξ),λ(η).

3 C∗-correspondences and Pimsner algebras

In this section, after gathering some preliminaries on C∗-correspondences, and on
Pimsner algebras, we prove that for a compact quantum group G, a G-equivariant
C∗-correspondence naturally gives rise to a G-C∗-algebra structure on the Pimsner
algebra. We provide necessary and sufficient conditions under which it is guaranteed
that a G-C∗-algebra structure on the Pimsner algebra arises in this way. For the basic
definitions, our reference is [Kat04b] (see also [KPW98, Pim97]).

Definition 3.1 Let A be a unital C∗-algebra. A C∗-correspondence over A is a pair
(E , ϕ), consisting of a right Hilbert A-module E and a unital ∗-homomorphism ϕ ∶
A → L(E) from the C∗-algebra A to the C∗-algebra L(E) of adjointable operators
on E.

Remark 3.2 We remark that it is not customary to assume ϕ to be unital. But it is
easy to see that we lose no generality assuming this. For the justification, we urge the
reader to see Remark 3.7.
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Compact quantum group actions on Pimsner algebras 9

Definition 3.3 Let A be a unital C∗-algebra, and let (E , ϕ) be a C∗-correspondence
over A. A representation of the C∗-correspondence (E , ϕ) on a unital C∗-algebra B
is a pair (t, π), consisting of a linear map t ∶ E → B and a unital ∗-homomorphism
π ∶ A → B such that:
• t(ξ)∗t(η) = π(⟨ξ, η⟩) for all ξ, η ∈ E;
• t(ϕ(a)ξ) = π(a)t(ξ) for all a ∈ A and all ξ ∈ E.

It is a fact that for such a representation (π, t) of the C∗-correspondence
(E , ϕ) on the C∗-algebra B, t(ξa) = t(ξ)π(a) for all ξ ∈ E, and a ∈ A. Furthermore,
there is a well-defined unital ∗-homomorphism ψt ∶K(E) → B such that ψt(θ ξ,η) =
t(ξ)t(η)∗, for ξ, η ∈ E. Moreover, we have π(a)ψt(k) = ψt(ϕ(a)k) and ψt(k)t(ξ) =
t(kξ) for all a ∈ A, k ∈K(E), and ξ ∈ E.

Definition 3.4 Let A be a unital C∗-algebra, and let (E , ϕ) be a C∗-correspondence
over A. A representation (t, π) of (E , ϕ) on a unital C∗-algebra B is said to be covariant
if ψt(ϕ(a)) = π(a) for all a ∈ (ker ϕ)⊥, where

(ker ϕ)⊥ = {a ∈ A ∣ ab = 0 for all b ∈ ker(ϕ)}.

Remark 3.5 We remark that by our standing assumption, E is finitely generated and
therefore K(E) = L(E), which also implies that ϕ−1(K(E)) coincides with the whole
of A. Therefore, the so-called Katsura ideal JE , which is defined to be

JE = ϕ−1(K(E)) ∩ (ker ϕ)⊥,

is nothing but (ker ϕ)⊥. Moreover, it is proved in [KPW98] that one can restrict
to covariant representations (t, π) on unital C∗-algebras B with π unital, to define
the Pimsner algebra OE , assuming ϕ to be isometric, which is taken care of by the
appearance of (ker ϕ)⊥ in the definition of covariance above.

Definition 3.6 Let A be a unital C∗-algebra, and let (E , ϕ) be a C∗-correspondence
over A. The Pimsner algebra associated with the C∗-correspondence (E , ϕ) is the
unital C∗-algebra OE satisfying the following.
• There is a covariant representation (kE , kA) of the C∗-correspondence (E , ϕ) on

the C∗-algebra OE , called the universal covariant representation.
• For any covariant representation (t, π) of the C∗-correspondence (E , ϕ) on a unital

C∗-algebra B, there is a unique unital ∗-homomorphism t × π ∶ OE → B, called the
integrated form of (t, π), such that

(t × π) ○ kE = t, (t × π) ○ kA = π.

Remark 3.7 As mentioned above, we lose no generality by assuming ϕ to be unital
in our definition of a C∗-correspondence. Indeed, letting the projection ϕ(1) to be p,
for a representation (t, π), we have

0 = t(ϕ(1)(1 − p)(ξ)) = π(1)t((1 − p)ξ) = t((1 − p)ξ),

implying that t vanishes identically on the submodule (1 − p)E. In particular, for
the universal representation (kE , kA), kE vanishes identically on (1 − p)E and so we
may restrict ourselves to the submodule pE. But ϕ(1) is the identity operator on this
submodule. Therefore, we can and do assume ϕ to be unital.
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By the universality, for each z ∈ T, there is a unital ∗-automorphism γz ∶ OE → OE
such that γz(kA(a)) = kA(a) for all a ∈ A and γz(kE(ξ)) = zkE(ξ) for all ξ ∈ E. One
observes that z ↦ γz is strongly continuous and the resulting action of T, γ ∶ OE →
OE ⊗ C(T) is called the gauge action.

Definition 3.8 [BS89, Definition 2.9] Let G be a compact quantum group, and let
(A, α) be a G-C∗-algebra. A G-equivariant C∗-correspondence over the G-C∗-algebra
(A, α) is a triple (E , ϕ, λ), consisting of a right Hilbert A-module E, a unital ∗-
homomorphism ϕ ∶ A → L(E) and a linear map λ ∶ E → E ⊗ C(G) satisfying the
following.

• The pair (E , ϕ) is a C∗-correspondence over A.
• The pair (E , λ) is a G-equivariant Hilbert A-module over the G-C∗-algebra (A, α)

(Definition 2.6).
• The ∗-homomorphism ϕ ∶ A → L(E) is G-equivariant, i.e.,

(ϕ ⊗ idC(G))α(a) = Vλ(ϕ(a) ⊗ id)V∗λ , for a ∈ A.

By [BS89, p. 693], the last condition is equivalent to

• λ(ϕ(a)ξ) = (ϕ ⊗ idC(G))(α(a))λ(ξ) for ξ ∈ E and a ∈ A.

Theorem 3.9 Let G be a compact quantum group, let (A, α) be a G-C∗-algebra, and
let (E , ϕ, λ) be a G-equivariant C∗-correspondence over the G-C∗-algebra (A, α). Then
there is a unique unital ∗-homomorphism

ω ∶ OE → OE ⊗ C(G)

such that

ω ○ kE = (kE ⊗ idC(G)) ○ λ, and, ω ○ kA = (kA ⊗ idC(G)) ○ α.

Furthermore, the pair (OE , ω) satisfies the conditions in Definition 2.2, making (OE , ω)
into a G-C∗-algebra.

Proof We define t ∶ E → OE ⊗ C(G) and π ∶ A → OE ⊗ C(G) by the following:

t = (kE ⊗ idC(G)) ○ λ, and, π = (kA ⊗ idC(G)) ○ α.

We claim that (t, π) is a covariant representation of the C∗-correspondence (E , ϕ)
over A. Now, for ξ, η ∈ E, we have

t(ξ)∗t(η) = ((kE ⊗ idC(G))λ(ξ))∗((kE ⊗ idC(G))λ(η))
= (kA ⊗ idC(G))(⟨λ(ξ), λ(η)⟩)
= (kA ⊗ idC(G))(α(⟨ξ, η⟩))
= π(⟨ξ, η⟩),
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where the second equality is by Definition 3.3; and the third equality is by Definition
2.6. Again, for a ∈ A and ξ ∈ E, we have

t(ϕ(a)ξ) = (kE ⊗ idC(G))λ(ϕ(a).ξ)
= (kE ⊗ idC(G))(ϕ ⊗ idC(G))(α(a))λ(ξ)
= (kA ⊗ idC(G))(α(a))(kE ⊗ idC(G))λ(ξ)
= π(a)t(ξ),

where the second equality is by Definition 2.6; and the third equality is by Definition
3.6. Thus, (t, π) is a representation of the C∗-correspondence (E , ϕ) over A. We
recall that there is a unital ∗-homomorphism ψt ∶K(E) → OE ⊗ C(G) given by
ψt(θ ξ,η) = t(ξ)t(η)∗ such that ψt(k)t(ξ) = t(kξ) for all ξ ∈ E and k ∈K(E); in
particular, we have ψt(ϕ(a))t(ξ) = t(ϕ(a)ξ) = π(a)t(ξ) for all ξ ∈ E and all a ∈ A.
Since [λ(E)(1A ⊗ C(G))] = E ⊗ C(G), using the linearity and the continuity of the
maps involved, we get for all ξ ∈ E and a ∈ A,

ψt(ϕ(a))(kE(ξ) ⊗ 1C(G)) = π(a)(kE(ξ) ⊗ 1C(G)).

Consequently, for any ξ, η ∈ E, and a ∈ A, we have

ψt(ϕ(a))(kE(ξ)kE(η)∗ ⊗ 1C(G)) = π(a)(kE(ξ)kE(η)∗ ⊗ 1C(G)),

i.e.,

ψt(ϕ(a))(ψkE (θ ξ,η) ⊗ 1C(G)) = π(a)(ψkE (θ ξ,η) ⊗ 1C(G)).

So again by linearity and continuity of the maps involved, we get

ψt(ϕ(a))(ψkE (k) ⊗ 1C(G)) = π(a)(ψkE (k) ⊗ 1C(G)),

for all k ∈K(E). As the C∗-algebra A is unital and E is finitely generated, K(E) =
L(E) and since ψt is a unital ∗-homomorphism, we obtain, by plugging k = idE ∈
L(E) in the identity above,

ψt(ϕ(a)) = π(a),

for all a ∈ A, which in particular, shows that (t, π) is a covariant representation of the
C∗-correspondence (E , ϕ) over A on the unital C∗-algebra OE ⊗ C(G). Therefore, by
the universality of OE , we get a necessarily unique ∗-homomorphism

t × π = ω ∶ OE → OE ⊗ C(G)

such that

ω ○ kE = (kE ⊗ idC(G)) ○ λ, and, ω ○ kA = (kA ⊗ idC(G)) ○ α,

completing the first part of the theorem. To see that (OE , ω) is indeed a G-C∗-algebra,
we start with the coassociativity of ω, i.e., (ω ⊗ idC(G)) ○ ω = (idOE ⊗ ΔG) ○ ω. Again,
by universality (and uniqueness), it suffices to show that the two ∗-homomorphisms
(ω ⊗ idC(G)) ○ ω and (idOE ⊗ ΔG) ○ ω agree on the images kE(E) and kA(A), i.e.,

(ω ⊗ idC(G)) ○ ω ○ kE = (idOE ⊗ ΔG) ○ ω ○ kE ,
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and

(ω ⊗ idC(G)) ○ ω ○ kA = (idOE ⊗ ΔG) ○ ω ○ kA.

However, using

ω ○ kE = (kE ⊗ idC(G)) ○ λ, and, ω ○ kA = (kA ⊗ idC(G)) ○ α,

respectively, we see that we are reduced to the coassociativity of λ and α, respectively.
Thus ω is indeed coassociative. For the Podleś condition, we consider the set

S = {x ∈ OE ∣ x ⊗ 1C(G) ∈ [ω(OE)(1OE ⊗ C(G))]}.

Since [λ(E)(1A ⊗ C(G))] = E ⊗ C(G) and [α(A)(1A ⊗ C(G))] = A⊗ C(G), we see
that for each ξ ∈ E, kE(ξ) ∈ S and for each a ∈ A, kA(a) ∈ S. Let x and y be in S. Then
we see that
x y ⊗ 1C(G) = (x ⊗ 1C(G))(y ⊗ 1C(G)) ∈ [ω(OE)(1OE ⊗ C(G))(y ⊗ 1C(G))]

= [ω(OE)(y ⊗ 1C(G))(1OE ⊗ C(G))]
⊆ [ω(OE)ω(OE)(1OE ⊗ C(G))(1OE ⊗ C(G))]
= [ω(OE)(1OE ⊗ C(G))],

i.e., S is closed under multiplication. But S contains, as shown above, kE(E) and kA(A);
thus again by universality, S equals OE . Therefore, (OE , ω) is indeed a G-C∗-algebra
and this completes the proof. ∎

Remarks 3.10
• We do not need the fact that the Hilbert C∗-module E be full in the above proof.
• When the first draft of the present article was being prepared, the preprint [Kim14]

was brought to our notice. In [Kim14], the author proves Theorem 3.9 in greater
generality, under an invariance assumption of the Katsura ideal JE , however. We do
not need such an assumption, and as such our proof is an improvement over the
proof given in [Kim14]. On the other hand, we require the Hilbert C∗-module E to
be finitely generated.

• We prove a somewhat stronger statement than the covariance of (t, π), in the
notations of the above proof, namely,

ψt ○ ϕ = π,

hinging heavily on the unitality of C(G) and of K(E).

Definition 3.11 Let A be a unital C∗-algebra, let (E , ϕ) be a C∗-correspondence over
A, and let G be a compact quantum group. An action ρ ∶ OE → OE ⊗ C(G) of G on
the Pimsner algebra OE is said to be a lift if there are G-actions α and λ on A and on
E, respectively, such that the following are satisfied.
• (A, α) is a G-C∗-algebra.
• (E , ϕ, λ) is a G-equivariant C∗-correspondence over the G-C∗-algebra (A, α).
• ρ coincides with ω as in Theorem 3.9.

Thanks to the previous theorem, any action of a compact quantum group G on
a C∗-correspondence (E , ϕ) over a C∗-algebra A automatically lifts to an action on
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the corresponding Pimsner algebra OE . However, we cannot expect all actions on the
Pimsner algebra to be lifts of actions on the underlying C∗-correspondence in
the sense of Definition 3.11. One may look for a characterization of all the actions on
the Pimsner algebra that are lifts of coactions on the underlying C∗-correspondence.
In general, however, it seems to be a hard problem to obtain such a characterization.
We are able to make some progress in this direction. Let us start with a necessary
condition.

Proposition 3.12 Let G be a compact quantum group, let (A, α) be a G-C∗-algebra,
and let (E , ϕ, λ) be a G-equivariant C∗-correspondence over A. Then for all z ∈ T,

(γz ⊗ idC(G)) ○ ω = ω ○ γz ,

where ω as in Theorem 3.9, and γ is the gauge action on OE .

Proof We begin by observing that it suffices to show, by universality (and unique-
ness), that the two ∗-homomorphisms (γz ⊗ idC(G)) ○ ω and ω ○ γz agree on kE(E)
and kA(A), i.e.,

(γz ⊗ idC(G)) ○ ω ○ kE = ω ○ γz ○ kE ,

and

(γz ⊗ idC(G)) ○ ω ○ kA = ω ○ γz ○ kA.

However, using

ω ○ kE = (kE ⊗ idC(G)) ○ λ, and, ω ○ kA = (kA ⊗ idC(G)) ○ α,

respectively, and the explicit form of γ provided after Definition 3.6, we see that the
above two identities are indeed satisfied. This completes the proof. ∎

Thus it makes sense to single out the class of actions on the Pimsner algebra that
satisfy Proposition 3.12 and allows us to make the following definition.

Definition 3.13 Let A be a unital C∗-algebra, let (E , ϕ) be a C∗-correspondence over
A, and let G be a compact quantum group. An action ρ ∶ OE → OE ⊗ C(G) of G on
the Pimsner algebra OE is said to be gauge-equivariant if, for all z ∈ T,

(γz ⊗ idC(G)) ○ ρ = ρ ○ γz ,

where γ is the gauge action on OE .

The gauge-equivariance is not sufficient though. To produce an example where
gauge-equivariance of an action on the Pimsner algebra does not imply that the action
is a lift of an action on the C∗-correspondence in the sense of Definition 3.11, we
recall that the Cuntz algebra On may be seen as the Pimsner algebra arising from the
C∗-correspondence of its graph. Denoting the generating partial isometries of On by
S i , for i = 1, . . . , n, it is clear that for any action ρ of a compact quantum group G to
be a lift of an action on the C∗-correspondence coming from the graph, ρ has to be
“linear,” in the sense that ρ(S j) = ∑n

i=1 S i ⊗ q i j for some q i j ∈ C(G), j = 1, . . . , n. With
this observation in hand, we shall produce a “non-linear,” gauge-equivariant action of
the compact (quantum) group T

n = (C(Tn), ΔTn) on On . We denote the generating
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unitaries of C(Tn) by z1 , . . . , zn . We recall that the comultiplication is given on z i
by Δ(z i) = z i ⊗ z i for all i = 1, . . . , n. With these notations, we have the following
theorem.

Theorem 3.14 The action ρ of Tn on On given by

ρ(S i) = (S i ⊗ 1C(Tn))u,

is “non-linear,” and gauge-equivariant, where u is the element ∑n
k=1 Sk S∗k ⊗ zk ∈ On ⊗

C(Tn).

Proof We begin by observing that ρ so defined is clearly gauge-equivariant and
“non-linear.” We have to show that it indeed defines an action of Tn . First, let us check
that ρ is a well-defined ∗-homomorphism.

To begin with, using the unitarity of z i , for i = 1, . . . , n, it is easy to see that u is a
unitary element of On ⊗ C(Tn), and so for all 1 ≤ i , j ≤ n,

ρ(S∗i )ρ(S j) = δ i j(1 ⊗ 1).

Moreover,
n
∑
k=1

ρ(Sk)ρ(S∗k ) = 1 ⊗ 1,

so that by the universality of On , ρ is well-defined. It is also easy to observe that for all
1 ≤ i , j ≤ n,

ρ(S i S∗j ) = S i S∗j ⊗ 1

and coassociativity of ρ follows. Again using

ρ(S i S∗i ) = S i S∗i ⊗ 1

for all i = 1, . . . , n, one can see that
n
∑
k=1

ρ(Sk S∗k )(1 ⊗ z∗k) = u∗

and consequently,
n
∑
k=1

ρ(S i Sk S∗k )(1 ⊗ z∗k) = (S i ⊗ 1C(Tn))uu∗ = S i ⊗ 1C(Tn)

for all i = 1, . . . , n. Thus S i ⊗ 1C(Tn), for all i = 1, . . . , n, belongs to [ρ(On)(1On ⊗
C(Tn))] and arguing as in the last part of the proof of Theorem 3.9, the Podleś
condition follows. This completes the proof. ∎

Now, we shall prove that the gauge-equivariance condition as in Definition 3.13 is
also sufficient, provided we restrict ourselves to the class of Pimsner algebras arising
from principal T-bundles, as described below (we provide a detailed description as
this example covers a lot of other instances). We remark, however, that the special
structure of aT-principal bundle is only used to ensure that the Hilbert C∗-module for
the C∗-correspondence is full and finitely generated, so that our Theorem 3.9 applies.
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Example 3.15 [AA09, AEE98, AKL16] We recall that a unital T-C∗-algebra (A, γ)
(without any chance of confusion, we denote the toral action by the same symbol, γ,
as was used to denote the gauge action) comes with an associated Z-grading defined
as follows. We call an element a ∈ A homogeneous of degree n ∈ Z if γz(a) = zn a for
all z ∈ T and write deg(a) = n. For each n ∈ Z, we let A(n) denote the set consisting
of homogeneous elements of degree n: A(n) = {a ∈ A ∣ deg(a) = n}. The collection
{A(n)}n∈Z enjoys the following:
• for each n ∈ Z, A(n) is a closed subspace of A;
• for m, n ∈ Z, A(m)A(n) ⊆ A(m + n);
• for each n ∈ Z, A(n)∗ = A(−n);
• the algebraic direct sum ⊕n∈Z A(n) is norm-dense in A.
In particular, the fixed point subalgebra A(0) is a C∗-algebra and the first spectral
subspace A(1) is a right Hilbert A(0)-module, where the right A(0)-module structure
is given by multiplication from the right within the C∗-algebra A, and the A(0)-valued
inner product is given by

⟨ξ, η⟩ = ξ∗η,

for ξ, η ∈ A(1). We define the ∗-homomorphism ϕ ∶ A(0) → L(A(1)) by

ϕ(a)(ξ) = aξ,

for ξ ∈ A(1) and a ∈ A(0). Yet, the pair (A(1), ϕ) is not a C∗-correspondence over
A(0) in our sense; we still require that A(1)be full and finitely generated over A(0). We
recall that theT-action γ on theT-C∗-algebra A is said to be principal if the associated
Z-grading is strong, i.e., for m, n ∈ Z,

A(m)A(n) = A(m + n).

Assume further, that the C∗-algebra A(0) is separable, that A(1) and A(−1) are full
over A(0). Then (A(1), ϕ) is a C∗-correspondence over A(0). In this case, the Pimsner
algebra OA(1) associated with the C∗-correspondence (A(1), ϕ) is isomorphic to A
and the gauge action coincides with the initial T-action (thus relieving us from any
possible confusion with the choice of notation).

Theorem 3.16 Let (A, γ) be a unital T-C∗-algebra such that:
• the T-action γ is principal;
• the fixed point algebra A(0) is separable;
• the spectral subspaces A(1) and A(−1) are full over A(0),
so that by Example 3.15, there is an isomorphismOA(1) ≅ A. Let G be a compact quantum
group, and let ρ ∶ A → A⊗ C(G) be a gauge-equivariant G-action on A in the sense of
Definition 3.13, i.e., for all z ∈ T,

(γz ⊗ idC(G)) ○ ρ = ρ ○ γz .

Then ρ is a lift in the sense of Definition 3.11.

Proof We begin by observing that the gauge-equivariance of ρ yields

ρ(A(0)) ⊆ A(0) ⊗ C(G), and ρ(A(1)) ⊆ A(1) ⊗ C(G),
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i.e., ρ preserves the C∗-algebra and the module A(1). Let us denote the restricted
actions ρ∣A(0) and ρ∣A(1) on A(0) and A(1) by α and λ, respectively. We will show
that (A(0), α) is a G-C∗-algebra, (A(1), ϕ, λ) is a G-equivariant C∗-correspondence
over the G-C∗-algebra (A, α) and that ρ coincides with ω, where ω as in Theorem 3.9.

To that end, we first remark that α is indeed a unital ∗-homomorphism and λ is
indeed a linear map; these follow from the corresponding property of ρ. Next, we
observe that coassociativity of both α and λ follow from that of ρ. Now, we fix ξ, η ∈
A(1) and a ∈ A(0). Then

λ(ξa) = ρ(ξa) = ρ(ξ)ρ(a) = λ(ξ)α(a),

⟨λ(ξ), λ(η)⟩ = ρ(ξ)∗ρ(η) = ρ(ξ∗η) = ρ(⟨ξ, η⟩) = α(⟨ξ, η⟩),

and

λ(ϕ(a)ξ) = λ(aξ) = ρ(aξ) = ρ(a)ρ(ξ) = (ϕ ⊗ idC(G))(α(a))λ(ξ),

all the equalities being clear from the facts that ρ is a ∗-homomorphism and that
λ = ρ∣A(1) and α = ρ∣A(0). Thus, we see that indeed condition (1) of Definition 2.2,
conditions (1) and (2) of Definition 2.6 and conditions (1) and (3′) of Definition 3.2
are satisfied by α and λ. The proof will be complete, by uniqueness of ω in Theorem
3.9, provided we could show the Podleś conditions for α and λ. We now proceed to do
so.

We recall that there is a conditional expectation E ∶ A → A, given by

E(a) = ∫
T

γz(a) dz,

and that A(0) coincides with E(A). Since ρ is gauge-equivariant, we have

ρ ○ E = (E⊗idC(G)) ○ ρ.

Then

A(0) ⊗ C(G) = E(A) ⊗ C(G)
= (E⊗idC(G))(A⊗ C(G))
= (E⊗idC(G))[ρ(A)(1A ⊗ C(G))]
= [ρ(E(A))(1A ⊗ C(G))]
= [α(A(0))(1A(0) ⊗ C(G))],

where the first and fifth equalities use the fact that A(0) = E(A); the third equality
uses the Podleś condition for ρ; the fourth equality uses the identity just above this
computation; and finally, the fifth equality uses the fact that α = ρ∣A(0). Therefore,
(A(0), α) is a G-C∗-algebra.

Now, let P ∶ A → A denote the projection onto A(1), obtained from the Banach
space decomposition of A,

A = A(1) ⊕⊕
n≠1

A(n).
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Again, since ρ is gauge-equivariant, we have

ρ ○ P = (P⊗idC(G)) ○ ρ.

Then
A(1) ⊗ C(G) = P(A) ⊗ C(G)

= (P⊗idC(G))(A⊗ C(G))
= (P⊗idC(G))[ρ(A)(1A ⊗ C(G))]
= [ρ(P(A))(1A ⊗ C(G))]
= [λ(A(1))(1A(0) ⊗ C(G))],

where the first and fifth equalities use the fact that A(1) = P(A); the third equality
uses the Podleś condition for ρ; the fourth equality uses the identity just above this
computation; and finally, the fifth equality uses the fact that λ = ρ∣A(1). Therefore,
(A(1), ϕ, λ) is a G-equivariant C∗-correspondence over the G-C∗-algebra (A(0), α).
Thus as observed above, by the uniqueness of ω in Theorem 3.9, the proof is now
complete. ∎

4 KMS states on the Pimsner algebras

In this section, after briefly recalling how a KMS state with respect to a quasi-free
dynamics on a Pimsner algebra induced by a module dynamics in the sense of [LN04]
looks like, we provide a necessary and sufficient condition for it to be a G-equivariant
state, for the action ω from Theorem 3.9, where G is a compact quantum group of Kac
type. A general reference for KMS states on a C∗-algebra is [BR97].

Definition 4.1 Let A be a unital C∗-algebra, and let (E , ϕ) be a C∗-correspondence
over A. For n ∈ N, we define a C∗-correspondence (E(n) , ϕ(n)) over A as follows. We
set E(0) = A, E(1) = E and E(n+1) = E ⊗ϕ(n) E(n) for n ≥ 1. We also define ϕ(0) to be
the identity of A, ϕ(1) = ϕ and for n ≥ 1, ϕ(n+1)(a) = ϕ(a) ⊗ idE(n) .

We recall that

E ⊗ϕ E = [{ξ ⊗ η ∣ ξ, η ∈ E}],

and (ξa) ⊗ η = ξ ⊗ (ϕ(a)η) for ξ, η ∈ E and a ∈ A. More generally,

E(n) = [{ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ ξn ∣ ξ1 , . . . , ξn ∈ E}].

We refer the reader to [Lan95, Chapter 4] for a detailed discussion on interior tensor
product of Hilbert C∗-modules.

Remark 4.2 We remark that we have omitted ϕ in the expression ξ ⊗ η, for the sake
of notational convenience and will do so without further comment.

Proposition 4.3 [BS89, Proposition 2.10] Let G be a compact quantum group, let (A, α)
be a G-C∗-algebra, and let (E , ϕ, λ) be a G-equivariant C∗-correspondence over the G-
C∗-algebra (A, α). Then there is a linear map

λ(2) ∶ E(2) → E(2) ⊗ C(G),
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such that the triple (E(2) , ϕ(2) , λ(2)) satisfies the conditions of Definition 3.2, mak-
ing (E(2) , ϕ(2) , λ(2)) into a G-equivariant C∗-correspondence over the G-C∗-algebra
(A, α). In Sweedler notation, for ξ, η ∈ S(E) (the spectral submodule), λ(2) is given by

λ(2)(ξ ⊗ η) = ξ(0) ⊗ η(0) ⊗ ξ(1)η(1) .

Remark 4.4 We remark that the above proposition uses, together with (and in the
notations from) [BS89, Proposition 2.10], the following isomorphisms.
• Since both A and C(G) are unital, we have (see [BS89, p. 686]),

M̃(A⊗ C(G)) ≅ A⊗ C(G);

• since ϕ is unital, we have (see [BS89, p. 693]),

(A⊗ C(G)) ⊗ϕ⊗idC(G) (E ⊗ C(G)) ≅ E ⊗ C(G);

• and finally, we have (see [BS89, p. 693, proof of Proposition 2.10]),

(E ⊗ϕ E) ⊗ C(G) ≅ (E ⊗ C(G)) ⊗ϕ⊗idC(G) (E ⊗ C(G)).

Corollary 4.5 Let G be a compact quantum group, let (A, α) be a G-C∗-algebra, and
let (E , ϕ, λ) be a G-equivariant C∗-correspondence over the G-C∗-algebra (A, α). Then,
for each n ≥ 1, there is a linear map

λ(n) ∶ E(n) → E(n) ⊗ C(G),

such that the triple (E(n) , ϕ(n) , λ(n)) satisfies the conditions of Definition 3.2, mak-
ing (E(n) , ϕ(n) , λ(n)) into a G-equivariant C∗-correspondence over the G-C∗-algebra
(A, α). In Sweedler notation, for ξ1 , . . . , ξn ∈ S(E), λ(n) is given by

λ(n)(ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ ξn) = ξ1(0) ⊗ ⋅ ⋅ ⋅ ⊗ ξn(0) ⊗ ξ1(1) . . . ξn(1) .

Let A be a unital C∗-algebra, and let E be a right Hilbert A-module. The algebra
L(E) is isomorphic to E ⊗A HomA(E , A), yielding a unique linear map Tr ∶ L(E) →
A/[A, A] such that Tr(x ⊗ f ) = f (x)mod [A, A]. Let τ be any tracial linear functional
on A. Then Trτ = τ ○ Tr is a tracial linear functional on L(E).

Now, let R ∋ t ↦ σt be a one-parameter automorphism group of A and R ∋ t ↦ Ut
be a one-parameter group of isometries on E such that Ut(ϕ(a)ξ) = ϕ(σt(a))Ut(ξ)
and ⟨Ut(ξ), Ut(η)⟩ = σt⟨ξ, η⟩; we assume further that σ and U are strongly continu-
ous. Then, by the universal property, there is, for each t ∈ R, a unique automorphism
δt ∶ OE → OE such that δt(kA(a)) = kA(σt(a)) and δt(kE(ξ)) = kE(Ut(ξ)), a ∈ A,
ξ ∈ E. The resulting one-parameter group t ↦ δt is strongly continuous and is called
the quasi-free dynamics on OE associated with the module dynamics U.

Remark 4.6 We would only be interested when σ is the trivial dynamics on A. In
that case, a module dynamics U is then a one-parameter group of isometries t ↦ Ut
on E such that Ut(ϕ(a)ξ) = ϕ(a)Ut(ξ) and ⟨Ut(ξ), Ut(η)⟩ = ⟨ξ, η⟩.

With these in hand, we have the following theorem about the KMS states on the
Pimsner algebra.

Theorem 4.7 [LN04, Theorem 2.5] Let R ∋ t ↦ Ut be a one parameter group of
isometries on E satisfying the following conditions.
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• Ut(ϕ(a)ξ) = ϕ(a)Ut(ξ) and ⟨Ut(ξ), Ut(η)⟩ = ⟨ξ, η⟩, for t ∈ R, ξ, η ∈ E;
• the vectors ξ ∈ E such that SpU(ξ) ⊂ (0,∞) form a dense subspace of E, where

SpU(ξ) is the Arveson spectrum of ξ with respect to U.

Let δ be the corresponding quasi-free dynamics on OE such that:

• δt(kE(ξ)) = kE(Ut(ξ)) for ξ ∈ E and
• δt(kA(a)) = kA(a) for all a ∈ A,

and suppose β ∈ (0,∞).

• If φ is a (δ, β)-KMS state on OE , then τ = φ ○ kA is a tracial state on A,

Trτ(ϕ(a)e−βD) ≤ τ(a), for a ∈ A+ ,

and

Trτ(ϕ(a)e−βD) = τ(a) for a ∈ (ker ϕ)⊥ .

Here, D is the generator of U, i.e., Ut = e i tD and Trτ(ϕ(a)e−∞D) = 0, by convention.
• Conversely, if τ is a tracial state on A such that

Trτ(ϕ(a)e−βD) ≤ τ(a), for a ∈ A+ ,

and

Trτ(ϕ(a)e−βD) = τ(a) for a ∈ (ker ϕ)⊥ ,

then there exists a unique (δ, β)-KMS state φ on OE such that φ ○ kA = τ. Moreover,
φ is determined by τ through

φ(kE(ξ1) . . . kE(ξm)kE(ηn)∗ . . . kE(η1)∗)
= τ(⟨η1 ⊗ ⋅ ⋅ ⋅ ⊗ ηn , e−βD ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ e−βD ξn⟩), if m = n,
= 0, otherwise.

(4.1)

Remark 4.8 We would be interested not in the existence of a KMS state on the
Pimsner algebra OE but the fact that when it indeed does exist, it is of the form given
above by equation (4.1) in Theorem 4.7.

Remark 4.9 We remark that Arveson spectrum is defined, for example, in [Ped18,
8.1.6, p. 385].

Theorem 4.10 Let G be a compact quantum group of Kac type, let (A, α) be a G-
C∗-algebra, let (E , ϕ, λ) be a G-equivariant C∗-correspondence over the G-C∗-algebra
(A, α) and let ω be the G-action on OE , as obtained in Theorem 3.9. Let δ be the quasi-
free dynamics induced by the module dynamics U satisfying the conditions as in Theorem
4.7. Let U be G-equivariant, i.e., for all t ∈ R,

(Ut ⊗ idC(G)) ○ λ = λ ○ Ut .

Let φ be a (δ, β)-KMS state on OE , and let τ = φ ○ kA be the tracial state on A as in
Theorem 4.7. Then φ is G-equivariant if and only if τ is G-equivariant.
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Proof We assume first that φ is G-equivariant and show that τ = φ ○ kA is G-
equivariant too. To that end, we fix a ∈ A. Then we have

(τ ⊗ idC(G))α(a) = (φ ⊗ idC(G))(kA ⊗ idC(G))α(a)
= (φ ⊗ idC(G))ω(kA(a))
= φ(kA(a))1C(G)

= τ(a)1C(G) ,

where the first equality uses the fact that τ = φ ○ kA; the second equality follows from
Theorem 3.9; the third equality is from our assumption that φ is G-equivariant.

We now assume that τ is G-equivariant and show that φ too is G-equivariant. We
will show that for any x ∈ OE ,

(φ ⊗ h)ω(x) = φ(x),

where h is the Haar state of the CQG G. Before proving this, let us see how we can
conclude the proof from this identity. We observe first that the identity can be written,
using the standard convolution notation, as

φ ∗ h = φ.

Now, for any ψ ∈ C(G)∗,

φ ∗ ψ = (φ ∗ h) ∗ ψ = φ ∗ (h ∗ ψ) = (φ ∗ h) = φ,

where the first equality uses the identity just above the computation; the second uses
associativity of convolution; the third equality uses invariance of the Haar state h.
Therefore, for all ψ ∈ C(G)∗ and all x ∈ OE ,

(φ ∗ ψ)(x) = φ(x),

i.e.,

ψ((φ ⊗ idC(G))ω(x)) = ψ(φ(x)1C(G)).

Therefore, we indeed have for all x ∈ OE ,

(φ ⊗ idC(G))ω(x) = φ(x)1C(G) ,

which is what we wanted. So we can now proceed to prove that for any x ∈ OE ,

(φ ⊗ h)ω(x) = φ(x),(4.2)

holds. As the Hilbert A-module is assumed to be full and finitely generated, the
linear span of the elements of the form kE(ξ1) . . . kE(ξm)kE(ηn)∗ . . . kE(η1)∗ ∈ OE
is dense in OE . Therefore, by linearity and continuity of the maps involved, it suf-
fices to prove (4.2) only for kE(ξ1) . . . kE(ξm)kE(ηn)∗ . . . kE(η1)∗ ∈ OE . Moreover,
ξ1 , . . . , ξm , η1 , . . . , ηn further can be chosen from the spectral submodule S(E), where
we have an algebraic coaction of C[G], hence allowing us to leverage Sweedler
notation. However, we shall refrain from saying so and use Sweedler notation freely
in what follows. We also remind the reader that φ is determined through τ via the
formula (4.1), as in Theorem 4.7. We therefore begin by fixing ξ1 , . . . , ξm , η1 , . . . , ηn ∈

https://doi.org/10.4153/S0008414X23000810 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000810


Compact quantum group actions on Pimsner algebras 21

E and assume first that m ≠ n. Then we have

(φ ⊗ h)ω(kE(ξ1) . . . kE(ξm)kE(ηn)∗ . . . kE(η1)∗)

= (φ ⊗ h)(ω(kE(ξ1)) . . . ω(kE(ξm))ω(kE(ηn))∗ . . . ω(kE(η1))∗)

= (φ ⊗ h)((kE ⊗ idC(G))λ(ξ1) . . . (kE ⊗ idC(G))λ(ξm)

((kE ⊗ idC(G))λ(ηn))∗ . . . ((kE ⊗ idC(G))λ(η1))∗)

= φ(kE(ξ1(0)) . . . kE(ξm(0))kE(ηn(0))∗ . . . kE(η1(0))∗)h(ξ1(1) . . . ξm(1)η∗n(1) . . . η∗1(1))

= 0
= φ(kE(ξ1) . . . kE(ξm)kE(ηn)∗ . . . kE(η1)∗),

where the second equality is by Theorem 3.9; the fourth equality is because of m ≠ n;
the fifth equality is again because of m ≠ n. So (4.2) holds in this case. Now, let us
consider the case where m = n. We have

(φ ⊗ h)ω(kE(ξ1) . . . kE(ξm)kE(ηm)∗ . . . kE(η1)∗)

= (φ ⊗ h)(ω(kE(ξ1)) . . . ω(kE(ξm))ω(kE(ηm))∗ . . . ω(kE(η1))∗)

= (φ ⊗ h)((kE ⊗ idC(G))λ(ξ1) . . . (kE ⊗ idC(G))λ(ξm)

((kE ⊗ idC(G))λ(ηm))∗ . . . ((kE ⊗ idC(G))λ(η1))∗)

= φ(kE(ξ1(0)) . . . kE(ξm(0))kE(ηm(0))∗ . . . kE(η1(0))∗)

h(ξ1(1) . . . ξm(1)η∗m(1) . . . η∗1(1)),

(4.3)

where we have used nothing but Theorem 3.9. Let us consider the expression

(τ ⊗ h)(⟨λm(η1 ⊗ ⋅ ⋅ ⋅ ⊗ ηm), λm(e−βD ξ1 ⊗ . . . e−βD ξm)⟩)

= (τ ⊗ h)(⟨η1(0) ⊗ ⋅ ⋅ ⋅ ⊗ ηm(0) , e−βD ξ1(0) ⊗ ⋅ ⋅ ⋅ ⊗ e−βD ξm(0)⟩⊗

η∗m(1) . . . η∗1(1)ξ1(1) . . . ξm(1))

= τ (⟨η1(0) ⊗ ⋅ ⋅ ⋅ ⊗ ηm(0) , e−βD ξ1(0) ⊗ ⋅ ⋅ ⋅ ⊗ e−βD ξm(0)⟩)

h(η∗m(1) . . . η∗1(1)ξ1(1) . . . ξm(1))
= φ(kE(ξ1(0)) . . . kE(ξm(0))kE(ηm(0))∗ . . . kE(η1(0))∗)

h(ξ1(1) . . . ξm(1)η∗m(1) . . . η∗1(1)),

(4.4)

where the first equality is by the expression of λm as in Corollary 4.5 and the
assumption that U is G-equivariant; the third equality uses the traciality of h and the
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expression of φ in formula (4.1). Now, by combining (4.3) and (4.4), we obtain

(φ ⊗ h)ω(kE(ξ1) . . . kE(ξm)kE(ηm)∗ . . . kE(η1)∗)
= (τ ⊗ h)(⟨λm(η1 ⊗ ⋅ ⋅ ⋅ ⊗ ηm), λm(e−βD ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ e−βD ξm)⟩).

(4.5)

But the last expression of (4.5) can be further simplified as follows:

(τ ⊗ h)(⟨λm(η1 ⊗ ⋅ ⋅ ⋅ ⊗ ηm), λm(e−βD ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ e−βD ξm)⟩)
= h((τ ⊗ idC(G))α(⟨η1 ⊗ ⋅ ⋅ ⋅ ⊗ ηm , e−βD ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ e−βD ξm⟩))
= h(τ(⟨η1 ⊗ ⋅ ⋅ ⋅ ⊗ ηm , e−βD ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ e−βD ξm⟩)1C(G))
= τ(⟨η1 ⊗ ⋅ ⋅ ⋅ ⊗ ηm , e−βD ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ e−βD ξm⟩)
= φ(kE(ξ1) . . . kE(ξm)kE(ηm)∗ . . . kE(η1)∗),

(4.6)

where the first equality is by Corollary 4.5; the second is by our assumption that τ is
G-equivariant; the third is because h is a state; and finally the fourth is by formula (4.1).
Now, we combine (4.5) and (4.6), and obtain

(φ ⊗ h)ω(kE(ξ1) . . . kE(ξm)kE(ηm)∗ . . . kE(η1)∗)
= φ(kE(ξ1) . . . kE(ξm)kE(ηm)∗ . . . kE(η1)∗),

which shows that (4.2) holds, settling this case as well for good. This completes the
proof. ∎

In the remaining three sections, we provide applications of the results obtained in
this and the previous sections to the notion of quantum symmetries of graphs.

5 Applications to quantum symmetries of graphs I: Generalities

In this section, we specialize to the example where the C∗-correspondence comes from
a finite graph, with some restrictions and see what the general results of the previous
sections have to offer in this very concrete situation. So without further ado, we make
contact via the following example.

Example 5.1 [MS98, Example 2.9] Let G = (G1 ,G0 , r, s) be a finite, possibly with
loops and multiple edges, directed graph. Here, G1 ,G0 are the sets of the edges and
vertices, respectively, and r, s the range, source maps, respectively. Then G gives rise
to a C∗-correspondence over the C∗-algebra C(G0) as follows. C(G1) is made into a
right Hilbert C(G0)-module via

(ξ ⋅ f )(e) = ξ(e) f (r(e)), ⟨ξ, η⟩(v) = ∑
r(e)=v

ξ(e)η(e),

where ξ, η ∈ C(G1), f ∈ C(G0), e ∈ G1 and v ∈ G0. We define the unital
∗-homomorphism ϕ ∶ C(G0) → L(C(G1)) by

ϕ( f )(ξ)(e) = f (s(e))ξ(e),

where ξ ∈ C(G1), f ∈ C(G0), e ∈ G1. Then since C(G1) is finite dimensional, the pair
(C(G1), ϕ) forms a C∗-correspondence over C(G0). The corresponding Pimsner
algebra OC(G1) is isomorphic to the graph C∗-algebra denoted by C∗(G). The gauge
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action on the Pimsner algebra C∗(G) coincides with the usual gauge action on the
graph C∗-algebra C∗(G).

Now, we shall recall a few facts about the KMS states of graph C∗-algebras coming
from finite graphs, possibly with multiple edges but without sources, see [KW10] and
[aHLRS13]; by the term without sources, we shall mean that the map r is onto. To that
end, let G = (G0 ,G1 , r, s) be a finite, directed graph, without sources and C∗(G) be the
corresponding graph C∗-algebra; we also denote the adjacency matrix of G by D and
the spectral radius of D by ρ(D). Then we have the following proposition.
Proposition 5.2 [JM21b, Proposition 2.4] The graph C∗-algebra C∗(G) has a KMS-
ln(ρ(D)) state if and only if ρ(D) is an eigenvalue of D with eigenvectors having all its
entries non-negative.

We shall call a KMS-ln(ρ(D)) state φ distinguished if φ(pv i ) = 1
n for all i = 1, . . . , n,

where v1 , . . . , vn are the vertices of the underlying graph G. The distinguished KMS
states are in abundance. For example, any regular graph admits such a distinguished
KMS state on its C∗-algebra. Indeed, for a regular graph the spectral radius ρ(D) is
an eigenvalue with eigenspace spanned by the vector (1, . . . , 1) (see [JM21a, Theorem
3.6] for more details).
Remarks 5.3
• Let us assume that ρ(D) is an eigenvalue of D so that C∗(G) admits a KMS-

ln(ρ(D)) state. If D is an n × n matrix and (μ1 , . . . , μn) is a normalized eigen-
vector of D with eigenvalue ρ(D) (i.e., ∑n

i=1 μ i = 1) then the corresponding KMS-
ln(ρ(D)) state φ satisfies

φ(pv i ) = μ i i = 1, . . . , n,

where v1 , . . . , vn are the vertices of G. In fact, with the notation of Theorem 4.7, the
tracial state τ on C(G0) corresponding to the KMS state φ is given by

τ(δv i ) = μ i i = 1, . . . , n.

• The module dynamics in this case is nothing but the scalar dynamics, i.e., Ut =
e i t , t ∈ R, for the gauge action and therefore it is G-equivariant for any compact
quantum group G acting on the correspondence.

• If for a graph G, C∗(G) has a distinguished KMS state φ, then the corresponding
tracial state τ on C(G0) is given by

τ(δv i ) =
1
n

i = 1, . . . , n.

So for any G-equivariant C∗-correspondence arising from a finite, directed graph
G, possibly with multiple edges but without any source, such that C∗(G) admits
a distinguished KMS state φ, the above tracial state τ on C(G0) is always G-
equivariant.
For the next proposition again, D is the adjacency matrix of the graph G and ρ(D)

is its spectral radius.
Proposition 5.4 Let G = (G0 ,G1 , r, s) be a finite graph, possibly with multiple edges,
but without any source or sink, so that the corresponding graph C∗-algebra C∗(G) has a
distinguished KMS-ln(ρ(D)) state φ. Let G be a compact quantum group such that:
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• the C∗-correspondence (C(G1), ϕ), arising from G is G-equivariant;
• the G-action ω obtained from Theorem 3.9 on C∗(G) is faithful.
Then G is of Kac type if and only if the KMS state φ is G-equivariant.

Proof Let G be compact quantum group of Kac type. Then by (2) and (3) of Remark
5.3, all the conditions of Theorem 4.10 are satisfied and the KMS state φ on C∗(G) is
G-equivariant.

Conversely, we assume that the KMS state φ is G-equivariant. Then it follows from
the proof of [JM18, Proposition 3.8] that G is a quantum subgroup of U+n (observe that
the matrix FG in [JM18, Proposition 3.8] is the identity matrix). Hence, G is a compact
quantum group of Kac type. ∎

Corollary 5.5 Let G be a compact matrix pseudogroup such that the fundamental
corepresentation u is unitary. Then G is of Kac type if and only if ut is also unitary.

Proof We consider the C∗-correspondence coming from the graph of the Cuntz
algebra with n-generators. Then since the graph has only one vertex, C(G0) = C

and hence the Hilbert C∗-module C(G1) is an n-dimensional Hilbert space. So if
(u i j)i , j=1,. . . ,n is the unitary matrix corresponding to the fundamental unitary corep-
resentation u, denoting an orthonormal basis of C(G1) by e1 , . . . , en , we get a G-action
on C(G1) by

λ(e j) =
n
∑
i=1

e i ⊗ u i j , j = 1, . . . , n.

The G-action α on C(G0) = C is the trivial one and it is easy to see that the above α,
and λ make the C∗-correspondence (C(G1), ϕ) a G-equivariant C∗-correspondence.
Thus, there is a G-action ω on On given on the generators by

ω(S j) =
n
∑
i=1

S i ⊗ u i j , j = 1, . . . , n.

But the unique KMS state on On is G-equivariant if and only if ut = ((u ji)) is unitary
(see [JM21a]). Now, the unique KMS state is a distinguished KMS state in the above
sense. So applying Proposition 5.4, we obtain the desired conclusion. ∎

Remark 5.6 The conclusion of the Corollary 5.5 is well-known as can be easily seen
by applying κ to u∗u = uu∗ and using the fact that for a compact quantum group
of Kac type, κ is involutive. But our proof is from the point of view of quantum
symmetries.

6 Applications to quantum symmetries of graphs II: The case of
simple graphs

Let A be a unital C∗-algebra, and let (E , ϕ) be a C∗-correspondence over A. We
consider the category of all compact quantum groups G such that (E , ϕ) is a
G-equivariant C∗-correspondence. Although this category is an interesting one, it has
a drawback that in general it might fail to admit a universal object. For example, if one
considers the C∗-correspondence coming from the graph of the Cuntz algebra with
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n-generators, any Wang algebra Au(Q) can be made into an object of this category
and therefore it does not admit a universal object. In this section, we shall consider the
C∗-correspondence coming from a finite graph, possibly with multiple edges but with-
out any source, and make the category more restrictive so that the modified category
admits a universal object. Therefore, let us begin with the following definition.

Definition 6.1 Let G be a finite, directed graph, with n edges and m vertices (without
loops or multiple edges). The compact quantum group Aut+Ban(G) is defined to be the
quotient S+m/(U D − DU), where U = (qvw)v ,w∈G0 , and D is the adjacency matrix for
G. The coproduct on the generators is given by ΔAut+Ban(G)

(qvw) = ∑u∈G0 qvu ⊗ quw .

The relation U D = DU , when expanded out, yields the following explicit descrip-
tion of the C∗-algebra C(Aut+Ban(G)).

Lemma 6.2 [Ful06, Lemma 3.1.1] The underlying C∗-algebra C(Aut+Ban(G)) of the
quantum group Aut+Ban(G) for a finite, directed graph G with n edges and m vertices
(without loops or multiple edges) is the universal C∗-algebra generated by (qvw)v ,w∈G0

satisfying the following relations.

q∗vw = qvw , qvw qvu = δwu qvw , qvw quw = δvu qvw , u, v , w ∈ G0 ,(6.1)

∑
w∈G0

qvw = ∑
w∈G0

qwv = 1, v ∈ G0 ,(6.2)

qs(e)v qr(e)w = qr(e)w qs(e)v = 0, e ∈ G1 , (v , w) /∈ G1 ,
qvs(e)qwr(e) = qwr(e)qvs(e) = 0, e ∈ G1 , (v , w) /∈ G1 .

(6.3)

The comultiplication on the generators is given by

ΔAut+Ban(G)
(qvw) = ∑

u∈G0
qvu ⊗ quw .(6.4)

The action on the graph is given by

α(pv) = ∑
w∈G0

pw ⊗ qwv , v ∈ G0 .

Remark 6.3 Since Aut+Ban(G) is a quantum subgroup of S+m , it is of Kac type.

Remark 6.4 There is another notion of quantum symmetry for directed, simple
graphs due to Bichon. We refer the reader to [Bic03] for details. The quantum
automorphism group of a simple, directed graph G in the sense of Bichon, to
be denoted by Aut+Bic(G), is a quantum subgroup of Aut+Ban(G). The underlying
C∗-algebra C(Aut+Bic(G)) is again generated by qvw , v , w ∈ G0 and satisfy the relations
in Theorem 6.2, as well as the following additional relations.

qs(e)s( f )qr(e)r( f ) = qr(e)r( f )qs(e)s( f ) , e , f ∈ G1 .(6.5)

The comultiplication on the generators is again given by

ΔAut+Bic(G)
(qvw) = ∑

u∈G0
qvu ⊗ quw .(6.6)

Definition 6.5 Let G = (G1 ,G0 , r, s) be a finite, directed graph, without loops or
multiple edges. We define the category CBan(G) as follows:
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• An object of CBan(G) is a triple (G , α, λ), where G is a compact quantum group, α ∶
C(G0) → C(G0) ⊗ C(G) is a unital ∗-homomorphism and λ ∶ C(G1) → C(G1) ⊗
C(G) is a linear map satisfying the following conditions:
– The pair (C(G0), α) is a G-C∗-algebra and the action α is faithful;
– the triple (C(G1), ϕ, λ) is a G-equivariant C∗-correspondence over the G-C∗-

algebra (C(G0), α);
– for all f ∈ C(G0), (r∗ ⊗ idC(G))α( f ) = λ(r∗( f )), where r∗ ∶ C(G0) → C(G1) is

the ∗-homomorphism given by r∗( f )(e) = f (r(e)) for e ∈ G1.
• Let (G1 , α1 , λ1) and (G2 , α2 , λ2) be two objects of the category CBan(G). A

morphism f ∶ (G1 , α1 , λ1) → (G2 , α2 , λ2) in CBan(G) is by definition a Hopf
∗-homomorphism f ∶ C(G2) → C(G1) such that:
– (idC(G0) ⊗ f )α2 = α1;
– (idC(G1) ⊗ f )λ2 = λ1.

Definition 6.6 Let G = (G1 ,G0 , r, s) be a finite, directed graph, without loops or
multiple edges. We define the category CBic(G) as follows:
• An object of CBic(G) is a triple (G , α, λ), where G is a compact quantum group, α ∶

C(G0) → C(G0) ⊗ C(G) is a unital ∗-homomorphism and λ ∶ C(G1) → C(G1) ⊗
C(G) is a linear map satisfying the following conditions:
– The pair (C(G0), α) is a G-C∗-algebra and the action α is faithful;
– the triple (C(G1), ϕ, λ) is a G-equivariant C∗-correspondence over the G-C∗-

algebra (C(G0), α);
– the pair (C(G1), λ) is a G-C∗-algebra.

• Let (G1 , α1 , λ1) and (G2 , α2 , λ2) be two objects of the category CBic(G). A mor-
phism f ∶ (G1 , α1 , λ1) → (G2 , α2 , λ2) in CBic(G) is again by definition a Hopf ∗-
homomorphism f ∶ C(G2) → C(G1) such that:
– (idC(G0) ⊗ f )α2 = α1;
– (idC(G1) ⊗ f )λ2 = λ1.

The notations used for the above two categories are justified by the following
theorems.

Theorem 6.7 A universal object (GBan , αBan , λBan) in the category CBan(G) exists.
Moreover, GBan is isomorphic to Aut+Ban(G), the quantum automorphism group of G
in the sense of Banica.

Theorem 6.8 A universal object (GBic , αBic , λBic) in the category CBic(G) exists.
Moreover, GBic is isomorphic to Aut+Bic(G), the quantum automorphism group of G in
the sense of Bichon.

Proof of Theorem 6.7 We have to show first that Aut+Ban(G) can be made into an
object of the category CBan(G). We proceed to do so now. As in Theorem 6.2, we
denote the generators of the underlying C∗-algebra C(Aut+Ban(G)) of Aut+Ban(G) by
{qwv}v ,w∈G0 . Now, we define λBan and αBan as

λBan(δe) = ∑
f ∈G1

δ f ⊗ qs( f )s(e)qr( f )r(e) , e ∈ G1 ,(6.7)

αBan(δv) = ∑
w∈G0

δw ⊗ qwv , v ∈ G0 .(6.8)

https://doi.org/10.4153/S0008414X23000810 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000810


Compact quantum group actions on Pimsner algebras 27

The relations (6.1),(6.2), and (6.3) imply that αBan is a unital ∗-homomorphism. The
formula (6.4) for the comultiplication shows coassociativity of both αBan and λBan. The
Podleś conditions for αBan and λBan follow from the facts that C(G0) and C(G1) are
finite dimensional, respectively. Furthermore, the fact that {qvw}v ,w∈G0 are generators
of C(Aut+Ban(G)) implies that αBan is a faithful G-action on C(G0). Therefore, to show
that (Aut+Ban(G), αBan , λBan) is an object of the category CBan(G), it suffices to show

λBan(ϕ(δv)δe) = (ϕ ⊗ idC(G))αBan(δv)λBan(δe), v ∈ G0 , e ∈ G1 ,(6.9)

λBan(δe δv) = λBan(δe)α(δv), v ∈ G0 , e ∈ G1 ,(6.10)

⟨λBan(δe), λBan(δ f )⟩ = αBan(⟨δe , δ f ⟩), e , f ∈ G1 ,(6.11)

(r∗ ⊗ id)αBan( f ) = λBan(r∗( f )), f ∈ C(G0).(6.12)

We remind the reader that ϕ is given as in Example 5.1. Now to check identity (6.9),
we note that ϕ(δv)δe = δs(e),v δe ; hence the left-hand side of (6.9) reduces to

λBan(ϕ(δv)δe) = δs(e),v ∑
f ∈G1

δ f ⊗ qs( f )s(e)qr( f )r(e) .(6.13)

For the right-hand side of (6.9), we have the following expression:

(ϕ ⊗ idC(G))αBan(δv)λBan(δe)
= ( ∑

w∈G0
ϕ(δw) ⊗ qwv)( ∑

f ∈G1
δ f ⊗ qs( f )s(e)qr( f )r(e))

= ∑
w∈G0

∑
w=s( f )

δ f ⊗ qwv qs( f )s(e)qr( f )r(e) .
(6.14)

But for v ≠ s(e), qwv qs( f )s(e) = 0 for all w = s( f ), from the relation (6.1); in that case,
the final expression of (6.14) is zero, coinciding with (6.13) and so we have (6.9). For
v = s(e), the final expression of (6.14) reduces to

∑
w∈G0

∑
w=s( f )

δ f ⊗ qws(e)qs( f )s(e)qr( f )r(e).(6.15)

On the other hand, for v = s(e), we now consider (6.13).

λBan(ϕ(δv)δe) = δs(e),v ∑
f ∈G1

δ f ⊗ qs( f )s(e)qr( f )r(e)

= ∑
f ∈G1

δ f ⊗ qs( f )s(e)qr( f )r(e)

= ∑
f ∈G1

δ f ⊗ ∑
w∈G0

qws(e)qs( f )s(e)qr( f )r(e)

= ∑
w∈G0

∑
w=s( f )

δ f ⊗ qws(e)qs( f )s(e)qr( f )r(e) ,

(6.16)

where the third equality is by (6.2); and the fourth equality is by (6.1). However, the
final expression in (6.16) is nothing but (6.15). Therefore, we indeed have (6.9). We
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leave the checking of (6.10) to the reader, which is similar to what has just been done
for (6.9). To check the identity (6.11), we note that

⟨δe , δ f ⟩ = δe , f δr(e) .

Then it reduces to the calculations already done in [SW18, Section 4.1.2]. So we are left
with the checking of (6.12). To that end, we note that

r∗(δv) = ∑
e∈r−1(v)

δe .

Therefore, the right-hand side of (6.12) becomes

λBan(r∗(δv)) = ∑
e∈r−1(v)

∑
f ∈G1

δ f ⊗ qs( f )s(e)qr( f )r(e)

= ∑
f ∈G1

δ f ⊗ ( ∑
e∈r−1(v)

qs( f )s(e)qr( f )r(e)).
(6.17)

On the other hand, the left-hand side of (6.12) reduces to

(r∗ ⊗ idC(G))αBan(δv) = (r∗ ⊗ id)( ∑
w∈G0

δw ⊗ qwv)

= ∑
w∈G0

( ∑
f ∈r−1(w)

δ f ⊗ qwv).
(6.18)

Now, we observe that the set { f ∈ G1 ∣ r( f ) = w , w ∈ G0} is the whole of G1; and
therefore, the last expression in (6.18) reduces to

∑
f ∈G1

δ f ⊗ qr( f )v .(6.19)

We also have, for each f ∈ G1,

qr( f )v = ∑
w∈G0

qs( f )w qr( f )v ;(6.20)

moreover, since qs( f )w qr( f )v = 0 whenever (v , w) is not an edge,

∑
w∈G0

qs( f )w qr( f )v = ∑
e∈r−1(v)

qs( f )s(e)qr( f )r(e) .(6.21)

Combining (6.18), (6.19), (6.20), and (6.21), we obtain

(r∗ ⊗ idC(G))αBan(δv) = ∑
f ∈G1

δ f ⊗ ( ∑
e∈r−1(v)

qs( f )s(e)qr( f )r(e)),

which is exactly the last expression in (6.17). Therefore (6.12) holds. This proves that
indeed (Aut+Ban(G), αBan , λBan) is an object in the category CBan(G).

Now, we turn to the proof of the fact that (Aut+Ban(G), αBan , λBan) is indeed the
universal object in the category CBan(G). To that end, let (G , α, λ) be an object of the
category CBan(G).

λ(δe) = ∑
f ∈G1

δ f ⊗ a f e , a f e ∈ C(G), e ∈ G1 ,
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α(δv) = ∑
w∈G0

δw ⊗ bwv , bvw ∈ C(G), v ∈ G0 .

Now, as already observed, for any v ∈ G0,

r∗(δv) = ∑
e∈r−1(v)

δe .

As the graph does not have any multiple edges or sources, for w ∈ G0 with s(e) =
w , r(e) = v,

ϕ(δw)r∗(δv) = δe .

Hence, we have

λ(ϕ(δw)r∗(δv)) = ∑
f ∈G1

δ f ⊗ a f e , provided s(e) = w , r(e) = v .(6.22)

On the other hand, since (r∗ ⊗ idC(G)) ○ α = λ ○ r∗ and λ(ϕ( f )ξ) = (ϕ ⊗
idC(G))α( f )λ(ξ) for f ∈ C(G0) and ξ ∈ C(G1),

λ(ϕ(δw)r∗(δv)) = (ϕ ⊗ idC(G))α(δw)(r∗ ⊗ idC(G))α(δv)
= ∑

f ∶u→p
δ f ⊗ buw bpv .(6.23)

By comparing coefficients, we get

λ(δe) = ∑
f ∈G1

δ f ⊗ bs( f )s(e)br( f )r(e) .(6.24)

Then the fact that (bvw)v ,w∈G0 satisfy the relations of C(Aut+Ban(G)) can be checked,
along the lines of [SW18, Section 4.3.3], using

⟨λ(δe), λ(δe)⟩ = α(⟨δe , δe⟩),

together with the fact that

⟨δe , δe⟩ = δr(e);

we leave this to the reader. We therefore have shown the universality of the triple
(Aut+Ban(G), αBan , λBan), thus completing the proof of the theorem. ∎

Remark 6.9 The compact quantum group Aut+Ban(G) is of Kac type; moreover, by
Theorem 6.7 , (C(G1), ϕ, λBan) is a Aut+Ban(G)-equivariant C∗-correspondence over
the Aut+Ban(G)-C∗-algebra (C(G0), αBan). Since the module dynamics corresponding
to the gauge action is the scalar dynamics, i.e., Ut = e i t , t ∈ R, by Theorem 4.10, the
lifted Aut+Ban(G)-action ω of Aut+Ban(G) on C∗(G) preserves a KMS state φ at the
critical inverse temperature if and only if it preserves the tracial state τ on C(G0).
This yields another proof of [JM21b, Proposition 2.31].

It can be proved that for the universal object (Aut+Ban(G), αBan , λBan), we also have

(s∗ ⊗ idC(G))αBan( f ) = λBan(s∗( f )),

for all f ∈ C(G0), which is the content of the next theorem.
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Proposition 6.10 For the universal object (Aut+Ban(G), αBan , λBan), we also have

(s∗ ⊗ idC(G))αBan( f ) = λBan(s∗( f )),

for all f ∈ C(G0)

Proof We begin by fixing a vertex v ∈ G0. Then, if s−1(v) is nonempty, then the
arguments used in the proof of the fact (r∗ ⊗ idC(G))αBan( f ) = λBan(r∗( f )) can be
repeated with obvious modifications. So we are left with the case when s−1(v) is empty.
Then s∗(δv) = 0 so that λBan(s∗(δv)) = 0. On the other hand, denoting the generators
of the C∗-algebra C(Aut+Ban(G)) by {qvw}v ,w∈G0 , as in Theorem 6.2, we obtain

(s∗ ⊗ idC(G))αBan(δv) = ∑
w∈G0

s∗(δw) ⊗ qwv = ∑
f ∈G1

( ∑
s( f )=w

δ f ⊗ qs( f )v).

But, for a fixed edge f ∈ G1, qs( f )v = ∑w∈G0 qs( f )v qr( f )w . Since s−1(v) is empty,
qs( f )v qr( f )w = 0, which implies that (s∗ ⊗ idC(G))αBan(δv) = 0 as well. ∎

The following lemma will be useful in proving Theorem 6.8.

Lemma 6.11 Let (G , α, λ) be an object of the category CBic(G) (Definition 6.6). Then

(r∗ ⊗ idC(G))α( f ) = λ(r∗( f )),

as well as

(s∗ ⊗ idC(G))α( f ) = λ(s∗( f )),

for all f ∈ C(G0).
Conversely, assume that one of r and s is injective. Let (G , α, λ) be a triple, where G is

a compact quantum group, α ∶ C(G0) → C(G0) ⊗ C(G) is a unital ∗-homomorphism
and λ ∶ C(G1) → C(G1) ⊗ C(G) is a linear map satisfying the following conditions:
• The pair (C(G0), α) is a G-C∗-algebra;
• the triple (C(G1), ϕ, λ) is a G-equivariant C∗-correspondence over the G-C∗-algebra
(C(G0), α);

• moreover,

(r∗ ⊗ idC(G))α( f ) = λ(r∗( f )),

as well as

(s∗ ⊗ idC(G))α( f ) = λ(s∗( f )),

for all f ∈ C(G0).
Then the pair (C(G1), λ) is a G-C∗-algebra and consequently, (G , α, λ) is an object of
the category CBic(G).

Proof We first assume that (G , α, λ) is an object in the category CBic(G). Let ξ ∈
C(G1) and f ∈ C(G0). It is clear that

ξ f = ξr∗( f ),
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where ξ f denotes the right module action of f on ξ and ξr∗( f ) denotes the algebra
multiplication in C(G1). Since λ is a G-action, we obtain

λ(ξ f ) = λ(ξr∗( f ))
= λ(ξ)λ(r∗( f )).

Similarly, decoding the right module action of C(G0) ⊗ C(G) on C(G1) ⊗ C(G), we
get the following:

λ(ξ f ) = λ(ξ)α( f )
= (λ(ξ))(r∗ ⊗ idC(G))α( f ).

In particular, choosing ξ = 1, we obtain

λ(r∗( f )) = (r∗ ⊗ idC(G))α( f ),

for all f ∈ C(G0). Similarly, considering the left module action produces

(s∗ ⊗ idC(G))α( f ) = λ(s∗( f )).

For the converse, we assume that r is injective. Then we note that it is enough to
show that λ is a ∗-homomorphism. As r is injective, r∗ ∶ C(G0) → C(G1) is a surjective
∗-homomorphism. So, for ξ, η ∈ C(G1),

λ(ξη) = λ(r∗( f )r∗(g)),

for some f , g ∈ C(G0). Since r∗ and therefore (r∗ ⊗ idC(G)) are ∗-homomorphisms,
we have

λ(ξη) = λ(r∗( f g)) = (r∗ ⊗ idC(G))(α( f )α(g)),

which is nothing but (r∗ ⊗ idC(G))α( f )(r∗ ⊗ idC(G))α(g). Therefore

λ(ξη) = (r∗ ⊗ idC(G))α( f )(r∗ ⊗ idC(G))α(g)
= λ(r∗( f ))λ(r∗(g))
= λ(ξ)λ(η),

proving that λ is a ∗-homomorphism. Similarly, if s is injective, using the identity
(s∗ ⊗ idC(G)) ○ α = λ ○ s∗, one can prove that λ is a ∗-homomorphism. ∎

Now, we can turn to the proof of Theorem 6.8.

Proof of Theorem 6.8 First, let us prove that Aut+Bic(G) can be made into an object
of the category CBic(G). We denote the generators of Aut+Bic(G) by (qvw)v ,w∈G0 as
in Remark 6.4. let us define the maps λBic and αBic by equations (6.7) and (6.8),
respectively, i.e.,

λBic(δe) = ∑
f ∈G1

δ f ⊗ qs( f )s(e)qr( f )r(e) , e ∈ G1 ,(6.25)

αBic(δv) = ∑
w∈G0

δw ⊗ qwv , v ∈ G0 .(6.26)
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Then λBic is a Aut+Bic(G)-action on C(G1), by the definition of Aut+Bic(G). Now,
Aut+Bic(G) is a quantum subgroup of Aut+Ban(G). We have already proved that
(C(G1), ϕ, λBan) is a Aut+Ban(G)-equivariant C∗-correspondence over the Aut+Ban(G)-
C∗-algebra (C(G0), αBan). Therefore, (C(G1), ϕ, λBic) is a Aut+Bic(G)-equivariant
C∗-correspondence over the Aut+Bic(G)-C∗-algebra (C(G0), αBic). This proves that
(Aut+Bic(G), αBic , λBic) is an object in the category CBic(G).

To show that (Aut+Bic(G), αBic , λBic) is a universal object, we pick an object
(G , α, λ) from the category CBic(G). Then, by Lemma 6.11,

(r∗ ⊗ idC(G)) ○ α = λ ○ r∗

and consequently, G becomes a quantum subgroup of Aut+Ban(G). Since λ is an action,
the relations (6.5) also hold in C(G). Hence, by the universality of Aut+Bic(G), G is a
quantum subgroup of Aut+Bic(G) as well. This shows that (Aut+Bic(G), αBic , λBic) indeed
is a universal object in the category CBic(G). ∎

The converse direction of Lemma 6.11 has the following corollary.

Corollary 6.12 Let G be a finite, simple graph without any source. If either r or s is
injective, then Aut+Bic(G) is isomorphic to Aut+Ban(G).

Proof We know that Aut+Bic(G) is a quantum subgroup of Aut+Ban(G). By Lemma 6.11,
we conclude that the pair (C(G1), λ) is a Aut+Ban(G)-C∗-algebra and consequently,
(Aut+Ban(G), αBan , λBan) is an object of the category CBic(G). But then Aut+Ban(G) is
a quantum subgroup of Aut+Bic(G). Therefore, Aut+Ban(G) is isomorphic to Aut+Bic(G).

∎

As an application, we shall give an example of a finite, simple graph G without any
source such that Aut+Ban(G) is genuinely quantum and is isomorphic to Aut+Bic(G). To
that end, let us consider a graph where the map r is a bijection between the edge set
and the vertex set. Note that, if we assume the graph to be connected and without
multiple edges or loops, then we are not left with many choices. The graph essentially
reduces to an oriented m-gon whose quantum symmetry coincides with the classical
symmetry group which is Z/mZ [Ban05a, Theorem 4.1]. Now, if we consider disjoint
union of n-number of such graphs, then the map r is still a bijection and we can
apply Corollary 6.12. Combining this with [Bic04, Theorem 4.2], we obtain another
proof of the following well-known result. But before stating it, let us remark that for a
compact quantum group G, we denote the free wreath product of G with the quantum
permutation group of n-points S+n by G ≀∗ S+n ; we refer the reader to [Bic04] for more
details on this.

Theorem 6.13 [BV09, Theorem 3.4] Let G be a graph which is a disjoint union of n-
number of copies of oriented m-gons. Then Aut+Ban(G) and Aut+Bic(G) coincide and are
isomorphic to

Z/mZ ≀∗ S+n .
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7 Applications to quantum symmetries of graphs III: The case of
multigraphs

In this section, we allow the graphs to admit multiple edges. Let then G = (G0 ,G1 , r, s)
be a finite, directed graph, possibly with multiple edges, but without any sources.
We are interested in the category CBic(G) from Definition 6.6. Although for a simple
graph, the above category has a smaller universal object compared to the category of
Definition 6.5, for graphs with multiple edges, the category CBic(G) is more relevant.
For example, in the case of the graph of Cuntz algebra, the C∗-algebra C(G0) is C and
hence has a trivial quantum symmetry and consequently, the category CBan(G) only
consists of trivial actions of compact quantum groups.

Definition 7.1 Let G = (G1 ,G0 , r, s) be a finite, directed graph, possibly with loops or
multiple edges. We define the category Cmult

Bic (G) as follows:
• An object of Cmult

Bic (G) is a triple (G , α, λ), where G is a compact quantum group, α ∶
C(G0) → C(G0) ⊗ C(G) is a unital ∗-homomorphism and λ ∶ C(G1) → C(G1) ⊗
C(G) is a linear map satisfying the following conditions:
– The pair (C(G0), α) is a G-C∗-algebra.
– The triple (C(G1), ϕ, λ) is a G-equivariant C∗-correspondence over the G-C∗-

algebra (C(G0), α).
– The pair (C(G1), λ) is a G-C∗-algebra and the action λ is faithful.

• Let (G1 , α1 , λ1) and (G2 , α2 , λ2) be two objects of the category Cmult
Bic (G). A mor-

phism f ∶ (G1 , α1 , λ1) → (G2 , α2 , λ2) in Cmult
Bic (G) is again by definition a Hopf ∗-

homomorphism f ∶ C(G2) → C(G1) such that:
– (idC(G0) ⊗ f )α2 = α1;
– (idC(G1) ⊗ f )λ2 = λ1.

Theorem 7.2 For a finite, directed graph G which has multiple edges but has no source,
the category Cmult

Bic (G) admits a universal object.

We shall not give a proof of the above theorem as we are mainly interested
in concrete examples of universal objects in the above category. In fact, we shall
produce an example illustrating a general strategy to identify quantum subgroups of
certain compact quantum groups. Also, we are aware that a notion of the quantum
automorphism group of multigraphs is being formulated [HG] and we believe that it
will have some point of contact with the results obtained in this section. But we must
wait for its final formulation to appear to say anything precise in this direction.

Remark 7.3 We remark that for any object (G , α, λ) in the category Cmult
Bic (G), G is of

Kac type. Also the G-action α preserves the restriction of the distinguished KMS state
φ on C(G0). Therefore, the universal object in the category Cmult

Bic (G) is a subobject of
the universal object in the category of compact quantum groups acting faithfully on
C∗(G), preserving the distinguished KMS state φ at the critical inverse temperature,
whenever φ exists.

Let G be the graph with one vertex and n number of loops at the vertex; G⊕m be the
disjoint union of m-copies of G. We note that the corresponding graph C∗-algebra is
⊕m

i=1On , where On is the Cuntz algebra generated by n number of partial isometries.
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So G⊕m has m-vertices with each vertex emitting and receiving n number of edges. We
shall compute the universal object of the category Cmult

Bic (G⊕m).
Let us introduce now some notations. We denote the vertex set of G⊕m by G0; the

edge set by G1, as usual. We denote the vertices by {v i ∣ i = 1, . . . , m} and edges by
{e(i)j ∣ i = 1, . . . , m, j = 1, . . . , n}. e(i)j denotes the jth loop in the ith copy of G. We
denote by δ i the function on G0 that takes the value 1 on v i and zero on the other
vertices; we denote by ξ(k)i the function on G1 that takes the value 1 on e(k)i and 0
on the other edges. The result in the following theorem resembles the conclusion of
[Bic04, Theorem 4.2].

Theorem 7.4 Let us denote by (Guniv , αuniv , λuniv) the universal object of the category
Cmult

Bic (G⊕m). Then Guniv is isomorphic to S+n ≀∗ S+m .

Proof We begin by introducing some more notations. We shall denote the generators
of S+n by u i j , where i , j = 1, . . . , n and the generators of S+m by vkl , where k, l = 1, . . . , m.
We also denote the embedding of the lth copy of S+n in S+n ∗ ⋅ ⋅ ⋅ ∗

%
m-times

S+n by ν l . With these

notations, the compact quantum group S+n ≀∗ S+m can be made into an object of the
category Cmult

Bic (G⊕m) as follows. We define

λBic(ξ i
(k)) = ∑

j, l
ξ j
(l) ⊗ ν l(u i j)v l k ,(7.1)

for i = 1, . . . , n and k = 1, . . . , m; and

αBic(δk) =
m
∑
l=1

δ l ⊗ v l k ,(7.2)

for k = 1, . . . , m. We leave the proof of the fact that (S+n ≀∗ S+m , αBic , λBic) is indeed an
object of the category Cmult

Bic (G⊕m) to the reader (see also [Bic04]). We only prove that
the triple (S+n ≀∗ S+m , αBic , λBic) is the universal object in the category Cmult

Bic (G⊕m).
To that end, let (G , α, λ) be an object of the category Cmult

Bic (G⊕m). Let, moreover,
λ and α be given by

λ(ξ i
(k)) = ∑

j, l
ξ j
(l) ⊗ q l( j)k(i)(7.3)

α(δk) = ∑
l

δ l ⊗ x l k ,(7.4)

with the notations as in the paragraph just above the statement of the theorem. We
note that since (C(G1), λ) is a G-C∗-algebra, we have the following relations:

κ(q l( j)k(i)) = qk(i)l( j) ,(7.5)

∑
k , i

q l( j)k(i) = 1,(7.6)

where κ denotes the antipode of G. Also, since,

r∗(δk) =
n
∑
i=1

ξ(k)i

https://doi.org/10.4153/S0008414X23000810 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000810


Compact quantum group actions on Pimsner algebras 35

for all k = 1, . . . , m and

(r∗ ⊗ idC(G))α(δk) = λ(r∗(δk)),

we have, for k, l = 1, . . . , m,

x l k =
n
∑
i=1

q l( j)k(i) ,

for all j = 1, . . . , n. Clearly, x l k , for k, l = 1, . . . , m satisfy the relations in S+m . So in
particular,

m
∑
l=1

x l k = 1.

We now define

u(l)ji =
m
∑
k=1

q l( j)k(i) ,

for l = 1, . . . , m. Hence, by (7.6), for each l = 1, . . . , m,
n
∑
i=1

u(l)ji = 1.(7.7)

Now, using

∑
l

x l k = 1,

we get

∑
l , i

q l( j)k(i) = 1,

which after applying κ gives us

∑
l , i

qk(i)l( j) = 1,

i.e., after interchanging k with l and i with j,
n
∑
j=1

u(l)ji = 1,(7.8)

for all i , l . An easy calculation, using

ξk
i ξk′

i′ = δk ,k′δ i , i′ ξ(k)i ,

in the C∗-algebra C(G1) reveals that for all i , j, k, l , k′ , i′,

q l( j)k(i)q l( j)k′(i′) = δk ,k′δ i , i′q l( j)k(i) .(7.9)

Hence, for all l = 1, . . . , m,

u(l)ji u(l)ji′ = δ i , i′u(l)ji .(7.10)
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Now for k ≠ l ,

ξ(k)i δ l = 0,

for all i = 1, . . . , n. Therefore

λ(ξ(k)i δ l) = 0,

which implies,

(∑
p,r

ξ(p)
r ⊗ qp(r)k(i))(∑

s
δs ⊗ xs l) = 0,

i.e.,

(∑
p,r

ξ(p)
r ⊗ qp(r)k(i)xpl) = 0.

Hence, we have

qp(r)k(i)(∑
i′

qp( j)l(i′)) = 0.

For j = r, as k ≠ l ,

qp(r)k(i)qp( j)l(i′) = 0

for all i′. Therefore, for j ≠ r,

qp(r)k(i)(∑
i′

qp( j)l(i′)) = 0.(7.11)

Using

qp( j)l(i′)qp( j)l(i′′) = δ i′ , i′′qp( j)l(i′)

for all p, j, l , i′, we get

qp(r)k(i)qp( j)l(i) = 0,(7.12)

whenever k ≠ l and j ≠ r. Now, for any l = 1, . . . , m and any i , r, s = 1, . . . , n,

u(l)r i u(l)s i = ∑
k ,k′

q l(r)k(i)q l(s)k′(i) ,

which, for r = s is equal to

∑
k

q l(r)k(i) .

Hence, we have that

(u(l)r i )2 = u(l)r i .

For r ≠ s, using (7.12), we get

u(l)r i u(l)s i =
m
∑
k=1

q l(r)k(i)q l(s)k(i) .
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From (7.9), for any l , r, k, i , s with r ≠ s,

qk(i)l(r)qk(i)l(s) = 0.

Applying κ to the above identity, we deduce that

q l(s)k(i)q l(r)k(i) = 0

for all i , k, l whenever r ≠ s. Therefore,

u(l)r i u(l)s i = δr ,su(l)r i ,

for all l = 1, . . . , m and for all i , r, s = 1, . . . , n. So for each l = 1, . . . , m, u(l)ji , i , j =
1, . . . , n satisfy

n
∑
i=1

u(l)i j =
n
∑
j=1

u(l)i j = 1;

u(l)i j u(l)ik = δ j,ku i j ;

u(l)k j u(l)i j = δk , i u(l)i j .

(7.13)

Also xkl for k, l = 1, . . . , m satisfy the relations of S+m . Then, by the universal property
of the free product, we get a Hopf ∗-homomorphism

f ∶ C(S+n ∗ ⋅ ⋅ ⋅ ∗
%
m-times

S+n ∗ S+m) → C(G)

such that

f (ν l(u i j)) = u(l)i j

and

f (vkl) = xkl ,

where, we recall that u i j for i , j = 1, . . . , n are the generators of S+n and vkl for k, l =
1, . . . , m are the generators of S+m . Moreover,

f (ν l(u i j)v l k) = u(l)i j x l k

= (∑
k′ , i′

q l(i)k′( j)q l(i)k(i′))

= q l(i)k( j) .

(7.14)

But f (v l k ν l(u i j)) is also q l(i)k( j). So by the definition of the free wreath product, f
descends to a surjective Hopf ∗-homomorphism

f ∶ C(S+n ≀∗ S+m) → C(G),

intertwining the actions. Hence, (S+n ≀∗ S+m , αBic , λBic) is the universal object in the
category Cmult

Bic (G⊕m), and this completes the proof. ∎
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Remarks 7.5
• For m = 1, the graph G⊕1 is the graph with one vertex and n number of loops

attached with it. The universal object in the category Cmult
Bic (G⊕1) is S+n by Theorem

7.4. Now, the universal object in the category of compact quantum groups acting
faithfully on On and preserving the KMS state, which is a distinguished one, is the
free unitary quantum group U+n . Hence, by Remark 7.3, S+n is realized as a quantum
subgroup of U+n .

• Similarly, for n = 1, the graph G⊕m is the disjoint union of m-loops. By [JM21a,
Proposition 4.2], the quantum automorphism group of the graph C∗-algebra corre-
sponding to the graph G⊕m preserving the distinguished KMS state is H∞+m . Hence,
again by Remark 7.3, the universal object in the category Cmult

Bic (G⊕m) realizes S+m as
a quantum subgroup of H∞+m .
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