
Canad. Math. Bull. Vol. 29 (1), 1986 

FINITE EXTENSIONS OF VALUED FIELDS 

BY 

SETH WARNER 

ABSTRACT. A corollary of the main result is that if L is a finite-
dimensional Galois extension of a field K and if w is a valuation of L 
extending a valuation v of K, then K is closed in L if and only if all 
valuations of L extending v are dependent. A further consequence is a 
generalization of Ostrowski's criterion for a real-valued valuation to be 
henselian. 

Let v be a valuation of a field K. If v is henselian, then K is closed in any separable 
algebraic extension L, furnished with the topology defined by the unique extension of 
v to L. Indeed, by Krasner's Lemma [2] (first proved by Ostrowski [5, Hilfssatz, 
p. 197]) for each x £EL,VX, defined by Vx = {y E L: K(x) Ç K(y)}, is a neighborhood 
of x\ if x E L\K, then Vx C L\K, so K is closed. 

Here we shall seek, conversely, to determine what henselian-like properties follow 
from the assertion that K is closed in any finite-dimensional separable extension, 
furnished with a valuation extending v (Theorem 2). More generally, we shall relate 
the assertion that a finite-dimensional extension L admits only one ring topology 
inducing on K the topology defined by v with closure properties of various subspaces 
of L (Theorem 1 ). 

Normality plays a simplifying role, as the following example shows: the 5-adic 
number field Q5 contains a cube root V z of 2 but does not contain a primitive cube root 
a) of unity since x3 = 2 (mod 5) has an integral solution but x2 = - 3 (mod 5) does not. 
Therefore if u is the unique extension of the 5-adic valuation to an algebraic closure of 
Q5, its restrictions to the conjugate fields Q(v2) and g(coV2) yield valued fields in 
one of which Q is dense, in the other, closed. Thus the 5-adic valuation on Q has two 
extensions to g ( V 2 ) , for one of which Q is dense, for the other, closed. 

We shall use the well-known fact that if {ex,. . . , en} is a base of the AT-vector space 
L and if v is a proper valuation [absolute value] on K, w an extension of v to L, then 
{e\,. . . , e„} is a set of generators of the K -vector space L (where K and L are the 
completions of K and L respectively); in particular, [L :K ] < [L:K]. Indeed, 
K ex + . . . +K en is a closed subspace of L containing L [ 1, Cor., p. 121] and hence 
is LA. Also, for any a E L, KA(a) = K(a)A since KA(a) is a finite-dimensional 
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AT -vector space and hence is a complete vector space in which K(a) is dense. We shall 
also call upon the following Lemma, a simple consequence of the product formula for 
successive extensions and the inequality just mentioned: 

LEMMA. / / v is a proper valuation [absolute value] of a field K and if w is an 
extension of v to L such that [L :K ] = [L : K], then for any subfields E and F such 
that K Q E Q F Ç L, [FA:EA] = [F:E]. 

THEOREM 1. Let v be a proper valuation [absolute value] of a field K, let fi0 be an 
algebraic closure of the completion K of K for v, let w0 be an extension of v to il0, 
and let w be the restriction ofw0 to the algebraic closure H of K in Cl0. Let Tw and Tv 

be the topologies on Q, and K determined by w and v respectively. Let L be a 
finite-dimensional extension ofK contained in (Î. Let (S) be the statement: there exist 
c0,C],.. . ,cn E L such that K(c0) is the separable closure Ls of K in L, L — 
K(c0,C\,. . . , cn), and the subfields K(c0,. . . , c,-), where i E [0, n], are closed in L. 
The following statements are equivalent: 

(1) [L/':KA] = [L:K]. 
(2a) [2b] For some [every] base {ex,. . . , en} ofL over K, (Xi,. . . , Xn) i—> S"=, X,-̂ -

is a topological K-isomorphism from the topological K-vector space Kn to the topo­
logical K-vector space L. 

(3) Every subspace of the K-vector space L is closed. 
(4) Tw induces on L the only ring topology that induces Tv on K. 
(5) All valuations [absolute values] on L extending v are dependent [equivalent], 

and (S) holds. 
(6a) [6b] Every K-monomorphism a from L to Ci is continuous [a topological 

isomorphism from L to a(L)], and (S) holds. 

(7) The minimal polynomial of each element ofLs is irreducible over K\and(S) 

holds. 

These statements imply (8) and are equivalent to (8) ifL is a normal extension ofK: 

(8) K is closed in L and (S) holds. 

PROOF. (1) implies (2b): Let {eu ..., en} be a base of the AT-vector space L. Since 
{ex,.. . , en} generates the K -vector space L , by (1) {ex,.. ., en} is a base of L . 
Therefore (Xj,.. . , X„) —> S"=1 X/̂  is a topological K -isomorphism from KAn to L 
[1, Prop. 4, p. 120]. The restriction to Kn of that topological isomorphism is therefore 
a topological ^-isomorphism from Kn to L. (2a) implies (1): the given topological 
isomorphism extends by continuity to a topological isomorphism from KAn to L , 
which necessarily is the mapping (X1? . . . ,X„) i—» E"=1 X,-̂ - as that mapping is con­
tinuous from KAn to L . Thus {ex,..., en} is a base of the K -vector space L , so 
[L :K ] = [L : K]. Clearly (2b) implies (3), and by [3, Theorems 2 and 6], (3) implies 
(2b). Thus (1) — (3) are all equivalent. 

(1) implies (4): Let bx,. . . , bn E L be such that L = K(bx,.. ., bn), and let K0 = K, 
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Ki = K(bu... ,bi) for all / E [ l ,n] . For each / E [0,w] let (Pt) be the statement: 
Tw induces on K{ the only ring topology inducing Tv on K. It suffices to show that if 
i E [0,n - 1], (P /+i) follows from (/>,-). By the Lemma, [K^{, : ^ f ] = [£,-+,:#,•], so 
by [7, Theorem 3] Tw induces on Ki+\ the strongest ring topology inducing on AT, the 
same topology as Tw. But the topology Tw induces on Ki+U defined by the restriction 
of w to ^ ( + 1 , is minimal among all ring topologies inducing on K, the same topology 
as Tw by [7, Theorem 1]. Therefore Tw induces on Ki+ \ the only ring topology inducing 
on Ki the same topology as Tw. Now let T be any ring topology on Ki + l inducing Tv on 
K. By (P^, T induces on Kt the same topology as Tw. By what we have just proved, 
therefore, T is the topology on Ki+l induced by Tw, that is, (Pi+\) holds. 

(4) implies (5): We shall actually prove that every subfield of L containing L, is 
closed. Suppose that F is a nonclosed subfield of L containing Ls., and let c E F\F. As 
L is a purely inseparable extension of F, the minimal polynomial of c over F is Xp" — 
a for some a E F, where the prime p is the characteristic of K and n > 1. Now 
Xp" — a = (X - c)p" in F [X], so by [7, Theorem 1], for each) E [l ,p"] there is a 
ring topology Tj on F(c) inducing on F the same topology as Tw such that the com­
pletion of F(c) for Tj is F (q) where (X — c)•' is the minimal polynomial of cr Let 
j E [2,/?"]. Then c — q is a nonzero nilpotent element of F (q). Since any algebra 
topology on a finite-dimensional algebra over F is defined by a norm, it is locally 
bounded. Therefore Tj is a normed and hence locally bounded topology on F(c) and 
hence, by [8, Satz 1.6], is the restriction to F(c) of a locally bounded (and hence ring) 
topology T on L. The completion of L for T then contains nonzero nilpotent elements, 
in contradiction to (4). 

(5) implies (6b): If a is a A^-monomorphism from L to 12 and if Tw,a is the topology 
induced on v(L) by Tw, then u~](TW(T) is the topology on L defined by the valuation 
w ° a. By (5), a"1 ( 7 ^ ) is also the topology induced on L by Tw, that is, a is a 
topological isomorphism from L to CT(L). Also (6a) implies (6b), for if CT is continuous, 
w°o~ defines on L a topology weaker than the topology induced by Tw ; these topologies 
are then identical, since a valuation topology on L inducing Tv on K is minimal among 
all ring topologies on L inducing Tv on AT by, for example, [7, Theorem 1]. 

Each of (6b) and (7) implies (1): With the notation of (5), Ls - K(c0). We shall first 
show that [Ls :K ] = [Ls : K]. Assume (6b). If CT is any A^-monomorphism from L into 
fl, then by (6b) cr has a continuous extension to a AT -isomorphism from L to the 
subfield cr (L ) of ft0. Thus every AT-conjugate of c0 is also a K -conjugate, so as c0 

is separable over AT, the minimal polynomials of c0 over K and over K are identical. 
Consequently, each of (6b) and (7) implies that [Ls :K ] = [Ls : K]. With the notation 
of (S), letL; = K(c0,. . . , q) for each) E [0, n\. By the product formula for successive 
extensions, it suffices to show that [L; :£,-_,] = [LJ'.LJ^^ for each) E [ l ,n ] . As L, 
is a finite-dimensional, purely inseparable extension of L}-x, there exists m > 0 such 
that L, Ç T_1(Ly_!) where T is the automorphism JC i—» xp'" of ft0. As T is continuous, 
Ly C T _ 1 (L ; -_ , ) , and hence L; is a purely inseparable extension of Ly_,. Thus the 
minimal polynomial of c7 over L ^ is Xpr — b where r > 0 and Z? E L-_j. As /? = 
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cp- E Lj, b E Lj fï Lj_x C L fl L7_, = Ly-_,, since Ly-, is closed in L. Thus X^ -
b E Ly_i[X] and hence is the minimal polynomial of c} over L,-_i. Therefore 
[Lf :Lf_,] - [ ^ ( c , ) : ^ - , ] = [ ^ ( c , ) :/ ,_,] - [L-L,- ,] . 

(1) implies (7): If a E L, [AT (A) : £ ] = [K(a) : # ] by the Lemma, so the minimal 
polynomials of a over K and K coincide. Also as (1) implies (3), (S) holds. 

Clearly (3) and (7) imply (8). Conversely, assume (8), and suppose thatL is a normal 
extension of K. To prove (7), let b E Ls and let/be the minimal polynomial of b over 
K. Then there exist b{,... ,br E L such that / = n,r=1(X - &,), so the minimal 
polynomial g of £ over K is II, Gy (X - bt) for some nonempty subset J of [1, r]. Each 
coefficient of g is an elementary symmetric polynomial of the b/s, where / E 7, and 
hence belongs to L. Thus g E (L (1 K )[X] = K[X], as AT is closed in L. Therefore 
g = / . Thus (7) holds. 

The example given earlier shows that (8) may hold but (6a) fail if L is not a normal 
extension of K. 

Nagata [4, p. 56] (see also [1, Exercise 14 c), p. 193]) has given an example of a 
valuation v of a field K of prime characteristic p such that AT is a simple, purely 
inseparable extension of K of degree p. Consequently, K and L — K satisfy the first 
halves of (5)-(7) but not (l)-(4). 

In the statement of Theorem 1, we may, of course, replace "(S) holds" with "Ls is 
closed" in (5)—(8) if L is a simple extension of K. 

COROLLARY 1. Let v be a proper valuation [absolute value] of a field K, and let w 
be an extension of v to a finite-dimensional Galois extension L. The following state­
ments are equivalent: 

(1) [LA:KA] = [L:K]. 
(2) For some [every] base {ely. . . , en} of L over K, (Xi,. . . , kn) i—» Sf=1 \,e; is a 

topological isomorphism from Kn to L. 
(3) Every subspace of the K-vector space L is closed. 
(4) The topology defined by w is the only ring topology on L inducing on K the 

topology defined by v. 
(5) All valuations [absolute values] on L extending v are dependent [equivalent], 
(6) Every K-automorphism of L is continuous. 
(7) The minimal polynomial over K of each element of L is irreducible over 

K\ 
(8) K is closed in L. 

COROLLARY 2. Let v be a proper valuation [absolute value] of a field K, and let 
{ W\,. . . ,wr}be a complete set of independent valuations [inequiv aient absolute values] 
extending v on a finite-dimensional Galois extension L ofK. For each i E [1, r] let Kt 

be the closure of K in Lfor the topology Tt defined by w,. (1) For each i E [1, r ] , Kt 

is the smallest of the subfields E containing K such that all extensions to L of the 
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restriction of wt to E are dependent [equivalent]. (2) [AT, : K] = [Kj'.K] for all i, 

; e [ i , r ] . 

PROOF. (1) If £ satisfies the description of (1), then E is closed in L for Tt by 
Corollary 1, so E D Kh But again by Corollary 1, all extensions to L of the restriction 
of wt to Kt are dependent [equivalent]. Thus K, is the smallest such field. (2) By Kuril's 
theorem [1, Ch. 6, Cor. 1, p. 152] there is a ^-automorphism a of L such that vv,- = 
W/ ° a. Hence a is a topological K-automorphism from L, furnished with Tj9 to L, 
furnished with r,. Consequently, [Kt:K] = [<J(KJ):(J(K)\ = \Kj\K\ 

THEOREM 2. Let v be a proper valuation [absolute value] of a field K. The following 
statements are equivalent: 

(\)K is closed in every finite-dimensional separable extension field L, furnished with 
a valuation [absolute value] extending v. 

(2) For every finite-dimensional extension L ofK, all valuations [absolute values] on 
L extending v are dependent [equivalent]. 

(3) Each finite-dimensional separable extension L ofK admits only one ring topology 
inducing on K the topology defined by v (namely, the topology defined by a valuation 
[absolute value] extending v). 

(4) K is separably algebraically closed in K . 

PROOF. Since every finite-dimensional separable extension of K is contained in 
a finite-dimensional Galois extension, the equivalence of (1)—(3) follows from 
Theorem 1. (1) implies (4), for if a G K \K were separable algebraic over K, then K 
would be a proper dense subfield of K(a) for the topology induced by v , in con­
tradiction to (1). Conversely, assume (4), and let L satisfy the hypotheses of (1). If 
a 6E K\K, then a would be an element ofK \K that is separable over K, in contradiction 
to (4). 

The equivalence of (2) and (5) of the following Corollary is a classical theorem of 
Ostrowski [6, §25], rediscovered by Nagata [4, Cor., p. 51]. 

COROLLARY. Let v be a proper real-valued valuation [absolute value] of a field K. 
The following statements are equivalent: 

(1) K is closed in every finite-dimensional separable extension field ofK, furnished 
with a valuation [absolute value] extending v. 

(2) v is henselian. 
(3) K is closed in the separable algebraic closure ils ofK, furnished with a valuation 

[absolute value] extending v. 

(4) Each finite-dimensional separable extension field of K admits only one ring 

topology inducing on K the topology defined by v. 
(5) K is separably algebraically closed in K . 

PROOF. Since v is real-valued, (2) of Theorem 2 implies that each finite-dimensional 
separable extension L of K admits a unique extension of v (with values in the divisible 
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group generated by the value group of v), and hence that v is henselian. As mentioned 
earlier, Krasner's Lemma establishes that (2) implies (3). 

Although Nagata's example shows that, in general, some requirement is needed 
concerning the closure of subfields of L containing the separable closure Ls of K for the 
validity of (l)-(4) of Theorem 1, no requirement is needed for a special class of fields: 

THEOREM 3. Let L be an algebraic function field in one variable over a subfield k of 
prime characteristic, let K be a finite-codimensional subfield of L containing k, let w 
be a proper valuation of L inducing the improper valuation on k, and let v be its 
restriction to K. The first seven statements of Corollary 1 of Theorem 1 are equivalent, 
and if L is a normal extension of K, the eight statements of that Corollary are equiv­
alent. 

PROOF. By Theorem 1, it suffices to show that if F is a finite-codimensional subfield 
of L containing k such that L is a purely inseparable extension of F, then F is closed. 
Suppose not. The proof that (4) implies (5) in Theorem 1 shows that L admits a locally 
bounded topology T, inducing on K the topology defined by v, such that the completion 
L of L for T contains nonzero nilpotent elements. In particular, k is bounded for T. 
By a theorem of Weber [8, Satz 4.4], T is "special" (as defined in [8, p. 167]). The 
completion of L for a special topology is the local direct sum of a family of complete, 
discretely valued fields relative to their valuation subrings. In particular, L is alge­
braically isomorphic to a subring of a cartesian product of fields, and hence has no 
nonzero nilpotents, a contradiction. 
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