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Generic Torelli and local Schottky theorems for
Jacobian elliptic surfaces

N. I. Shepherd-Barron

ABSTRACT

Suppose that f: X — C is a general Jacobian elliptic surface over C of irregularity ¢
and positive geometric genus h. Assume that 10h > 12(¢ — 1), that h > 0 and let ££¢
denote the stack of generalized elliptic curves. (1) The moduli stack J& of such surfaces
is smooth at the point X and its tangent space T' there is naturally a direct sum of lines
(Va)aez, where Z C C' is the ramification locus of the classifying morphism ¢ : C — £¢
that corresponds to X — C. (2) For each a € Z the map V,, : H>(X) — H;nlm( )
defined by the derivative per, of the period map per is of rank one. Its image is a
line C[n,] and its kernel is HO(X, 0% (—E,)), where E, = f~1(a). (3) The classes [n,]
form an orthogonal basis of H, pmm(X ) and [n,] is represented by a meromorphic 2-form

ne in H(X, 0% (2E,)) of the second kind. (4) We prove a local Schottky theorem;
that is, we give a description of per, in terms of a certain additional structure on
the vector bundles that are involved. Assume further that 8h > 10(¢ — 1) and that
h > q+ 3. (5) Given the period point per(X) of X that classifies the Hodge structure

on the primitive cohomology nglm(X ) and the image of T' under per, we recover Z

as a subset of P"~1 and then, by quadratic interpolation, the curve C. (6) We prove
a generic Torelli theorem for these surfaces. Everything relies on the construction, via
certain kinds of Schiffer variations of curves, of certain variations of X for which per,
can be calculated. (In an earlier version of this paper we used variations constructed by
Fay. However, Schiffer variations are slightly more powerful.)

1. Introduction

Suppose that M is a moduli stack of smooth projective varieties over C and that per : M —
P = D/T is a corresponding period map. The derivative of per is a homomorphism

pers : Tay — per™Tp.

The local Torelli problem is that of describing the kernel of this homomorphism and the local
Schottky problem is the problem of describing its image. We say that the local Torelli theorem
holds at a point x of M if the derivative per, of per is injective at x and that the generic local
Torelli theorem holds if it holds at every generic point of M. We also say that the generic Torells
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N. I. SHEPHERD-BARRON

theorem holds if per has degree 1 onto its image. The Schottky problem asks for a description of
the image of the period map.

As explained on p. 228 of [Gri84], if the generic local Torelli theorem holds and if it can be
proved that a variety X can be recovered from knowledge of the period point per(X) and the
subspace per,(Ta (X)) of the tangent space Tp(X), then the generic Torelli theorem also holds.

In this paper we consider the problem for elliptic surfaces f : X — C with no multiple fibres
(such surfaces we shall call simple) and show that the situation is closely parallel to that for
curves, as follows.

Suppose that the geometric genus of X is h and its irregularity ¢, that by (X) is even (so that,
by a result of Miyaoka [Miy74], X is Kéahler), that 10h > 12(¢ — 1) and that h > ¢ + 3. Assume
also that X is general, in a sense to be made precise later. Then we prove the following results,
the first two of which are well-known tautologies.

For a € C we let E, denote the fibre f~!(a) and w) the line in H?"(X)Y whose kernel is
HO(X, 0% (~EL)).

Assume that 10h > 12(q — 1).

(1) There is a classifying morphism ¢ = ¢ : C — My, where M; is the stack of stable curves
of genus 1. Set Z = Ramgy C C, the ramification ¢ divisor. (Up to noise which is removed by
the language of stacks, this is the locus where the derivative of the j-invariant vanishes.)

(2) If also X is algebraic, then the tangent space at the point X to the stack of algebraic elliptic
surfaces is naturally isomorphic to an invertible sheaf on Z.

(3) Every choice of a point a in Z and of a local coordinate on C' at a defines a 1-parameter
variation of X. This is based on the construction of the version of Schiffer variations that
is described on p. 443 of [Gar49].

(4) The derivative of the period map of this variation, which is a linear map V, : H>9(X) —
H;;ilm(X), is of rank 1.

(5) There is a meromorphic 2-form 7, € H(X, Q% (2E,)) of the second kind (that is, the residue
of 1, along E, vanishes) such that V, = wY ® [1,].

(6) Assume also that h > ¢+ 3. Then the canonical model of X is a copy of C' embedded
as a curve of degree h + ¢ — 1 in a projective space P(H*?(X)V) = P!, and the set Z
can be recovered, as a finite point set in P"~!, from the finite subset {wY ® [n4]}acz of
P((H*°(X)V ® H;;ilm(X))v). Indeed, we exploit this set of N points in projective space as
an analogue of the theta divisor on the Jacobian of a curve.

(7) Assume that h > ¢ + 3 and that 4h > 5(¢ — 1). Then the curve C can be recovered from Z
in P! via quadratic interpolation.

(8) Given C and Z, we then prove a generic Torelli theorem for Jacobian elliptic surfaces.

Remark. It is clear that some of these constructions can be still be made when the phrase
‘elliptic curve’ is replaced by ‘Calabi—Yau variety whose compactified moduli stack is a smooth
1-dimensional Deligne-Mumford stack whose first Chern class is positive’.

An essential difference between the case of curves and that of elliptic surfaces, however, is
that for curves these variations arise for any point a on C' while for surfaces they only arise for
points of the ramification divisor Z. Indeed, for other points x of C there is no meromorphic
2-form of the second kind with double poles along F,. (I am grateful to Richard Thomas for
explaining this to me.)

We now give some more details.
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DEFINITION 1.1. An elliptic surface is Jacobian if it has a specified section.

Jacobian implies simple, but not conversely. -

In this paper the things of primary concern are the stacks S€ and J& of simple and Jacobian
elliptic surfaces f : X — C' that are smooth and relatively minimal. We also consider the stack
JE whose objects are the relative canonical models of surfaces in J&; given f: X — C in J&
the relative canonical model is obtained by contracting all vertical (—2)-curves in X that are
disjoint from the given section. There is an obvious morphism JE — JE that is a bijection on
geometric points. At the level of miniversal deformation spaces, this morphism can be described
by taking the geometric quotient by an action of the relevant Weyl group, as was shown by Artin
and Brieskorn.

We shall say that a surface X in S€ is general if its j-invariant C' — IPJI- is non-constant and
its singular fibres are all of type I;. We let SE&" and JE" denote the stacks of general simple
surfaces and general Jacobian surfaces; these are open substacks of S€ and J&. Note that JE8™"
maps isomorphically to its image in J & so is also naturally an open substack of J&. Then to give
a point in SE&" is equivalent to giving a classifying morphism F : C' — M that is non-constant
and unramified over j = co. The stack M is not the same as the stack £/ of stable generalized
elliptic curves; these stacks will be discussed in more detail in §2. Giving a point in JE&" is
equivalent to giving a morphism ¢ : C — £/ that is non-constant over the j-line and unramified
over j = o0.

Assume that f: X — C is general in JE. Let Z denote the ramification divisor in C' of ¢.
Say h = py(X) and ¢ = h}(Ox), so that g is also the genus of C. We shall assume throughout
this paper that

10h > 12(q—1) and h > 0. (1.2)

These assumptions ensure that deg ¢* Tz > 2q — 2, which in turn ensures the vanishing of certain
obstruction spaces. From § 6 onwards we shall make the stronger assumptions that

8h >10(¢—1) and h>q+2. (1.3)

These assumptions make it possible to apply theorems of Mumford and Saint-Donat about the
defining equations of linearly normal projective curves.

Write N = 10h 4 8(1 — q). Then, as is well known, S& is smooth at the point corresponding
to X and

degZ =N, dimSE=N+h, h'Y(X)=N+2.

Then we shall prove effective forms of both a generic local Torelli theorem and a generic Torelli
theorem for the weight 2 Hodge structure on X, in the following sense.

If X is a surface in J& with specified section o and fibre £, then ngim (X)
will denote the orthogonal complement (o,&)*. If X is in S but is not necessarily alge-
braic, then H2. (X) and H (X) will denote £+ /Z¢; these two definitions are equivalent for

prim prim
X € JE. Observe that h;’rlim(X) = N. In fact dim J€ = N also, so that dim J& = hll)’rlim(X).
We shall use this coincidence in §5 to enhance the local structure of the derivative of the
period map.

From the description of JE%" as the stack that parametrizes those non-constant morphisms
from curves to £/ that are unramified over j = oo we shall prove the following theorem,
which appears as Theorem 4.10. It is the main result of the paper; everything else follows

from it.

(X) and H"!

prim
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THEOREM 1.4. Fix a surface f : X — C' that is a point X of JE*" and corresponds to ¢ : C' —
EU. For P € C put Ep = f~Y(P) and let Z denote the ramification divisor Ram.

(1) Given a point a of Z there is a tangent line Cv, to JE at the point X.

(2) There is a meromorphic 2-form n, € H(X, Q% (2E,)) of the second kind (that is, its residue
Resg, 1, vanishes).

(3) The corresponding map

Vo, : H*(X) — Hi L (X)

is of rank 1. Its kernel is the space H°(X, Q% (—E,)) of 2-forms that vanish along E, and
its image is the line generated by the class [n,] of 14, modulo &.

In order to prove this theorem we shall use Schiffer variations to construct, for each point
a € Ramy where the ramification index of ¢ : C' — £00 is m (so that a is of multiplicity m — 1
in Z) an (m — 1)-parameter deformation C — A™~! of C' whose derivative can be calculated.
Thus, when X is a point of JE8™", we have a detailed description of an N-dimensional subspace
of the tangent space to moduli inside the tangent space to the period domain as the subspace
spanned by certain explicit tensors of rank 1. (Masa-Hiko Saito [Sai83] has proved the local
Torelli theorem for simple elliptic surfaces with non-constant j-invariant and for many surfaces
with constant j-invariant. We shall extend his result slightly; see Theorem 2.10.)

It is a matter of linear algebra to recover Z as a subset of the projective space P*~! in which
C' is embedded as the canonical model of X, under the assumption that Z is reduced. We then
use a theorem of Mumford [Mum?70] and Saint-Donat [Sai72], to the effect that linearly normal
curves of genus ¢ and degree at least 2q + 2 are intersections of quadrics, to show that C is
determined by quadratic interpolation through Z. We go on to prove that from the pair (C, Z)
we can recover the classifying morphism ¢ : C' — €0, modulo the automorphism group G,, of
E00 provided that ¢ is generic. This recovery of C' and ¢ from the period data we regard as
an effective theorem. It shows that any failure of generic Torelli for Jacobian surfaces can be
detected in a pencil that is the closure of the G,,-orbit thorough a generic point of JE&™". (The
fact that the automorphisms of £¢¢ obstruct a direct deduction of generic Torelli from knowledge
of C and Z was observed by Cox and Donagi [CD86].)

Once we know that the base curve C' is determined by Hodge-theoretical data of weight 2
we go on to prove the generic Torelli theorem for Jacobian elliptic surfaces via ideas similar to
those used by Chakiris [Cha82, Cha84] to prove generic Torelli when C' = P!, but reinforced by
the minimal model program.

There is also some further structure on the period map for JE%": the relevant vector bundles
and homomorphisms between them can be described in terms of line bundles on the universal
ramification divisor Z&8™ over JE8™ of the universal classifying morphism to £€¢. This can be
seen as a local solution to the Schottky problem. The details are stated in Theorem 4.11.

We also give a variational form of a partial solution to the global Schottky problem.

If X is a Deligne-Mumford stack, then [X] will denote its geometric quotient.

2. Preliminaries on stacks and tangent spaces

Everything in the next two sections is well known; if it is not due to either Kas [Kas66] or
Kodaira [Kod63], then it is folklore.

The stack 0/ is the Deligne-Mumford stack over C of stable generalized elliptic curves; that
is, an S-point of £/ is a flat projective morphism Y — S with a section Sy contained in the
relatively smooth locus of Y — S and whose geometric fibres are reduced and irreducible nodal
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curves of arithmetic genus 1. Such a curve is then, locally on S, a plane cubic with affine equation
2 3
y* = 42" — ga — ge,

where g4 and gg are not both zero, so that £/ is the quotient stack P(4,6) = (A% — {0})/Gn,
where G, acts on A? with weights 4, 6. Note that G,, acts on A? via a homomorphism G,, — G2,
(whose kernel is 1) and the standard action of G2, on A?, so that there is a residual action of
G, on EL0. This exhibits G,, as the full automorphism group of ££/; cf. Theorem 8.1 of [BN06]
and the calculation there on p. 139.

The geometric quotient [E£¢] of ¢/ is the compactified j-line IF’;; if p: 00 — IP’]l is the quotient
morphism, then the automorphism group of each fibre of p is Z/2, except over j = jg = 0, where
it is Z/6, and over j = jy, = 1728, where it is Z/4. So deg p = 1/2. As is well known, it is possible
to write down a generalized elliptic curve over the open locus U of ]P’} defined by j #£ 0, 1728, so
that there is a section of p over U. Moreover, p~(U) is isomorphic to U x B(Z/2), but there is
no global section of p.

There are two obvious line bundles on £//: the bundle M of modular forms of weight 1, which
is identified with the conormal bundle of the zero-section of the universal stable generalized
elliptic curve, and the tangent bundle Tsz;.

LEMMA 2.1. We have Tgy;; = M®10, deg M = 1/24 and deg T = 5/12.

Proof. Quite generally the Picard group of P(a,b) is generated by O(1), which has degree 1/ab,
and Tp(,,p) is isomorphic to O(a + b), which then has degree (a + b)/ab. O

The objects of the stack M are stable curves of genus 1; the geometric fibres are isomorphic
to stable generalized elliptic curves, but no section is given. This is an Artin stack, but not
Deligne-Mumford. Indeed, the word ‘stable’ in this context is an abuse of language, but I am
optimistic that it will cause no confusion.

Let C — M and € — £0¢ denote the universal objects and let G — E0¢ denote the Néron
model of & — £/, so that G is the open substack of £ obtained by deleting the singular point
of the fibre over j = oc.

The next result is due to Altman and Kleiman [AK80], although reformulated here in the
language of stacks. We have chosen to include a slightly different proof that emphasizes auto-
morphism groups rather than Picard varieties so that the relevant classifying stacks enter more
easily.

THEOREM 2.2. There is a morphism 7 : M — EUl via which M is isomorphic to the classifying
stack BG over E/4.

Proof. Let G — M denote the connected component of the relative automorphism group scheme
of C — Mj. Thus, G — Mj is elliptic over the open substack M; of M defined by j # oo and
over j = oo the fibre of G is the multiplicative group Gy,. O

LEMMA 2.3. There is a unique open embedding G — é, over My, where G — M, is a stable
generalized elliptic curve and G is its relative smooth locus.

Proof. To construct G we need to patch the puncture of G — M; that lies over j = co. In a
suitable neighbourhood S of the locus j = oo in M the process of patching the puncture is a
matter of ‘reversing the process of deleting a closed point from a normal 2-dimensional analytic
space (or scheme)’, so the patch is unique if it exists. Therefore, it is enough to exhibit the patch
locally on M, in the neighbourhood S.
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Put Cg = C xzz, S. Since S is local and Cg — S is generically smooth, there is a section over
S of Cg — S that is contained in the relative smooth locus. Use this section to put the structure
of a stable generalized elliptic curve on Cg — S. This structure on Csg — S provides the patch
for Gg = G x5z, S — S and yields G — S; the lemma is proved. O

Sending C — M to G — M, defines a morphism 7 : M; — EUL.
A gerbe is a morphism of stacks that is locally surjective on both objects and morphisms.
A neutral gerbe is a gerbe with a section.

LEMMA 2.4. The morphism 7 is a neutral gerbe.
Proof. 1t is enough to show that:

(1) 7 has a section (then it is certainly locally surjective on objects); and
(2) = is locally surjective on morphisms.

For part (1), use the forgetful morphism £6¢ — M to get a section of 7.

Part (2) is equally clear: a morphism of stable generalized elliptic curves is, in particular, a
morphism of the underlying stable curves.

Finally, suppose that X — ) is a neutral gerbe with section s : J — X. The stabilizer group
scheme is a group scheme H' — X; define H — Y to be the pull back of H' via s. If H — Y is
flat, then [LMOO] there is an isomorphism X — BH. Since the Néron model G — £/ is flat, the
theorem is proved. U

Note that G — M is isomorphic to the pull back under 7 of the Néron model G — /4.

As already remarked, a general simple surface f : X — C' determines, and is determined by,
a morphism F = Fy: C — M; that is unramified over j = oco. Let ¢ =¢s =m0 F:C — EW
denote the composite, so that the induced Jacobian elliptic surface is the compactified relative
automorphism group scheme of f: X — C.

For example, if f: X — P! is a primary Hopf surface, then ¢y is constant: the relative
automorphism group scheme is a constant relative group scheme E x P! — P!,

LEMMA 2.5. If X — C has non-constant j-invariant, then the irregularity q of X equals the
geometric genus of C.

Proof. This is well known, and easy. O
LEMMA 2.6. Suppose that f : X — C is a general simple surface. Then

(1) dego = 2co(X) = 24x(X,Ox);
(2) dego*M = x(X, Ox);
(3) deg " Tz = 10x(X, Ox).

Proof. Since c2(X) equals the total number of nodes in the singular fibres of X — C, part (1)
follows from consideration of the inverse image of the locus j = oo, the fact that deg p = 1/2 and
Noether’s formula. The rest follows immediately. O

We next consider various tangent spaces.
Regard BG as the quotient of ££¢ by G. Since M is isomorphic to BG, locally on ££4, the
tangent complex T.ﬂ1 is a 2-term complex, which is obtained by descending a 2-term complex

on E0F. In degree 0, this complex is Te, in degree —1 it is the adjoint bundle AdG and the
differential is the derivative of the action of G on £/¢4.
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Since this action is trivial, the differential in 7’ .ﬂl is zero. Moreover, since G has no characters
(it is generically an elliptic curve) it follows that T'ﬁ1 is quasi-isomorphic to the pull back of the

complex Ad G[1] & T;[0] on ELL.

Note that (AdG)V is exactly the line bundle M of modular forms of weight 1.

Now fix a point X of S€. That is, we fix a general simple elliptic surface f: X — C. This
equals the datum of a morphism F : C' — M. Set ¢ =70 F : C — E0L. Then F*T’Ml is quasi-

isomorphic to ¢* Ad G[1] ® ¢*Tgz. There is a distinguished triangle

To — F*T'ﬂ1 — K*,
where K*® is a 2-term complex of coherent sheaves on C, K~ = ¢* AdG, K is the skyscraper
sheaf coker(Tc — ¢*Tg;) and the differential in K*® is zero.

PROPOSITION 2.7. The tangent space Tsg(X) is naturally isomorphic to the hypercohomology
group H(C, K*) and the obstructions to the smoothness of S€ at X lie in H!(C, K*).

Proof. This follows from the identification of the points of S€ with morphisms from curves to
M. In this latter context the result is well known. OJ

Let Z denote the ramification divisor Z = Ramg = Ramp on C. Then K 0 is an invertible

sheaf on Z, so that there is a non-canonical isomorphism K° = Oz.
The distinguished triangle just mentioned gives an exact sequence

0— H’(C,Tc) — H(C, F* Ty, ) — H'(C, K*)
— H'(C,T¢c) — HY(C, F*T},,,) — H'(C,K*) — 0.
Then H*(C,¢* AdG) =0 and H'(C, ¢*Tz) = 0, since
deg ¢*Tgzz = 10x(X, Ox) > 2q — 2,

from the assumption (1.2), so that H!(C, K*) = H!(C, F*T.ﬂl) =0 and there is an exact
commutative diagram

0 0
H(C,Te) —— HO(C.T¢)

|

0 —= H(C,¢"Tgy) — HUC.F*TR ) ——~ H'(C,¢" AdG) —= 0

0 —— HC, K HO(C, K*) HYC,¢*AdG) —= 0
HY(C,To) —— HY(C,To)
0 0

in which the two middle rows are canonically split.
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PRrRoPOSITION 2.8.

(1) The stack SE is smooth at the point X.

(2) Its dimension there is 11h + 8(1 — q).

(3) The degree of the ramification divisor Ramg = Ramp is N.

(4) We have ¢*M = fiwy/c = (R f,Ox)" and deg¢*M = x(X,0x) =h+1—q.

Proof. Except for part (4), which is well known, this follows from the preceding discussion. [
Suppose that f: X — C'is a point of J£%" and defines ¢ : C — E0L. Set Z = Ramy.
PROPOSITION 2.9.
(1) There is a short exact sequence
0 — H(C,¢*"Te;) — Ti7e(X) — HY(C, Tc) — 0.

(2) The tangent space T7¢(X) is naturally isomorphic to H°(Z, K°).
(3) The moduli stack JE is smooth at the point X and its dimension there is N.

Proof. This is proved in the same way as Propositions 2.7 and 2.8. O

Since Z is O0-dimensional and KV is an invertible sheaf on Z, H%(Z, K°) is non-canonically
isomorphic to H°(Z,0yz).
We shall usually write ¢*M = L = fiwx,c. Then ¢ T = L®19 50 that

Oc(Ramg) & ¢* T @ T =2 L @ O¢(K¢).

At this point we give a slight refinement of Saito’s local Torelli theorem. The argument is
essentially his.

THEOREM 2.10. Suppose that f : X — C' is a simple elliptic surface with r singular fibres. Put
L = fiwx)c. Assume that r > deg L + 3 and that deg L > 2. Then the local Torelli theorem
holds for X.

Proof. From the main result of [Sai83] it is enough to consider the situation where the j-invariant
is constant. Following [Sai83] it is enough to show that the natural homomorphisms

s HO(C, £.9%) @ HY(C, £.0%) — HY(C, f.(% ® Q%))
and
po : HO(C, £.0%) @ H°(C, R* £,.0%) — H°(C, R' (9% ® Q%))

are surjective. Recall that Kx ~ f*(K¢ + L), so that f.(Q} ® Q%) = Oc (Ko + L) ® f.Q%, and
that |K¢ + L| has no base points. O

LEMMA 2.11. If F,G are coherent sheaves on a 1-dimensional projective scheme C over a field
k and if F is generated by H°(C,F), then the natural multiplication

HY(C,F)@r H'(C,G) — H'(C, F ®0 G)
is surjective.
Proof. There is an exact sequence
HY(C, F) ®, Oc — F — 0;
tensoring this with G gives an exact sequence
HYC,F)®rG— F®G—0.

Taking H' of this sequence gives the result.
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In particular, taking F = Qlc ® L = f.0% and G = f.QL shows that g is surjective.
Now consider ps. Set A =7 a;, the critical subset of C. The exact sequences (4.17) and
(4.18) of [Sai83] are
0— Qb — £.0% = Oc(L —A) =0
and
0— Oc(Kc+A—-L)— R QY - O0caT! >0,
where 71 is a skyscraper sheaf. The second sequence then gives
0— Oc(Kc+A—L+6) — RO — Oc — 0,

where 0 > 0, via the process of saturating a subsheaf. Since deg A > deg L, by assumption, this
last sequence splits and

RY.Q% = Oc ® Oc(Kc + A— L +9).
From its definition, ps is then the direct sum
pio = iy @ [ih
of multiplication maps
py  H(C,0c(Ke + L)) © C — H(C,Oc(Kc + L))
and
py : H(C,Oc(Ke + L)) ® H(C,0c(Ke — L+ A+ 6)) — H°(C,0c(2Kc + A+ 6)).

The first of these is obviously surjective, while the surjectivity of the second follows from [Mum?70,
Theorem 6, p. 52] and the facts that deg(Kc + L) > 2q and deg(Kc — L+ A+0) >2¢+1. O

3. The comparison between SE%°" and JE&°"

The morphism 7 : My — £ defines a morphism IT : SE&" — J7E8 . If we fix a point f : X — C
of JE&" then I1~!(X) is identified with H'(C,H), where H — C is the Néron model of X — C.
The sheaves LV and H are group schemes over C. Define F = R! f,Z; this is a constructible
sheaf of Z-modules on C that is of generic rank 2.
The following results are due, in essence, to Kodaira. In particular, Proposition 3.2 is a
variant of [Kod63, Theorem 11.7, p. 1341]; there he proves only that H?(C,F) is finite, but he
does not assume that f: X — C is general.

LEMMA 3.1. There is a short exact sequence
0—-F—=LY—>H—-0
of sheaves of commutative groups on C.

Proof. This follows from the exponential exact sequence on X and the identification H =

ker(R!f.O0% — R*f.7). O
PROPOSITION 3.2. We have H?(C,F) =0 and the homomorphism H'(C,LY) — H'(C,H) is
surjective.

Proof. Tt is enough to show that H?(C,F) = 0.
For any ring A, there is a Leray spectral sequence

By = HP(C, R1f.A) = HPTI(X, A).

Since the fibres of f are irreducible curves and X — C' has a section, the hypotheses of
Théoréeme 1.1 of [DK, XVIII| are satisfied, so that this degenerates at Fy. Take A = 7Z; then

2529

https://doi.org/10.1112/S0010437X23007443 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007443

N. I. SHEPHERD-BARRON

there is a short exact sequence
0— H*(C,F)— H*X,Z) — H'(C,Z) — 0.

Thus, H?(C, F) is identified with the torsion subgroup Tors H?(X,Z) of H3(X,Z).
Suppose that ¢ is a prime dividing the order of Tors H3(X,Z). Since H*(X, A) is isomorphic
to A, it follows from taking cohomology of the short exact sequence

0252 —7/0—0

that H3(X,Z/¢) = H3(X,Z)® Z/¢. In addition, Poincaré duality gives an isomorphism
H3(X,7/0) — HY(X,Z/¢)V, where v denotes the dual Z/{-vector space.

The spectral sequence Ef,qz/e shows that 3: H'(C,Z/¢) — H'(X,Z/¢) is injective, so if it is
not surjective, then the map i* : H'(X,Z/¢) — H'(0,Z/¢) induced by the inclusion i : o — X
of the zero section is not injective. Then there is an étale Z/t-cover o : X — X that is split
over 0. Thus, X — (' is elliptic and has a section ¢ such that Nﬁff & N,/x. However,

degNa;( = —X()Z',O;() = —Ix(X,0x) = {deg N, /x.

Thus, 3 is an isomorphism, so that H3(X,Z/f) = (Z/f)*? and, therefore, H3(X,Z) is torsion-
free. O

Let S§&}, 4 denote the substack of SE that consists of surfaces whose geometric genus is h and
whose irregularity is ¢. This is a union of connected components of S€.
The next result is an immediate corollary of Proposition 3.2.

COROLLARY 3.3.

(1) The closed substack TI=1(X) is irreducible.
(2) The substack SEy, 4 is irreducible.

Now suppose that Y € II7!(X). According to [Kod63, Theorem 11.5, p. 1338], Y is algebraic
if and only if it defines a torsion element of H'(C,H).

PROPOSITION 3.4. The algebraic surfaces are dense in II-1(X).

Proof. We must show that the image of H(C, R' f,Z) ® Q in H'(C, R f,Ox) is dense.
Let &% denote the orthogonal complement of ¢ in H2(X,Z). Then, via the Leray spectral
sequence, there is a commutative square

H'(C,R'f.Z) ® Q —= H'(C,R'f,Ox)

gl lg

(/28 ©Q H?*(X,Ox)
where the vertical arrows are isomorphisms. Then (§ has dense image, from the Kéhler property
of X, and the proposition is proved. O

4. Schiffer variations for elliptic surfaces and the derivative of the period map

Fix a curve C, a point a € C, a local coordinate z on C' at a, an integer e > 2 and a real number
d such that 0 < § < 1 and the region |z| < d is an open disc D = D, in C. We begin by recalling,
from [Gar49, p. 443], the construction of certain variations that we shall call Schiffer variations:
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these are families 7 : C — A°~! = AY"! over (e — 1)-dimensional polydiscs with coordinates t =
(t2,...,te) whose closed fibre 771(0) is C. They are constructed as follows.

In Cf‘l take the polydisc Af‘l defined by [t;| < §%¢ for all j. In C x Af‘l take the com-
plement U of the closed subset | j(|z|4e <'|t;|). Thus, U is a thickening of the punctured curve
C —{a}. Then put G =U N (|z] < 9).

In CZ,, X A take the subset F defined by

e—2
It;] < |2]* V4, |2 <6, |w— 2| < |2|* and w® + eZte_jwj = 2°.
0

Then there are projections p: F — U and ¢ : F' — C,, X AZ‘I.
LEMMA 4.1. The projections p and q are open embeddings.

Proof. Tt is enough to show that they are unramified and separate points.
The ramification locus of p is defined by

w4 the,jwj_l =0.

Since |te—;| < |2|* this gives [w| < |2|%. Then |z| — |2|*¢ < |2|%, so that z = 0 and p is unramified.
To check the separation of points, suppose that

wZ—i—eZte_ngé—ze =0
for « = 1,2 and w; # wsy. Then

e—1 e—2 7j—1
H(wl — Cews) = ezte—j H(wl — GGwa),
r=1 7=1 s=1

where, for any integer n, ¢, is a primitive nth root of unity. Since |w; — z| < |2|?¢ and |GGwa —
Gzl < |z|2¢ it follows that

w1 — Gwa| < 202* + |z — GGzl = 202 + |1 = ¢l2] < 4z].

Thus,
e—2 7j—1
e toj [J(wr — Guwa)| < de(e — 2)[z[*.
j=1 s=1

On the other hand, |w; — 2| < |2]?¢ and |7 — (72| < |2]%¢, so that
w1 — GCwa| > |z — ¢T2] = 2[2** > Alz,
where X = |sin(27/e)|/2. Thus,

e—1

H(w1 — Cowa)

r=1

> )\6—1|Z|6—1

and, therefore,
X < de(e — 2)]2]2T2.

This contradiction proves the result for p.
The argument for ¢ is similar but easier, so we omit it. ]
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LEMMA 4.2. The image of p is G.

Proof. This is a matter of showing that, given (z,t) € G, we can solve the equation w® +
ed te—jwl —2¢ =0 with |w— z| <|z|?*. Without the inequality there are e solutions; if
|w — z| > |2]?¢ for all of them, then we get a contradiction to 2¢ —w®=e t._jw/ and the
inequalities satisfied by the t._;. O

For each t € A¢™! the intersection q(F)N (Cy x {t}) is an annulus A; in C, x {t} that
surrounds zero. Let R; denote the open simply connected region in C,, x {t} that contains 0 and
has the same outer boundary as A;, and put H = | |, R;. Thus, H is a tubular neighbourhood of
{0} x AS™1in C,, x AY! and ¢(F) C H.

Define C to be the result of glueing U and H together along F via the maps p and ¢. This
is Hausdorff and, after shrinking Af_l if necessary, the morphism 7 : C — Af_l is proper and is
the morphism that we sought. This is sometimes expressed by saying that Ce is constructed from
C by deleting a small z-disc around a and glueing in a w-disc, where w is defined implicitly by
we + e 35 tejul = 2°.

Until after Theorem 4.11 we fix a point f : X — C of JE" and a point a in the ramification
divisor Z = Ramy of the classifying morphism ¢ : C' — E00. In particular, ¢ is unramified over
j=o0. Put E, = f~1(a) and denote by e = e(a) the ramification index at a of ¢, so that a
has multiplicity e — 1 in Z. Assume that the disc D is sufficiently small, so that it contains no
other points of Z. We use the Schiffer variations of C' that we have just described to construct
variations of X.

PROPOSITION 4.3. For some choice of local coordinate z on C' at a the morphism ¢ : C' — 7]
lifts to a morphism ® : C — £0¢ in such a way that the restriction of ® to U factors through the
projection U — C' — {a}.

Proof. Given a local coordinate s on £0¢ we have ¢*s = z¢ for some local coordinate z on C.
Then we define ® on H by

e—2
d*s =w+e Zte_jwj
§=0
and on U we define ® by composing ¢ with the projection U — C' — {a}. O

Any Jacobian deformation of the surface X determines, for each point a € Z, a deforma-
tion of the finite scheme V() = SpecC]t]/ (t¢(2)), so that there is a morphism of local analytic
deformation spaces W : Defyxy — [[,cz Defve(a). Recall that Defve(a) is smooth of dimension
e(a) — 1.

PROPOSITION 4.4.

(1) The morphism V is a local analytic isomorphism.
(2) The universal ramification divisor Z is smooth over C.

Proof. Part (1) is a an immediate consequence of the formula used to define ®*s, and part (2)
follows at once. g

Thus, we have morphisms X e Ag_l and F': X — C is a family, parametrized by Ag_l,
of Jacobian elliptic surface whose fibre over 0 € Az_l is f: X —C.
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Fix a suitable basis of Hy(X,Z), which we identify with H2(X;,Z). Then there are
holomorphic (e 4+ 1)-forms QM ... Q") on X such that the residues

. ©)
w(J)@) = Res;(t( Qt] )

form a normalized basis of HY(A;, Q?Yz) for all t. In particular, there are 2-cycles Ay,..., A, on

X} such that fAi Wi (t) = (527, the Kronecker delta.

Since the line bundle Qijl pulls back from a line bundle on C, we can expand QU) as

Q9 = (1)t " bwrtldw A diA d,
p>0,g>0

where v is a fibre coordinate.
LEMMA 4.5.

(1) We have w = z(1 — Y52 te_i2"¢) = 2(1 — D ied t;2~") modulo ().
(2) We have dw Adt ANdv = (1+ > 5_,(i — 1)t;z2"") dz A dt A dv modulo (t).

Proof. Immediate from w® + e’ te_jw' = 2€. ]

Remark. Lemma 4.5(1) shows that, in terms of H'(C, T¢), the first-order deformation obtained
from C — Affl is the one that arises from integrating the space of Cech 1-cocycles with values
in Tc, with respect to the cover {D, C — {a}} of C, that is generated by the vector fields
z=Vd/dz,...,2=¢"Vd/dz on D — {a}. However, there are different kinds of Schiffer variation
that lead to the same space of cocycles; this feature is part of their strength.

We substitute this into the expansion of QU). Since

<1 - Ztiz_i>p(1 +) (- 1)tiz_i) =1+) (i—p—1)tz™"

modulo (¢)2, we get

D(t) = Z bggzp (1 + Z(z —p— 1)tizi)tqdz A dv. (4.6)
modulo (¢)2.

Next, write w0 () = wl@) + ZZ O te—imyg )Z modulo (¢)?, where

. 9 .
=0 and 7 = gwu)hzg‘

Moreover, every 2-cycle v on X that is disjoint from F is identified, via a C'°° collapsing map,
with a 2-cycle on &} and

/ WO (1) = / W9+ 3 / 7 for all such 4. (4.7)
Y v i v

Consider the class (W) (t)] € H?(X;,C). Let £ C X, be a fibre. Then [wU)(t)] € £+. Moreover,
from the exact sequence

7¢ = 7|E,) — H*(X,Z) — H*(X — E,,Z)
and the formula (4.7) it follows that 77( 7 defines a class

[ ] € fL/Zg prlm(X)
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such that
1o}

ot ([w U(t ) |e=0 = [n (J)] (mod Z¢).

Griffiths transversality shows that, in fact, [n(j )] lies in Fil' = Fil'H2, _(X). (We let Fil® refer

7 prim

to the i’th piece of the Hodge filtration of pnm(X).)

We have constructed, for each a € Z of ramification index e(a) = e, an (e — 1)-parameter
variation X — A°~! of X such that the tangent space Txc-1(0) is identified with the cyclic
skyscraper sheaf L, of length e — 1 on C' that is supported at a and determined by Z. For any
v € L, consider the derivative

V,: H*Y(X) = Fil*> — Fil'.
Let
Vo:H* — HY (X)

prim

denote the composite of V, with the projection Fil'! — H;r}m( ). If L, is of length 1, then we
write V, rather than V,,.

Assume that the geometric genus h of X is not zero. In addition, given w € H°(X, Q_QX)
and P € C, put w(P) = (w/dz A dv)(Q) for an arbitrary point @ € Ep and identify w with the
pullback of a tensor on C'. Denote by ¢ C X the given zero-section of f: X — C.

PROPOSITION 4.8. Suppose that 0 # w € H(X, %) and that (w)o is disjoint from Z. Then the
cup product w : H(X,Ox(—logo)) — HY! (X) is injective.

prim

Proof. Up to now we have identified the tangent space T7¢(X) with a line bundle on Z;
we can also identify it with H'(X,0x(—logo)). Since Ox(—logo) ® Q% is isomorphic to
Q% (log o)(—0) we get a short exact sequence

0 — Ox(—logo) — Q% (logo)(— @ Fp—0,

where Fp is a rank 2 vector bundle on Ep that fits into a short exact sequence
0— Ogp(—op) = Fp — O, — 0.

The coboundary map H%(Ep,Op,) — HY(Ep,Op,(—op)) is identified with the
Kodaira—Spencer map, so is an isomorphism from our assumption about (w)g. Thus,
HY(Ep, Fp) = 0 and then the homomorphism

H'(X,0x(~log o)) — H'(X, 0k (log o) (—0))

is injective. This homomorphism factors through the cup product with which we are concerned,
and the proposition is proved. ]

Write bl% = by. Then wl) = Zbéjz)ozpdz A dv and b(()j) = wl(a).
THEOREM 4.9.

(1) We have n” € HO(X, Q% (iEq))and kind-
) _ ; () p—i 0 2
(2) We have n;”" =3 5o(i —p — 1)b 2P~" dz A dv modulo H° (X, Q).
o (h) : ol 2 0 2
(3) The classes [né l,-..,[ny '] span a line Clngo| in Fil"/Fil® where 12 € H°(X, Q5%
(2Ea))2nd kind -
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(4) More generally, for each ¢ with 2 </{ <e(a), there exists a form n,, € H°(X, Q%
(¢E4))and kind such that the classes [ni(gj)]je[l,h],ke[u] span an (¢ — 1)-dimensional subspace

CA[azs - - e} of HYLL(X).

Proof. This follows from further consideration of the expansion (4.6). To begin, write bg& = b(()j ),

Then we get
w(j)@) - Z bz%zp <1 + Z(z —p— 1)tiz_i> dz A dwv,
D,q ¢

modulo (t).H°(X,0%), so that
W) = Zbl(oj)zp dzAdv and nY) = Z(z o l)bg,j)zp_i dz A dv,

[
p p

where the second equality holds modulo H?(X, Q3. Observe that
dim H(X, Q% (iF,)) <h+i and H°(X,Q%(E.))ond kind = H°(X,Q3),

so that dim H(X, Q?X(iEa))Qnd kind < h +¢— 1. Then inspection of these coeflicients and the
linear independence provided by Proposition 4.8 are enough to prove the theorem. ]

We can restate all this in more intrinsic terms, as follows. Let w denote the vector
w®, ..., wM] and w(;) its ith derivative with respect to z.

THEOREM 4.10. Foreacha € Z and eachk = 2, ..., e(a) there is an explicit meromorphic 2-form
Nag € HY(X, % (kE,))2nd kind

such that [n, ] lies in Fil' and the image of ?3/3% . Fil*> — Fil' is spanned by the classes

[Ma2); - - - [Mak)- The kernel of Vg, contains H'(X, Q% (—(k — 1)E)).

Moreover, given the identification H°(X,0%) = H°(X,0%)V provided by the basis w,
Vosor, is, as an element of H(X,0%)® Fil', a linear combination of the tensors w(a)®
[Mak)s s Wp—2)(a) @ [a,2]- B

Finally, if h +q — 1 > e(a), then Vg g, is of rank k — 1.

Proof. As remarked, this is, except for the final statement, nothing more than a restatement
in intrinsic terms of what we have just proved. For the final part we need to know that the
vectors w(a), ..., We(q)—2) are linearly independent. This follows from the cohomology of the
exact sequence

0— Oc(Kc+ L —(e(a) —1)a) = Oc(Kc + L) = Oea)—1ya(Kc + L) — 0
and the assumption that h + ¢ — 1 > e(a). U

THEOREM 4.11.

(1) If a,b € Z are distinct, then, for all v € L, and for all n,; with k € [2,e(b)], Vonp is a
linear combination of the classes {[1a,i|}icp.e(a) and {[M;]}jep.epy- In particular, Vymy
lies in Filt.

(2) Ifa,b e Z are distinct, then the classes [1,;] and [ 1] are orthogonal.

(3) The classes [n,,] form a basis of H;;ilm(X ) as a runs over the points of Z and i runs from 2
to e(a).

(4) If Z is reduced, then the classes [1,,2] form an orthogonal basis of H;;ilm(X ) as a runs over
the points of Z.
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Proof. (1) We use the same family X — C — A¢@=1 corresponding to the point @ as before.
This variation is constant outside a small neighbourhood of a and the morphism to £/ is also
constant outside this neighbourhood. Thus, the ramification locus Z is also constant there.

The point b moves in a family of points b(t) € Ct, each b(t) being of constant multiplicity
e(b) — 1 in the ramification divisor Z; C C;. The fibre Ej, in X moves in a family . Then, for
each k € [2,¢(b)],

Mo(t),k = Mo,k T Z tiVa ot Mb(t) k

modulo #2. Similarly to what we did before, we write

H
Mo(t),k = Resxt< b%)’k )

for some meromorphic (e(a) + 1)-form
Hy e € H(X, Q59 (k).

Then the same kind of calculation in terms of a power series expansion as before shows that
Vayot: M),k 15 an element of HO(X, 0% (iE, + kEy,)) whose residues along both E, and E, are
zero. Therefore, Vo (mp k) is, modulo H*9(X), a linear combination as described.

(2) Choose an element w of H*(X) that does not vanish along E,. Thus, Vy/g,w is a
non-zero multiple of 7, ;. We can assume that Vj g;,w = 14,i- Now (w,npx) = 0, since H?9(X)
is orthogonal to H'!(X), so that

0= (Vasat,w, mok) + (w0, Vasar, k) = (Mai> Mo.k)s

since, as we have just proved, Vg gm0 1 € F° it
Parts (3) and (4) follow from the linear independence of the [, ;] and the fact that there are

1,1
N of them, where N = dim H ; (X). O
Remark. The fact that the 7,; form a basis of Hpnm( ) follows from Theorem 3.24 and

Remark 3.29 of [CZ79], or from Proposition 4.8. However, the orthogonality seems to be new.

Until now f: X — C has been a point in JE®". Now, however, allow X to have
Aj-singularities, so that f: X — C is defined by a classifying morphism ¢ : C' — E00 that is
simply ramified over j = oco. Let X — X be the minimal model, so that X has singular fibres of
types I and I and X — C is the relative canonical model of X —C. Suppose that Dy,..., D,
are the exceptional (—2)-curves on X. Suppose that ai,...,a, are the points in Z lying over
j = oo and that a,41,...,an are the other points of Z. For a = a; with i < r define [n,] = [D;].
The surface X is a point in the stack JE whose points are minimal models of points of JE.
We can extend Theorem 4.11 to this context, as follows. For simplicity we state it with the
assumption that Z is reduced.

THEOREM 4.12. Suppose that Z is reduced. Put 1,2 = n, for each a € Z.

(1) Each point a in Z defines a line v, in the tangent space H' (X, Ts) = T7eX such that the
covariant derivative

N 2(% 02 L1 ¥
va tH (X7 Q)}) - Hprim(X)
is proportional to the rank one tensor w, & 1.

(2) The classes [ng]acz form an orthogonal basis of Hprlm

(X).

Proof. We only need to prove part (1) when a = a; for ¢ <r. Regard the surface X as the
specialization of a surface in JE&". Tt follows by continuity that V, = w) ® 6, for some class ,.
To see that 6, is proportional to [D,] we argue as follows.
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Suppose that I' = > " I'; is a configuration of (—2)-curves on a smooth surface X that contracts
to a single du Val singularity P € X. Then we identify H?(X, Q}) = H°(X,wy) and put
V(P) = H°(X,wx)/mpH"(X,wx).
There is a short exact sequence
0 — H'(X,Tg(~logT)) — H'(X,Tx) — ©H' (I}, NV}, %),

which gives the following commutative diagram.

HY(X,T5) ® H(X,wx)

|

HY(X,T5)/H'(X,T5(—1logT)) ® V(P) — @&C[I';]¥

1/v Ol
HY(X,0%)

Taking I' = D, leads to the fact that 6, is proportional to [Dg].
Part (2) is proved as in Theorem 4.11. O

5. A local Schottky theorem

In this section we use the coincidence that dim H;;}m = dim JE& to put further structure on the
derivative of the period map.

The vector spaces H;;ilm(X ) fit together into a vector bundle H = H;;lim on JE&". We shall
restrict attention to the open substack JE%° of JE%™ over which the universal ramification
divisor Z is étale, so that, under the projection p : 2% — JE%° the sheaf p,Ozss is a sheaf of

semi-simple rings on JE%°.
PROPOSITION 5.1. On JE&®° the vector bundle ‘H is naturally a line bundle B on Z°°.

Proof. Essentially, we do this componentwise, using the orthogonal basis of H;;ilm(X ) that is
provided by the classes ([1,])acz described in the previous section.

Let x € JE%, and choose an analytic neighbourhood U of x such that p~1(U) is a disjoint
union

P U) =[] Ua
acZ

of copies of U.

Suppose h € p,Oz. So h|y, is identified with a holomorphic function h, defined on U. If
s € T'(U, H), then we can write s = > fy[n.] where f, is a function on U. Now define hs by the
formula

hs = Zhafa[na]‘ U

PROPOSITION 5.2. There is a perfect Ozss-bilinear pairing 3 : B x B — Ozss such that Tr(p.[3)
is the intersection product on H.

Proof. We define the pairing § in terms of the notation used in the proof of Proposition 5.1, as

follows:
ﬁ(sv t) - ﬁ(z fa[na]a Zga[na]) - Z faga([na] U [na])'

It is clear that ( is perfect. O
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Recall that, tautologically, the tangent bundle 7 7geen is naturally a line bundle S on Z. That
is, T'7geen = p.S. The derivative per, of the period map is an O ygeen-linear map

pery : psS — Homggzen (H*Y, p.B).
Define
P = Q(lj/Jggen ® ¢*M7

where C is the pull back of the universal curve over M, to JE%™ and ® : C — E0¢ is the classifying
morphism. Then

Q) gesen = F*P,
where F': X — C is the universal Jacobian surface. There is an evaluation map
eval : p*H*Y — P|z
and this map is surjective.

PROPOSITION 5.3. On the locus JE®° there is a factorization of per, given by a commutative

diagram
pfe\';‘/*
psS ——= piHomzss(P|zss, B)
evalV
per i
peHomzes (5" H29, B)

where pery is pyOzss-linear.
Proof. This is a consequence of part (3) of Theorem 4.10. O

We have proved almost all of the next result. It is a local Schottky theorem in that it gives
a precise description of the image of the tangent bundle to moduli under the period map.

THEOREM 5.4 (Local Schottky). There is an isomorphism
p@f/;/?“/* : S — HOmZSS (P|ZSS,B)
of line bundles on Z°° such that

pers :p*ﬁeVr*.

Proof. 1t is clear from the preceding discussion that there is a homomorphism ﬁfe\vﬁ of line bundles
on Z%% with the desired properties. Since per, is injective on fibres, so is pery, and we are done. [

6. Recovering Ramgy and C from the infinitesimal period data

For the rest of this paper we make the assumptions (1.3).

Suppose that f; : X; — C; are two points of JE°° that have equal geometric genus h and
irregularity ¢, and that each classifying morphism ¢; : C; — £/ is simply ramified. Say Ramy, =
Z; and deg Z; = N, so that N = 10h + 8(1 — q). Recall that L_¢!M. Our assumptions ensure
that Z; is reduced and the linear system |Kx,| = f|K¢, + L;| has no base points and embeds
C; in P"~1 as the canonical model of X;. Note that degC; = h + ¢ — 1.

THEOREM 6.1. Assume that both surfaces have the same infinitesimal variation of Hodge
structure (IVHS). Then Cy = Cy and Zy = Z».
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Proof. Our assumptions mean that the two surfaces give the same point and the same tangent
space under the period map after each cohomology group H?(X;,Z) has been appropriately
normalized. In particular, such a normalization gives a normalized basis w; = [wgl), e ,wl(h)] of
HO(X;, ngz) for each 7. We can therefore regard the curves C; as embedded in the same projective
space PP~ That is, any point P of C; is identified with the point %(]3) in P"~1 where P € X
is any point of X that lies over P. The basis w, also gives an identification of H°(X;, Q?X,) with
its dual.

We show first that Z; = Z5. We then deduce, by quadratic interpolation, that C; = Cs.

By the results of §4, especially Theorem 4.10, the tangent space T'7¢X; is of dimension
N and its image in HO(Xl,Qgﬁ)V ® H' (X1) is a direct sum Dacz, La where L, is a line

prim

described by Theorem 4.10. We make the identifications
HY(X1,Q%,) = H'(X2,9%,) =U and  Hyj (X1) = Hy (Xo) =V

prim
and assume that the tangent spaces T7¢ X1 and Tz Xo = @) 7, Mp are equal as subspaces of

U®V. We know that L, is spanned by the rank 1 tensor u((]i) ® v(()i) (the image of V, /5t2).

Similarly, M, is spanned by a rank 1 tensor péj ) ® q(()j ). 0

LEMMA 6.2. Suppose that:

(1) U and V are vector spaces such that dimU = h and dimV = N;
(2) uy,...,uy € U;

(3) no two of the u; are linearly dependent;

(4) vy,...,on € V and form a basis of V;

(5) £ € U®V and there is a linear relation

N
§:Z/\kuk®vk
1

and, finally;
(6) £ =z ®uy, a tensor of rank 1.

Then there is a unique index i such that £ is proportional to u; ® v;.

Proof. Let (v)') be the dual basis of VV. There is an index j such that (y,v}) # 0. Then

(o)) =Y Mebjpur = Ajuy,
so x is a multiple of u;. Since no two of the u; are linearly dependent, this index j is unique, so
y = pjv; and then z ® v; = > N ug ® vg.
Say Z1 = {a1,...,an} and Zs = {a},...,dly}. Take U = H*?(X;) and V = Hrl);ilm
write

(X1) and

wp = wy(ak), o = wolay), vk =[ma,] and g = [noq]- (6.3)

From Theorem 4.10 and the assumption that the IVHS of the two surfaces X; and Xs are
isomorphic, the tensors x; ® y; span the same N-dimensional subspace of U ® V as do the tensors
zr ® Y. In particular, each z} ® y; is a linear combination of the tensors xj ® yx. Then, by
Lemma 6.2, for each index [ there is a unique index m such that z; is proportional to z/,. That
is, a; = a},, and therefore Z; = Z, = Z, say.

By the assumptions (1.3) each C; is non-degenerately embedded in P"~! by a complete linear
system, and deg C; > 2q + 2, so that, by the results of [Mum70] and [Sai72], C; is an intersection
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of quadrics. Since
deg Z > 2deg C;,
again by (1.3), each C; equals the intersection of the quadrics through Z, so that C;y = Cy. O
We can reformulate this as follows.

THEOREM 6.4. If the ramification divisor Ramg of the classifying morphism ¢ : C — gl is
reduced, then the IVHS of the surface X determines the base curve C, the divisor Ramy and
the line bundle L = ¢* M.

Proof. What remains to be done is to show that we can recover the bundle L. For this, observe
that our argument has shown that the IVHS of X determines the embedding i : C < P"~! as
the canonical model of X and that i*O(1) = O¢(K¢ + L). O

Remark. (1) Theorems 6.1 and 6.4 lead to the problem of trying to recover a morphism ¢ : C' —
&0 from knowledge of C, the divisor Ramg and the line bundle L. However, it is impossible
to do more than recover ¢ modulo the action of the automorphism group G,, of £0/. In this
direction, we shall prove Proposition 8.7.

(2) If instead of Ramg being reduced we assume only that h + ¢ — 1 > e(a) + e(b) — 1 for all
a,b € Ramgy, then a refinement of the argument given here shows that Theorem 6.4 still holds.

7. The structure of the tangent bundle to SE&"
Recall from § 3 that we have a morphism 7 : My — E0 that gives, locally on £/, an isomorphism
Mj — BG, so that the tangent complex T'ml is locally isomorphic to the 2-term complex
0— m*MY[1] = 7*Tez[0] — 0
whose differential is zero. The morphism 7 determines a morphism
II : SEB& — FEB™,

Suppose that f: X — C corresponds to 1 : C' — M; and maps under II to Y — C. Say ¢ =
mo 1. Observe that Ramg = Ram, = Z, say. The description just given of T.ﬂl leads to a short
exact sequence

0— HYC,~L) - TsgX — TzeY — 0,
where L = ¢*M. The subobject H'(C, —L) in this sequence is identified with the tangent space
T1-1(v)X to the fibre of II though X. Thus,
Tr—vy(X) 2 H(C,—L) = H°(C, K¢ + L),

which is, in turn, naturally isomorphic to both H??(X)Y and to H?°(Y)V. Let ¢ denote the
class of a fibre of X — C; then the period map gives the following commutative diagram with
exact rows.

0 — Ti-1(v)(X) Tse(X) T7e(Y)

l Perx l l pery

0 —— HZ,O(X)\/ ®§ s H2’0(X)V ®§J_ S HQ’O(Y)V ®H1,1 (Y) 0

prim

THEOREM 7.1. If Z is reduced and disjoint from the locus j = oo, then the IVHS of the surface
X determines the ramification locus Z, the base curve C and the line bundle ¢* M.
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Proof. Put H>%(X)V = H>0(Y)V = U and ¢+ =V, so that dimU = h and dimV = N + 1. The
image of Ts¢(X) under pery . is an (N + h)-dimensional subspace W of U @ V' such that W
contains a subspace U ® { and W/U ® &, which is the image of T'7¢(Y') under pery.., is spanned
by rank 1 tensors

L1 QY1 TN QYN

where the vectors yi,...,yny form a basis of V/¢ = H;;ilm(Y). Let m:V — V/¢ denote the
projection.

Suppose that the same IVHS arises also from another surface X’. Then there is a vector
¢’ € V that arises from X such that (1y @ 7)(U ® &’) is a subspace of U ® V/§ and lies in the
subspace of U ® V/¢ that is spanned by the z; ® y;. However, by Lemma 6.2, the z; ® y; are the
only rank 1 tensors in U ® V/¢, so that (1y @ m)(U @ &) = 0 and, therefore, £ is proportional
to £. Consider the vectors a7,y that arise from X’; then the tensors z; ® y; and 2} ® y} lie in the
same vector space U ® V/¢, and then we can use Lemma 6.2 again to conclude the proof. O

Compare the case of M,: over the non-hyperelliptic locus Schiffer variations give a cone
structure in the tangent bundle, where at each point C' of M, the corresponding cone is the
cone over the bicanonical model of C, the generators of the cone map, under the period map, to
tensors (quadratic forms) of rank 1 and, again, these account for all the rank 1 tensors in the
image.

8. Recovering information from C and Z

We shall show (Proposition 8.7) that ¢y : C — £ is generic and if ¢o : C — E0{ is another
morphism such that Ramy, = Ramg, and ¢7M = ¢5M, then ¢1 and ¢o are equivalent modulo
the action of Autg;; = G, provided that also there are sufficiently many points a; € Z such that
¢1(a;) is isomorphic to ¢2(a;). Therefore an effective form of generic Torelli holds for Jacobian
elliptic surfaces modulo this action of Gy,.

To begin, we rewrite some results of Tannenbaum [Tan84] in the context of Deligne-Mumford
stacks. Assume that S is a smooth 2-dimensional Deligne-Mumford stack (the relevant example
will be S = £00 x £00), that C is a smooth projective curve and that 7 : C' — S is a morphism

that factors as
s
”ll \
i

D——S

where D is a projective curve with only cusps, 7’ is birational and ¢ induces surjections of
henselian local rings at all points. (We shall say that ‘r is birational onto its image’.) Then there
is a conormal sheaf N}), a line bundle on D, which is generated by the pull back under i of the
kernel Zp of Os — i,Op. It fits into a short exact sequence

0— Ny —i*Q5 — Qh — 0.
Thus, the adjunction formula (or duality for the morphism i : D — S) gives an isomorphism
Np = D ® i*w.

There is also a homomorphism Np — T1(D, Op); let N, denote its kernel. The space H°(D, N},)
is the tangent space to the functor that classifies deformations of the morphism ¢ : D — S that
are locally trivial in the étale (or analytic) topology.
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These conditions imply that there is a reduced effective divisor R on C such that T (R) =
Te ® Oc¢(R) is the saturation of T in 7*Ts. Define N by
N = coker(T¢(R) — ©*Ts);

this is a line bundle on C.
Define J C Og to be the Jacobian ideal of the ideal Zp. The next result is a slight variant
of Lemma 1.5 of [Tan84].

LEMMA 8.1. We have T\N. = N7,.

Proof. We have QL = J.wp, by direct calculation, and, from the definition of A/,, we have
H=JNp.
From the definition, wy(R) ® N, = 1*wy. Let C denote the conductor ideal. Then we =
C @ m"*wp, so that

N, = 1"wp ® C® Oc(—R — Kg).
Now C = O¢(—R), by the nature of a cusp, and J.O¢c = Oc(—2R) for the same reason. Thus,
N; 21" (wp ®i'wg) ® Oc(—2R)

and, therefore,

TNL =2 T (wp ®wd) =2 TNp =Np. O

COROLLARY 8.2. The tangent space H°(C, N) is isomorphic to the tangent space of the defor-
mation functor that classifies those deformations of the morphism 7 : C — & where the length
of the O¢-module coker(n*Q5 — QL) is preserved.

Proof. By the lemma, H°(C,N!) is the tangent space to locally trivial deformations of the
morphism i : D — S. Since D has only cusps, a deformation of ¢ is locally trivial if and only if
it preserves the length of coker(r*Q2L — QL). O

PROPOSITION 8.3. Fix a generic morphism ¢ : C — E0¢ and consider the morphisms ¢y : C' —
&0 such that (¢1,¢2) : C — ELL x ELL is birational onto its image.

(1) If ¢ > 2, there are no such morphisms ¢s.
(2) If ¢ =1, there are only finitely many such ¢s.
(3) If ¢ =0, then these morphisms ¢ form a family of dimension at most 3.

Proof. Assume that ¢ exists. Take E00 x E00 = S and (¢1, ¢2) = 7. Then there is a factorization

I\

D——S
as before, and the divisor R is R = Ramg, = Ramg,. We get
deg N = 2deg 1T+ 29— 2 — N
:2.24(h+1—q).%+2q—2—]\7
=10~ + 10(1 — q),
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so that
RO(C,NL) = 10h +11(1 — q) = N — (3¢ — 3).

However, dim J& = N, and the proposition is proved. ]

COROLLARY 8.4. Fix r > 0 and suppose that ¢| : C — EU{ is generic. Consider the morphisms
¢ : C — E00 such that Ramgy, = Ramy, = Z, say, and there exist distinct points a1, ...,a, € Z
such that ¢1(a;) is isomorphic to ¢z(a;) for all i = 1,...,r and, moreover, (¢1,$2) : C — ELL x
&0l is birational onto its image.

Then no such ¢y exist provided that one of the following is true: ¢ > 2; ¢g =1 and r > 1; or
q=0andr > 4.

Proof. The further constraints on ¢o imply that, in the notation of the proof of Proposition 8.3,
the curve D has r cusps that lie on the diagonal of S. Therefore, there are r further constraints
on ¢o and the corollary follows. ([l

LEMMA 8.5. If ¢ : C — EUV is generic, then there is no non-trivial factorization through a curve
of the composite morphism v : C — IP’JI-.

Proof. Suppose that
clrop!

is a non-trivial factorization of v = w o ¢. Say dega = a and deg 8 = b. By the assumption of
genericity, the divisor Z = Ramy, is reduced and its image B = 7,7 in IP’} consists of distinct
points, none of which equals j4 or jg.

Suppose « is branched over y € IP’} and y # ja1,j6- Then v~ 1(y) C Z, so that Z — B is not
one-to-one. Thus, « is branched only over jy4, jg, and so is the cyclic cover of ]P’} that is branched
at these two points and is of degree a. Since ¢ is étale over jy, and over jg it follows that a|2 and
a|3, a contradiction. O

Suppose that A is any irreducible curve of bidegree (1, 1) in IP’} X IP’Jl., let A/ denote the fibre
product

J J
and let A be the normalization of A’. Note that, generically, Ais isomorphic to A x B(Z/2 x
Z/2), so that deg(A — A) = 1.

LEMMA 8.6. We have deg Tx = 5/24 if A contains the points (ja,ja) and (js, je) and degTx <
1/12 otherwise.

Proof. We consider separately the cases according to which of the special points (ja, j1), (j4, J6),
(J6,J4) and (Jg, je) lie on A and summarize the results in Table 1. Each case depends on local
calculation. For example, suppose that (js, ja) and (jg, js) € A. Then A’ has a double point with
an action of (Z/4)? lying over (j4,j4) and a triple point with an action of (Z/6)? over (js, js)-
In each case the branches are permuted transitively by the group, so that A has one point with
an action of Z/4 x Z/2 and another with an action of Z/6 x Z/2. Thus,

deg Tx = degTa.deg B((Z/2)?) + (— deg B((Z/2)?) + deg B(Z/4 x Z/2))

+ (—deg B((Z/2)*) + deg B(Z/6 x Z/2)) = 1/8 +1/12 = 5/24. O
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TABLE 1.

Special points on A deg Ty
None —1/12
(Ja, ja) 1/24
One of (ja, jo) and (jo, ja) 0

(Je, Jo) 1/24
(Ja, je) and (je, ja) 1/12
(Ja, ja) and (Je, Jjo) 5/24

PROPOSITION 8.7. Suppose that ¢1: C — EU0 is generic and that ¢o: C — E0 is another
morphism such that Ramg, = Ramg, = Z and there are r points a; € Z such that ¢1(a;) is
isomorphic to ¢2(a;) for all i. Assume also that one of the following is true: ¢ > 2; ¢ =1 and
r>1;orq=0andr > 4.
(1) The image of the composite morphism C — IP)jl X IP)jl is a curve A of bidegree (1,1).
(2) The curve A passes through the points (ja, ja) and (je, js)-
Suppose also that M = ¢5M.

(3) The morphism (¢1, p2) : C — ELL x ELL factors through the graph of an automorphism of

&ul.
(4) We have that ¢1 and ¢o are equivalent under the action of Autgz.

Proof. Part (1) follows from Proposition 8.3 and Lemma 8.5.
(2) Suppose this is false. Then, by Lemma 8.6,

dimg, 4,y Mor(C, A) < 2deg ¢y x L+1-—gq

However, dim g, 4,y Mor(C, A) > dimg, Mor(C, E0F), a contradiction.

For parts (3) and (4) we can now use the G,,-action to ensure that A is the diagonal. Then
the two surfaces X; — C have the same j-invariant, so that one is a quadratic twist of the other
via a quadratic cover C' — C'. Since both surfaces are semistable, this quadratic cover is étale.
Suppose it corresponds to the 2-torsion class P on C. From the identification of ¢;M with the
conormal bundle of the zero section, it follows that ¢5M = ¢7M + P, so that P =0, and the
result is proved. O

9. Generic Torelli for Jacobian surfaces

Define r(q) = 2 if ¢ > 1 and r(0) = 4. Let %c 1 (or J€¢ 1) denote the closed substack of TE (or
JE) defined by the properties that the base of the elliptic fibration is C and ¢* M is 1sornorph1c to

L. Let jé‘ denote the substack of jé’ with r fibres of type I and put jECL - jé’qL NJE,.
Let 2/ — JE, be the restriction of the universal ramification divisor p : Z — J&. Then Z’
has a closed substack Z, obtained by discarding the part of Z that lies over j = oo

LEMMA 9.1. The substacks /J\ET, JEr, %C,L,m JEc Ly and Z, are irreducible when r = r(q).
Proof. We show first that JE¢ 1, is irreducible. For this, refer to the Weierstrass equation
y® = 4a2° — g4 — g

of a Jacobian surface X over C. Fix distinct points Py, ..., P, € C. Then X has fibres of type Is
(or worse) over each P; if and only if

93 — 2792 = 29494 — 39694 = 0,
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where the prime denotes the derivative with respect to a local coordinate z at P;. (For this, we
use the description of Z in terms of transvectants that is given in §10.) Expand g,, in terms of
z to get

gs=ag+aiz+hot., gs=0by+bz+hot,;
then the condition on the fibres of X is expressed by a pair of equations (one pair for each P;)
ay — 27b2 = 2apby — 3a1by = 0.

Since 7 < 4 these equations define an irreducible subvariety V, of H(C,4L) x H°(C,6L) and
the irreducibility of J&¢ 1, is proved. The irreducibility of J&, follows at once, and then so too
does the irreducibility of %q L, and %T.

Since Z, N JE¢, 1, is dominated by V.., the irreducibility of Z, is also proved. ]

THEOREM 9.2.

(1) Suppose that ¢; : C — ELL is a morphism corresponding to the Jacobian surface f; : X; — C,
fori = 1,2. Assume that Ramy, = Ramg, = Z, say, that Z is reduced and that $7M = ¢5M.
Suppose that there are r = r(q) points ai,...,a, € Z such that ¢;(ay) lies over j = oo for
t1=1,2and k=1,...,r. Then X is isomorphic to Xs.

(2) A generic Jacobian elliptic surface with r(q) singular fibres of type I3 is determined by its
IVHS.

(3) Generic Torelli holds for Jacobian surfaces with r(q) singular fibres of type Is.

Proof. Part (1) is a consequence of Proposition 8.7. Part (2) is merely a restatement of part (1),
and then part (3) follows in the usual way. O

Next, we use the minimal model program to prove a version of the good reduction result
from [Cha82] and [Cha84].

THEOREM 9.3. Suppose that X — A is a semistable 1-parameter degeneration of Jacobian ellip-
tic surfaces over a fixed curve C of genus q and that there is no monodromy on the second Betti
cohomology of Xj;. Assume also that, under the period map, the image of 0 € A is the primitive
weight 2 Hodge structure of a Jacobian elliptic surface g : V' — C such that p,(V') = py(Xy5) and
this Hodge structure is irreducible.

Then X — A has good reduction.

Proof. We can follow the proof of Theorem 9.1 of [She2l1] as far as the end of Lemma 9.9 of
[She21]. This leads to a model X — A such that:

(1) X has Q-factorial canonical singularities and Aj has semi log canonical (slc) singularities;

(2) there is a surface S with a proper semi-stable morphism g : S — A and a projective mor-
phism f : X — S with only 1-dimensional fibres such that Ky /A is the pullback under f of
a g-ample Q-line bundle L on S.

Then Sy is a tree, and Sy = > C; where Cy = C and C; = P! for all j > 0. Since S has only
singularities of type A, each curve C; is a Q-Cartier divisor on S. Let f; : X; = f~1(C;) — C; be
the morphism induced by f. Thus, X; is Q-Cartier on X and Ky /al|x, ~ f;L; for some Q-line
bundle L; on C; of degree «; > 0, where > a; = h+q— 1.

Since the Hodge structure on ngim(V) is irreducible and, from the absence of monodromy,
> pg(X;) < pg(V), there is a unique index iy such that the Hodge structure on H?(X;,, Q) maps
onto that on H2(V,Q). It follows that ig = 0.
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Suppose that Xy meets Xq,...,X,. Since Xy is Q-Gorenstein, and even Gorenstein in
codimension one, the adjunction formula shows that there exist d1,...,ds € Qsg such that
Kx, ~q fO(aﬁ =22 0:).

Let ~: X — X denote the minimal resolution. Then there is an effective Q-divisor D on X
such that

Thus,
Pe(X) < lag— Y 8] +1-¢< > aj+1-q.
On the other hand,
pg(X ) )=h= Z%"’l—q

Therefore, s = 0, so that Ay = Xy, and D = 0. Therefore, Xy has only du Val singularities and
the result is reduced to the existence of a simultaneous resolution for such singularities. O

Remark. There are degenerating families of elliptic surfaces X — C — A with no monodromy
on H? but where C has bad reduction. For example, take an elliptic K3 surface X — P! with
two isomorphic fibres of type D4. Then this can be plumbed to itself to give such a family: the
generic fibre has p, = ¢ = 1 and C — A is the Tate curve.

COROLLARY 9.4. The period map [per]: [JE] — [D/I'] of geometric quotients is proper and
one-to-one over the image of the generic point of the locus of surfaces with r(q) fibres of type I.

LEMMA 9.5. Suppose that V — Y is a closed embedding of normal analytic spaces. Suppose
also that H is a finite group and G a subgroup of H such that H acts on Y, that G preserves V'
and that, moreover, G ={g€ H : g(V)=V}.

Then the morphism [V/G] — [Y/H| of geometric quotients is bimeromorphic onto its image.

Proof. We can replace Y by the largest open subspace Y of Y such that Y is preserved by H
and Y? — [Y?/H] is étale. Then the result is clear. O

LEMMA 9.6. A generic pair (C, Z) has no automorphisms.
Proof. We consider the various values of ¢ separately:

(1) g > 3; a generic curve has no automorphisms;

(2) g = 2; then Z is invariant under the hyperelliptic involution of Cj in this case the dimension
of the set ¥ of pairs (C, Z) is at most dim My + N/2, which is less than dim J¢&;

(3) ¢ =1, either Z is invariant under an involution, and then we argue as in the case where
q = 2, or Z is invariant under a translation; in this case Z is determined by any one of its
points and dim > < 2;

(4) g = 0;suppose 1 # g € PGLy(C); if g fixes one point, then dim ¥ < 2, and if ¢ fixes 2 points,
then dim > < 3. OJ

We now take V' to be a miniversal deformation space of a surface X with r = r(q) fibres of
type Is and Y a germ of the domain D at the period point of X.
Suppose that H C O(H (X ,Z)) is the automorphism group of the polarized Hodge struc-

ture of the X and that G C H is the subgroup consisting of those elements of H that preserve
the image of V in Y. Since H is finite, we can identify the germs Y and V/, which are smooth,
with their tangent spaces. In turn, V = H29(X)V @ H"! (X) and H acts on both components

prim

pr1m
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of this tensor product. Let W = W (AY) denote the Weyl group generated by reflexions oy, | in
the classes [1,] where a lies over j = oo; then oy, lies in H, so that W C H. Also (+1) is a
subgroup of H and acts trivially on D.

PROPOSITION 9.7. We have G = (£1) x W.

Proof. Let g € G. We know that the subspace V of Y is based by the rank 1 tensors w) ® [1,]
and that these are the only rank 1 tensors in V. Therefore, g permutes the lines Cw, and so
acts on the pair (C,Z), where C is embedded in P"~! via |K¢ + L|. This action is trivial, by
the previous lemma, and so g acts as a scalar on H 2’0()~( ). We can then take this scalar to be 1.
Then g fixes each line C[n,]. The classes [,] are orthogonal and can be normalized by imposing
the condition that [1,]? = —2 for all @ € Z. This normalization is unique up to a choice of sign
for each a. Since Z,. is irreducible, one choice of sign, for a point in Z,, determines all the other
signs, except when a lies over j = co. This last ambiguity is exactly taken care of by the Weyl
group and so G C (£1) x W.

It is clear that (£1) x W C G. O
THEOREM 9.8 (Generic Torelli). The period map [per]: [JE] — [D/T] is birational onto its
image.

Proof. The theorem follows from Corollary 9.4 and the fact that, at the level of miniversal
deformation spaces, the morphism J& — J& is a quotient map by the relevant Weyl group. We
conclude via Proposition 9.7 and the fact that (+1) acts trivially. u

10. The variational Schottky problem for Jacobian surfaces

The Schottky problem is that of determining the image of a moduli space under a period map. As
explained by Donagi [Don84], there is a variational approach to this. For curves of genus ¢ that
are neither hyperelliptic, trigonal nor plane quintics, his approach leads (see p. 257 of [Don84])
to the statement that the image of the variational period map lies in the Grassmannian that
parametrizes 3¢ — 3-dimensional quotient spaces W of Sym? V', where V is a fixed g-dimensional
vector space, and the kernel of Sym? V' — W defines a smooth linearly normal curve C' of genus ¢
in P(V). (It follows from this that the embedding C' < P(V') can be identified with the canonical
embedding of C.)

For Jacobian elliptic surfaces of geometric genus h and irregularity ¢ we get something equally
concrete.

Let Z — JE®" be the universal ramification locus, of degree 10+ 8(1 — q) over JE&™".
The image of Z lies in a tensor product U ® V' where dimU = h and dim V' = 10h 4 8(1 — ¢q).
Projecting to P(U) = P"~! leads to the following variational partial solution to the Schottky
problem. The solution is only partial because this projection factors through the quotient stack
TEE |Gy

Recall that JE&" can be described as follows.

Suppose that P = Ph+1-1 M, is the universal Picard variety of degree h +1 — g line
bundles L on a curve C of genus q. Then writing the equation of X in affine Weierstrass form,
namely as

y? = 42® — gux — g,

shows that g, € H°(C,nL) and JE&™ is birationally equivalent to a B(Z/2)-gerbe over a bundle
over P whose fibre is the quotient stack

(H°(C,4L) ® H°(C,6L) — {(0,0)})/G,,.

2547

https://doi.org/10.1112/S0010437X23007443 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007443

N. I. SHEPHERD-BARRON

The action of G,, on £/ leads to an action of G,, on JE&" and the quotient JE&™ /Gy, 18
birationally equivalent to a B(Z/2)-gerbe over the universal [4L| x |6L|-bundle over P.

THEOREM 10.1. The image of the variational period map for Jacobian elliptic surfaces lies in
the locus V = V}, 4 of zero-cycles Z in Ph=1 such that:

(1) deg Z = 10h + 8(1 — q);

(2) the intersection of the quadrics through Z is a curve C of genus q and degree h + q — 1;

(3) the divisor Z on C is linearly equivalent to 10L + K¢ and the hyperplane class H on C' is
H =L+ K¢; thus, Z ~ 10H — 9K¢.

Proof. This follows at once from the results of the previous section. O

We can make this more precise. First, recall the idea of transvectants: if N is a line bundle
on a variety V over a field k£ and m,n € 7Z, then there is a homomorphism

N®™ @, N®" — Q3 @0, NO™"
of sheaves on V defined, in terms of a local generator s of N, by
%™ @y gs¥" v (mf dg — ng df) @o,, s

Suppose that V is projective; then at the level of global sections this defines a k-linear
homomorphism

HO(V, N®m) Q% HO(V, N®n) N HO(V, Q%/ R0y N®m+n)

of finite-dimensional vector spaces. This morphism has several names, depending on the context;
for example, the first transvectant, the first Ueberschiebung, the Jacobian determinant, the
Gauss map, the Wahl map and the first Rankin—Cohen bracket. Its relevance for us lies in the
case where V. =C, N =L, m =4 and n = 6.

LEMMA 10.2. The ramification divisor Z, which is a point in |10L + K¢/, lies in the image of
the projectivized first transvectant, which is a rational bilinear map

Vi i |AL] x |6L] — — — |10L + K¢|.

Proof. Consider the elliptic surface given, in affine terms, by the equation 3% = 423 — g42 — g,
where g, is a section of L®". Then the j-invariant is a fractional linear function of the quantity
1 =93/ gg, and the lemma follows from calculating the zero locus of dj;/dz when z is a local
coordinate on C. O

COROLLARY 10.3. The universal ramification divisor Z is irreducible.
Proof. The universal ramification divisor Z is dominated by |6L| x |4L]|. O
Let V(L) denote the image of the projectivized first transvectant.

THEOREM 10.4. The image of the variational period map for Jacobian elliptic surfaces equals
the locus T of triples (C, L, Z) where:

(1) Ce Mg;
(2) Le Pic?;rl*q;
(3) ZeV(L).

This locus is irreducible.

Proof. The only thing left to do is to observe that 7 is irreducible. However, 7 is dominated
by Z. O
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11. Multiple surfaces

An elliptic surface f: X — C' is multiple if it is not simple; that is, if it has multiple fibres. As
far as the period map is concerned there is not much to be said about these. Kodaira proved
that, given f: X — C, there is a simple elliptic surface g : Y — C such that X is obtained
from Y by logarithmic transformations; in particular, there is a finite subset S of C such that, if
Co=0C—-8,Xg=f"1Cp) and Yy = g7 1(Cp), then Xy and Y are isomorphic relative to Cp, but
are not usually bimeromorphic. In this situation the sheaves f.wx/c and g.wy,c are isomorphic
[Sch73, p. 234]. It follows that f.Q3% and g.0% are isomorphic and then that the weight 2 Hodge
structures on X and Y are isomorphic.

We deduce that the period map can detect neither the presence nor the location of multiple
fibres on an elliptic surface.
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