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Previous longevity studies of related individuals
such as twins or siblings based on the major

gene model have shown that the frequency and the
relative risk of mortality of a beneficial allele in the
population could be estimated. If, in addition to sur-
vival data for related individuals, the genetic markers
data are available, one could try to locate the
longevity allele in the genome. In the case where the
phenotypic trait is life span or age at onset of disease,
a two-step procedure can be used. First, the parame-
ters of bivariate survival functions must be estimated
from bivariate survival data for twins without markers.
The second step is focused on determining the posi-
tion of longevity genes between respective markers.
To calculate the joint distribution of inheritance vector
and genetic markers, the hidden Markov chain tech-
nique is used. This approach is illustrated with a
simulation example for one longevity gene.

Let us assume that in addition to survival data, the
genetic markers data are available for twins. How
can this data be used in genetic studies of longevity?
Firstly, genetic markers can be considered as
observed covariates. The influence of these covariates
on survival can be estimated by standard techniques
that involve a Cox-type proportional hazards model
and its extensions specified for univariate or multi-
variate survival analyses. If some coefficient of
regression, say in standard Cox’s regression univari-
ate survival analysis, is significantly different from
zero, and all loci are in linkage disequilibrium, then
respective genetic markers are involved in life span
determination. Univariate analysis does not always
reveal the direct influence of genetic markers on sur-
vival, but bivariate or multivariate analyses do. In the
case of linkage disequilibrium, this result could mean
the possibility of the longevity or frailty gene located
in the neighborhood of respective genetic markers at
the chromosome. The real strength of bivariate and
multivariate survival analyses with genetic markers is
that they allow detection not only of the presence of
longevity or frailty genes but also determine the loca-
tion of these genes at the chromosome, even in the
case of observed genetic markers in linkage equilib-
rium. The methods which address this involve

linkage analysis. Some of these methods are based 
on regression models (Haseman & Elston, 1972).
Recent approaches use maximization of likelihood
(Kruglyak et al., 1996; Kruglyak & Lander, 1995). In
the latter, the most dif-ficult element is deriving the
likelihood function of the data. This usually involves
both the calculation and maximization of the likeli-
hood function. In the case of survival data, that is,
when the phenotypic trait is life span or age at onset
of disease or disability, the two-step procedure can be
used. First, the parameters characterizing the bivari-
ate survival function must be estimated from
bivariate survival data without genetic markers. The
second step involves linkage analysis, that is, deter-
mining the position of the longevity or frailty gene
between respective markers at the chromosome. The
procedures involved in the first step are described in
Begun, Iachine and Yashin, (2000), and Yashin and
Iachine (1994). The linkage procedure generally
involves calculation of the distribution of inheritance
vector data (Kruglyak & Lander, 1995) and of the
conditional distribution of life span as an intermedi-
ate step, and the consequent averaging of likelihood
with respect to this distribution.

Morton (1955) suggested linkage analysis using
logarithm of the odds (LOD) score (Ott, 1991). This
method was modified and adjusted to different pedi-
gree structures data (Kruglyak & Lander, 1995;
Lander & Green, 1987; Lathrop et al., 1986).
Clerger-Darpoux et al. (1986) showed that paramet-
ric linkage analysis could be extremely sensitive to
misspecification of the model. Kruglyak et al. (1996)
suggested an approach to both parametric and non-
parametric analyses, the key feature being the
separation of two issues: 1) extracting information
about the inheritance pattern in a pedigree; and 2)
defining a statistic for assessing linkage for a given
inheritance pattern.
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In this paper this approach is combined with
methods of multivariate survival analysis (Begun,
Desjardins et al., 2000). Let M1, M2, …, Ml be genetic
markers for two related individuals, and let V1, V2,
…Vl be respective inheritance vectors. The hidden
Markov chain method is used to calculate the joint dis-
tribution of inheritance vectors and genetic markers.
For this purpose, the extended vector of genetic
markers  and extended inheritance-vectors are intro-
duced by adding markers and inheritance vectors
corresponding to the major gene with the possible
influences on longevity that we are looking for. Since
the location of the major gene at the chromosome is
not known, it is placed between markers M1 and M2,
then M2 and M3 and so forth. The recombination dis-
tance estimate between the observed marker and the
major gene locus is then calculated as well as the LOD
score for each case. Assume that the locus with the
major gene influencing life span is located between
markers Mi and Mi+1. It is convenient to include this
locus in the sequence of markers and consider the
extended marker vector. Let θ be the recombination
distance between M’i and the major gene locus (i.e., the
distance between M’i and M’i+1 in the extended marker
vector assuming that M’i+1 is the major gene locus for
the longevity or frailty alleles). Here it is assumed that
observed markers are in linkage equilibrium and that
they do not influence longevity directly — only the
unobserved major gene may possess this property.
Note that the location of this gene does not influence
survival — only the genotype value has this property.
The location, however, may influence joint distribution
of the extended markers vector and life span values for
genetically related individuals. This distribution is used
in the specification of joint likelihood of life span and
markers data. Equation [3] shows the joint probabil-
ity of observed markers and survival function. To
calculate the likelihood of the data, one must take an
appropriate number of derivatives with respect to life
span arguments and replace these arguments with
respective data. 

Thus the main problem with this approach is the
probability calculation of the extended vector of
markers used in [3]. To calculate this probability, a
method which uses the Markov property of a pair (V’i,
M’i), i = 1, 2, …, l+1 is suggested. This pair is consid-
ered as a random process with respect to discrete index
i. The inheritance vector contains information on
recombination which did or did not happen with
parental chromosomes during the meiosis resulting in
the birth of a child. One way of coding this informa-
tion is to know whether the grandmother’s or the
grandfather’s allele was transmitted to the grandchild.
Since every individual has four grandparents, and each
grandparent has two opportunities for allele transmis-
sion to their grandchildren, there are 16 (4 × 4)
possible combinations for grandchildren locus in the
case of two siblings. Each recombination in the
parents’ chromosome during meiosis produces change

in respective combination, that is, in the inheritance
vector. It is assumed that: a) parents’ genotypes are
independent at each locus with known probabilities in
markers’ loci and unknown probabilities in longevity
locus; b) V1(j) = 1/16 for all j = 1, …, 16. Given
parents’ genotypes and probabilities of recombination
for each pair of loci (j, j + 1), the stepwise probability
of a sibling, twin pair or a group of related individuals
having the extended genotype can be calculated. Since
life spans and all markers except the major gene locus
are observed, the probability of extended genotype
must be multiplied by the respective conditional sur-
vival functions (or their derivatives). The final
likelihood is obtained by averaging the result with
respect to all possible parental genotypes and twins’
genotypes in the longevity locus. Positioning the
longevity locus in different places of a chromosome
between respective markers and calculating in each
case log10 (Likelihood) – log10 (Likelihood) where
Likelihood is the value of the likelihood function with
the condition that the longevity locus is situated out of
the chromosome (i.e., the recombination probabilities
of the longevity gene is equal to 0.5), the LOD score
profile for the longevity gene can be constructed. The
accuracy of the estimating θ can be assessed by con-
structing a specific support interval. This support
interval must contain all the points where the LOD
score is higher than or equal to 3 as recommended by
Ott (1991). For this interval the linkage is significant
(except when this interval contains θ = 0.5). All values
of θ at which the LOD score is less than or equal to –2,
however, are excluded. 

There is no principal difference in applying this
technique to the case with two or more longevity loci.
The extended inheritance vector and the likelihood
function can be constructed in the same way. In this
article, the implementation of this method to simulated
data for one longevity locus located on the same chro-
mosome as the markers is discussed.

Materials and Methods
Suppose that it is known that the n × 2 matrix of life
spans X for n dizygotic twins (sibling pairs) and the 
n × l × 4 matrix M of markers, where n is the number
of twin pairs, l is the number of markers. Given twin
pair i, i=1, 2, …, n, and the marker number j, j=1,
2,…l, Mi,j,1 is the marker-allele inherited by the first
twin from the mother, Mi,j,2 is the marker-allele inher-
ited by the first twin from the father, Mi,j,3 and Mi,j,4

are the marker-alleles inherited by the second twin
from the mother and the father, respectively. Let
marker number j have K(j) possible alleles with prob-
abilities pj,j1

, j1 = 1, …, K(j),

We assume that parental alleles are inherited by off-
spring independently, that parental genotype frequen-
cies are in Hardy–Weinberg equilibrium and that the
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parents are chosen independently. Distances between
observed markers are known and equal θ(j), 0 < θ(j) <
0.5, j = 1, …, l–1. We also assume that all observed
markers are in linkage equilibrium and do not influ-
ence longevity directly. Only the longevity gene, which
is in linkage equilibrium with observed markers, influ-
ences longevity. These assumptions allow the analysis
to be carried out in two steps. First, the bivariate sur-
vival model is defined relating longevity with the major
(or longevity) gene and the parameters of this model
estimated. The position of the major gene is located in
the second step.

Major Gene Model With Multiplicative Action of Longevity Allele

We assume that an individual’s instantaneous risk of
death µ at age t, as measured by the hazard of mortal-
ity, depends linearly on frailty Z. Namely, µ(t,Z) =
Zµ0(t), where µ0(t) is the underlying hazard. The
random variable Z does not depend on the age but
depends on the number of major gene alleles in the
major gene locus and is equal to ri-1, where i is the
number of the major gene alleles in the genotype. It is
clear that 0 < r < 1  and that the major gene allele acts
multiplicatively. Let p be the frequency of the major
gene allele. For univariate survival function and auto-
somal locus, the following parameterization is used: 

[1]

where µ~0(x) = dH
~ 

/ dx = a + becx, H
~
(30) = 0, s, a, b, c

are unknown parameters, and H(x) is the cumulative
hazard for the unit risk of mortality (i.e., in the absence
of a longevity allele in genotype). Note that this sur-
vival is equal to survival in a population with
underlying hazard µ~0(x) and Gamma-distributed frailty
with a mean of 1 and variance s2 at the age of 30 years.
In formula [1], the different possible combinations of
alleles in genotypes and respective frequencies of geno-
types are used. If longevity locus is autosomal, the
bivariate survival function S(x1,x2) can be calculated as
follows (Begun, Desjardins et al., 2000):

[2]

For simplicity we assume that life span data is not cen-
sored. However, the analysis can be extended easily to
censored data. Unknown parameters of the frailty p, r
and of the univariate fit a, b, c, s can be estimated
through maximization of the likelihood function.

Location of the Major Gene

Assume that the major gene is situated between the
marker number j0 and the marker number j0+1 at the
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recombination distance θ'j0
from the marker number

j0. Our goal is to calculate the full likelihood function.

Here, the bivariate survival S(x1, x2, m) for a dizygotic
twin-pair with longevity values x1, x2, and l × 4
marker matrix of observed m is:

[3]

where Pg1,g2 (m) is the probability of a twin pair having
the marker set m and longevity genotypes g1 for the
first and g2 for the second twin. Each genotype may
take one of three possible values. Genotype 1 has two
beneficial alleles in longevity loci, genotype 2 one bene-
ficial allele and genotype 3 no beneficial allele. 

Let vj = (vj,1,vj,2,vj,3,vj,4 )T be the inheritance vector
for the marker number j, j = 1, 2, …, l with compo-
nents equaling 0 or 1. The first and third ones denote
the alleles inherited from the mother for the first and
for the second twin respectively (0 if from the grand-
mother and 1 if from the grandfather). Analogously,
the second and the fourth components denote alleles
inherited from the father. 

Example 1

Let Aa be maternal and aA paternal genotypes at
some locus k0. For the inheritance vector vk 0

=
(0,1,1,1)T the first twin will have genotype AA and
the second one genotype aA. If the inheritance vector
at this loci were (1,0,0,1)T, twins would have geno-
types aa and AA correspondingly. 

To calculate Pg1,g2 (Mi ) for a twin-pair number i, the
recurrent procedure based on the algorithm of the
hidden Markov chain (Lander & Green, 1987) will be
used as follows. 

Initialization

Assume that v1 is uniformly distributed and that the
probability of each possible value of v1 is equal to
1/16. Set j=1, Pg1,g2 (Mi ) = 0 and define the set of possi-
ble combinations of the major gene alleles
corresponding to the genotype (g1,g2) by G (for
genotypes 1 or 3 there exists a single combination of
the major gene alleles, but for genotype 2 either the
maternal or parental allele in the major gene locus is
the major gene allele). 

Step 1

Select an element from G, denote it by M’j0
and set 

G = G \ M’j0
. M’j0

is included in the set of markers Mi

between the marker number j0 and the marker
number j0+1. The extended (l + 1) × 4 matrix M’i of
markers, extended l-dimensional vector θ' with
unknown recombination probabilities θ'(j0 ) = θ'j0
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must be aA. Analogously it can be proved that paternal
genotype must be AA. The probability of this event can
be calculated as a product of the probabilities of geno-
types aA and AA. If the inheritance vector is (0,1,0,0)T,
one would have contradicting maternal genotypes aX
and AX and noncontradicting paternal genotypes XA
and AX. The probability of such an event is naturally
equal to 0.

Remark

In the case of two longevity genes, the set of markers
are extended by two new ones at locations under
study and the hidden Markov chain technique is
applied. Bivariate survivals can be calculated in accor-
dance with accepted hypotheses about genotype-
frailty correspondence. 

Results
As previously mentioned, the identification of the para-
meters of univariate fit and frailty and the
identification of the recombination value can be sepa-
rated. In the first step, the parameters of bivariate
survival function are estimated without markers. The
LOD score profile is calculated in the second step.
Empirical data, including the survival data for 1000
sibling pairs where both siblings were alive at the age
of 30 years, and the data on 10 genetic markers for
each sibling pair, were simulated. Each gene at marker
locus can be characterized by a pair from the set of 10
different alleles and each allele can be met in the popu-
lation with a frequency equal to 0.1. A longevity gene
is situated in the middle between the 5th and 6th
markers. The markers were distributed uniformly over
a chromosome with a distance of 5cm between the
neighboring markers. The distance between the first
marker and the longevity gene was approximately
22.5cm. The univariate survival function in the absence
of the longevity allele was parameterized by

where

and c = 0.1. The frequency of the longevity allele with
multiplicative action was 0.5. The age dynamics of
the marginal estimated and the empirical hazards are
shown in Figure 1. The LOD score profile averaged
over all simulations for given parameters of univariate
fit, for given frequency of longevity allele and for two
given different risks of longevity allele is shown in the
Figure 2. In the first case, the risk was .1 and the coef-
ficient of correlation between life spans of siblings
was equal to .29. In the second case, these values
were .35 and .12 respectively. As expected, the
maximum LOD score was observed near the real
position of the longevity gene and this profile has a
symmetrical form. The greater the risk of the benefi-
cial allele, the less expressed the maximum. 

and θ'(j0 + 1) = (θ(j0 )–(θ'(j0 ))/(1–2θ'(j0 )) are con-
structed. Let M’i,l:j = (M’i,l…, M’i,j) for j = 1, …, l + 1. 

Step 2

Calculate conditional probability

where the Hammer distance d(vj+1, vj ) is the number of
noncoinciding components in the vectors vj and vj+1. 

Step 3

Calculate probability

by firstly reconstructing parental marker genotypes
Mi,j+1

1, Mi,j+1
2 for the first and the second siblings:

Mi,j+1,1+vj+1,1

1 = M’i,j+1,1, Mi,j+1,3+vj+l,2

1 = M’i,j+1,2, Mi,j+1,1+vj+1,3

2 =

M’i,j+1,3, Mi,j+1,3+vj+l,4

2 = M’i,j+1,4.

If estimated Mi,j+1
1, Mi,j+1

2,do not contradict each
other, P(M’i,j+1 | vj+1, M’i,1:j) is equal to the product of
frequencies for defined parental alleles. Otherwise,
P(M’i,j+1 | vj+1, M’i,1:j) = 0 (see Example 2 below). If 
j = 1, calculate P(M’i,i | v1) and set 

Step 4

Calculate

and

where

Step 5

Calculate R = P(M’i,j+1 | M’i,1:j) R. Set j = j + 1. If j = 
l + 1 and G = ∅, then set Pg1,g2 (Mi) = Pg1,g2 (Mi) + R
and go to End. If j = l + 1 and G ≠ ∅, then set j = 1,
Pg1 , g2 (Mi) = Pg1 , g2 (Mi) + R, and go to Step 1.
Otherwise, go to Step 2.

End

This procedure is applied for all possible genotypes
(g1,g2) and all sibling pairs i, i = 1, …, n. The full
likelihood function and the value of LOD score for
each given location of the major gene is then calcu-
lated. Finally, the LOD score profile is obtained,
depending on the location of the major gene.

Example 2

Let aA and AA be genotypes of the first and the second
twin respectively. For the inheritance vector (0,1,1,0)T

maternal genotypes related to the first and the second
twin must be aX and XA respectively (X means
unknown allele here). That is, the maternal genotype
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Discussion

Data on markers and the longevity of related individ-
uals makes it possible not only to estimate the
parameters of univariate fit and frailty distribution,
but also to test the hypothesis of genetic influence on
longevity, and to estimate the possible location of the
longevity gene. The technique used consisted of two
parts. First, unknown fit and frailty parameters were
estimated using survival data on monozygotic and
dizygotic twin pairs. The likelihood function for the
unknown parameter of the longevity gene location
can be presented as a weight sum of bivariate sur-
vivals multiplied by genotype frequency. At the
second stage, these genotype frequencies given
markers were calculated using a hidden Markov chain
algorithm. As shown in the figures, the possibility of
such localization of the longevity gene in high degree
depends on the relative mortality risk of longevity
allele. The clear peak of the LOD score profile can be
obtained only if this risk is not too large. 
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Figure 1
Age dynamics of marginal estimated hazard (solid line) and empirical
hazard (dashed line). 

Figure 2
LOD score profile for known frailty parameters. The action of longevity
allele is 0.1 (dashed line) and 0.35 (solid line).
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