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The present paper finds that the coexistence of multiple primary instability waves may
cause a non-trivial nonlinear interaction and breakdown process, which has not been
reported before. In the considered Mach 6 flat-plate boundary layer, a global resolvent
analysis reports three optimal disturbances (local maxima): a high-frequency planar wave,
a low-frequency oblique wave and a stationary streak. For the dominant planar and oblique
waves, a parabolised stability equation analysis identifies the initial non-modal transient
growth and downstream modal growth. Initiated by these two optimal disturbances jointly,
the complete linear and nonlinear instability processes until breakdown to turbulence are
shown with direct numerical simulation. Owing to the transient growth, the oblique wave
may be more significant than the planar wave in the breakdown. The oblique wave and
scales of nonlinear interactions are pronounced in the outer layer, whose significance
may not be comprehensively characterised by the wall pressure measurement. Fourier
modes characterising the oblique-wave oblique breakdown, the planar-wave fundamental
resonance, the planar-wave subharmonic resonance and the combination resonance related
to a detuned mode are observed successively. The detuned mode seems to dominate
the near-wall dynamics in the late nonlinear stage, characterised by A-like structures.
Meanwhile, the existence of this detuned mode is independent of the initial amplitude ratio
and the absolute amplitude of the oblique and planar waves. Weakly nonlinear stability
analyses demonstrate that the detuned mode is mainly a consequence of the secondary
instability under the combination of planar and oblique primary waves. Wave vector
plots reveal the resonant state of multiple triads. Energy budget and amplitude-correction
analyses provide a clear physical image of energy transfer.
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1. Introduction

The boundary layer transition is of great significance in both flow physics and engineering
applications. Many associated questions, such as what physical effect is dominant in
the transition and how a flow breaks down to turbulence, are not fully understood. It
is currently known that the receptivity, transient growth, eigenmode growth, parametric
instability and resonance and bypass mechanisms can be involved in the transition process
(Morkovin, Reshotko & Herbert 1994). Early knowledge of the boundary layer transition
was partly provided by linear eigenmode analysis of Tollmien—Schlichting instability
waves. However, in hypersonic states, a family of additional higher modes of acoustic
nature were found to be important by linear stability theory (LST) with the parallel-flow
assumption (Mack 1965, 1984). Particularly, the Mack second mode has received much
attention due to its high growth rate if the Mach number exceeds approximately 4.

Despite the success of linear stability analysis, our understanding of the mechanisms of
the boundary layer transition is still insufficient. Although the second mode appears to be
preponderant in the linear instability stage, the upstream receptivity and transient growth
as well as the downstream nonlinear stage are less considered jointly. In the flow past a
blunt body, the initial amplitude of the first-mode waveband is potentially able to overtake
that of the second mode if the receptivities across the bow shock wave (Fedorov et al.
2013), entropy layer (Goparaju & Gaitonde 2021) or roughness (Kuester & White 2015)
are considered. Meanwhile, the integrated N-factor of the first mode can exceed that of the
second mode (Masad 1993). Direct numerical simulation (DNS) on a Mach 15 flow over
a parabola by Zhong (2001) showed that the maximum receptivity coefficient of the first
mode was over twice that of the second mode in a wide frequency range of the forcing.
In experimental research, fluctuations in a conventional wind tunnel are usually the most
energetic in a relatively low-frequency range (Schneider 2001). A recent comparative study
by Hildebrand et al. (2022) of various hypersonic quiet or noisy wind-tunnel environments
showed that the power spectral density of background noise is the largest at a frequency
f=0() kHz and exponentially decays at higher frequencies. These findings indicate
that the first mode may not be weak in the vicinity of the leading edge. Therefore, due
solely to the upstream effect, it is already difficult to determine beforehand whether the
first or the second mode is dominant in various geometric configurations and free-stream
conditions.

Considering the downstream nonlinear instability stage, the complete breakdown
mechanisms and relative significance of the first and second modes in hypersonic states
remain unclear. The complicated parametric resonance in a real environment is usually
decomposed into individual regimes, including fundamental, subharmonic, oblique and
combination resonance or breakdown. In a controlled hypersonic transition, the dominant
primary wave is usually assumed or found to be the two-dimensional (2-D) second mode.
Accordingly, numerous experimental (Chokani 1999; Kennedy et al. 2018a, 2022) and
DNS (Sivasubramanian & Fasel 2015; Hader & Fasel 2019; Unnikrishnan & Gaitonde
2020) studies found that second-mode fundamental breakdown, with a frequency of
hundreds of kilohertz, was dominant. In these observations, streamwise hot streaks with
heat transfer overshoot and evident interactions between the second mode and its higher
harmonics were common phenomena. Under the condition of a Boeing/AFOSR Mach 6
quiet tunnel, the second-mode fundamental breakdown was also significant in transitions
induced by a wave packet (Sivasubramanian & Fasel 2014) or random forcing (Hader
& Fasel 2018). As a lesser mechanism, second-mode subharmonic resonance was also
detected (Bountin, Shiplyuk & Maslov 2008; Hader & Fasel 2019; Unnikrishnan &
Gaitonde 2020). The second-mode oblique breakdown was numerically investigated by
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Franko & Lele (2013) and Hartman, Hader & Fasel (2021) but scarcely reported by
experiments.

In other existing situations, however, low-frequency bands not belonging to the
second-mode instability can be considerably energetic and participate in the nonlinear
behaviour of multiple instability waves. These low frequencies could correspond to the first
mode, Gortler vortices, wind-tunnel noise or the product of nonlinear interactions between
high-frequency side bands. In addition to conventional ones such as the Gortler secondary
instability (Ren & Fu 2015; Chen, Huang & Lee 2019) and first-mode oblique breakdown
(Mayer, Wernz & Fasel 2007; Guo et al. 2022b), new breakdown scenarios involving
these low-frequency components are possible. For example, a 20-30 kHz component was
pronounced and even dominant on a flared cone in the Peking University Mach 6 quiet
wind tunnel (Zhu et al. 2016; Xiong et al. 2020). To address this problem, Chen, Zhu &
Lee (2017) employed the nonlinear parabolised stability equation (NPSE) to revisit the
interaction between the low-frequency and the second mode, and indicated the possibility
of combination resonance. However, further support for the corresponding experiments or
full three-dimensional (3-D) DNS was not provided. Zhu et al. (2022) also experimentally
demonstrated that a nearly adiabatic wall or heated wall enabled the first mode to be
comparable to or overtake the second mode in frequency spectra. Under other wind-tunnel
conditions, solid experimental evidence of interactions between the second mode and the
low-frequency component was presented by Kimmel & Kendall (1991), Bountin et al.
(2008), Munoz, Heitmann & Radespiel (2014) and Craig et al. (2019). Generally, however,
the second mode was considerably stronger than the low-frequency component in the
primary instability stage. The present paper serves to show another possibility that the
low-frequency optimal disturbance can be as important as the optimal planar wave, which
evolves into the second mode downstream. Furthermore, the present study aims to reveal
the breakdown scenario and competition mechanism if the low-frequency component
and the high-frequency second mode are equally significant and both result in primary
instabilities.

In addition to the long-term discussions and debates on the first and second modes,
non-modal instabilities have also attracted attention. Here, the terminologies ‘modal’ and
‘non-modal’ in the present paper denote the long-term characteristic of the eigenvalue
problem for normal modes and the short-term characteristic of the initial value problem
in local analyses, respectively (Schmid 2007; Kerswell 2018). With the appearance of
numerous relevant studies in the 1990s, the physical image of transition had to be
reconsidered. For instance, Trefethen et al. (1993) claimed that although eigenmodes of
the linear Navier—Stokes (N—S) equation decayed monotonically, the non-modality of the

operator led to an algebraic transient growth of the disturbances by factors of O(10°).
Hanifi, Schmid & Henningson (1996) identified the ‘lift-up’ mechanism of non-modal
growth in compressible boundary layers. Since then, remarkable accomplishments have
been witnessed in linear and nonlinear non-modal theories (Schmid 2007; Kerswell 2018).
One of the effective analytical tools is resolvent analysis, which seeks the maxima of the
optimal gain in the frequency or wavenumber space. This approach has been intensively
applied to identify the combination of the most responsive forcing and most amplified state
in dynamic systems of wall-bounded shear flows (Ahmadi ef al. 2019; Herrmann et al.
2021; Martini et al. 2021; Rigas, Sipp & Colonius 2021). Other recently popular analysis
tools for optimal disturbances in spectral space are represented by the direct-adjoint PSE
(Paredes et al. 2016) and the one-way N-S equation (Towne et al. 2022) approaches. These
spatial marching methods require less memory usage than resolvent analysis based on
matrix decomposition, which show advantages in cases with large numbers of grid nodes.
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The ‘one-way’ method further improves the robustness and accuracy for complicated
problems compared with the PSE.

Based on the aforementioned novel methods, non-modal instabilities have been
recognised to provide a crucial route to the high-speed boundary layer transition. Paredes,
Choudhari & Li (2017, 2019) applied the NPSE to show that the optimal streak with
proper spacing stabilised the first and second modes. Thus, interactions between modal
and non-modal instabilities are of interest. Non-modal instability was also found to
increase with higher Mach number (Tempelmann, Hanifi & Henningson 2012). In addition,
non-modal instability is capable of evolving into the only dominator. Both NPSE and
DNS (Paredes, Choudhari & Li 2020) as well as experimental (Kennedy et al. 2022)
studies found that large nose bluntness could suppress the second mode and exhibit
instabilities dominated by non-modal disturbances under flight conditions. The present
paper is motivated to study the complete dynamics of multiple optimal disturbances in
the linear, nonlinear and transitional regimes. The characterisation of early non-modal
and subsequent modal instabilities of optimal disturbances is naturally included in a
conventional framework of resolvent analysis and the PSE. The 3-D DNS is utilised to
study the multiple instabilities in the late stage. The article is organised as follows. A
description of flow conditions and numerical and theoretical tools is given in §2. The
computational set-up for the DNS, including the perturbation strategy of external forcings,
is detailed in § 3. Results and discussions on the linear and nonlinear development of
optimal disturbances are presented in § 4. Concluding remarks are provided in § 5.

2. Flow conditions and methodology

The flow condition of the Ludwieg-type short-duration wind tunnel Tranzit-M by Bountin
et al. (2013) is considered here, whose hypersonic boundary layer stability and control
has been widely studied. The free-stream conditions are given as follows: Mach number
Mo = 6.0, stagnation temperature 7o = 354.08 K, static temperature 7o, =43.18 K and
unit Reynolds number Rejo, = 1.05 X 10’ m~!. The wall is assumed to be isothermal with
a temperature of 7\, =293 K. The corresponding ratio of the wall temperature to the
laminar-flow recovery value is T,,/Ty.. = 0.954.

The flat-plate model for DNS has a length of L, =0.5 m with a sharp leading edge.
A Cartesian coordinate system is constructed with the origin at the leading edge, the x
direction along the direction of the free-stream velocity, the y direction perpendicular to
the flat plate and the z direction satisfying the right-hand rule. The size of the effective
computational domain for 3-D DNS is L, x Ly x L; =0.5 m x 0.1 m x 0.0t m, while
additional sponge zones are placed near the outflow boundary to minimise the reflection
of disturbances (Mani 2012). The spanwise length of the computational domain L, is
designed to be exactly four times the spanwise wavelength of the linearly optimal oblique
wave for a convenient Fourier analysis, as discussed later.

2.1. Direct numerical simulation and base-flow solver
The 3-D compressible N-S equations in the Cartesian coordinate system are written in the
following conservation form:
Q0 OJoF 0dG 0H

— = Bf’, 2.1
ot 0x ay * 0z 4 -

where Q= (p, pu, pv, pw, pE)T denotes the vector of conservative variables and F, G
and H are the vectors of inviscid and viscous fluxes. Detailed expressions can be found
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in Anderson (1995). Here, p is the density; u, v and w are the velocity components in the
x, y and z directions, respectively; and E is the total energy per unit mass. The right-hand
side forcing vector f” = (f{,f3,f3.f;.f2) in (2.1) is introduced to trigger the boundary
layer transition in unsteady simulations. Specifically in the present paper, the operator B
constrains f” to the wall-normal profile only at xy = 0.04 m, which looks like a Dirac delta
function in the streamwise direction. This forcing vector is assumed to possess a harmonic
form with a small amplitude, whose details are determined by resolvent analysis later.
The assumption of a calorically perfect Newtonian fluid is made with a constant specific
heat ratio of y = 1.4. Sutherland’s law is adopted to calculate the dynamic viscosity u,
while the thermal conductivity « is computed with a constant Prandtl number of 0.72. In
addition, the vector Q is assumed to be decomposed into a 2-D steady base flow and a
small disturbance as

0,5, 2,0 = Qp(x, ) + Q' (x, y, 2, 1), 2.2
where the subscript ‘b’ and the prime denote base-flow and perturbation variables,
respectively. The laminar base flow, satisfying the 2-D N-S equation, is the initial
condition of the 3-D DNS and for stability analyses. Meanwhile, the steady base flow
is confirmed to converge via the same numerical scheme and mesh as those of the
3-D DNS. Below, unless otherwise stated, the local base-flow and perturbed primitive
variables are non-dimensionalised by the corresponding free-stream base-flow quantities,

except that pressure p is by poouZ,. The reference length scale Lyr =1 mm is used for
non-dimensionalisation.

Both the full 3-D DNS and laminar base-flow simulation are performed using an
in-house multi-block parallel finite-volume solver called PHAROS (Hao, Wang & Lee
2016; Hao & Wen 2020; Hao et al. 2021). This solver has successfully resolved the 3-D
instability problem of a hypersonic boundary layer over a double cone via DNS, obtaining
excellent agreement with experimental results (Hao e al. 2022). The inviscid fluxes are
calculated using the modified Steger—Warming scheme (MacCormack 2014), which is
extended to a higher order using the seventh-order weighted essentially non-oscillatory
scheme (Jiang & Shu 1996). The viscous fluxes are discretised by the second-order central
difference scheme. The three-stage third-order total variation diminishing Runge—Kutta
method is employed for time marching. The boundary conditions are given as follows:
free-stream conditions are imposed on the far-field boundary, extrapolation is used on the
outflow boundary and isothermal, no-slip and no-penetration conditions are employed on
the wall boundary. For 3-D DNS, a periodic condition is used on the spanwise boundary.

2.2. Resolvent analysis

Starting from the linearised N-S equations with a specified base flow, resolvent analysis
aims at finding the most amplified disturbances in the desired parametric and spatial
domains. Throughout the paper, the terminology ‘global resolvent analysis’ refers to the
recently popular framework of resolvent analysis (Bugeat er al. 2019), which resolves the
disturbance shape on the x—y plane globally instead of at a ‘local’ station. A more detailed
description of the algorithm can be found in the work of Bugeat et al. (2019). Substituting
(2.2) into (2.1) and then subtracting the base-flow equation yields the following form:

0Q n oF' n G’ n oH'
ot ox ay 0z
where N’ is the nonlinear higher-order term. The complete form of (2.3) can be found
in Paredes (2014). Dropping the higher-order term of (2.3) yields the linearised N-S

974 A50-5

=N+ Bf/, (2.3)


https://doi.org/10.1017/jfm.2023.814

https://doi.org/10.1017/jfm.2023.814 Published online by Cambridge University Press

P. Guo, J. Hao and C.-Y. Wen

equations as
0Q" OF 3G  oH'

Bf'. 2.4

8t+8x+8y+3z 4 @4
Equation (2.4) can be reformulated as
8 /

8_Qt = AQ + Bf", (2.5)

where A is the linearised N-S operator related to the Jacobian matrices.
Bi-Fourier transforms can be performed in temporal and spanwise directions, which
allows a solution Q' to be written in the following form:

Q/(x, v,2,1) = Q(x, y) exp(ifz — iwt) + c.c. (2.6)

Here, Q is the complex eigenfunction, g is the spanwise wavenumber, w is the real angular
frequency and c.c. denotes the complex conjugate. Since Q' is the linear response of the
forcing, f’ can be written in a similar form:

£y 20 = fx,y) expipz — iof) + c.c. 2.7)
Substituting (2.6) and (2.7) into (2.5) gives
0=RBf, R=(—iwI - A", (2.8a,b)

which reflects the relationship between the forcing and its linear response (Bugeat et al.
2019). Here, Z is the identity operator.

In resolvent analysis, the purpose is to seek the forcing and response that maximise the
energy amplification, i.e. the optimal gain o defined by

o?(B, ®) = max ”QJ|E . (2.9)
F o Bflg
Here, Chu’s energy (Chu 1965) is used to calculate the energy norm as
101: = [[ @'Mbaxay, .10)
2

where the asterisk denotes the conjugate transpose, 2 is the domain for the resolvent
analysis and M is the weight operator given by Bugeat et al. (2019). Furthermore,
dimensionless Chu’s energy containing primitive variables serves as an important
indicator of the disturbance evolution in the present study. In detail, the form of (2.10)
at a local station rather than an overall integral is given by

L [*T_ . 2 2 T 2 0 2
Ecpy(x) = = W4+ +w) + —o'" + —7' | dy,
Chu (%) 2/0 [,0( ) yMago,o'O vy — DMaL T y
@.11)

where all the quantities are dimensionless, as stated in § 2.1. This definition consists of
the fluctuation kinetic energy and a positive definite thermodynamic energy, which is
commonly adopted in non-modal stability analyses. In 3-D DNS, the definition of Ecy,
is replaced by the maximum of (2.11) in the spanwise direction.

974 A50-6
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As shown by Sipp & Marquet (2013), Bugeat et al. (2019) and Dwivedi et al. (2019), the
optimisation problem (2.9) can be transformed into an eigenvalue problem as

B*M ™ 'R*MRBf = o*f. (2.12)

The operator A is discretised utilising the same methods as for (2.1) except that the
inviscid fluxes are computed by the modified Steger—Warming scheme near discontinuities
detected by a modified Ducros shock sensor (Hendrickson, Kartha & Candler 2018) and a
central scheme in smooth regions. The settings of the boundary conditions are identical to
those in DNS. The resulting discrete eigenvalue problem is solved by ARPACK software
for a given B and w of the regular mode (Sorensen et al. 1996). Specifically, R and its
conjugate transpose are computed using the SuperLU library (Li ef al. 1999). The largest
eigenvalue o corresponds to the optimal gain, and the associated eigenfunction represents
the optimal forcing. The optimal response can be obtained via (2.8). Prior grid convergence
of resolvent analysis is conducted, and the converged results are further compared with the
DNS and PSE results. More details about the resolvent analysis solver and the associated
validation cases are described in Hao et al. (2023).

2.3. Parabolised stability equation analysis

Driven by the need to develop an efficient and accurate tool for stability analyses, Herbert
& Bertolotti (1987), Herbert (1988) and Bertolotti (1991) proposed the fundamental idea of
linear PSE (LPSE) and NPSE. Within the scope of convective instabilities, they assumed

that the modal shape function 1} of the disturbance is streamwise slowly varying, while
the rapidly distorted part is absorbed into the exponential wavefunction. In detail, the
disturbance is decomposed into the following form with a finite truncation of series:

M

N X
v(x,y, 2,1 = Z Z 1/Afmn(x, y) exp (1/ A dX + inBoz — imwot), (2.13)
X0,P

m=—M n=—N

where the vector ¥ = (p, u, v, w, T)T and the superscript ‘T’ represents the transpose, V;mn
and «,,;, are the shape function and complex streamwise wavenumber of the Fourier mode
(m, n), respectively, and By and wq are the specified fundamental spanwise wavenumber
and angular frequency, respectively. Moreover, xo_p is the distance from the inflow station
of the PSE to the leading edge, and M and N are the modal numbers kept in the truncated
Fourier series. Specially, mode (0, 0) is physically the mean flow distortion (MFD). Mode
(0, n) with a non-zero n usually corresponds to a longitudinal vortex mode, which can
evolve into a streak downstream with the streamwise vorticity gradually damped.
Substituting (2.13) into (2.3), dropping the forcing vector and neglecting the terms of
O(1/Re}), where Reg = pooticolo/ oo and ly = (LooX0,p/pociico)!/?, finally gives rise to
the NPSE as
a'/’mn + doyyy
ox 0x
The base-flow-related operators Lo, L1, £, and L3 arise from the effects of locally
parallel flow, non-parallel base flow, non-local shape function and non-local streamwise
wavenumber, respectively, and F,, is the nonlinear term. Dropping F,, in (2.14) yields
the LPSE, and then only maintaining the local operator Lo will generate an eigenvalue
problem corresponding to LST. Detailed expressions of (2.14) are given by Paredes (2014).
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The boundary condition of the shape function is given by the common Dirichlet type as
fomnts Opns Wonns Tn = 0, aty =0 and y — 00, (2.15)
except for the wall-normal velocity for the MFD at infinity:
dogo/dy =0, aty — oo, (2.16)

to include the growth effect of the boundary layer thickness arising from the MFD. To
close the physical problem, an iterative scheme is used for the streamwise wavenumber of
non-MFD modes during spatial marching as

L Omn .y O0mn .y OWmm
Umn,new = ®mn,old — lEmn A 1Y (M;:MW + U;:m ox + W;,km ox dy, 2.17)

where
2 A 2 A2
Emn=/ B ml® + [Bnl® + [Romal?) dy. 2.18)
0

The streamwise wavenumber of the MFD is not updated, however, to improve the
numerical robustness. This indicates that the growth of the MFD is entirely reflected in
the shape function. The iteration procedure (2.17) and algebraic solution of (2.14) continue
until the residual norm of «,,, is less than 10~7. Subsequently, the procedure is marched
to the next streamwise station until the specified end boundary.

Regarding the numerical implementation, our in-house code CHASES is employed,
which integrates the LST, LPSE, NPSE and sensitivity analyses. A series of validation
cases for LST and LPSE have been carefully compared with both theoretical (Guo ef al.
2020, 2021, 2022a) and DNS (Guo et al. 2022b; Cao et al. 2023) results. The validation
of the NPSE code is shown in Appendix A. In terms of the numerical scheme for
PSE, the second-order backward Euler scheme is used for streamwise marching, while
the fourth-order central difference method is applied for the wall-normal difference.
The Vigneron technique is adopted to eliminate the numerical instability resulting from
residual ellipticity (Vigneron, Tannehill & Rakich 1978). In the LST analysis which
also provides the initial condition for the PSE, the global algorithm via the Chebyshev
pseudo-spectral method and a local algorithm using the fourth-order compact finite
difference are employed for wall-normal discretisation (Malik 1990). The LST eigenvalue
problem is solved by the Intel math kernel library.

The presented PSE results have been examined by grid convergence studies. The initial
conditions of the PSE are mostly optimal responses obtained from resolvent analysis at
x0,p =0.045 m, downstream of xp =0.04 m where the optimal forcings are localised in
resolvent analysis and DNS. Additionally, LST profiles are also used for initialisation in
§ 4.1 for comparison. Those newly generated Fourier modes due to nonlinear interactions
are assumed to be initially zero in § 4.2 or imposed by Fourier-transformed DNS profiles
to improve the accuracy in § 4.3.

3. Case description and simulation strategy

Provided the base flow is prepared, the research procedure starts from a global resolvent
analysis to identify all local maxima of optimal gain, which correspond to multiple optimal
disturbances. Subsequently, the profiles of optimal disturbances or forcings serve to initiate
the PSE and 3-D DNS to reveal the linear and nonlinear behaviour of disturbances.

The grid size for the main computational domain of the 3-D DNS is 4001 x 251 x 97,
whose x—y mesh is entirely identical to that of the 2-D steady simulation. The orthogonal
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Figure 1. Contours of (a) streamwise velocity and (b) density of the laminar base flow non-dimensionalised
by the free-stream value. Dashed line: location where the optimal forcings are imposed on the base flow.

structured mesh is uniformly distributed in the streamwise and spanwise directions. In the
wall-normal direction, the mesh is stretched with a minimum spacing of 2 x 107> m on
the wall, and the transitional and turbulent boundary layers are ensured to contain 150 to
210 grid cells inside. The dimensionless grid spacings are Ax* ~1.88, Ay'. ~ 0.30 and
AzT ~4.92, evaluated by the friction velocity and wall kinematic viscosity in the fully
developed turbulent region x = 0.37 m via either 3D-DNS statistics or the skin friction by
the van Driest II formula for Cy (Franko & Lele 2013; Guo ez al. 2022b). In the linear and
early nonlinear stages, the mesh contains at least 45 grid cells for each wavelength of the
optimal planar wave (also the second mode downstream) in the x direction and 24 cells
exactly for each wavelength of the optimal oblique wave (also the first mode downstream)
in the z direction. Grid convergence of the amplitude evolution of the optimal disturbances
has been confirmed in these instability stages.

Figure 1 displays the contours of the base-flow velocity and density fields. The dashed
line, corresponding to xo = 0.04 m, represents the location where the forcings are added
in the resolvent analysis and 3-D DNS. This type of forcing appears to be a Dirac delta
function looking in the streamwise direction and a constantly activated perturbation in the
wall-normal, spanwise and temporal dimensions.

In the DNS, the optimal forcings f are directly added to the right-hand side of the
N-S equations only at xo = 0.04 m, which resembles those of the resolvent analysis. The
DNS forcings consist of those corresponding to the optimal planar wave f [’, the optimal
oblique wave f7, and an additional background noise term f7,. The resolvent analysis of
these optimal disturbances is detailed in § 4.1, and the resulting parametric set-up for the
perturbation strategy in DNS is briefly introduced here.

The mathematical form of the forcing in DNS is given by

S (x0, 3,2, 1) = f,(x0, 3, 2, 1) + [ (x0, ¥, 2, 1) + f,(x0, ¥, 2, 1), (.1a)
S0, 3,2, 8) = €1.f,(x0, y) exp(iByz — iwpt) + c.c., (3.1b)
o0, v, 2, 1) = €l.f, (x0, ¥) exp(ifoz — iwet) + f—, (X0, Y)eXp(—ifoz — iwot)] + c.c.,
(3.1¢)
f}/i(x()’y’ s t) 263[2’”()’, Z t) - 1] (31d)
974 A50-9
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Planar wave and Oblique wave and Adding background
Case (o)) at x=0.045m (pu)}y at x=10.045 m noise or not (Y/N)

Al Mode (10, 0), 1 x 1072 Mode (3, £1), 1 x 102
A2 Mode (10, 0), 1 x 1072 Mode (3, £1), 1 x 102
A3 Mode (10, 0), 1 x 1072 Mode (3, £1), 5 x 1073
A4 Mode (10, 0), 1 x 1072 Mode (3, £1), 1 x 1073
A5 Mode (10, 0), 1 x 1073 Mode (3, £1), 1 x 1072
A6 Mode (10, 0), 2 x 1073 Mode (3, £1),2 x 1073

ZzzZ<Z

Table 1. Computational set-up for DNS cases.

The complete description of the parameters in (3.1) is provided later, and a general
introduction to the simulation cases is given first. Settings of DNS cases for comparative
studies are listed in table 1. Case Al is considered as the baseline one, and case A2 is
introduced to include the background noise effect in real environments, i.e. the term f7, is
non-zero in (3.1). The noise term f7, has an identical form to the forcing f” as a right-hand
side term of N-S equations. For the baseline case A1 and cases A3—-A6, the amplitude €3
of the term f7, is set to zero. In comparison, the effect of background noise is involved
in case A2, where €3 = 0.1. In (3.1d), r € [0, 1] is the white noise signal provided by a
random number generator. The chosen value of €3 makes the norm of f7, at least one order
of magnitude larger than those of f’ ; and f7 simultaneously. This set-up allows adequate
selection of additional potentially unstable frequencies and wavenumbers and tends to
approach the flow state in a noisy environment. In DNS, the white noise term is added
every 50 time steps for case A2 to allow its convection in the meshed domain (Cao et al.
2023). This interval corresponds to an angular frequency of 20w, where w), is the angular
frequency of the optimal planar wave. We have also simulated another DNS case forced
only by the same noise term. It is found that no transition to turbulence occurs upstream of
x=0.5 m. Therefore, the considered white noise intensity should be insufficient to trigger
transition in the unstable region of the eigenmodes. The white noise only serves to add
initial randomness to the laminar flow region of case A2.

The DNS cases Al and A2 for the main discussion in the following contents
impose a specific initial amplitude of the forcings. Without loss of generality, additional
cases A3-A6 are simulated to examine the effects of the amplitude ratio and absolute
amplitude of the forcings. As shown in table 1, cases A3-AS are used to clarify the
effect of the amplitude ratio by adjusting the modulus of the amplitude parameters
€1 and e in (3.1), which are specified later. The responses of the mass-flow-rate
fluctuations slightly downstream at x=0.045 m are as follows: close but unequal in
case A3, where (pu)qy, = 20U}, = 0.01; planar wave dominates in case A4,
where (pu)qy , = 10(0U)}4 , = 0.01; and oblique wave dominates in case AS, where

/

(PW a0 = 10(pu) gy, = 0.01. Another case with a weaker perturbation intensity is

/

simulated to show the impact of the absolute amplitude, where (ou)}4r ) = (OWjar 0 =

0.002 at x =0.045 m. Other settings remain identical to those of case Al.

For further details, first, let the fundamental angular frequency wo and spanwise
wavenumber B¢ be defined by woLyef/itao =0.1 and BoLyr = 0.8, respectively. In (3.1),
the following resolvent analysis gives w, =10wo and B, =0 for the optimal planar
wave, and w, = 3wo and B, = B¢ for the optimal oblique wave. Interestingly, w), = 10wy,
with dimensional frequency of f~125.8 kHz, is nearly the second-mode frequency
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Figure 2. Profiles of the five components of the optimal forcing that are imposed at x =40 mm for DNS:
(a) modulus and (b) phase angle corresponding to the oblique wave, and (¢) modulus and (d) phase angle
corresponding to the planar wave. The plotted forcing f; is non-dimensionalised by peottco/Lref, f2. f3 and
f;; by ,ooougo /Ly, and f'5 by ,ooougC /Lyer. Dashed line in (a): location of the boundary layer thickness 8¢.99.
Dashed-dotted line in (c): location of the relative sonic line of the second mode (angular frequency equals wp),
which satisfies U =c, —a. Here, U, a and c, represent the base streamwise velocity, base sound speed and
phase velocity of the Mack second mode.

corresponding to the maximum wall pressure fluctuation under the considered experiment
condition by Bountin et al. (2013). Thus, the optimal frequency should be representative.
For the baseline case A1l in table 1, the complex amplitudes are specified by €; = (1.554 x
1073, 2.1835 x 1077) for the planar wave and € = (—7.6119 x 1074, —6.4655 x 107)
for the oblique wave. The modulus of the input forcing amplitude €] or € determines
the output amplitude of optimal disturbances linearly, while the phase of the complex
amplitude results in the initial phase of output disturbances. These amplitudes are
determined beforehand by resolvent analysis and PSE, which would result in the following
modal properties. For the optimal planar wave, the initial amplitude forces the maximum
dimensionless mass flow rate fluctuation at x =0.045 m to be (ou);,,,. p=1x 1072 with
a zero phase angle. In other words, the complex amplitude €; can be obtained by a
linear relation as €1/1 X 1072 = €1,1ry/ (PW max,p,iry» Where the subscript ‘zry’ indicates
a test run of resolvent analysis for linear amplitude scaling. Meanwhile, for the optimal
oblique wave, the amplitude ratio to that of the planar wave is scaled based on the
resolvent analysis with an equivalent 1:1 initial forcing norm (see §2.2), which yields
(OU) .0 A 1.01 X 10~2 downstream at x = 0.045 m. As mentioned in § 1, it is reasonable
to impose an initial amplitude on the first mode no smaller than that of the second
mode. Furthermore, for the oblique wave propagated with a negative wave angle, the

relationship between its forcing shape f_, and f,, obeys the symmetry condition described
in Park & Park (2013). The profiles of the forcing shape and phase angle are shown in
figure 2, where the phase angle is in the range of (—180°, 180°]. Part of the non-zero
forcing is located outside the boundary layer, which is consistent with the usual features of
non-modal disturbances (Bugeat et al. 2019). For the planar wave, as shown in figure 2(c),
the energetic forcings are mostly above the relative sonic line for Mack second mode.
This observation may indicate a difference in properties between non-modal and modal
disturbances.
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Figure 3. Contours of optimal gain in the parameter space of the spanwise wavenumber and the angular
frequency. Three plotted circles: local maxima of optimal gain corresponding to three types of optimal
disturbances. Here, woLyef/ttao = 0.1 and BoLyer =0.8.

4. Results
4.1. Linearly optimal disturbances

Global resolvent analysis is performed over a wide range of spanwise wavenumbers and
angular frequencies to determine the most amplified disturbances. The computational
domain is extended from xp =0.04 m to x, =0.2 m, which is almost the pre-transitional
region in the 3-D DNS. Figure 3 displays the contour of the optimal gain in the spectral
domain. Generally, three types of optimal disturbances are identified in this free-stream
condition, namely the optimal planar wave (10w, 0Bg) appearing on the line g =0,

the optimal oblique wave (3wyp, Bo) and the streak (10_5a)0, 1.5B0). Note that further
lowering the frequency does not change the optimal gain of the streak. Among the three
optimal disturbances, the planar and oblique waves possess the largest optimal gain, which
below are called the (Fourier) modes (10, 0) and (3, 1), respectively. Figure 4 compares
the modal shape of the streamwise velocity between the LPSE in figure 4(a,c,e) and the
resolvent analysis in figure 4(b.d, f). In addition, the effect of adding the streak is compared
in figures 4(g) and 4(h) by NPSE. The initial amplitudes of optimal disturbances are
based on the resolvent analysis with a 1:1 forcing amplitude ratio, as stated in §§2 and
3. The agreement between LPSE and the resolvent analysis is excellent. The incident
long-wavelength and upright short-wavelength patterns of the oblique and planar waves
are observed. Based on figures 4(g) and 4(h), the streak does not essentially alter the
combined disturbance shape owing to the weak gain in figure 3. Therefore, it is sensible
to exclude the linearly optimal streak in 3-D DNS and consider the optimal oblique
and planar waves only. Furthermore, it is observed that the coexistence of multiple
optimal disturbances gives rise to an outer oblique-wave-dominant layer and an inner
planar-wave-dominant layer.

Figure 5 shows a quantitative evaluation of the evolution of the optimal disturbances.
The N-factor based on the Chu’s energy is defined by

Ny = 0.5In(Echu/Echu,0) 4.1

where Ecy, is defined by (2.11) and Ecp,.0 denotes the value at x=10.04 m. Thus, the
N-factor characterises the exponential amplification of Chu’s energy, and the streamwise
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Figure 4. Streamwise velocity contours of optimal disturbances «’, normalised by each maximum, by LPSE for
(a) oblique wave, (c¢) planar wave and (e) streak, by resolvent analysis for (b) oblique wave, (d) planar wave and
(f) streak, and by NPSE with the resolvent-based initial amplitude ratio for (g) oblique wave + planar wave and
(h) oblique wave + planar wave + streak. Solid line: location of the base-flow boundary layer thickness 8¢.99.
The maximum «" for normalisation is 0.061 (a,b), 0.039 (c,d), 0.012 (e, f), 0.16 (g) and 0.058 (h).

derivative dNV,/dx indicates the corresponding growth rate. A satisfactory agreement is
achieved between LPSE and the resolvent analysis. In the meantime, LPSE initialised
by LST profiles provides the evolution of the first and second modes denoted by open
symbols. In figure 5(b), the vertical dashed lines mark the locations starting from which the
difference in dN,/dx between the closed and open symbols is within 1%. The two locations,
at x~0.136 m for the planar wave and x~ 0.164 m for the oblique wave, categorise the
regions into upstream non-modal instability and downstream purely modal instability.
Compared with the planar wave, the oblique wave possesses a stronger non-modal transient
growth and weaker modal growth. This tendency is consistent with existing knowledge that
the second mode is mostly dominant in the linear instability stage of hypersonic transitions.
However, due to the prominent transient growth, the oblique wave has only a slightly lower
N-factor than the planar wave at x, =0.2 m. This result shows the possibility that the
oblique first mode is as important as the second mode even in the linear instability stage.
Without the transient growth effect, the open symbols illustrate that the N-factor of the
planar wave exceeds that of the oblique wave by approximately 0.8 at x,, leading to a
five-times-larger ratio of Chu’s energy. Furthermore, Ecy, of the oblique wave is 11 times
that of the streak at x,, indicating that the streak has a negligible impact.
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Figure 5. Streamwise development of the (a) N-factor and (b) growth rate of Chu’s energy dN,/dx. Filled
symbols, LPSE results initialised by resolvent-analysis profiles; open symbols, LPSE results initialised by LST
profiles. Vertical dashed lines in (b): locations downstream of which the difference in dNV,/dx between filled
and open symbols is less than 1%, which can be viewed as the starting locations of purely modal instabilities
for the planar and oblique waves.

4.2. The DNS results: instability waves and breakdown

Having examined the linear dynamics of optimal disturbances, we concentrate on the
behaviour of the oblique and planar waves in the nonlinear regime. Firstly, the baseline
case Al and the case A2 with background noise are mainly discussed. Figure 6 shows the
instantaneous and disturbed flow fields on the x—y plane. In addition to the outer oblique
wave and inner planar wave, new streamwise flow scales characterising nonlinear sum
or difference interactions appear upstream of x, = 0.2 m. The newly produced streamwise
scales and downstream breakdown seem to occur earlier in the outer boundary layer than in
the inner layer, as illustrated in figure 6(a). This observation may indicate the importance
of oblique waves in the breakdown. These multiple streamwise scales are also displayed
in figure 6(b) and a Rayleigh-scatter-like visualisation (Zhu et al. 2016) in figure 6(e).
Furthermore, the ‘rope-like’ structure of the density fluctuation, commonly observed for
the second mode in experiments (Laurence, Wagner & Hannemann 2016; Kennedy et al.
2018b) and DNS (Pruett & Chang 1995; Unnikrishnan & Gaitonde 2020), is captured near
the generalised inflection point in figure 6(d) and quantitatively shown in figure 6( /). Here,
the generalised inflection point is the location where (3/9y)(ppdup/dy) = 0. In figure 6(f),
a wavelength of around 5 mm is identified as the second-mode wavelength, since it is
approximately twice the local boundary layer thickness §0.99 = 2.25 mm. However, another
evident long wavelength of 18 mm is observed, which should not belong to the second
mode. This differs from the previous conclusion in the literature that the ‘rope-like’
structure is attributed to the second mode (Laurence et al. 2016). To determine the
wavelength more accurately, narrow bandpass filtering is applied to the time series of p’,
where the examined centre frequencies are w, = 3wo and w, = 10wy. The corresponding
streamwise wavelengths of the filtered data at x = 0.1 m are around 18.4 and 5.8 mm for the
two frequencies, respectively. In § 4.3, figure 14(b) further demonstrates that the evident
density fluctuation p’ near the rope-like structure is jointly contributed to by the oblique
and planar waves. The different contributors to the rope-like structure in this paper and in
the literature may arise from the differences in the geometry and flow environment. The
present results here serve to show a possibility of the significance of low-frequency waves.
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Figure 6. Flow fields on the plane z = L,/2 for case Al about (@) instantaneous u, full view, (b) instantaneous
u, (¢) disturbance u’, (d) disturbance p’ and (e) Rayleigh-scatter-like visualisation with a cut-off temperature
T =1.2, and (f) the disturbance p’ along the generalised inflection point in (d), with all non-dimensionalised
by each free-stream base-flow value. Arrow in (@): the location where optimal forcings are imposed. Solid line
in (d): location of the generalised inflection point. Notations in (b): the streamwise wavelengths of the oblique
wave and of those generated by sum or difference nonlinear interactions.

The boundary layer also presents very different breakdown scenarios at various
wall-normal heights, as shown in figure 7. The near-wall structures appear to be positive
velocity streaks in figure 7(a). The inner layer consists of elongated structures with large
velocity fluctuations first as an aligned pattern upstream and then as a staggered pattern
downstream in figure 7(b). The outer layer mainly contains the staggered A-vortices
with small velocity fluctuations in figure 7(c). Breakdown is found to have occurred
at x>0.35m for all three slices. These observations may indicate the existence of
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Figure 7. Instantaneous dimensionless velocity fluctuation field u' (compared with the base flow) on the
x—z planes for case Al at (@) y=0.1 mm (y/8¢.99 ~0.016 at x=300 mm), (b) y=1.3 mm (y/§0.99 = 0.21 at
x =300 mm) and (¢) y =3 mm (y/§0.99 ~ 0.49 at x =300 mm).

0.015 0.020 0.025

Figure 8. The Q-criterion iso-surface (L,ef/uoo)zQ =107 in the range 0.04 m < x < 0.3 m for case Al,
coloured by the dimensionless pressure p/pso ugo

fundamental, subharmonic and oblique breakdown in different streamwise or wall-normal
locations. As a visualisation of vortices, figure 8 shows the Q-criterion iso-surface. The
early spanwise distortion of the vortices and the formation of A-vortices and hairpin
vortices are displayed.
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Figure 9. Instantaneous skin friction coefficient Cy of (a) full view for case Al, (b) zoomed-in view for case
Al (without the background noise effect) and (¢) zoomed-in view for case A2 (with the background noise
effect). The symbols A, , and A, , denote the spanwise and streamwise wavelengths of the oblique wave (3, 1),
respectively, and A, , and A, (2.2) represent the streamwise wavelengths of the planar wave (10, 0) and mode
(2, 2), respectively.

To obtain a closer observation of the near-wall dynamics, figure 9 shows the
instantaneous skin friction coefficient Cy for both cases Al and A2. The streamwise
travelling wave, oblique wave and large-scale A-vortex are seen sequentially. According
to figure 9(b), the spanwise scale is mainly dominated by half the wavelength of the
optimal oblique wave, i.e. A; /2, which corresponds to the wavenumber 28y. This is
mainly contributed by the streak (0, 2) characterising the oblique breakdown, as shown
by the Fourier analysis next. In the streamwise direction, the planar-wave wavelength A,
is first dominant and the oblique-wave wavelength A, , is then highly pronounced. This
can be understood by a subsequent modal analysis in which the planar wave saturates
earlier than the oblique wave. What appears to be new is that staggered A-vortices are
formed upstream of the eventual breakdown with a streamwise wavenumber that is not an
integer multiple either of the oblique one or of the planar one. Hence, these A-vortices
are inferred to be products of wave—wave interactions. Furthermore, the wavelength of the
A-vortex is approximately five times the planar wavelength, corresponding to an angular
frequency of 2w( provided that phase locking occurs. The physical mechanisms behind
this are focused on in the following sections. Finally, by comparing figures 9(b) and 9(c¢),
the white noise effect is found only to affect local meticulous structures (e.g., in circled
regions of figure 9(¢)) and the group velocity of disturbances at approximately x > 0.22 m.
This finding suggests that the background noise does not have an evident impact on the
interactions of the optimal disturbances and their higher harmonics.
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Figure 10. Quantitative results of (a) mean skin friction coefficient and boundary layer thickness for cases Al
(thick line) and A2 (thin line) and the van Driest II formula for Cy (dashed line), and (b) streamwise velocity

spectrum Ejp = (u'u)/ ugo at x =480 mm for case Al, where (-) denotes the ensemble average.

Statistical results are shown to identify the pre-transitional, transitional and fully
developed turbulent regions. The results are ensured to be independent from the selection
of temporal observation windows. Figure 10(a) shows that transition begins at x ~0.13 m
with a minimum Cy and ends at x ~ 0.37 m with a Cy value collapsing onto the turbulent
correlation. Moreover, a small deviation between cases Al and A2 in Cy or the boundary
layer thickness exists at approximately x > 0.26 m. This finding shows that the background
noise effect is not very significant to the mean flow evolution. Figure 10(b) shows the
streamwise velocity spectrum at x = 480 mm. The agreement with the law of w~>/3 in the
inertial subrange and the law of ™’ in the dissipation scales suggests the establishment
of a fully developed turbulent state at this station.

The bi-Fourier transform into the /—z space gives information on a series of Fourier
modes (m, n). Convergence of spectra in the pre-transitional and transitional regions has
been achieved based on the following settings: Hann window function is used with 50%
overlapping, and the lowest angular frequency is 0.05w), in each window. Firstly, for cases
Al and A2, figures 11(a) and 11(b) show the evolution of the maximum mass flow rate
fluctuation and Chu’s energy, respectively. The rapidly growing modes at x < 0.1 m include
the oblique wave (3, 1) and the resulting streak (0, 2), the planar wave (10, 0), MFD (0, 0)
and mode (10, 2) associated with the fundamental resonance. For these significant modes,
the background noise only has a limited effect in the late stage of nonlinear instability
and in the turbulent region. It is concluded that the background noise can neither select
new significant modes with different frequencies or wavenumbers nor manipulate the main
characteristics of the existing modes. In addition, modes (2, 0) and (2, 2) corresponding
to the large-scale A-vortices in figure 9 and mode (5, 1) associated with the subharmonic
resonance with the optimal planar wave start to be amplified rapidly in the vicinity of
x=0.1 m. In terms of the A-vortices, some neighbouring modes such as (1, 0) and (1.5,
0), with approaching streamwise scales to modes (2, 0) and (2, 2), are shown not to be
pronounced in figure 11. Therefore, there should be a frequency selection process, which
is discussed next. For brevity, evolution of some other significant modes is shown in
Appendix B. The main interaction occurring in the oblique breakdown related to mode
(3, 1), the fundamental resonance related to mode (10, 0) and the subharmonic resonance
related to mode (10, 0) can be expressed by

3, 1H)—=@3,-1) = (0,2), 4.2)
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Figure 11. Streamwise development of disturbances on (a¢) maximum mass flow rate (pu)),,, for cases Al

(solid line) and A2 (dashed line), (b) Chu’s energy Ecp, for cases Al (solid line) and A2 (dashed line),
(c) Chu’s energy Ecp, for case A4 (initial forcing ratio of planar to oblique waves equals 10:1), (d) Chu’s
energy Ecp, for case AS (initial forcing ratio of planar to oblique waves equals 1:10) and (e) contour for
logarithmic fast Fourier transform of wall pressure fluctuation for case A1, In(|p’|).
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(10,0) + (0,2) — (10, 2), (4.3)
(10,0) = (5, 1) = (5, 1), (4.4)

respectively. The corresponding reverse interactions among the triads are also included,
such as (0, 2) + (3, —1) — (3, 1) for the oblique breakdown.

The successive appearance of highly amplified modes (3, 1), (0, 2), (10, 0), (10, 2)
and detuned (2, 2) or (2, 0) in figures 11(a) and 11(b) indicates the occurrence of oblique
and fundamental breakdowns in conjunction with an unconfirmed combination resonance.
With regard to the modal amplitude, the streak mode (0, 2) is dominant in the early region
x < 0.2 m. Comparing the downstream first and Mack second modes, those of the oblique
wave (3, 1) are stronger than and saturate later than those of the planar wave (10, 0). These
results are consistent with the observations of flow structures in figures 6-9. However, the
wall pressure fluctuation shows a considerable magnitude for the second-mode angular
frequency 10wg at x < 0.2 m, as shown in figure 11(e). It can thus be inferred that the wall
pressure measurement in experiments may not completely represent the possible modal
competition in the outer layer of the boundary layer away from the wall, particularly for
non-acoustic disturbances. The integral Ecy,, including the region away from the wall
and containing kinetic and thermodynamic energy simultaneously, may characterise the
modal growth and structure instabilities in figures 6-9 more comprehensively. In addition
to the sum angular frequency 13w( and difference angular frequency 7wy in figure 11(e),
the interaction between (3, 1) and (10, 0) generates a series of angular frequencies that
are only integer multiples of the fundamental one w(. These are caused by the fact that
the two identified optimal frequencies 10w and 3wq under this freestream condition are
coprime. Physically, the spectral broadening during the transition could be enhanced by
these discrete modes.

In terms of a comparison with other well-known breakdown scenarios, further
information is shown by figure 11(c) for the planar-wave-dominant case A4 and by
figure 11(d) for the oblique-wave-dominant case A5. Several interesting aspects are
discussed as follows.

(i) For case A4 where the initial forcing ratio of planar to oblique waves equals 10:1,
the planar wave (10, 0) saturates early in the vicinity of x = 0.2 m before the MFD is
strong enough. Meanwhile, modes (10, n) are found not to be amplified enough,
including those unshown with n #2. This indicates that fundamental resonance
does not trigger the eventual breakdown due to a relatively weak second-mode
wave in the considered flat-plate boundary layer, which may differ from those
scenarios for a cone by Fasel’s group. Particularly, the flared-cone flow adding the
background noise by Hader & Fasel (2018) supported a constantly growing second
mode with a slowly varying boundary layer thickness, which resulted in the spectral
peak of the second mode at 300 kHz and its harmonics. Under our conditions,
the optimal planar-wave frequency f ~ 125.8 kHz, which is nearly the frequency
of peak pressure fluctuations in the experiment by Bountin et al. (2013), does not
possess a long unstable streamwise region. By contrast, the oblique wave of case A4
undergoes a much longer distance of the instability stage in this state. The amplified
oblique wave exceeds the planar wave finally even with a lower initial amplitude.
The downstream scenario in case A4 is more likely to be a joint type of oblique
breakdown, combination resonance and second-mode subharmonic breakdown. The
significance of low-frequency oblique waves in the late stage is somewhat consistent
with the conclusions under the flow and geometric conditions at Peking University
(Zhu et al. 2016; Chen et al. 2017).
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(i1) The similarities between cases Al and AS upstream of x =0.2 m suggest that the
oblique breakdown is quite important in the early stage. Further downstream, with
the existence of mode (10, 0), the possible detuned mode (2, 2) can be promoted.
Among the comparative cases, case Al reports the most prominent amplification of
mode (2, 2). With regard to the signature of oblique breakdown, the streak (0, 2) of
case Al becomes weaker than that of case A5 in the saturation stage downstream of
x=10.2 m. Consequently, oblique breakdown plays a crucial role mainly in the early
stage.

(iii) By comparing case Al with cases A4 and A5, case Al shows a slightly lower Chu’s
energy for both modes (10, 0) and (3, 1) upstream of x = 0.2 m. With equal initial
forcings of the primary oblique and planar waves in case A1, more energy is probably
transferred to accelerate the growth of secondary modes, such as the detuned one
(2, 2) and subharmonic one (5, 1).

The modal growth results in figure 11 may not show straightforwardly that mode
(2, 2) or (2, 0) is important in the late nonlinear stage. To provide more direct evidence,
the maximum absolute contribution from mode (m, n) to the instantaneous skin friction is
defined by

ACf,(m,n) (x) = r(nat§( ICf,(m,n),disturbed - Cf,laminar|a 4.5)
z,

where Cr (n,n)sdisturbed and Cf jaminar are the instantaneous skin friction induced by the
laminar flow 4+ mode (mn, £n) alone and the laminar flow alone, respectively. This indicator
is defined to highlight and visualise the Fourier modes which are the source contributors
to Cr in figure 9. Figure 12(a) demonstrates that mode (2, 2) is dominant in the vicinity
of x=0.3 m for both cases Al and A2, excluding the MFD and mode (0, 2) which do not
directly affect the streamwise scales. Since the large-scale A-vortices are observed in the
same region in figure 9, it is clarified that mode (2, 2) is responsible for the formation
of near-wall A-like structures for case Al. In addition to the baseline forcing settings,
the effects of the amplitude ratio and the absolute amplitude of the initial forcings are
of further interest. Figure 12(b—d) shows the results when the initial forcing ratio of the
planar wave to the oblique one is set to 2:1 (case A3), 10:1 (case A4) and 1:10 (case AS),
respectively. Figure 12(e) displays the result of case A6 when the absolute initial forcing
decreases to 0.2 times the baseline value for both planar and oblique waves. It is observed
that the pronounced region of mode (2, 2) is postponed compared with the baseline case,
and that the corresponding proportion of the contribution to the skin friction becomes
smaller. However, the presence of this detuned mode is found to be independent of the
effects of the amplitude ratio and absolute amplitude under the considered parametric
set-up.

Figure 13 further shows a snapshot of the skin friction coefficient for cases A3—A6. Note
that in cases A4 and AS, the initial planar and oblique waves are dominant, respectively.
Consequently, early fundamental and oblique breakdown scenarios characterised by the
aligned and staggered vortices are shown in figures 13(b) and 13(c), respectively. In terms
of the combination resonance, the signature of the large-scale A-vortices becomes weaker
if the amplitude ratio or the absolute amplitude changes. As shown in figure 13(a—d), the
spanwise length scale of the A-vortices may be visibly affected because of other mixed-up
modes, and accordingly the head angle of the vortex is altered. However, the signature
of the large streamwise length scale corresponding to the detuned frequency 2wy is still
maintained in the late stage of the transition, although it is postponed depending on the
active region of the detuned mode (2, 2) in figure 12. These findings possibly indicate
the general existence of the combination resonance mechanism if multiple instability
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Figure 12. Maximum absolute modal contribution to the instantaneous skin friction coefficient ACy for
(a) cases A1l (solid line) and A2 (dashed line), (b) case A3, (c) case A4, (d) case AS and (e) case A6.
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Figure 13. Instantaneous skin friction coefficient Cr of (a) case A3, (b) case A4, (¢) case A5 and (d) case
A6. The symbols A, , and A, , denote the spanwise and streamwise wavelengths of the oblique wave (3, 1),
respectively, and Ay, and Ay (2,2) represent the streamwise wavelengths of the planar wave (10, 0) and mode
(2, 2), respectively. The contour levels are identical to those in figure 9.

waves are seeded. The detailed strength of this resonant scenario depends on the flow
conditions, the forcing components, amplitudes, etc. The features of strength dependence
and existence independence of the combination resonance have also been reported by
Fezer & Kloker (2000) in supersonic and hypersonic states. In their studies, the included
inflow modes (1, +4) and (1/2, £3) with different (relatively) low amplitudes at Mach
numbers 2 and 6.8 could generate a rapidly growing ‘combination mode’ (1/2, £7).
Differently, the combination resonance under the condition of Fezer & Kloker seemed
not to be pronounced enough to exceed the subharmonic and oblique breakdown scenarios
somewhere and present evident flow phenomena. In addition, this mode (1/2, £7) did
not introduce new streamwise scales compared with the inflow modes. The emergence of
mode (1/2, £7) is also less complicated than that of mode (2, 2) in this paper (see (4.6)).

4.3. Weakly nonlinear stability analysis

In this section, the NPSE serves to reveal part of the physical mechanisms to explain
the flow phenomena in §4.2. As a simplified physical model for the weakly nonlinear
stability analysis, only sum and difference modes of the seeded inflow disturbances are
additionally generated in the NPSE simulation. Figure 14 compares the evolution of Chu’s
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Figure 14. Comparison between DNS (solid line) and NPSE (symbol) of (a) Chu’s energy and (b) profiles of
density fluctuation |p’| at x=0.12 m.

energy and profiles of the density fluctuation between the DNS and NPSE before the NPSE
fails to converge. Generally, the agreement is fine. Meanwhile, the approach of the density
peak between mode (3, 1) and (10, 0) supports that the evident density fluctuation of the
‘rope-like’ structure in figure 6( f) is jointly contributed to by the oblique and planar waves.

In addition to the self-interactions, mutual sum or difference interactions between the
planar and oblique waves enable the occurrence of numerous modes. Figure 15 shows the
weakly nonlinear effect on either the planar or oblique wave, where the sum or difference
interaction is artificially cut off in the NPSE code. In figure 15, case BO (see table 2)
is the baseline case which is compared with DNS data. Case BO considers the mutual
interactions and self-interactions between modes (10, 0) and (3, £1) (as well as MFD,
not mentioned below). Compared with the baseline B0, case B1 interrupts the difference
interaction between planar and oblique waves, which generates (7, 1), while case B2
removes their sum interaction, which yields (13, £=1). Obviously, by comparing cases B1
and B2 with the baseline case, the difference interaction between the oblique and planar
waves destabilises both oblique and planar waves, while the sum interaction stabilises
both waves. The slight shift in Ecjp, indicates that the direct interaction between the
oblique and planar waves is weak in the initial stage. However, the two generate a series
of Fourier modes via multiple generations of nonlinear interactions, which are important
in the eventual breakdown. Among them, the possible detuned mode (2, 2) is of particular
interest.

The selection mechanism of the frequency and spanwise wavenumber for mode
(2, 2) can be straightforwardly understood from the procedure of NPSE simulations.
Corresponding to the dominant wavenumber 28, no other preferential frequency in the
neighbourhood except for 2w is found to be largely amplified. The detailed generation
process of mode (2, 2) in the NPSE is described by

G, D+G, -1 —(6,0), (4.6a)
10,00 = @3, =1 — (7, 1), (4.6D)
(7,1) = (6,0) — (1, 1), (4.6¢)
1, DH+d, D —(2,2). (4.6d)
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Figure 15. Effects of the absence of sum or difference interactions for planar waves (thick lines) and oblique
waves (thin lines) on Ecy,,.

Case Included inflow modes Removed interactions in NPSE
BO (10, 0), (3, 1) and MFD None

Bl (10, 0), (3, 1) and MFD (10,0) — (3, £1) — (7, £1)
B2 (10, 0), (3, £1) and MFD (10, 0) + (3, 1) — (13, £1)

Table 2. Settings for NPSE cases on the effects of sum or difference interactions.

Keeping mutual interaction
between planar (10, 0) and oblique

Case Included inflow modes (3, £1) or not (Y/N)
Co (10, 0), (3, £1), (2, £2) and MFD Y
Cl1 (10, 0), (3, £1), (2, £2) and MFD N
Cc2 (10, 0), (2, £2) and MFD —
C3 (3, £1), (2, £2) and MFD —

Table 3. Settings for NPSE cases on the generation mechanism of mode (2, 2).

Aimed at revealing the physical mechanism of mode (2, 2), we design several NPSE cases
with information given in table 3. The modes are seeded at x =0.045 m in the NPSE with
DNS-initialised profiles. Note that the primary waves have evidently larger amplitudes
than the secondary instability modes in the early stage. With these primary instability
waves added into the background flow, secondary instability is likely to occur. To simplify
the physical problem, only primary waves (10, 0) and (3, £1) and the concerned mode
(2, 2) are included in the inflow profiles. The purpose is to identify the necessary primary
instability waves which support the rapid growth of mode (2, 2).
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In table 3, cases CO and C1 simulate the development of the small-amplitude mode
(2, 2) under the large-amplitude planar and oblique waves and the base flow.
Different from case CO, case C1 interrupts the sum and difference interactions between
(10, 0) and (3, 1) downstream of the inflow station x=0.045 m. Accordingly, case
C1 resembles a Floquet analysis on the secondary instability (Ng & Erlebacher 1992),
where the original base flow, mode (10, 0) and mode (3, £1) constitute a new periodic
background flow. In the frame of reference moving with the group velocity of the primary
waves, the combination of the primary mode (10, 0) and mode (3, 1) varies slowly as a
background flow, while small-amplitude higher-order harmonics can undergo secondary
super-exponential growths. In comparison, case C2 or C3 only contains mode (10, 0) or
(3, £1) as the background primary wave, respectively. To approach the Floquet theory,
a phase-locked assumption can be made. Here, we follow the usage of the terminology
‘phase-locked’ by Chang et al. (1993) in NPSE studies. Actually, ‘phase-locked’ usually
refers to a state whereby two types of waves have nearly the same phase velocity (Chen
et al. 2017), i.e. a lock of the phase velocity. Once the phase-locked state occurs, the
generated sum or difference mode can constitute a resonant triad with the original two
waves, which can give rise to a super-exponential growth. Specifically, the iterative scheme
of the streamwise wavenumber except for mode (10, 0) is changed from (2.17) to

. 1 (g Olmn .y OV e Wi
Im(amn,new) :Im(amn,old) —iRe |:Emn ﬁ 1Y (u;;km ax +U;:mW + W;(;m ax dy|,

Re(@mn,new) = Re(a(IO,O)) x m/10, (4.7b)

while mode (10, 0) maintains the calculation manner in (2.17). Provided that wave—wave
resonance occurs, the synchronisation of the phase velocity allows the real streamwise
wavenumber to be proportional to the angular frequency, as described by (4.7D).

In this complicated problem, multiple Fourier modes with approaching strength are able
to affect the shape of mode (2, 2) at different wall-normal heights. Therefore, the growth
of Chu’s energy rather than the mode shape is chosen as the indicator to identify the
dominant effect in the underlying resonant state. Figure 16 illustrates that both cases CO
and C1 can achieve an exponential growth for mode (2, 2) with a slope close to that of
the DNS counterpart. The initial difference between the NPSE and DNS may come from
the simplification manipulation of the NPSE in the governing equations and interaction
models. Nevertheless, the agreement in the slope in the exponential amplification stage
confirms that the secondary instability mechanism is mainly responsible for the growth
of mode (2, 2). Furthermore, the difference between cases CO and C1 suggests that the
interaction between modes (10, 0) and (3, £1) has a lesser effect on the amplification
of mode (2, 2). The interaction between modes (10, 0) and (3, £1) generates additional
modes and constantly feeds energy to mode (2, 2) through the indirect route via these
new modes in addition to a direct interaction. By comparing cases CO or C1 with C2
and C3, it is clear that the planar or oblique primary wave alone cannot induce the
secondary instability of mode (2, 2) effectively. Hence, the combination resonance of the
detuned mode (2, 2) requires participation of both mode (10, 0) and mode (3, £1). This
resonant mechanism is different from conventional mechanisms, where only one primary
wave is needed. We have also ruled out the rapid growth of mode (2, 2) caused only by
interactions between mode (3, £=1) and other 3-D modes by additional unshown cases. In
these cases, the seeded inflow modes include (3, 1), (2, 2) and one of the following
modes to constitute an interaction triad: (1, £1), (1, £3), (5, £1) or (5, £3). The growth
of mode (2, 2) in these unshown cases resembles that in cases C2 and C3. Thus, the
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Figure 16. Comparison between the NPSE results of E¢y, for cases CO to C3 and the DNS results. Dashed
line: results without the phase-locked assumption.

inclusion of the primary mode (10, 0) is required to support the significant amplification of
mode (2, 2). Figure 16 also shows that the phase-locked assumption essentially does not
alter the results, which agrees with the conclusion by Chang et al. (1993).

4.4. Resonant state and energy transfer mechanisms

The resonant state can be examined by plots of wave vectors of the Fourier modes (Fezer &
Kloker 2000). If the three wave vectors («,, B) of the considered triad constitute a closed
form, the resonance condition will be satisfied (Craik 1971):

a1 tarp =03 P1+Hh=pF, o +w=0ws, (4.8a—c)

where the angular frequency relation is automatically satisfied for the examined Fourier
triad. The streamwise wavenumber is obtained via o, =d®/dx, where @ is the phase
angle of Fourier transform of the wall pressure in DNS. Figures 17(a) and 17(b) depict the
wave vectors of the four interactions in (4.6) at x =0.2 m and x = 0.3 m, respectively. The
resonance condition for the generation of mode (2, 2) is generally fulfilled at x=0.2 m,
although the self-interaction (1, 1)+ (1, 1) — (2, 2) does not fully form a closed triad.
Downstream at x =0.3 m, better closed triads indicate an enhanced resonant state. The
resonance of the planar wave, the oblique wave and the detuned mode is also shown by the
well-closed vector chain (2, 2)+ (3, 1) + (3, —1) 4+ (2, —2) — (10, 0) in figure 17(c).

To understand the energy transfer in the nonlinear stage, a posterior energy budget
analysis is presented first. With regard to mode (2, 2), the energy budget of the NPSE
cases CO to C3 in § 4.3 is considered here. Similar to the derivation by Chen et al. (2017),
the wall-normal integral of the fluctuation kinetic energy equation for mode (m, n) can be
written as

dy=P+QQ+F+D+N, (4.9)

/°° 1[3D<|umn|2 + [Vnl* + [Winn|*)
0o 2 Dt
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Figure 17. Wave vectors («, B) of the modes in (4.6a—d) at (a) x=0.2 m and (b) x=0.3 m, and (c) the
vector chain (2,2)+ (3, 1)+ (3, —1)+ (2, —2) — (10, 0) at x = 0.3 m for case A2.
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Figure 18. Energy budget of mode (2, 2) of (a) cases CO (solid line) and C1 (dashed line) and (b) cases C2
(solid line) and C3 (dashed line). All the terms of the four cases are normalised by the maximum N of case
C0.

where the right-hand side contains the terms in the form of a wall-normal integral,
including the linear mean-shear production term P, the non-parallel term Q, the pressure
diffusion and dilatation term F, the viscous dissipation term D and the nonlinear term .
Detailed expressions can be found in Chen ez al. (2017). In addition, £ represents the sum
of all linear terms on the right-hand side.

Figure 18 indicates that the rapid energy growth of mode (2, 2) in cases CO and Cl1 is
caused by the positive nonlinear term. In contrast, the sums of the linear terms as well as
most linear terms alone are negative and stabilise mode (2, 2), although the mean shear
production effect is slight destabilisation. In terms of cases C2 and C3, the term magnitude
is very small and mode (2, 2) fails to become strong.

In the present study, it is difficult for the energy budget analysis to provide a
comprehensive interpretation of energy transfer between multiple discrete Fourier modes.
We further apply the ‘amplitude correlation method’ first proposed by Crossley et al.
(1992) and Duncan & Rusbridge (1993) in plasma dynamics. Xia & Shats (2003) used
this technique to provide the first experimental evidence of an inverse energy cascade in
turbulence with broadband spectra. Zhang & Shi (2022) employed this method to analyse
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the modal interaction in the hypersonic boundary layer transition. The realisation is based
on the cross-correlation function (CCF) in the form of the fourth-order covariance as

K(v) = (It )1, (¢ 4+ 1/ (I O 1 (4 D11D)- (4.10)

Here, x; and xj; are filtered signals of the same original sample, which are centralised on
the frequencies f| and f>, respectively. The corresponding filters F1 and F2 are chosen as
the Butterworth bandpass filter with the flattest frequency response and no phase shift.
Moreover, [-] denotes a low-frequency filtration by filter F3 first and an operation to
subtract the expected value then to obtain the fluctuation. The symbol ||-]| denotes the
Euclidean norm for normalisation, and (-) means the ensemble average. Finally, the CCF
K(7) is a function of the time lag 7. If the 7, that maximises the CCF is positive, the
signal x7; lags x; and energy flows from component f to f> through the sideband nonlinear
interaction. Otherwise, energy is considered to flow from f, to f; instead.

The physical explanation of this technique is briefly introduced here. Assume that the
narrowband signals x; and xj; contain major energy in the frequency ranges [fi — Afi,
f1+ Af1] and [ 2 — Afa, fo + Af>], respectively, similar to those in figure 11(e). Thus x%
has two bands [2f] — 2Af1, 2f1 + 2Af1] and [0, 2Af1] (similarly for x%l). The low-frequency
filter F3 removes the higher band and maintains the lower band. Thus the CCF
characterises information transfer between frequencies f; and f> through the sidebands
with lengths of 2Af; and 2Af>, and thus contains information on the direction of energy
transfer. In the present study, the width of filter F3 is varied from 0.1fj to fp to ensure the
independence of Sgn(7;,e), where Sgn(-) is the sign function.

Figure 19 shows the signal samples of the wall pressure fluctuation x% (f1 =2fy) and

x%[ (f> =19/p) and the filtered ones by F3 as well as the CCF. The sampled station is at
x =300 mm, where the strong nonlinear interaction gives rise to stochastic time signals
and the concerned A-vortices are evident. The pressure signal is chosen for the analysis
to approach an experimental signal (Zhang & Shi 2022). The two example results of the
CCFs in figure 19(c¢) indicate that the frequency f1 = 2fy lags both frequencies f> = 19/
and f> = 10fp, and thus energy flows from these two high frequencies to f; = 2fp.

By means of the approach above, how mode (2, 2) sustains its energy and supports the
formation of A-vortices can be analysed. Let f; = 2fj, and the characteristic time lag 744 is
obtained via the calculation of CCF for each pair of (fi, f2). If Sgn(z4) > 0, energy flows
from fi to f2; if Sgn(7jee) < 0, energy flows from f> to fi; if Sgn(7;4g) = 0, there is no evident
peak of the CCF with a non-negligible cross-correlation, say, (CCF);;,x < 0.1. Figure 20
shows a plot of Sgn(tj,e) and the resulting diagram of the energy flow direction. It is
known from the energy budget analysis in figure 18 that mean shear slightly destabilises
mode (2, 2) and other linear terms stabilise it. Therefore, mean shear feeds energy to
mode (2, 2), and mode (2, 2) dissipates energy into other linear mechanisms. Meanwhile,
the constantly growing MFD is the product of the sum interaction between each mode
and its complex conjugate, i.e. (2, 2) 4+ (=2, —2) — (0, 0). It is thus inferred that mode
(2, 2) participates in energy transfer to the MFD. The remaining groups in figure 20(b)
are categorised into nonlinear energy ‘contributors’ and ‘receivers’. In the studied case,
the energy contributors for fj =2fy consist of two neighbours f> =fy and f> =4fp, the
optimal planar wave frequency f> = 10fy and additional higher modes from f> = 12f; to
> =20fy. Note that the low frequency f> =fj is also one of the source modes for mode
(2,2) via (1, )+ (1, 1) = (2, 2) (see (4.6) for details). The energy receivers for mode
(2, 2) are the optimal oblique wave frequency f> = 3fy and other components f> = §fp,
F=9f and fo =11fj in the vicinity of the frequency of mode (10, 0). Corresponding
to each energy flow direction from f> to f| or from f to f>, there are two types of
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Figure 19. Signal sample of wall pressure fluctuations at x =300 mm for case A2 of (a) x% for f =2fy and
(b) x;l for f =19y, and (¢) the resulting CCF. Thick lines in (a,b): filtered signal by the low-frequency filter
F3. Dashed-dotted line in (¢): another CCF plot with x%, belonging to f = 10fy.

potential interaction processes to allow nonlinear energy transfer: the sum interaction
(f1 +f2 — f3 =f1 +f>) and difference interaction (f; —f> — f3 =|f1 —f2|) in conjunction
with their reverse counterparts, such as (fi 4+ f2) — fi — f>. In summary, figure 20(b) gives
a physical image of energy transfer through linear mechanisms and through the narrow
sidebands in nonlinear modal interactions.

Note that the energy flow direction may depend on the signal type and wall-normal
height for analysis. Amplitude correlation analysis is further performed based on the
(pu) signal at the height of its maximum for mode (3, 1) at x=300 mm. What is
different is that fj =fy and the high frequencies f1 =13fp, 14fp and 15fy change from
‘contributors’ to ‘receivers’, while f; =3fy changes from ‘receivers’ to ‘contributors’.
However, the behaviour that multiple frequencies participate in nonlinear energy transfer
as ‘contributors’ and ‘receivers’ is found to be consistent.

5. Conclusions

Concentrating on the linear and nonlinear dynamics of optimal disturbances, a Mach 6
flat-plate boundary layer is studied by resolvent analysis, PSE and DNS. Newly observed
flow phenomena and physical interpretations of the modal interaction and breakdown
scenario are presented.

The resolvent analysis demonstrates that the optimal planar wave mode (10, 0) and the
optimal oblique wave mode (3, 1) are notably more significant than the optimal streak.
Due to the strong transient growth, the integrated Chu’s energy of the oblique wave is
comparable with that of the planar wave, although the growth rate of the second mode
exceeds that of the first mode. Introducing the two optimal disturbances jointly with the
same magnitude of initial forcing, the DNS results show that the oblique wave is highly
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Figure 20. The energy flow direction at x = 0.3 m for f] = 2f; of case A2: (a) sign function of the time lag of
> compared to f1 and (b) diagram of the energy flow direction.

A

pronounced in the outer boundary layer. Quantitatively, the active performance of the
non-acoustic oblique wave away from the wall may not be fully detected by conventional
wall pressure measurements, such as PCB sensors.

Modal decomposition via a Fourier transform identifies the coexistence of the oblique
breakdown, fundamental resonance triggered by mode (10, 0), combination resonance
related to a detuned mode (2, 2) and subharmonic resonance triggered by mode (10, 0).
Particularly, mode (2, 2) is responsible for the occurrence of large-scale staggered
A-vortices near the wall before the eventual breakdown. More importantly, the presence
of mode (2, 2) and the A-vortices are found not to depend on the (considered) amplitude
ratio and absolute amplitude of the initial forcings corresponding to the oblique and
planar waves. This suggests that the combination resonance can be a viable transition
scenario with the presence of multiple instability waves. The NPSE analyses further
confirm that the detuned mode (2, 2) is mainly a consequence of the secondary instability,
where the background primary waves require participation of both modes (10, 0) and
(3, 1). The nonlinear interaction between the two types of primary waves generates a
series of discrete Fourier modes. These multiple components of spectra in the early
nonlinear stage are different from the observation in a single common breakdown scenario.
In addition, the resonant state associated with these multiple components is observed.
Finally, the energy budget and amplitude correction techniques describe the energy flow
direction. The linear production and dissipation effects as well as nonlinear interactions
with ‘contributor’ modes and ‘receiver’ modes are involved in the physical image of
energy transfer for mode (2, 2). The present study indicates that the boundary layer
transition induced by multiple primary instability waves can contain rich flow physics and
unexpected breakdown scenarios. Particularly, the significance of combination resonance
and primary oblique wave in a hypersonic state is highlighted in this work. The multiple
resonance mechanisms including the combination one, revealed by a specific initialisation
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Figure 21. Comparison of the NPSE results of the maximum streamwise velocity fluctuation between
CHASES (solid line) and the literature (symbol) of (a) Hein (2005) and (b) Chang & Malik (1994). The
Reynolds number Re is based on the length scale /= (uoox/poouoo)l/ 2,

of frequency and wavenumber pair in the present paper, may constitute a building block in
a real natural transition with a wide and continuous frequency range.
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Appendix A. Validation of the NPSE solver

The NPSE part of the present code CHASES is validated through comparisons with
an oblique breakdown NPSE case (Hein 2005) and an NPSE case containing multiple
breakdown scenarios including fundamental and subharmonic ones (Chang & Malik
1994). The base flow of both cases is the flat-plate boundary layer at Mach 1.6 with an
adiabatic wall. A pair of oblique waves (1, 1) are added in the inflow of the case by
Hein (2005). Both oblique waves (1, 1) and (2, £1) and the planar wave (2, 0) are
included in the inflow condition by Chang & Malik (1994). Good agreement in the modal
amplitude is shown in figure 21, which demonstrates the reliability of the present NPSE
code.

Appendix B. Evolution of some other Fourier modes

There exist some other significant Fourier modes in scenarios such as the oblique
breakdown, which are not shown in figure 11. For a comprehensive examination,
evolutions of modes (1, 3), (3, 3), (6, 0) and (7, 1) of case Al are depicted in figure 22,
which are usually pronounced in the pure oblique breakdown. Clearly, these modes
can be amplified rapidly, which indicates the significance of the conventional oblique
breakdown and other potential mechanisms in the initial stage. However, in the vicinity
of x=0.3m where the A-vortex appears, the detuned mode (2, 2) has an evident
advantage in the energy magnitude over most of the remaining modes. Thus, the significant
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Figure 22. Streamwise development of Chu’s energy of other significant Fourier modes for case Al.

role of the combination resonance before the eventual breakdown could be further
justified.
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