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Abstract

We show the existence of a large family of representations supported by the orbit
closure of the determinant. However, the validity of our result is based on the validity
of the celebrated ‘Latin square conjecture’ due to Alon and Tarsi or, more precisely, on
the validity of an equivalent ‘column Latin square conjecture’ due to Huang and Rota.

1. Introduction

Let v be a complex vector space of dimension m and let E := End v. Consider D ∈ Q := Sm(E)∗,
where D is the function taking the determinant of any X ∈ End v. Fix a basis {v1, . . . , vm}
of v and a positive integer n < m and consider the function P ∈ Q, defined by P(X) =
xm−n1,1 Perm(Xo), Xo being the component of X in the right down n×n corner, where any element
of End v is represented by an m×m matrix X = (xi,j)16i,j6m in the basis {vi} and Perm denotes
the permanent. The group G = GL(E) canonically acts on Q. Let X (respectively Y) be the
G-orbit closure of D (respectively P) inside Q. Then X and Y are closed (affine) subvarieties
of Q which are stable under the standard homothety action of C∗ on Q. Thus, their affine
coordinate rings C[X ] and C[Y] are nonnegatively graded G-algebras over the complex numbers
C. Clearly, D � EndE ⊂ X , where EndE acts on Q on the right via (q�A)(X) = q(A ·X), for
A ∈ EndE, q ∈ Q and X ∈ E.

For any positive integer n, let m̄ = m̄(n) be the smallest positive integer such that the
permanent of any n × n matrix can be realized as a linear projection of the determinant of an
m̄×m̄ matrix. This is equivalent to saying that P ∈ D�EndE for the pair (m̄, n). Then Valiant
conjectured that the function m̄(n) grows faster than any polynomial in n (cf. [Val79]).

Similarly, let m=m(n) be the smallest integer such that P ∈ X (for the pair (m,n)). Clearly,
m(n) 6 m̄(n). Now, Mulmuley and Sohoni strengthened Valiant’s conjecture. They conjectured
that, in fact, the function m(n) grows faster than any polynomial in n (cf. [MS01, MS08] and
the references therein). They further conjectured that if P /∈ X , then there exists an irreducible
G-module which occurs in C[Y] but does not occur in C[X ]. (Of course, if P ∈ X , then C[Y] is a
G-module quotient of C[X ].) This geometric complexity theory program initiated by Mulmuley
and Sohoni provides a significant mathematical approach to solving Valiant’s conjecture (in fact,
the strengthened version of Valiant’s conjecture proposed by them).

By [Kum13, Theorem 5.2], if an irreducible G-module VE(λ) (with highest weight λ) appears
in C[Y], then VE(λ) is a polynomial representation of G given by a partition

λ : (λ1 > λ2 > · · · > λn2+1 > 0 > · · · > 0)

with last m2 − (n2 + 1) zeros.
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Representations supported by the orbit closure of the determinant

From now on (in this Introduction), we assume that m is even. Our principal result in this

paper (Corollary 6.2) asserts that for any partition µ : (µ1 > · · · > µm > 0 > · · · > 0) with last

m2 − m zeros, the irreducible G-module VE(mµ) appears in C[X ] with nonzero multiplicity,

provided the column Latin (m,m)-square conjecture is valid (cf. Conjecture 4.3). In particular,

if m > n2 + 1, for any irreducible representation VE(λ) appearing in C[Y], VE(mλ) appears in

C[X ] (again assuming the validity of the column Latin (m,m)-square conjecture). Thus, finding

an irreducible representation in C[Y] which does not occur in C[X ] (on which the success of

the Mulmuley–Sohoni program relies) for m > n2 + 1 is not so easy. As a consequence of our

Corollary 6.2, we deduce that the symmetric Kronecker coefficient skmλ,dδm,dδm > 0 for any

partition λ : (λ1 > λ2 > · · · > λm > 0) of d, where δm is the partition δm : (1 > 1 > · · · > 1)

(m factors) (cf. Corollary 6.5).

This paper is organized as follows. By a result of Howe (cf. Corollary 2.4), for any fundamental

weight δi (1 6 i 6m2 = dimE) of GL(E), the irreducible GL(E)-module VE(dδi), for 0 < d < m,

does not occur in S•(Sm(E)), whereas VE(mδi) occurs with multiplicity one in S•(Sm(E)). In

fact, it occurs in Si(Sm(E)). In § 2 we give an explicit construction of the highest weight vector

Pi = γm,i in this unique copy of VE(mδi) in Si(Sm(E)) (cf. Definition 2.5).

In § 3, for any 1 6 i 6 m, we calculate γm,i on a certain subset θ(M(m, i)) of X given by a

morphism θ : M(m, i) → X , where M(m, i) denotes the set of m× i matrices. The induced map

θ∗ on the level of affine coordinate rings is identified with a certain very explicit map ϕ. The main

result of this section is Proposition 3.4, which asserts that γm,i restricted to the image θ(M(m, i))

is nonzero if and only if the GL(Vm)-submodule Ui generated by v⊗io ∈ Si(Sm(V ∗m)) intersects

the isotypic component Imδi of Si(Sm(V ∗m)) corresponding to the irreducible GL(Vm)-module

Vm(mδi)
∗ nontrivially, where the element vo is defined by the identity (9).

In § 4, we turn to Latin squares (more generally Latin rectangles) and state the column Latin

square conjecture due to Huang and Rota. As shown by Huang and Rota, their conjecture is

equivalent to the celebrated Latin square conjecture due to Alon and Tarsi. We recall that the

Latin square conjecture is known to be true for p − 1 as well as p + 1, for any odd prime p; in

particular, it is true for any even integer up to 24 (cf. Remark 4.5).

Section 5 is devoted to proving that the validity of the column Latin square conjecture

implies that the isotypic component Imδi of Si(Sm(V ∗m)) corresponding to the irreducible

GL(Vm)-module Vm(mδi)
∗ intersects the GL(Vm)-submodule Ui generated by v⊗io nontrivially

(cf. Theorem 5.6). In fact, for i = m, we show that the latter assertion is equivalent to the

column Latin square conjecture.

This sets the stage for the proof of our main theorem (cf. Theorem 6.1), which asserts that

the irreducible module VE(mδi) occurs in C[X ] with multiplicity one for any 1 6 i 6 m if the

column Latin square conjecture is true for m×m Latin squares. This is shown by proving that

Pi does not vanish identically on X . As an immediate corollary (cf. Corollary 6.2), we deduce

that for any partition λ : λ1 > · · · > λm > 0, VE(mλ) occurs in C[X ] (if the column Latin square

conjecture is true for m×m Latin squares).

Finally, in Remark 6.6(b), we observe that VE(mδi) (for any 1 6 i 6 m) occurs in

C[GL(E) ·P] with multiplicity one, where P is the function E → C taking any matrix

A ∈ E = End v to its permanent. (Of course, as mentioned above, VE(dδi), for any 0 < d < m

and 1 6 i 6 m2, does not occur in S•(Sm(E)), and hence it does not occur in C[GL(E) ·P] or

in C[X ].)

For any vector space W over the complex numbers, in this paper, we view Sk(W ) as the

subspace of ⊗kW consisting of symmetric tensors.
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2. An explicit realization of multiples of fundamental GL(E)-representations in
S•(S•(E))

Let E be a finite-dimensional complex vector space with basis {e1, . . . , e`}. Let δi, 1 6 i 6 `, be
the ith fundamental weight of GL(E) = GL(`). This corresponds to the partition 1 > 1 > · · · > 1
(i factors).

Lemma 2.1. For any positive integers d, j and m, the multiplicity of the irreducible GL(E)-
module VE(dδi) (with highest weight dδi) in Sj(Sm(E)) is the same as the multiplicity of the
irreducible GL(Ei)-module VEi(dδi) in Sj(Sm(Ei)), where Ei is the subspace of E spanned by
{e1, . . . , ei}.

In fact, the highest weight vectors in Sj(Sm(E)) for the irreducible GL(E)-module VE(dδi)
coincide with the highest weight vectors in Sj(Sm(Ei)) for the irreducible GL(Ei)-module
VEi(dδi).

Proof. Let BE be the standard Borel subgroup of GL(E) consisting of all the invertible upper
triangular matrices (with respect to the basis {e1, . . . , e`}). Let v ∈ Sj(Sm(E)) be a BE-
eigenvector of weight dδi. Then clearly v ∈ Sj(Sm(Ei)) and v is a BEi-eigenvector of weight
dδi. Conversely, let v′ ∈ Sj(Sm(Ei)) be a BEi-eigenvector of weight dδi. Then the line Cv′ is
clearly stable under BE . Moreover, the vector v′ is a weight vector of weight dδi with respect
to the standard maximal torus TE (consisting of invertible diagonal matrices) of GL(E). This
proves the lemma. 2

Corollary 2.2. With the notation as above, the multiplicity µE(dδi) of VE(dδi) in Sj(Sm(E))
is equal to the dimension of the invariant space [Sj(Sm(Ei))]

SL(Ei) if di = jm. If di 6= jm, then
µE(dδi) = 0.

We recall the following result from [How87, Proposition 4.3].

Proposition 2.3. Let E be a vector space of dimension ` as above. For positive integers j, m,
we have

(a) [Sj(Sm(E))]SL(E) = (0), if 0 < j < `;

(b) [S`(Sm(E))]SL(E) '
{

(0) if m is odd,

C if m is even.

Combining Corollary 2.2 with Proposition 2.3, together with the action of the center of
GL(E), we get the following result.

Corollary 2.4. Let E be a vector space of dimension ` as above. Let m be a positive even
integer and let 1 6 i 6 `. Let d be the smallest positive integer such that VE(dδi) occurs in
S•(Sm(E)) as a GL(E)-submodule. Then d = m. Moreover, VE(mδi) occurs in S•(Sm(E)) with
multiplicity 1 and it occurs in Si(Sm(E)).

From now on in this section, let m be an even positive integer.
We first give an explicit construction of the invariant [Si(Sm(Ei))]

SL(Ei) for any 1 6 i 6 `.
Recall from Proposition 2.3 that it is one-dimensional.

Definition 2.5 (An explicit construction of [Si(Sm(Ei))]
SL(Ei)). Recall that Ei has a basis

{e1, . . . , ei}. Let M(i, i) be the space of i× i matrices over C. Define a linear isomorphism

θ : (⊗2Ei)
∗ ∼−→ M(i, i), θ(f) = (θ(f)p,q)16p,q6i,

where θ(f)p,q = f(ep ⊗ eq), for any f ∈ (⊗2Ei)
∗.
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Let GL(Ei) act on M(i, i) via

g ·A = (g−1)tAg−1 for g ∈ GL(Ei) and A ∈M(i, i).

Then, θ is GL(Ei)-equivariant. Now, define the map (setting m′ = m/2)

θ⊗m
′

: (⊗mEi)∗ ∼−→ ⊗m′(M(i, i))

by identifying

(⊗mEi)∗ ' ((⊗2Ei)
∗)⊗ · · · ⊗ ((⊗2Ei)

∗) (m′ factors)

and setting

θ⊗m
′
(f1 ⊗ · · · ⊗ fm′) = θ(f1)⊗ · · · ⊗ θ(fm′) for fk ∈ (⊗2Ei)

∗.

For any finite-dimensional vector space W and nonnegative integer k, let Pk(W ) be the space
of homogeneous polynomials of degree k on W , i.e.,

Pk(W ) = {f : W → C polynomial such that f(λw) = λkf(w) ∀w ∈W and λ ∈ C}.

Then there is a linear isomorphism (cf. [GW09, Proposition B.2.4])

ξ : Sk(W )∗
∼−→ Pk(W )

defined by ξ(θ)(w) = θ(w⊗k), for θ ∈ Sk(W )∗ and w ∈W . If an algebraic group G acts linearly
on W , then ξ is G-equivariant.

Define the linear map ξ̄ : Pk(W ) → (⊗kW )∗ by

(ξ̄(f))(w1 ⊗ · · · ⊗ wk) =
1

k!
(the coefficient of t1 . . . tk in f(t1w1 + · · ·+ tkwk)),

for f ∈ Pk(W ) and w1, . . . , wk ∈W . Then the inverse map

ξ−1 : Pk(W ) → Sk(W )∗

is given by the composition of ξ̄ with the restriction map (⊗kW )∗ → Sk(W )∗.
Consider the linear projection obtained via the symmetrization

π : ⊗mEi → Sm(Ei), w1 ⊗ · · · ⊗ wm 7→
1

m!

∑
σ∈Sm

wσ(1) ⊗ · · · ⊗ wσ(m),

where Sm is the permutation group on the symbols [m] := {1, . . . ,m}. Thus, we have GL(Ei)-
equivariant linear maps

Sm(Ei)
∗ π∗
↪−→ (⊗mEi)∗

θ⊗m
′

∼−−→⊗m′(M(i, i)).

This gives rise to a linear GL(Ei)-equivariant map

Si(Sm(Ei)
∗) → Si(⊗m′(M(i, i))). (1)

Now consider the map

det⊗m
′

: M(i, i) → C, A 7→ (detA)m
′
.
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It is clearly a homogeneous polynomial of degree im′, which is SL(Ei)-invariant. Thus, via the
above isomorphism ξ−1, we get an SL(Ei)-invariant linear map

d̂et⊗m
′

: Sim
′
(M(i, i)) → C. (2)

Of course, we have a canonical GL(Ei)-equivariant projection

Si(⊗m′(M(i, i))) → Sim
′
(M(i, i)), (3)

obtained via the inclusion

Si(⊗m′(M(i, i))) ⊂ ⊗i(⊗m′(M(i, i))) ' ⊗im′(M(i, i))

followed by the symmetrization ⊗im′(M(i, i)) → Sim
′
(M(i, i)).

Composing the maps (2) ◦ (3) ◦ (1), we get an SL(Ei)-invariant linear map

γm,i : Si(Sm(Ei)
∗) → C.

For any vector space W , we have a canonical GL(W )-equivariant identification

Si(W ∗) ' Si(W )∗ (4)

via Si(W ∗) ⊂ ⊗i(W ∗) ' (⊗iW )∗ → Si(W )∗, where the last map is the restriction map. Thus,
γm,i can be thought of as an element of [Si(Sm(Ei))]

SL(Ei).

Lemma 2.6.

γm,i

(( i∑
j=1

(e∗j )
⊗m
)⊗i)

6= 0,

where {e∗1, . . . , e∗i } is the basis of E∗i dual to the basis {e1, . . . , ei} of Ei.

Proof. Let Ej,k ∈ M(i, i) be the matrix with all entries 0, except (j, k) which is 1. By the
definition,

γm,i

(( i∑
j=1

(e∗j )
⊗m
)⊗i)

= γm,i

( ∑
16j1,...,ji6i

((e∗j1)⊗m ⊗ · · · ⊗ (e∗ji)
⊗m)

)
=

∑
16j1,...,ji6i

d̂et⊗m
′
(E⊗m

′

j1,j1
⊗ · · · ⊗ E⊗m′ji,ji

)

=
∑

16j1,...,ji6i

1

(im′)!
the coefficient of (t1 . . . tim′) in

[det((t1 + · · ·+ tm′)Ej1,j1 + (tm′+1 + · · ·+ t2m′)Ej2,j2

+ · · ·+ (t(i−1)m′+1 + · · ·+ tim′)Eji,ji)]
m′

=
∑
σ∈Si

1

(im′)!
the coefficient of (t1t2 . . . tim′) in

[(t1 + · · ·+ tm′)
m′ . . . (t(i−1)m′+1 + · · ·+ tim′)

m′ ]

=
i!

(im′)!
(m′!)i 6= 0.

This proves the lemma. 2

We record this in the following.

Lemma 2.7. The element γm,i is the unique (up to a scalar multiple) nonzero element of
[Si(Sm(Ei))]

SL(Ei).
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3. Calculation of γm,i on the determinant orbit closure

We continue to assume that m is even and m′ = m/2.
Let v be a complex vector space of dimension m and let E := End v = v ⊗ v∗. Fix a basis

{v1, . . . , vm} of v and let {v∗1, . . . , v∗m} be the dual basis of v∗. Take the basis {vi ⊗ v∗j }16i,j6m of
E and order the basis elements as {e1, e2, . . . , em2} satisfying

e1 = v1 ⊗ v∗1, e2 = v2 ⊗ v∗2, . . . , em = vm ⊗ v∗m.

Fix 1 6 i 6 m and consider the subspace Ei of E spanned by {e1, . . . , ei}. Take A ∈ End E of
the form

Aej =

m∑
p=1

ajpep, 1 6 j 6 i. (5)

In the sequel, we will only consider A ∈ End E of the above form and the values of Aej for

j > i will be irrelevant for us. Thus, we can (and will) think of A = (ajp)16p6m,16j6i as an m× i
matrix.

Define a right action of the semigroup End E on Q := Pm(E) ' Sm(E)∗ (cf. Definition 2.5
for the last identification under ξ) via

(f �A)(e) = f(Ae) for f ∈ Q,A ∈ End E and e ∈ E. (6)

Take f = D �A ∈ Q, where A is of the form (5) and D ∈ Pm(E) is the function taking the
determinant of any X ∈ E. For 1 6 l1, . . . , lm 6 i, let Al1,...,lm denote the m ×m matrix with

the first column

 a
l1
1

...

a
l1
m

, etc. For integers d1, . . . , di > 0 with d1 + · · ·+ di = m, {1d1 , 2d2 , . . . , idi}

means the collection {
1, . . . , 1

d1 times

; 2, . . . , 2

d2 times

; . . . ; i, . . . , i

di times

}
,

and A(d1,...,di) means the m×m matrix with columns

A1, . . . , A1

d1 times

; A2, . . . , A2

d2 times

; . . . ;Ai, . . . , Ai

di times

, where Aj is the column

a
j
1
...

ajm

 .
Lemma 3.1. The image of f|Ei in ⊗m′(M(i, i)) under θ⊗m

′ ◦ π∗ (cf. Definition 2.5) is given by

1

m!

∑
d1+···+di=m

dj>0

PermA(d1,...,di)
∑

16jp,kp6i

Ej1,k1 ⊗ · · · ⊗ Ejm′ ,km′ ,

where the last summation runs over those ordered m-tuples (j1, k1, . . . , jm′ , km′) such that the
collection (without regard to the order)

{j1, k1, . . . , jm′ , km′} = {1d1 , 2d2 , . . . , idi},

and Perm denotes the permanent of the matrix.
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Proof. For any 1 6 jp, kp 6 i,

f(π((ej1 ⊗ ek1)⊗ · · · ⊗ (ejm′ ⊗ ekm′ )))
= D((Aej1 ⊗Aek1)⊗ · · · ⊗ (Aejm′ ⊗Aekm′ ))

= D

( ∑
16p1,...,pm6m

(aj1p1ep1 ⊗ ak1p2ep2)⊗ · · · ⊗ (a
jm′
pm−1epm−1 ⊗ a

km′
pm epm)

)
=

∑
16p1,...,pm6m

(aj1p1a
k1
p2) . . . (a

jm′
pm−1a

km′
pm )D(ep1 ⊗ ep2 ⊗ · · · ⊗ epm−1 ⊗ epm)

=
∑
σ∈Sm

(aj1σ(1)a
k1
σ(2)) . . . (a

jm′
σ(m−1)a

km′
σ(m))D(eσ(1) ⊗ eσ(2) ⊗ · · · ⊗ eσ(m−1) ⊗ eσ(m))

=
1

m!
Perm(Aj1,k1,...,jm′ ,km′ ). (7)

Now the image of f|Ei in ⊗m′(M(i, i)) under θ⊗m
′ ◦ π∗ is given by∑

16jp,kp6i

f((ej1 ⊗ ek1)⊗ · · · ⊗ (ejm′ ⊗ ekm′ ))Ej1,k1 ⊗ · · · ⊗ Ejm′ ,km′

=
1

m!

∑
16jp,kp6i

Perm(Aj1,k1,...,jm′ ,km′ )Ej1,k1 ⊗ · · · ⊗ Ejm′ ,km′ , by (7)

=
1

m!

∑
d1+···+di=m

dj>0

PermA(d1,...,di)
∑

16jp,kp6i

Ej1,k1 ⊗ · · · ⊗ Ejm′ ,km′ ,

where the last summation runs over those ordered m-tuples (j1, k1, . . . , jm′ , km′) such that the
collection (without regard to the order)

{j1, k1, . . . , jm′ , km′} = {1d1 , 2d2 , . . . , idi}.
This proves the lemma. 2

On the vector space M(m, i) of m× i matrices, GL(m)×GL(i) acts via

(g, h) ·X = gXh−1, for g ∈ GL(m), h ∈ GL(i), X ∈M(m, i).

In particular, the permutation group Sm, thought of as the subgroup of permutation matrices
in GL(m), acts on M(m, i) and hence on any Pk(M(m, i)). For any d = (d1, . . . , di), |d| :=
d1 + · · ·+ di = m and dj > 0, set (for any A of the form (5))

ad(A) = PermA(d1,...,di).

Then, clearly, for any d as above,

ad ∈ Pm(M(m, i))−(ε1+···+εm),Sm ,

where the superscript ‘−(ε1+ · · ·+εm),Sm’ denotes the Sm-invariants of weight −(ε1+ · · ·+εm)
with respect to the action of GL(m), i.e., the invertible diagonal matrices (t1, . . . , tm) act via
(t1 . . . tm)−1. Recall from [GW09, Theorem 5.6.7] that, as GL(m)×GL(i)-modules, for any j > 0,

Pj(M(m, i)) '
∑

µ:µ1>µ2>···>µi>0
|µ|=j

Vm(µ)∗ ⊗ Ei(µ), (8)
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where |µ| :=
∑
µp and Vm(µ) (respectively Ei(µ)) denotes the irreducible GL(m)-module

(respectively GL(i)-module) corresponding to the partition µ.
Let Vm := Cm with the standard basis {v1, . . . , vm}. Define the elements

vo := v∗1 ⊗ · · · ⊗ v∗m ∈ ⊗m(V ∗m); vo :=
1

m!

∑
σ∈Sm

σ · vo ∈ Sm(V ∗m), (9)

and

vo :=
1

m!

∑
σ∈Sm

σ · (v1 ⊗ · · · ⊗ vm) ∈ Sm(Vm). (10)

From (8), by a classical result due to Kostant [Kos76, Remark 4.1] (which asserts that for any
irreducible SL(Vm)-module Vm(λ) corresponding to the partition λ with |λ| = m, its zero weight
space is an irreducible representation Wλ of Sm corresponding to the partition λ), we get

Pm(M(m, i))−(ε1+···+εm),Sm ' (Sm(Vm)ε1+···+εm,Sm)∗ ⊗ Sm(Ei),

Sm(Vm)ε1+···+εm,Sm ' Cvo.

Thus,
Pm(M(m, i))−(ε1+···+εm),Sm ' Sm(Ei), (11)

as GL(i)-modules. It is easy to see that {ad}d=(d1,...,di) with |d| = m are linearly independent

(by taking, for example, ajp = aj1 for all 1 6 p 6 m). Hence, by the dimensional consideration,
{ad}|d|=m provides a basis of Sm(Ei) under the above identification (11). The GL(i)-module
isomorphism (11) clearly induces a GL(i)-algebra homomorphism:

ϕ : S•(Sm(Ei)) → Pm•(M(m, i))−•(ε1+···+εm),Sm ' ⊕(Vm(µ)•(ε1+···+εm),Sm)∗ ⊗ Ei(µ), (12)

where the above sum runs over µ : µ1 > · · · > µi > 0, |µ| = m•; the last isomorphism follows by
the identity (8).

We now give an alternative description of the map

ϕ : S•(Sm(Ei)) → Pm•(M(m, i))−•(ε1+···+εm),Sm .

First of all, as GL(m)×GL(i)-modules,

Pmj(M(m, i)) ' Pmj(Vm ⊗ E∗i ) ' Smj(V ∗m ⊗ Ei), (13)

where the last identification is obtained from the isomorphism ξ−1 of Definition 2.5 followed by
the identification (4). Define the map

ϕ : ⊗mEi → ⊗m(V ∗m ⊗ Ei) = (⊗m(V ∗m))⊗ (⊗mEi), ϕ(v) = vo ⊗ v.

Clearly, the map ϕ is a GL(Ei)-module map. Moreover, it restricts to the map ϕ1:

Sm(Ei)
ϕ1 //

� _

��

Sm(V ∗m ⊗ Ei)� _

��
⊗m(Ei)

ϕ // ⊗m(V ∗m ⊗ Ei),

where the vertical maps are the canonical inclusions.
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It is easy to see that ϕ1 is a GL(Ei)-module map with image inside Sm(V ∗m ⊗
Ei)
−(ε1+···+εm),Sm . Thus, from the irreducibility of SmEi as a GL(Ei)-module, applying Schur’s

lemma, we can choose the identification (11) so that ϕ1 coincides with the map ϕ|Sm(Ei) under
the identification (13).

The map ϕ1 : Sm(Ei) → Sm(V ∗m ⊗ Ei) extends to an algebra homomorphism (still denoted
by)

ϕ1 : S•(Sm(Ei)) → S•(Sm(V ∗m ⊗ Ei)).
The isomorphism (13) for j = 1,

Pm(M(m, i)) ' Sm(V ∗m ⊗ Ei), (14)

induces an algebra homomorphism β : S•(Sm(V ∗m ⊗ Ei)) → Pm•(M(m, i)). Let ϕ′1 :
S•(Sm(Ei)) → Pm•(M(m, i)) be the GL(Ei)-algebra homomorphism which is the composite
β ◦ ϕ1.

Since ϕ′1 coincides with ϕ on Sm(Ei), and both ϕ and ϕ′1 are algebra homomorphisms, we
get that

ϕ′1 = ϕ. (15)

Consider the function (for i 6 m)

θ : M(m, i) → Pm(Ei) ' Sm(Ei)
∗, A 7→ (D �A)|Ei .

Explicitly,

θ(A)

( i∑
j=1

λjej

)
=

m∏
p=1

( i∑
j=1

λja
j
p

)
for A = (ajp)16p6m,16j6i.

Clearly, θ is a polynomial function of homogeneous degree m. Moreover, it is GL(Ei)-equivariant:

θ(A · g−1) = (D � (Ag−1))|Ei
= g · ((D �A)|Ei)

= g · θ(A).

Of course, θ gives rise to a GL(Ei)-algebra homomorphism

θ∗ : S•(Sm(Ei)) → Pm•(M(m, i)).

Lemma 3.2. Im(θ∗|Sm(Ei)
) ⊂ Pm(M(m, i))−(ε1+···+εm),Sm .

Proof. Let t be the diagonal matrix (t1, . . . , tm) ∈ GL(m). For any f ∈ Sm(Ei), A ∈M(m, i),

(θ∗f)(t−1A) = f((D � t−1A)|Ei)

= t−11 . . . t−1m f((D �A)|Ei).

This shows that
Im(θ∗|Sm(Ei)

) ⊂ Pm(M(m, i))−(ε1+···+εm).

We next show that for any f ∈ Sm(Ei), θ
∗f is Sm-invariant. Take σ ∈ Sm (considered as a

permutation matrix), then

(θ∗f)(σA) = f((D � σA)|Ei)

= f((D �A)|Ei).

This proves the lemma. 2
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Lemma 3.3. The function θ∗ coincides (up to a nonzero scalar multiple in any degree) with the

function ϕ : S•(Sm(Ei)) → Pm•(M(m, i))−•(ε1+···+εm),Sm defined earlier (cf. (12)).

Proof. First of all the function θ is clearly nonzero. Further, both θ∗ and ϕ are GL(i)-algebra

homomorphisms. Moreover, Sm(Ei) and Pm(M(m, i))−(ε1+···+εm),Sm are both irreducible GL(i)-

modules (use the isomorphism (11) for the latter). Combining these, the lemma follows using

Schur’s lemma. 2

Now, Si(Sm(Ei)) has a unique (up to a scalar multiple) SL(Ei)-invariant (by Proposition 2.3).

We want to determine if ϕ|[Si(Sm(Ei))]SL(Ei) 6= 0.

By the definition, Sj(Sm(Ei)) = [⊗j(⊗mEi)]Hj , where Hj ⊂ Smj is the subgroup S×jm oSj

acting on the right as

((v11 ⊗ · · · ⊗ v1m)⊗ · · · ⊗ (vj1 ⊗ · · · ⊗ vjm)) · ((σ1, . . . , σj), µ)

= (v
µ(1)
σµ(1)(1)

⊗ · · · ⊗ vµ(1)σµ(1)(m))⊗ · · · ⊗ (v
µ(j)
σµ(j)(1)

⊗ · · · ⊗ vµ(j)σµ(j)(m)),

for σp ∈ Sm and µ ∈ Sj .

Proposition 3.4. The map ϕ|[Si(Sm(Ei))]SL(Ei) 6= 0 if and only if the GL(Vm)-submodule Ui

generated by v⊗io ∈ Si(Sm(V ∗m)) = [⊗i(⊗mV ∗m)]Hi intersects the isotypic component Imδi of

Si(Sm(V ∗m)) corresponding to the irreducible GL(Vm)-module Vm(mδi)
∗ nontrivially.

Proof. Take 0 6= v ∈ [Si(Sm(Ei))]
SL(Ei) = [⊗i(⊗mEi)]Hi×SL(Ei).

Recall that for any partition λ : λ1 > · · · > λd > 0, d is called the height ht λ of λ. We

set |λ| :=
∑
λj . Let Wλ be the corresponding irreducible S|λ|-module and let Ei(λ) be the

corresponding irreducible GL(i)-module for any i > d. By the Schur–Weyl duality (cf. [GW09,

Thoerem 9.1.2]),

Si(Sm(Ei)) '
⊕
ht λ6i
|λ|=mi

[Wλ]Hi ⊗ Ei(λ). (16)

Thus, we get

[Si(Sm(Ei))]
SL(Ei) ' [Wmδi ]

Hi ⊗ Ei(mδi). (17)

In particular, [Wmδi ]
Hi is one-dimensional. Also, consider the analogous decomposition,

Si(Sm(V ∗m)) '
⊕

ht µ6m
|µ|=mi

[Wµ]Hi ⊗ Vm(µ)∗, (18)

and write

v⊗io =
∑
µ

vµ, (19)

under the above decomposition.

Let M ⊂ [⊗i(⊗mEi)]SL(Ei) be the Smi-submodule generated by v and, for any µ with ht µ 6
m and |µ| = mi, let Mµ ⊂ ⊗i(⊗mV ∗m) be the Smi-submodule generated by vµ. Then, by the
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Schur–Weyl duality, M 'Wmδi and Mµ (if nonzero) is isotypic of type Wµ. By the definition,

ϕ̄′1(v) =
1

im!

∑
σ∈Smi

σ · (v⊗io ⊗ v) ∈ Smi(V ∗m ⊗ Ei) ⊂ (⊗i(⊗mV ∗m))⊗ (⊗i(⊗mEi))

=
1

im!

∑
ht µ6m,|µ|=mi

∑
σ∈Smi

σ · (vµ ⊗ v). (20)

Now, Wµ being self-dual, we get that for µ 6= mδi,∑
σ∈Smi

σ · (vµ ⊗ v) = 0. (21)

Moreover, if vmδi 6= 0, we claim that ∑
σ∈Smi

σ · (vmδi ⊗ v) 6= 0. (22)

By projecting to an irreducible component, we can assume that Mmδi ' Wmδi . Now, take
a Smi-invariant nondegenerate bilinear form α : Mmδi ⊗ M → C. Since α is Smi-invariant,
α|MHi

mδi
⊗MHi

remains nondegenerate. Since both of v and vmδi are Hi-invariant, and [Wmδi ]
Hi is

one-dimensional as observed above, we get α(vmδi ⊗ v) 6= 0. Thus,

α

( ∑
σ∈Smi

σ · (vmδi ⊗ v)

)
=
∑

σ∈Smi

α(vmδi ⊗ v)

6= 0.

This proves (22). Now, as it is easy to see, vmδi 6= 0 if and only if Ui intersects Imδi nontrivially.
Hence the proposition is proved by combining the identities (20)–(22) since ϕ = ϕ̄′1 (by the
identity (15)). 2

4. Latin squares

Definition 4.1. Let 1 6 i 6 m. By a Latin (i,m)-rectangle A, one means an i×m matrix

A = (aqp) 16p6i
16q6m

such that each row Ap := {a1p, . . . , amp } is a permutation σp of [m] (i.e. σp(q) = aqp) and each
column Aq := {aq1, . . . , aqi } consists of distinct numbers. We define the sign ε(Aq) of Aq as follows:

ε(Aq) := sign of
∏

16p<p′6i

(aqp′ − aqp).

We call a Latin rectangle A column-even if εc(A) :=
∏m
q=1 ε(A

q) is +1 and column-odd otherwise.

LetAq denote the set Aq without regard to order. Then we call the m-tupleA= (A1, . . . ,Am)
the pattern of A. Let LA denote the set of Latin (i,m)-rectangles A with pattern A. Let S(i,m)
be the set of all patterns of size (i,m), where by a pattern A of size (i,m) (or an (i,m)-pattern)
we mean a m-tuple A = (A1, . . . ,Am) of subsets of [m], each of cardinality exactly i such that
any integer q ∈ [m] occurs in exactly i sets A•.

For A ∈ S(i,m), let L+
A (respectively L−A) denote the subset of LA consisting of column even

(respectively odd) Latin rectangles.
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We have the following simple lemma.

Lemma 4.2. Fix any 1 6 i 6 m. Assume that there exists a pattern A of size (i,m) such that

]L+
A 6= ]L−A.

Then, for any 1 6 i′ 6 i, there exists a pattern B of size (i′,m) such that

]L+
B 6= ]L−B .

Proof. It suffices to prove the lemma for i′ = i− 1. Define the map ϕ : LA →
⊔
B∈S(i−1,m) LB by

removing the last row of any Latin rectangle A in LA. The map ϕ is clearly injective. Moreover,
the image of ϕ consists exactly of the union

⊔
B∈SA(i−1,m) LB, where

SA(i− 1,m) :=

{
(i − 1,m)-patterns B such that there exists A ∈ LA
with its top (i− 1) rows having pattern B

}
.

By the definition of L±A, it is clear that for any B ∈ SA(i− 1,m), there exists a sign ε(B) ∈ {±1}
such that

ϕ−1(L±B ) ⊂ L±ε(B)A . (23)

Assume, if possible, that the lemma is false, that is,

]L+
B = ]L−B for every (i− 1,m)-pattern B; (24)

in particular, for any B ∈ SA(i− 1,m).
Combining (23) and (24), we get (since ϕ is a bijection) ]L+

A = ]L−A. This contradicts the
assumption and hence proves the lemma. 2

We recall the following celebrated column Latin (m,m)-square conjecture due to Huang and
Rota [HR94, Conjecture 3].

Conjecture 4.3. For any positive even integer m,

]CELS(m) 6= ]COLS(m),

where CELS(m) (respectively COLS(m)) denotes the set of column-even (respectively column-
odd) Latin (m,m)-squares. (Observe that for Latin (m,m)-squares, there is a unique pattern:
([m], [m], . . . , [m]).)

Combining the above conjecture with Lemma 4.2, we get the following proposition.

Proposition 4.4. Let m be a positive even integer. Assume that Conjecture 4.3 is true for m.
Then, for any 1 6 i 6 m, there exists a pattern A of size (i,m) such that

]L+
A 6= ]L−A.

Remark 4.5. As proved by Huang and Rota [HR94, § 3], their column Latin (m,m)-square
conjecture is equivalent to the (full) Latin (m,m)-square conjecture given by Alon and Tarsi
[AT92]. Now the (full) Latin (m,m)-square conjecture is known to be valid in the following
cases:

(a) m = p− 1, for any odd prime p, due to Glynn [Gly10, Theorem 3.2];

(b) m = p+ 1, for any odd prime p, due to Drisko [Dri97, Theorem 9].
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We have the following very simple lemma.

Lemma 4.6. Let A (respectively B) be a pattern of type (i,m) (respectively (i,m′)) such that

]L+
A 6= ]L−A and ]L+

B 6= ]L−B .

Then,
]L+

(A,B) 6= ]L−(A,B),

where each entry in B is shifted by m.

Proof. Clearly, under the concatenation,

LA × LB ∼−→ L(A,B).

Moreover, under the above bijection,

Lε1A × Lε2B → Lε1 · ε2(A,B)

where εi = ±1. From this the lemma follows. 2

5. Existence of a certain isotypic component in the module generated by v⊗i
o

Recall from § 3 that Vm = Cm has standard basis {v1, . . . , vm}. Recall from the identity (10) that

vo :=
1

m!

∑
σ1∈Sm

vσ1(1) ⊗ · · · ⊗ vσ1(m) ∈ Sm(Vm),

so that, as elements of Si(Sm(Vm)),

v⊗io =
1

(m!)i

∑
σ=(σ1,...,σi)∈Sim

(vσ1(1) ⊗ · · · ⊗ vσ1(m))⊗ · · · ⊗ (vσi(1) ⊗ · · · ⊗ vσi(m)).

Let λ be a partition of k into at most m parts and let A be a tableau of shape λ. As in
[GW09, Proposition 9.3.7], define

RowA = {σ ∈ Sk : σ preserves the rows of A},
ColA = {µ ∈ Sk : µ preserves the columns of A},

S(A) =

( ∑
µ∈Col A

ε(µ)µ

)
·
∑

σ∈RowA

σ,

vA = vi1 ⊗ · · · ⊗ vik ∈ ⊗k(Vm), (25)

where ij = r if j occurs in the rth row of A. (Here ε(µ) denotes the sign of µ.)

Example 5.1.

A =

1 5 9

2 6 10

3 7

4 8

vA = v1 ⊗ v2 ⊗ v3 ⊗ v4 ⊗ v1 ⊗ v2 ⊗ v3 ⊗ v4 ⊗ v1 ⊗ v2.
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Consider the tableau Bo = Bo(i,m) of shape m > m > · · · > m (i factors):

1 2 3 . . . m
m+ 1 m+ 2 m+ 3 . . . 2m

...
...

...
...

...
(i− 1)m+ 1 (i− 1)m+ 2 (i− 1)m+ 3 . . . im

Proposition 5.2. For any 1 6 i 6 m and even m,

〈v⊗io , S(Bo) · v⊗io 〉 =

(
1

m!

)i ∑
A∈S(i,m)

(]L+
A − ]L−A)2,

where 〈·, ·〉 is the standard pairing between ⊗i(⊗m(V ∗m)), ⊗i(⊗mVm) and vo ∈ Sm(V ∗m) ⊂ ⊗m(V ∗m)
is defined by the identity (9).

Proof. First of all, by the definition of S(Bo),

S(Bo) · v⊗io = (m!)i
∑

µ∈Col Bo

ε(µ)µ · v⊗io

=
∑

σ=(σ1,...,σi)∈Sim
µ=(µ1,...,µm)∈Smi

ε(µ)(vσµ1(1)(1)
⊗ · · · ⊗ vσµm(1)(m))

⊗ (vσµ1(2)(1)
⊗ · · · ⊗ vσµm(2)(m))⊗ · · · ⊗ (vσµ1(i)(1)

⊗ · · · ⊗ vσµm(i)(m)), (26)

where ε(µ) := ε(µ1) · · · ε(µm) and µj is embedded in Smi as permuting {j, j+m, . . . , j+(i−1)m}
only.

For any i×m matrix
A = (ap,q) 16p6i

16q6m

of integers ap,q ∈ [m], let

VA := (va1,1 ⊗ va1,2 ⊗ · · · ⊗ va1,m)⊗ · · · ⊗ (vai,1 ⊗ vai,2 ⊗ · · · ⊗ vai,m) ∈ ⊗i(⊗mVm).

Thus, we can rewrite the identity (26) as

S(Bo) · v⊗io =
∑
σ∈Sim
µ∈Smi

ε(µ)VA(σ,µ),

where A(σ, µ) is the i×m matrix

A(σ, µ) =

σµ1(1)(1) . . . σµm(1)(m)
...

...
σµ1(i)(1) . . . σµm(i)(m)

.
We claim that

〈v⊗io , S(Bo) · v⊗io 〉 =

〈
v⊗io ,

∑
(σ,µ)∈R

ε(µ)VA(σ,µ)

〉
, (27)
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where the last summation runs over R consisting of those σ = (σ1, . . . , σi) ∈ Si
m and µ = (µ1,

. . . , µm) ∈ Sm
i such that A(σ, µ) is a Latin (i,m)-rectangle.

Since vo is, by definition, (1/m!)
∑

σ1∈Sm v
∗
σ1(1)

⊗ · · ·⊗ v∗σ1(m), unless each row of A(σ, µ) is a

permutation of [m], we have 〈v⊗io , VA(σ,µ)〉 = 0. Further, assume that the entries in some column
of A(σ, µ) are nondistinct, say

σµq(p)(q) = σµq(p′)(q) for some 1 6 q 6 m and some 1 6 p 6= p′ 6 i.

Let τ ∈ Si be the transposition (p, p′). Then

VA(σ,µ) = VA(σ,µ′),

where µ′ := (µ1, . . . , µq ◦ τ, . . . , µm).
Hence,

ε(µ)VA(σ,µ) + ε(µ′)VA(σ,µ′) = 0.

This proves the identity (27).
Let R′ ⊂ Si

m be the subset consisting of σ = (σ1, . . . , σi) such that

A(σ) =

σ1(1) . . . σ1(m)
...

...
σi(1) . . . σi(m)


is a Latin (i,m)-rectangle. For any σ ∈ R′, let σ̂ be the pattern (σ̂1, . . . , σ̂m), where

σ̂q := {σ1(q), . . . , σi(q)}.

Define an equivalence relation on R′ by σ ∼ σ′ if the patterns σ̂ = σ̂′. Denote the equivalence
class containing σ by [σ]. Then the sum

∑
(σ,µ)∈R ε(µ)VA(σ,µ) can clearly be written as∑

σ∈R′

∑
µ∈Smi :
(σ,µ)∈R

ε(µ)VA(σ,µ) =
∑
σ∈R′

εc(A(σ))
∑
B∈Lσ̂

εc(B)VB

=
∑

[σ]∈R′/∼

∑
A∈Lσ̂

εc(A)
∑
B∈Lσ̂

εc(B)VB

=
∑

A∈S(i,m)

∑
A∈LA

εc(A)
∑
B∈LA

εc(B)VB.

Thus, by the identity (27),

〈v⊗io , S(Bo) · v⊗io 〉 =

(
1

m!

)i ∑
A∈S(i,m)

∑
A∈LA

εc(A)
∑
B∈LA

εc(B)

=

(
1

m!

)i ∑
A∈S(i,m)

( ∑
A∈LA

εc(A)

)2

=

(
1

m!

)i ∑
A∈S(i,m)

(]L+
A − ]L−A)2.

This proves the proposition. 2
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As an immediate consequence of the above proposition, we get the following corollary.

Corollary 5.3. 〈v⊗io , S(Bo) · v⊗io 〉 6= 0 if and only if for some pattern A ∈ S(i,m), ]L+
A 6= ]L−A.

For any partition λ of k into at most m parts, let Gλ be the highest weight space in ⊗k(Vm) for
GL(Vm) corresponding to the highest weight λ. Then we have the following lemma (cf. [GW09,
Lemma 9.3.2]).

Lemma 5.4. Let A be a tableau of shape λ. Then, S(A) · vA is a nonzero element of Gλ. Thus,

Gλ =
∑
τ∈Sk

Cτ · (S(A) · vA).

We specialize the above lemma to k = m2 and λ the partition:

mδm : m > m > · · · > m︸ ︷︷ ︸
m factors

.

In this case Vm(mδm) is a one-dimensional representation of GL(Vm).
Consider the tableau Bo = Bo(m,m) (with i = m) given just above Proposition 5.2. Then

S(Bo) · vBo = (m!)m
∑

µ=(µ1, ..., µm)∈Smi=m

ε(µ)(vµ1(1) ⊗ vµ2(1) ⊗ · · · ⊗ vµm(1))

⊗ (vµ1(2) ⊗ vµ2(2) ⊗ · · · ⊗ vµm(2))⊗ · · · ⊗ (vµ1(m) ⊗ vµ2(m) ⊗ · · · ⊗ vµm(m)). (28)

By the above lemma, the isotypic component Gλ of ⊗m(⊗m Vm) for the partition λ = mδm
is the span of

{τ · (S(Bo) · vBo) : τ ∈ Sm2}.
I thank J. Landsberg for the part (b) of the following proposition.

Proposition 5.5. (a) For CELS and COLS as defined in Conjecture 4.3,

〈v⊗mo , S(Bo) · vBo〉 = ]CELS(m)− ]COLS(m).

(b) For any τ ∈ Sm2 ,

〈v⊗mo , τ · (S(Bo) · vBo)〉 = α〈v⊗mo , S(Bo) · vBo〉 for some α ∈ {0,±1}.

Proof. By the identity (28),

〈v⊗mo , S(Bo) · vBo〉 =
∑

ε(µ),

where the summation runs over those µ = (µ1, . . . , µm) ∈ Sm
m such that

B(µ) :=


µ1(1) µ2(1) · · · µm(1)

µ1(2) µ2(2) · · · µm(2)
...

...
...

µ1(m) µ2(m) · · · µm(m)


is a Latin square (i.e., each row and each column of the above matrix is a permutation of [m]),
and

ε(µ) := ε(µ1) · · · ε(µm).

From this, part (a) follows.
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(b) By the expression of S(Bo) · vBo as in the identity (28), clearly

τ · (S(Bo) · vBo) = (m!)m
∑

µ=(µ1,...,µm)∈Smm

ε(µ)(vµ
i11
(j11)
⊗ · · · ⊗ vµ

i1m
(j1m))

⊗ · · · ⊗ (vµim1 (jm1 ) ⊗ · · · ⊗ vµimm (jmm)),

for some fixed ipq and jpq ∈ [m] (depending only upon τ).

We claim that if for any 1 6 p 6 m, ipa = ipb =: q for some a 6= b, then Dτ = 0, where

Dτ := 〈v⊗mo , τ · (S(Bo) · vBo)〉. Observe that jpa 6= jpb since the element

(vµ
i11
(j11)
⊗ · · · ⊗ vµ

i1m
(j1m))⊗ · · · ⊗ (vµim1 (jm1 ) ⊗ · · · ⊗ vµimm (jmm))

is a permutation of

(vµ1(1)⊗vµ2(1)⊗· · ·⊗vµm(1))⊗(vµ1(2)⊗vµ2(2)⊗· · ·⊗vµm(2))⊗· · ·⊗(vµ1(m)⊗vµ2(m)⊗· · ·⊗vµm(m)).

Consider the element θ = (jpa, j
p
b ) ∈ Sm. Then, replacing µq by µqθ in the above expression for

τ · (S(Bo) · vBo), we clearly get

Dτ = ε(θ)Dτ .

Thus, Dτ = 0.

So let us assume that for any 1 6 p 6m, ipa 6= ipb for a 6= b. Since v⊗mo is Hm-invariant (where

Hm is defined above Proposition 3.4), to calculate Dτ , we can assume that

τ · (S(Bo) · vBo) = (m!)m
∑
µ∈Smm

ε(µ)(vµ1(j11) ⊗ · · · ⊗ vµm(j1m))⊗ · · · ⊗ (vµ1(jm1 ) ⊗ · · · ⊗ vµm(jmm)),

where, for any 1 6 q 6m, {j1q , . . . , jmq } is a permutation σq of [m]. Now, replacing µq by µq ◦σq,
we get (setting σ = (σ1, . . . , σm))

τ · (S(Bo) · vBo) = ε(σ)(m!)m
∑
µ∈Smm

ε(µ)(vµ1(1) ⊗ · · · ⊗ vµm(1))⊗ · · · ⊗ (vµ1(m) ⊗ · · · ⊗ vµm(m))

= ε(σ)S(Bo) · vBo .

This proves the proposition. 2

Theorem 5.6. Let m be an even positive integer and let 1 6 i 6 m. If there exists a pattern B
of size (i,m) such that

]L+
B 6= ]L−B , (29)

then the GL(Vm)-submodule Ui generated by v⊗io ∈ Si(Sm(V ∗m)) = [⊗i(⊗mV ∗m)]Hi intersects

the isotypic component Imδi of Si(Sm(V ∗m)) corresponding to the irreducible GL(Vm)-module

Vm(mδi)
∗ nontrivially, where Hi is defined over Proposition 3.4.

In particular, if Conjecture 4.3 is true for m, then Ui ∩ Imδi 6= (0), for all 1 6 i 6 m.

For i = m, Um ∩ Imδm 6= (0) if and only if Conjecture 4.3 is true for m.

Proof. Let yo = vmδi be the component of v⊗io in Imδi (cf. the identity (19)). Then, as observed

in the proof of Proposition 3.4, Ui ∩ Imδi 6= 0 if and only if yo 6= 0. By [GW09, Theorem 9.3.10],
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S(Bo) · v⊗io belongs to an irreducible GL(Vm)-submodule of ⊗i(⊗mVm) of highest weight mδi.

Thus,

〈yo, S(Bo) · v⊗io 〉 = 〈v⊗io , S(Bo) · v⊗io 〉

=

(
1

m!

)i ∑
A∈S(i,m)

(]L+
A − ]L−A)2, by Proposition 5.2

6= 0 by the assumption of the theorem.

Thus, yo 6= 0, proving the first part of the theorem.

The second ‘In particular’ part of the theorem, of course, follows from Proposition 4.4.

For the last part, by Lemma 5.4, S(Bo) ·vBo is a nonzero highest weight vector of ⊗m(⊗mVm)

with highest weight mδm and the isotypic component of ⊗m(⊗mVm) corresponding to the

highest weight mδm is given by
∑

τ∈Sm2
C τ · (S(Bo) · vBo) (since Vm(mδm) is a one-dimensional

representation).

Thus, yo ∈ Imδm is nonzero if and only if

〈v⊗mo , x〉 = 〈yo, x〉 6= 0,

for some x ∈∑τ∈Sm2
C τ · (S(Bo) · vBo). The above condition is equivalent to the nonvanishing

of 〈v⊗mo , S(Bo) · vBo〉 by Proposition 5.5(b); which, in turn, is equivalent to the validity of

Conjecture 4.3 by Proposition 5.5(a). This proves the theorem. 2

Remark 5.7. It is quite possible that for any 1 6 i 6 m, Ui ∩ Imδi 6= 0 if and only if (29) is

satisfied for some pattern B of size (i,m).

6. Statement of the main theorem and its consequences

Let v be a complex vector space of dimension m and let E := v⊗ v∗ = End v, Q := Pm(E) '
Sm(E)∗ (under the isomorphism ξ of Definition 2.5). Consider D ∈ Q, where D is the function

taking determinant of any A ∈ E = End v. The group G = GL(E) acts canonically on Q. Let X
be the G-orbit closure of D inside Q.

Fix a basis {v1, . . . , vm} of v and let {v∗1, . . . , v∗m} be the dual basis of v∗. Take the basis

{vi ⊗ v∗j }16i,j6m of E and order the basis elements as {e1, e2, . . . , em2} satisfying

e1 = v1 ⊗ v∗1, e2 = v2 ⊗ v∗2, . . . , em = vm ⊗ v∗m.

Assume that m is even. Recall from Corollary 2.4 that for any 1 6 i 6 m2, the irreducible

GL(E)-module VE(mδi) occurs in Si(Sm(E)) with multiplicity one (and VE(mδi) does not occur

in any Sj(Sm(E)), for j 6= i). Let Pi = γm,i ∈ Si(Sm(E)) be the highest weight vector of

VE(mδi) ⊂ Si(Sm(E)) (which is unique up to a nonzero scalar multiple) with respect to the

standard Borel subgroup B = BE of G consisting of upper triangular invertible matrices, where

GL(E) is identified with GL(m2) with respect to the basis {e1, . . . , em2} of E given above. By

Lemma 2.1, in fact Pi ∈ [Si(Sm(Ei))]
SL(Ei), where Ei is the subspace of E spanned by {e1, . . . , ei}.

Recall an explicit construction of Pi from Lemma 2.7. Since Pi ∈ Si(Sm(E)), we can think

of Pi as a homogeneous polynomial of degree i on the vector space Q = Sm(E)∗.

The following is our main result.
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Theorem 6.1. Assume, as above, that m is even. Assume further that Conjecture 4.3 is true
for m. Then, with the above notation, for any 1 6 i 6 m, the polynomial Pi does not vanish
identically on X .

In particular, the irreducible GL(E)-module VE(mδi) occurs with multiplicity one in the
affine coordinate ring C[X ]. Moreover, by Corollary 2.4, VE(dδi), for any d < m and any 1 6 i 6
m2, does not occur in S•(Sm(E)); in particular, it does not occur in C[X ].

Proof. Recall the definition of the right action of the semigroup End E on Q = Pm(E) from the
identity (6). Consider the map

θ̂ : M(m, i) → Q, A 7→ D � Â,

where Â ∈ End E is defined by

Âej =
m∑
p=1

ajpep for 1 6 j 6 i, and Âej = 0 for j > i,

where A = (ajp)16p6m,16j6i. Clearly,

Im θ̂ ⊂ X .
To prove that Pi ∈ P i(Q) ' Si(Sm(E)) restricts to a nonzero function on X , it suffices to show
that Pi restricts to a nonzero function on M(m, i) via the morphism θ̂. Since

Pi ∈ Si(Sm(Ei)) ' Si(Sm(E∗i )∗) ' P i(Pm(Ei)),

Pi is the pullback of a function P̄i ∈ P i(Pm(Ei)) via the restriction map r : Pm(E) → Pm(Ei).
Thus, it suffices to prove that P̄i restricts to a nonzero function on M(m, i) via θ : M(m,
i) → Pm(Ei) ' Sm(Ei)

∗ defined as the composite θ = r ◦ θ̂. (Observe that this θ coincides with
the map θ defined just before Lemma 3.2.) Now, by Lemma 3.3, the induced map

θ∗ : S•(Sm(Ei)) → Pm•(M(m, i))

coincides with the map ϕ (up to a nonzero scalar multiple in any degree). Since P̄i is the unique
(up to a nonzero multiple) nonzero element of [Si(Sm(Ei))]

SL(Ei) (by Proposition 2.3), it suffices
to show that ϕ|[Si(Sm(Ei))]SL(Ei) 6= 0. This follows from Proposition 3.4 and Theorem 5.6. The ‘In
particular’ part follows from Corollary 2.4, and hence the theorem is proved. 2

Corollary 6.2. With the notation and assumptions as in the last theorem (in particular,
assuming the validity of Conjecture 4.3 for m), for any dominant integral weight λ for GL(E)
of the form λ =

∑m
i=1 niδi, ni ∈ Z+, the irreducible GL(E)-module VE(mλ) occurs in C[X ] with

nonzero multiplicity.

Proof. First of all, X being an irreducible variety, C[X ] is an integral domain. Take a BE-
eigenvector P̃i ∈ C[X ] of weight mδi for any 1 6 i 6 m; which exists by the last theorem
(assuming the validity of Conjecture 4.3). Now consider the function

P̃λ =
m∏
i=1

P̃nii ∈ C[X ].

Clearly, P̃λ is a nonzero BE-eigenvector of weight mλ. This proves the corollary. 2
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Let X o be the G-orbit G ·D ⊂ Q. Then, by a classical result due to Frobenius (cf. [Kum13,
Proposition 2.1 and Corollary 2.3]), the isotropy subgroup GD of D is a reductive subgroup. In
particular, by a result of Matsushima, X o is an affine variety. Moreover, by Frobenius reciprocity,
we get the following proposition.

Proposition 6.3. C[X o] '⊕λ VE(λ) ⊗ [VE(λ)∗]GD as G-modules, where the summation runs

over all the dominant integral weights λ of G (i.e., λ runs over
∑m2

i=1 niδi, ni ∈ Z+ for all
1 6 i < m2 and nm2 ∈ Z) and [VE(λ)∗]GD denotes the subspace of GD -invariants in the dual
space VE(λ)∗. The action of G on the right is via its standard action on the first factor and it
acts trivially on the second factor.

In particular, the multiplicity of VE(λ) in C[X o] is the dimension of the invariant space
[VE(λ)∗]GD .

It is easy to see that if [VE(λ)∗]GD 6= 0, then |λ| :=
∑m2

i=1 i ni ∈ mZ, where (as earlier)

λ =
∑m2

i=1 niδi.
Applying [BLMW11, Proposition 5.2.1], we get that for any polynomial representation VE(λ)

(i.e., λ =
∑m2

i=1 niδi with all ni ∈ Z+) with |λ| = md, d ∈ Z+,

dim[VE(λ)∗]GD = skλ,dδm,dδm , (30)

where δm (as earlier) is the partition δm : (1 > 1 > · · · > 1) (m factors), λ is the partition
(n1+· · ·+nm2 > n2+· · ·+nm2 > n3+· · ·+nm2 > · · · > nm2 > 0) and skλ,dδm,dδm is the symmetric
Kronecker coefficient (i.e., the multiplicity of the irreducible Sdm-module Wλ in the symmetric
product S2(Wdδm), where, as earlier, Wλ denotes the irreducible Sdm-module corresponding to
the partition λ).

As a corollary of (30), and Proposition 6.3, we get the following result (since C[X ] ↪→ C[X o]
as a G-module).

Corollary 6.4. For any irreducible polynomial representation VE(λ) of G, such that |λ| = dm,
for d ∈ Z+, the multiplicity µ(λ) of VE(λ) in C[X ] is bounded by:

µ(λ) 6 skλ,dδm,dδm .

Observe that unless VE(λ) is a polynomial representation of G and |λ| ∈ mZ+, we have
µ(λ) = 0.

As an immediate consequence of Corollaries 6.2 and 6.4, we get the following result.

Corollary 6.5. Let m be any positive even integer. Assume that Conjecture 4.3 is true for m.
Then, for any partition λ : (λ1 > λ2 > · · · > λm > 0) (with at most m parts) of d (i.e., |λ| = d),
the symmetric Kronecker coefficient

skmλ,dδm,dδm > 0.

Remark 6.6. (a) Compare the above corollary with [BCI11, Theorem 1, § 3].
(b) The following generalization of Theorem 6.1 holds by exactly the same proof. Let F ∈

Q = Sm(E)∗ be any (homogeneous) polynomial such that, writing F as a sum of monomials (in
a basis of E∗), some monomial with no repeated factors occurs with nonzero coefficient. Assume
further that Conjecture 4.3 is true for m, which is assumed to be even. Then, for any 1 6 i 6m,
the polynomial Pi does not vanish identically on the orbit GL(E) ·F .

In particular, this remark applies to F = P, where P is the function E → C taking any
matrix A ∈ E := End v to its permanent.
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Thus, the irreducible GL(E)-module VE(mδi) occurs with multiplicity one in C[GL(E) ·P]
for any 1 6 i 6 m (assuming the validity of Conjecture 4.3 for m). Moreover, VE(dδi), for any
d < m and 1 6 i 6 m2, does not occur in C[GL(E) ·P] (cf. Corollary 2.4).
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