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High-resolution simulations of gravity currents in the lock-exchange configuration are
conducted to study the flow within the head. The simulations exhibit the geometric features
of the head as reported in the laboratory experiments and numerical simulations, and
provide more detailed information on the flow within the head of a gravity current. The
flow in the lower part of the head, where the lobes and clefts are forming at the leading
edge, is qualitatively different from but interconnected to the flow in the upper part of the
head, where steepening bulges are protruding from the upright surface above the clefts.
Interestingly, regions of positive and negative streamwise vorticity are observed not only
in the lower part of the head but also in the upper part of the head at staggered spanwise
locations. We have shown that both the streamwise vorticity at the leading edge of the
lobes in the lower part of the head and the streamwise vorticity at the steepening bulges in
the upper part of the head are contributed from the twisting of spanwise vorticity into the
streamwise direction, due to the geometric features of the lobes and the steepening bulges,
and contributed from the baroclinic production of vorticity. Our results from visualization
using tracers indicate that the ambient fluid ingested in and rising from the clefts is
being swept towards the leading edge of a gravity current before being carried upwards
from the leading edge to the upright surface above the left and right neighbouring lobes.
Furthermore, the heavy fluid inside a lobe may descend towards the bottom boundary,
move forward towards the leading edge and outwards towards the neighbouring clefts, and
ultimately be carried upwards to the upright surface above the left and right neighbouring
lobes. With the knowledge that the erosive power of a gravity current is concentrated in the
head region, it is plausible that the bed material, once resuspended by a gravity current,
may be lifted up away from the bottom boundary and be dispersed in both the streamwise
and spanwise directions. The present study complements existing findings in the literature
and provides new insights into the three-dimensional flow field within the head of a gravity
current.
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1. Introduction

Gravity currents, which are essentially horizontal flows driven by density differences,
occur in many natural and man-made situations. In the ocean, gravity currents may
occur as turbidity currents on the ocean floor, where the density difference is produced
by suspended sediments (Allen 1985). In the atmosphere, gravity currents may occur
as sea breezes, land breezes and thunderstorm outflows, where the density difference
is produced by temperature inhomogeneities. In man-made situations, gravity currents
may occur during the spreading of hot water discharged from power stations and the
accidental release of dense industrial gases (Fannelop 1994). Readers are referred to
Simpson (1997) for a comprehensive review of the great diversity of gravity currents in
geological, environmental and engineering applications.

When a gravity current propagates over a rigid no-slip boundary, the leading edge of a
gravity current is seen to advance by projecting forwards a series of lobes that are divided
by indentations, also known as clefts. The lobes may grow, shrink or break down into
smaller ones, and the clefts may merge with neighbouring clefts (McElwaine & Patterson
2004). The lobes and clefts shift along the leading edge in the spanwise direction while
splitting of lobes and merging of clefts continue as a gravity current advances in the
streamwise direction. As a large lobe splits into two smaller ones, a new cleft appears
and a steepening bulge forms on the upright surface above the cleft (Simpson 1969, 1972).
The Kelvin–Helmholtz billows form higher up, further away from the leading edge of a
gravity current, where mixing between the heavy fluid and the ambient fluid occurs, and
a layer of mixed fluid forms above the following gravity current (Simpson 1972; Simpson
& Britter 1979). Here, we refer to this frontal region of a gravity current as the head of a
gravity current. Understanding the dynamics of the head of a gravity current is important
as it is known that there is mixing between the heavy fluid and the ambient fluid within the
head (Simpson & Britter 1979), and the erosive power of a gravity current to resuspend
bed material is concentrated in this region (Cantero et al. 2008; Espath et al. 2015).

In order to study the anatomy of a gravity current, the lock-exchange set-up has been
a paradigm configuration, adopted extensively in laboratory experiments and numerical
simulations (Cantero, Balachandar & Garcia 2007a; Cantero et al. 2007b; La Rocca
et al. 2008; Adduce, Sciortino & Proietti 2012; Ottolenghi et al. 2016a,b, 2018). The
lock-exchange configuration is particularly suitable for the study of flow within the head
of a gravity current because, with an appropriately chosen lock length, the gravity currents
in the lock-exchange configuration can be maintained in the slumping phase, in which the
leading edge of the gravity currents advances at approximately constant speed. This allows
us to examine the head of a gravity current in the translating coordinate system moving
with the head, in which the flow within the head and the flow around the head can be
regarded as stationary.

One of the intriguing questions in the study of gravity currents is to understand the
flow within the head region. In the translating coordinate system moving with the head,
according to the two-dimensional model envisioned by Simpson (1972) and Simpson &
Britter (1979), the foremost point or nose of the head is raised some small distance above
the no-slip boundary and there is a downward circulation in the lower part of the head of
a gravity current that is carried away by the effect of the bottom boundary. In addition
to the downward circulation in the lower part of the head of a gravity current, there is an
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The flow within the head of a gravity current

upward circulation in the reverse sense in the upper part of the head of a gravity current
that is convected away from the head into the layer of mixed fluid above the following
current. We should point out that the downward circulation and the upward circulation
were divided by a stagnation streamline, and it was not permissible for the heavy fluid in
the upper part of the head to reach the bottom boundary in the two-dimensional model
envisioned by Simpson (1972) and Simpson & Britter (1979). To maintain a stationary
head of a gravity current in the translating coordinate system, there must be a flux of
heavy fluid from the gravity current towards the stationary head, and this flux of heavy
fluid towards the stationary head is required to be in balance with the flux of heavy fluid
carried away by the bottom boundary and with the flux of heavy fluid convected away from
the head into the layer of mixed fluid above the following current. The mean flow velocity
of the heavy fluid behind the gravity current head was estimated to be approximately 1/6
greater than the velocity of advance of the head (Simpson & Britter 1979).

To quantify the fluxes of the heavy fluid from the gravity current towards the stationary
head, the heavy fluid carried away by the bottom boundary and the heavy fluid convected
away into the layer of mixed fluid above the following current, Winant & Bratkovich (1977)
invented a cart, instrumented with two hot-film anemometers and two conductivity meters,
running on a track above the channel and following the head of a gravity current. Based
on the full-depth lock-exchange experiments, Winant & Bratkovich (1977) estimated that
approximately 33 % of the flux of the heavy fluid from the gravity current towards the
stationary head was carried away by the bottom boundary, and approximately 67 % of the
flux of the heavy fluid moving into the head was convected away into the layer of mixed
fluid. Simpson & Britter (1979) devised an experimental flume with a moving floor to
bring the head of a gravity current to rest by varying the value of the opposing flow and
the equal floor speed. This arrangement is equivalent to viewing the gravity current head
in the translating coordinate system, and allows the gravity current head to be observed
in detail with greater confidence. Based on a typical velocity profile measured behind the
gravity current head, Simpson & Britter (1979) estimated that approximately 20 % of the
flux of the heavy fluid into the stationary head was carried away by the bottom boundary,
and approximately 80 % of the flux of the heavy fluid into the head was convected away
into the layer of mixed fluid. Since hot-film anemometers are sensitive to speed and not
velocity, some judgement is required to determine the flow direction, and the velocity
profile measured by the hot-film anemometers is subject to greatest uncertainty near zero
velocity.

In the past, the flow within the head of a gravity current could not be analysed in
detail due to limited high-resolution data either from laboratory experiments or from
numerical simulations. Direct numerical simulations, in which all scales of motion are
highly resolved in space and time, can be expected to complement laboratory experiments
and to provide useful information concerning the flow within the head of a gravity current.
In Härtel, Meiburg & Necker (2000b), a three-dimensional simulation was conducted of a
gravity current spreading on a no-slip boundary, and the simulation exhibits all features,
including the lobe-and-cleft structure at the leading edge of a gravity current head,
typically observed in laboratory experiments. A key finding based on the two-dimensional
simulations in Härtel et al. (2000b) is that for a gravity current spreading on a no-slip
boundary, the foremost point of the head is not a stagnation point in the translating
coordinate system moving with the head. Rather, the stagnation point is located below and
slightly behind the foremost point in the vicinity of the no-slip bottom boundary. Linear
stability analysis reveals that a vigorous linear instability at the leading edge of a gravity
current head originates in an unstable stratification in the flow region between the nose
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and stagnation point (Härtel, Carlsson & Thunblom 2000a). The formation mechanism
of lobes and clefts at the leading edge of a gravity current head is shown to be the
Rayleigh–Taylor instability (Xie, Tao & Zhang 2019). However, when splitting of lobes and
merging of clefts are at work, the lobe width is notably greater than the initial characteristic
lobe width based on the linear stability analysis, and does not correspond to the linearly
unstable mode (Xie et al. 2019).

To deepen understanding of the mechanisms responsible for splitting of lobes and
merging of clefts, Dai & Huang (2022) conducted three-dimensional high-resolution
simulations of the gravity currents propagating on a no-slip boundary. For the splitting
of lobes, the creation of a new cleft inside an existing lobe is attributed to the
Brooke–Hanratty mechanism (Brooke & Hanratty 1993) reinforced by the baroclinic
production of vorticity. For the merging of clefts, it requires the interaction of three
lobes, while inside each lobe there is one tooth-like vortex. During the merging process,
the tooth-like vortex inside the middle lobe breaks up and reconnects with the two
neighbouring tooth-like vortices. It has also been reported that the mean lobe width and
mean maximum lobe width in Dai & Huang (2022) satisfy the empirical relationships
by Simpson (1972), and asymptotically approach 126δ̃ν and 230δ̃ν , respectively, when
measured in terms of the viscous length scale δ̃ν , as the front Reynolds number increases
to Ref = 3267. Nevertheless, there remain open questions regarding the flow within the
head of a gravity current. Specifically, in contrast to the tooth-like vortices as observed in
the lower part of the head, what is the flow in the upper part of the head? Is the flow in the
upper part of the head connected with the steepening bulges on the upright surface above
the clefts? Is the flow in the upper part of the head separated from the flow in the lower part
of the head by a stagnation streamline as envisioned in the two-dimensional model? How
does the ambient fluid ingested in the clefts ascend within the head of a gravity current?
Can the heavy fluid inside a lobe possibly be transported to neighbouring lobes in the
spanwise direction in addition to the streamwise direction? Regrettably, answering these
questions is beyond the scope of the two-dimensional model of the flow within the head
envisioned by Simpson (1972) and Simpson & Britter (1979).

The present investigation is a continuation of and complement to the accompanying
paper by Dai & Huang (2022), in which the flow structures in the lower part of the head
were analysed. The present investigation is conducted by means of three-dimensional
high-resolution simulations of the incompressible Navier–Stokes equations with the
Boussinesq approximation. The full-depth lock-exchange configuration is adopted for the
generation of gravity currents and the gravity currents are maintained in the slumping
phase, in which the gravity current head advances at approximately constant speed.
Therefore, we may analyse the flow within the head not only in the laboratory frame of
reference but also in the translating coordinate system moving with the head. Our aim is to
deepen the understanding of the flow within the head region, not only in the lower part of
the head but also in the upper part of the head. Furthermore, we would like to address the
aforementioned questions regarding how the flow in the upper part of the head is connected
with the steepening bulges on the upright surface above the clefts, how the flow in the
upper part of the head is interconnected to the flow in the lower part of the head, how the
ambient fluid ingested in the clefts eventually ascends within the head, and how the heavy
fluid inside lobes may be lifted up away from the bottom boundary and be transported in
both the streamwise and spanwise directions. The paper is organized as follows. In § 2,
we describe the formulation of the problem. The qualitative and quantitative results are
presented in § 3. Finally, conclusions are drawn in § 4.

997 A42-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

80
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.807


The flow within the head of a gravity current

L̃x1

L̃x1
 − L̃0L̃0

H̃

g̃

ρ̃1 ρ̃0

x1

x3

Figure 1. Sketch of the initial condition for a full-depth lock-exchange flow. The heavy fluid, of density ρ̃1,
and the ambient fluid, of density ρ̃0, have the same height H̃. The heavy fluid has length L̃0, and the ambient
fluid has length L̃x1 − L̃0. Here, x1, x2 and x3 represent the streamwise, spanwise and wall-normal directions,
respectively, and the positive spanwise direction points into the paper. Gravity g̃ acts in the negative x3 direction.

2. Formulation

In the present work, we focus on gravity currents produced from the full-depth
lock-exchange configuration and maintained in the slumping phase, in which the gravity
current head advances at approximately constant speed. Figure 1 gives a sketch of the
initial condition for the full-depth lock-exchange configuration. The lock height is H̃, and
the lock length is L̃0. The length of the channel is L̃x1 , while the width of the channel is
L̃x2 . The heavy fluid inside the lock on the left-hand side of the channel has density ρ̃1,
and the ambient fluid outside the lock has density ρ̃0. The density difference is assumed to
be sufficiently small, i.e. (ρ̃1 − ρ̃0) � ρ̃0, so that the Boussinesq approximation – in that
only the buoyancy term is influenced by density variations but not the inertia and diffusion
terms – can be adopted.

The governing equations under the Boussinesq approximation take the dimensionless
form

∂uj

∂xj
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= ρeg

i − ∂p
∂xi

+ 1
Re

∂2ui

∂xj ∂xj
, (2.2)

∂ρ

∂t
+ uj

∂ρ

∂xj
= 1

Re Sc
∂2ρ

∂xj ∂xj
, (2.3)

where the dimensionless parameters are the Reynolds number Re and the Schmidt number
Sc, defined by

Re = ũbH̃
ν̃

and Sc = ν̃

κ̃
, (2.4a,b)

respectively. The heavy fluid and ambient fluid are assumed to have identical kinematic
viscosity ν̃ and molecular diffusivity κ̃ in the density field. Here, ui denotes the velocity, ρ
the density, eg

i = (0, 0, −1)T the unit vector in the direction of gravity, and p the pressure.
The set of equations (2.1)–(2.3) is made dimensionless by the lock height H̃ as the length
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scale, the buoyancy velocity

ũb =
√

g̃′
0H̃, with g̃′

0 = g̃
ρ̃1 − ρ̃0

ρ̃0
(2.5)

as the velocity scale (where g̃ is gravity), and H̃ũ−1
b as the time scale. The dimensionless

density is defined by

ρ = ρ̃ − ρ̃0

ρ̃1 − ρ̃0
, (2.6)

which varies in the range 0 ≤ ρ ≤ 1. Note that the initial ambient fluid is represented by
ρ = 0, while the initial heavy fluid is represented by ρ = 1.

In all simulations reported in this paper, we used a Schmidt number of unity. It has been
shown that the influence of the Schmidt number is weak for Sc ≈ O(1) or larger, provided
that the Reynolds number is large (e.g. Härtel et al. 2000b; Necker et al. 2005; Bonometti
& Balachandar 2008). To provide adequate grid resolution with achievable computational
resources, setting the Schmidt number to unity is common practice in simulations (Cantero
et al. 2007a,b; Zgheib, Ooi & Balachandar 2016; Dai & Huang 2022; Dai, Huang & Wu
2023), and we follow suit here.

Since the gravity currents in the problem are maintained in the slumping phase, the front
in the slumping phase travels at approximately constant speed ũf , and the gravity current
head is deeper than the following current. Here, we define the maximum thickness in the
head region as the height of the gravity current head d̃, and the front Reynolds number is
defined as Ref = ũf d̃/ν̃. The front Reynolds number is related to Re in (2.4a,b) via

Ref = uf d Re, (2.7)

where uf = ũf /ũb is the dimensionless front speed in the slumping phase, and d = d̃/H̃ is
the dimensionless height of the gravity current head.

The governing equations in the velocity–pressure formulation are solved in the
three-dimensional domain Lx1 × Lx2 × Lx3 = 17 × 1.5 × 1, and the length of the heavy
fluid is L0 = 8. The width of the domain Lx2 is chosen 1.5 times larger than the height of
the domain to allow for the development of a number of lobes and clefts in the spanwise
direction. The length of the domain Lx1 is chosen approximately more than two times
larger than the length of the heavy fluid L0, such that the front travels in the streamwise
direction at approximately constant speed in most of the region Lx1 − L0 until the front
approaches the boundary to within one dimensionless unit of length. Fourier expansion
with periodic boundary conditions is employed in the streamwise and spanwise directions,
i.e. the x1 and x2 directions. Chebyshev expansion with Gauss–Lobatto quadrature points
is employed in the wall-normal direction, i.e. the x3 direction. For the velocity field, we
employ the free-slip condition at the top boundary and the no-slip condition at the bottom
boundary. For the density field, we employ the no-flux condition at both the top and bottom
boundaries. Due to the use of periodic boundary conditions in the streamwise direction, the
numerical solutions to the governing equations (2.1)–(2.3) can be extended periodically in
the streamwise direction. Therefore, the gravity currents approaching the boundary in the
domain of interest can interact and collide with the counterflowing gravity currents in the
neighbouring periodic domain. It has been shown that the influence of the counterflowing
gravity currents due to periodic boundary conditions in the streamwise direction on the
propagation of gravity currents in the domain of interest is unimportant unless the gravity
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currents approach the boundary to within one length scale H̃ (Härtel et al. 2000b; Dai
et al. 2023).

The governing equations are solved using the time-splitting method (Canuto et al.
1988) with the low-storage third-order Runge–Kutta scheme (Williamson 1980) for
time advancement. The convection and buoyancy terms are treated explicitly, while the
diffusion terms are treated implicitly with a Crank–Nicolson scheme. For the convection
term, divergence and convective forms are used alternately (Durran 1999), and the 3/2-rule
technique is adopted for the aliasing removal (Canuto et al. 1988). The initial velocity
field was set with a quiescent condition in all simulations. The initial density field was
prescribed as unity in the heavy fluid region, and zero in the ambient fluid region, with
an error-function-type transition in the interface region. The initial density field was
seeded with minute, uniform, random disturbances, and the details of the initial density
field are described in Härtel, Michaud & Stein (1997), Cantero et al. (2006) and Dai
& Huang (2022). This computational methodology, i.e. direct numerical simulations, is
to solve the Navier–Stokes equations resolving all the scales of motion with appropriate
initial and boundary conditions. Each simulation produces a single realization of the flow,
and significant insight into the turbulent flow field can be gained from direct numerical
simulation that cannot be attained easily in the laboratory. Unlike the approaches based
on the Reynolds-averaged Navier–Stokes equations and large eddy simulations that
require turbulence models for the Reynolds stress and subgrid-scale stress, respectively,
direct numerical simulations do not suffer from the turbulence closure problem, and
stand out as being unrivalled in accuracy and in the level of description of the flow.
The de-aliased pseudo-spectral code has been employed in a series of high-resolution
simulations for lock-exchange flows (Cantero et al. 2007a,b; Dai & Huang 2022; Dai et al.
2023).

Since we are interested in the three-dimensional flow field within the head of a gravity
current under the presence of the lobe-and-cleft structure and steepening bulges above the
clefts, the Reynolds number in the problem must be chosen sufficiently high to sustain
the geometric features. In this study, we considered five Reynolds numbers, namely
Re = 1788, 3450, 8950, 13 000, 17 000, which correspond to the five front Reynolds
numbers, i.e. Ref = 427, 829, 2032, 2804, 3553. Following Dai & Huang (2022), we
employed the grids Nx1 × Nx2 × Nx3 = 616 × 56 × 88, 640 × 84 × 110, 1024 × 112 ×
180, 1260 × 140 × 220, 1440 × 160 × 256 in the three-dimensional simulations for the
preceding five Reynolds numbers. The grid resolution was chosen to achieve a decay of
four to six orders of magnitude in the Fourier spectra for all variables (Dai & Huang
2022), and to be consistent with the requirement that the grid spacing must be of the
order of O(Re Sc)−1/2 (Härtel et al. 2000b; Birman, Martin & Meiburg 2005). The time
step was chosen such that the Courant number remained below 0.5. The limited range
of Reynolds numbers considered in this study is due to the fact that in direct numerical
simulations, the numerical resolution is determined by the Reynolds number. Such
Reynolds number limitations are encountered not only in direct numerical simulations
but also in laboratory experiments, where the Reynolds number in the experiments is
determined by the finite size of the apparatus and the properties of the working fluids. In
the geophysical scale gravity currents, the Reynolds number often exceeds O(106), which
is still outside the range of Reynolds numbers achievable in direct numerical simulations
or laboratory experiments. Therefore, care must be taken when the findings from
direct numerical simulations or laboratory experiments are to be applied to large-scale
flows.
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x3

x2

x1
10.0

10.5

Figure 2. Three-dimensional view of the head of a gravity current propagating on a no-slip boundary. The
Reynolds number in the simulation is Re = 3450, and the time instance is chosen at t = 5.37 dimensionless
units (H̃ũ−1

b ). Geometry of the head is visualized by a density isosurface ρ = 0.1. Side plane: instantaneous
streamlines in a translating coordinate system. Bottom plane and back plane: density contours. Spacing between
consecutive grid lines in the x1 and x2 directions is chosen at one-tenth of a dimensionless unit.

3. Results

3.1. Geometric features of the head of a gravity current
When a gravity current is advancing over a no-slip bottom boundary, the geometry of
the head is of a three-dimensional nature, as shown in figure 2. The head has a series
of projecting noses or lobes that are slightly above the ground. Lobes of different sizes
may coexist, and the size of a lobe may change under the action of splitting of lobes
and merging of clefts during the course of propagation of a gravity current. Since the
mean lobe width and mean maximum lobe width at different Reynolds numbers in the
simulations have been confirmed in the accompanying paper by Dai & Huang (2022) to
satisfy quantitatively the empirical relationships by Simpson (1972), here we do not intend
to repeat the lobe width analysis, for the sake of conciseness.

In the lower part of the head, as shown in figure 2, the lobes are separated by deep
indentations, also known as clefts. The ambient fluid may flow directly into the clefts or
may be diverted around the lobes and then into the clefts, if not deflected upwards and
over the gravity current head. The ambient fluid ingested in the clefts, due to the density
difference with the heavy fluid within the head and the action of buoyancy, tends to rise
away from the bottom boundary in the head, as shown by the mushroom-like shapes in
the density contour in the back plane of figure 2. We will discuss how the ambient fluid
ingested in the clefts eventually ascends within the head of a gravity current in § 3.4.

In the upper part of the head, it is interesting to note that the upright surface above the
lobes and clefts is corrugated with parallel ridges and grooves, as also shown in figure 2.
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Detailed inspection shows that a steepening bulge protrudes from the upright surface above
each cleft. Therefore, the steepening bulges appear to be like ridges on the upright surface
above the clefts, while the regions between the steepening bulges appear to be like grooves
on the upright surface above the lobes. We will discuss the flow within the upper part of
the head and its connection with the steepening bulges on the upright surface above the
clefts in § 3.3.

Our observation on the geometric features of the head of a gravity current advancing on
a no-slip bottom boundary is in line with the experimental observations of Simpson (1969,
1972) and Simpson & Britter (1979), and with the numerical observations of Härtel et al.
(2000b), Cantero et al. (2007b) and Espath et al. (2015) in the literature. The mechanisms
responsible for the splitting of lobes and merging of clefts, which occur in the lower part
of the head, have been addressed in the accompanying paper by Dai & Huang (2022).
Previously, the flow in the lower part of the head was thought to be separated from the
flow in the upper part of the head based on the two-dimensional model of the flow within
the head envisioned by Simpson (1972) and Simpson & Britter (1979). Our focus in this
study is the flow not only in the lower part of the head but also in the upper part of the
head, and to address the questions regarding how the flow in the upper part of the head
is connected with the steepening bulges, how the flow in the lower part of the head is
interconnected to the flow in the upper part of the head, how the ambient fluid ingested in
the clefts eventually ascends within the head, and how the heavy fluid inside lobes may be
transported within the head.

3.2. Fluxes into and out of the head of a gravity current
In the translating coordinate system moving with the head, the flux of heavy fluid towards
the head (Q2) is required to be in balance with the flux of heavy fluid carried away by the
bottom boundary (Q3) and with the flux of heavy fluid convected away from the head into
the layer above the following current (Q4) to maintain the head stationary in the translating
coordinate system. The two-dimensional model by Simpson (1972) and Simpson & Britter
(1979) described the flow as two recirculating patterns: one is a downward circulation by
the effect of the bottom boundary, and the other is an upward circulation into the layer
above the following current.

Figure 3 shows the density field ρ(x2, x3) and streamwise velocity in the translating
coordinate system, u1(x2, x3) − uf , taken at a vertical slice at x1 = 10.04 from the back
of the head of the gravity current on a no-slip boundary at Re = 3450. From the density
field visualized by the colour contours, the white wavy line centred at x3 ≈ 0.33 shows
clearly the steepening bulges on the upright surface. The mushroom-like shapes close
to the bottom boundary in the density contours indicate that the ambient fluid ingested
in the clefts tends to rise in the head region. From the streamwise velocity field in the
translating coordinate system visualized by solid and dashed lines for positive and negative
contours, it is observed that there are jets of heavy fluid moving into the lobe regions that
are separated in the spanwise direction by the mushroom-like shapes in the clefts. In the
laboratory frame of reference, the streamwise flow speed in the jets of heavy fluid is greater
than the front speed in the slumping phase uf , and the maximum streamwise flow speed in
the jets of heavy fluid in the laboratory frame is denoted by u1,max. Our simulations show
that the maximum streamwise flow speed in the jets of heavy fluid occurs at approximately
0.38d behind the leading edge of the gravity current. Close to the bottom boundary, the
streamwise velocity in the translating coordinate system is negative, which indicates that a
flux of heavy fluid is carried away by the bottom boundary. In most of the region between
the jets of heavy fluid and the upright surface, the streamwise velocity is positive but of
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Figure 3. Density field ρ(x2, x3) and streamwise velocity field in the translating coordinate system,
u1(x2, x3) − uf , taken at a vertical slice at x1 = 10.04 from the back of the head of the gravity current on
a no-slip boundary at Re = 3450. The time instance is chosen at t = 5.37 dimensionless units (H̃ũ−1

b ). The
density field is visualized by the colour contours, and the streamwise velocity field in the translating coordinate
system is visualized by solid (dashed) lines for positive (negative) contours.

smaller magnitude than the streamwise velocity in the jets of heavy fluid. Close to the
upright surface, the streamwise velocity is again negative, which indicates that a flux of
heavy fluid is convected away from the head into the layer above the following current.

In order to measure quantitatively the flux of heavy fluid towards the head (Q2), the
flux of heavy fluid carried away by the bottom boundary (Q3) and the flux of heavy
fluid convected away from the head into the layer above the following current (Q4) in
the translating coordinate system, we define the fluxes here as

Q2 =
∫ Lx3

0

∫ Lx2

0
ρ(x2, x3) [u1(x2, x3) − uf ]

∣∣∣∣
u1>uf

dx2 dx3, (3.1)

Q3 = −
∫ δjet

0

∫ Lx2

0
ρ(x2, x3) [u1(x2, x3) − uf ]

∣∣∣∣
u1<uf

dx2 dx3 (3.2)

and

Q4 = −
∫ Lx3

δjet

∫ Lx2

0
ρ(x2, x3) [u1(x2, x3) − uf ]

∣∣∣∣∣
u1<uf

dx2 dx3, (3.3)

respectively. The integration to quantify the fluxes is performed at a streamwise location d
behind the leading edge of the gravity current in the translating coordinate system during
the slumping phase. Here, Q2, Q3 and Q4 are all positive quantities, and the negative signs
in (3.2) and (3.3) compensate for the negative values of [u1(x2, x3) − uf ] in the regions
close to the bottom boundary and close to the upright surface. The height of the top of the
jets is denoted by δjet, which separates in the wall-normal direction the flux of heavy fluid
carried away by the bottom boundary and the flux of heavy fluid convected away from the
head into the layer above the following current.

In addition to quantifying the fluxes of heavy fluid into and out of the head, we are also
interested in the flux of ambient fluid that is ingested in the clefts (Q1). In the translating
coordinate system moving with the head at uf , the head is stationary while the ambient
fluid is approaching the head uniformly over the whole cross-section from the far end.
The total flux of ambient fluid approaching the head is Q0 = uf Lx2Lx3 . It is not quite
straightforward to measure the flux of ambient fluid that is ingested in the clefts, as it is
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Re uf d Ref u1,max/uf Q1/Q0 (%) Q3/Q2 (%) Q4/Q2 (%)

1788 0.390 0.612 427 1.443+0.070
−0.034 5.46+0.38

−0.31 27.03+1.00
−0.27 72.96+0.68

−0.19

3450 0.409 0.587 829 1.466+0.062
−0.076 4.28+0.38

−0.38 23.05+0.08
−0.15 76.94+2.35

−1.40

8950 0.429 0.529 2032 1.511+0.205
−0.109 3.47+0.69

−0.44 20.28+1.00
−0.48 79.71+1.85

−2.36

13 000 0.433 0.498 2804 1.522+0.094
−0.141 3.08+0.60

−0.83 17.62+0.67
−1.53 82.37+1.25

−1.86

17 000 0.439 0.476 3553 1.538+0.185
−0.163 2.69+0.46

−0.57 15.50+0.45
−0.55 84.49+1.19

−1.74

Table 1. Quantitative information on the gravity current head in the slumping phase: Reynolds number (Re),
front speed in the slumping phase (uf ), height of the gravity current head (d), front Reynolds number (Ref ),
ratio of the maximum streamwise speed in the jets of heavy fluid in the laboratory frame to the front speed
in the slumping phase (u1,max/uf ), fraction of the total flux of ambient fluid ingested in the clefts (Q1/Q0),
fraction of the flux of heavy fluid towards the head carried away by the bottom boundary (Q3/Q2), and fraction
of the flux of heavy fluid towards the head convected away from the head into the layer above the following
current (Q4/Q2).

not known a priori whether or not an element of ambient fluid approaching the head will
be ingested in one of the clefts. Due to the three-dimensional nature of the geometry of the
lobes and clefts, the ambient fluid approaching the head may flow directly into the clefts,
be diverted around the lobes and then into the clefts, or alternatively be deflected upwards
and over the head. Here, we measure indirectly the flux of ambient fluid ingested in the
clefts (Q1) by first estimating the flux of ambient fluid that is deflected upwards and over
the head of a gravity current, and then subtracting the flux of ambient fluid over the head
from the total flux of ambient fluid approaching the head (Q0).

Table 1 lists the quantitative information on the gravity current head in the slumping
phase for all cases considered in this study. The ratio of the maximum streamwise flow
speed in the jets of heavy fluid in the laboratory frame to the front speed approaches
1.538 as the Reynolds number increases to Re = 17 000 (Ref = 3553). The fraction of
the flux of heavy fluid towards the head carried away by the bottom boundary (Q3/Q2)
decreases as the Reynolds number increases, and approaches 15.50 % as the Reynolds
number increases to Re = 17 000 (Ref = 3553). The fraction of the flux of heavy fluid
towards the head convected away from the head into the layer above the following current
(Q4/Q2) increases as the Reynolds number increases, and approaches 84.49 % as the
Reynolds number increases to Re = 17 000 (Ref = 3553). Our findings on the fractions
Q3/Q2 and Q4/Q2 appear to be more consistent with the observations by Simpson &
Britter (1979) than with Winant & Bratkovich (1977).

Table 1 also lists the fraction of the total flux of ambient fluid ingested in the clefts
Q1/Q0, which approaches 2.69 % as the Reynolds number increases to Re = 17 000
(Ref = 3553). The relationship that the fraction Q1/Q0 decreases as the Reynolds number
increases qualitatively agrees with the findings of Härtel et al. (2000b). However,
quantitatively, the fraction Q1/Q0 in this study is discernibly greater than the estimates of
1.25 % at Re ≈ 3.16 × 103 (Ref ≈ 700) to 0.34 % at Re ≈ 1.26 × 105 (Ref ≈ 3.2 × 104)
based on the two-dimensional simulations in Härtel et al. (2000b). Previously, only
the thin layer of ambient fluid below the stagnation streamline close to the bottom
in the two-dimensional simulations was deemed to be ingested into the head. In the
three-dimensional simulations, the ambient fluid approaching the head may flow directly
into the clefts or may be diverted around the lobes and then into the clefts. As can be
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expected, the fraction of the total flux of ambient fluid ingested in the clefts (Q1/Q0) is
apparently greater than the estimates based on previous two-dimensional simulations in
the literature.

3.3. Flow field within the head of a gravity current
We have shown in § 3.1 the three-dimensional geometric features of the head of a gravity
current. Here, we will examine the flow field within the head of a gravity current in
detail. Previous direct numerical simulations have demonstrated that in the lower part
of the head of a gravity current, there is a tooth-like vortex inside each lobe. The two
legs of the tooth-like vortex have opposite senses of rotation. Along the leading edge of a
gravity current, a series of tooth-like vortices align in the spanwise direction, and a pair of
counter-rotating vortices are positioned on the left-hand side and right-hand side of each
cleft (Espath et al. 2015; Dai & Huang 2022).

To illustrate the flow field within the head, figure 4 shows the velocity field in the
laboratory frame of reference at two horizontal slices for the gravity current propagating
on a no-slip boundary at Re = 3450. The time instance is chosen at t = 5.37 dimensionless
units (H̃ũ−1

b ). One horizontal slice is taken at x3 = 0.05 (figure 4a) in the lower part of the
head, where the lobes and clefts are forming at the leading edge, and the other horizontal
slice is taken at x3 = 0.33 (figure 4b) in the upper part of the head, where the steepening
bulges are protruding from the upright surface above the clefts. Figure 4(a) shows that in
the lower part of the head, the streamwise velocity is higher in the lobes than in the clefts,
and the horizontal flow velocity tends to diverge from the lobes and converge to the clefts.
Therefore, the streamwise velocity in the lower part of the head may vary within the lobe in
the spanwise direction. In the left-hand part of a lobe, the streamwise velocity decreases in
the positive spanwise direction, i.e. ∂u1/∂x2 < 0, and in the right-hand part of a lobe, the
streamwise velocity increases in the positive spanwise direction, i.e. ∂u1/∂x2 > 0. In the
lower part of the head, the wall-normal velocity is downwards in the lobes and upwards in
the clefts and in the leading edge of the lobes. As we will discuss later, the upward motion
in the clefts may not penetrate directly into the upper part of the head, but the upward
motion in the leading edge of the lobes may continue to do so in immediate proximity
behind the upright surface in the upper part of the head. Figure 4(b) shows that in the
upper part of the head, the streamwise velocity is higher away from the upright surface than
in immediate proximity behind the upright surface. Detailed inspection indicates that with
the presence of the steepening bulges on the upright surface, the streamwise velocity in the
upper part of the head may vary in the spanwise direction in the region close to the upright
surface. Consequently, in the left-hand part of a steepening bulge, the streamwise velocity
decreases in the positive spanwise direction, i.e. ∂u1/∂x2 < 0, and in the right-hand part
of a steepening bulge, the streamwise velocity increases in the positive spanwise direction,
i.e. ∂u1/∂x2 > 0. In the upper part of the head, the wall-normal velocity is downwards
away from the upright surface and upward in immediate proximity behind the upright
surface. Our findings suggest that while the downward motion of heavy fluid within the
head may continue from the upper part of the head to the lobes in the lower part of the
head, the upward motion of heavy fluid within the head may also continue from the leading
edge of the lobes in the lower part of the head to the region in immediate proximity behind
the upright surface in the upper part of the head. The ambient fluid ingested in the clefts
tends to rise away from the bottom boundary in the lower part of the head, but the rising
ambient fluid may not penetrate directly into the upper part of the head. As we will show
later using tracers, the rising ambient fluid is convected towards the leading edge of a
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Figure 4. Velocity field in the laboratory frame of reference taken at two horizontal slices for the gravity
current propagating on a no-slip boundary at Re = 3450. The time instance is chosen at t = 5.37 dimensionless
units (H̃ũ−1

b ), and the two horizontal slices are taken at (a) x3 = 0.05 and (b) x3 = 0.33 to illustrate the flow
in the lower part of the head and the flow in the upper part of the head, respectively. The horizontal velocity
(u1, u2) is shown by vectors, and the vertical velocity u3 is shown by the thin line contours with solid (dashed)
line for positive (negative) vertical velocity. The thick solid lines indicate the location of the front and the
location of the upright surface visualized by a density contour ρ = 0.1.

gravity current before being carried upwards from the leading edge to the upright surface
in the upper part of the head.

The flow field within the head may be visualized complementarily from a vertical slice
within the head of a gravity current. Figure 5 shows the velocity field in the translating
coordinate system, and the x1-component of the vorticity field ω1 = ∂u3/∂x2 − ∂u2/∂x3
at two vertical slices for the gravity current propagating on a no-slip boundary at Re =
3450. The time instance is chosen at t = 5.37 dimensionless units (H̃ũ−1

b ). One vertical
slice is taken at x1 = 10.21 (figure 5a), which is at the leading edge of the lobes, and the
other vertical slice is taken at x1 = 10.04 (figure 5b), which is at the steepening bulges
approximately 0.38d behind the leading edge of the gravity current. In the lower part of
the head, the flow diverges from the lobe centres and converges to the clefts, and the flow
is upwards in the clefts. As shown by figure 5(a), there is a region of positive x1 vorticity in
the left-hand part of a lobe, and a region of negative x1 vorticity in the right-hand part of a
lobe, in the range 0.03 � x3 � 0.18. Our results in the lower part of the head are in accord
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Figure 5. Velocity field in the translating coordinate system and x1-component of the vorticity field taken at
two vertical slices for the gravity current propagating on a no-slip boundary at Re = 3450. The time instance
is chosen at t = 5.37 dimensionless units (H̃ũ−1

b ). One vertical slice is taken at (a) x1 = 10.21, which is at the
leading edge of the lobes, and the other vertical slice is taken at (b) x1 = 10.04, which is at the steepening
bulges approximately 0.38d behind the leading edge of the gravity current. The velocity (u2, u3) in the vertical
slices is shown by vectors, and the streamwise velocity in the translating coordinate system is shown by the
thin line contours with solid (dashed) line for positive (negative) values. The streamwise vorticity field ω1 is
visualized by the colour contours. The thick solid lines indicate the surface of the head visualized by a density
contour ρ = 0.1.

with the findings of tooth-like vortices in Dai & Huang (2022). Interestingly, as shown by
figure 5(b), in the upper part of the head, there is a region of positive x1 vorticity in the
left-hand part of a steepening bulge, and a region of negative x1 vorticity in the right-hand
part of a steepening bulge. In the translating coordinate system moving with the head, the
streamwise velocity is negative (out of the head) in the region close to the upright surface
and in the region close to the bottom boundary, and positive (into the head) in the jets of
heavy fluid.

In order to identify the origin of the streamwise vorticity in the lower and upper parts of
the head, we study the x1-component of the vorticity equation,

Dω1

Dt
= ω1

∂u1

∂x1︸ ︷︷ ︸
S1

− ∂u3

∂x1

∂u1

∂x2︸ ︷︷ ︸
S2

+ ∂u2

∂x1

∂u1

∂x3︸ ︷︷ ︸
S3

− ∂ρ

∂x2︸ ︷︷ ︸
S4

+ 1
Re

∇2ω1︸ ︷︷ ︸
S5

, (3.4)

where S1, S2, S3, S4 and S5 represent the stretching of x1 vorticity, twisting of x2 vorticity,
tilting of x3 vorticity, baroclinic production of vorticity, and diffusion of x1 vorticity,
respectively. We should remark that the component (∂u1/∂x3)(∂u1/∂x2) in the twisting of
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Figure 6. Contribution of the twisting of x2 vorticity, i.e. the S2 term, and the contribution of the baroclinic
production of vorticity, i.e. the S4 term, to the time rate of change of the streamwise vorticity, i.e. Dω1/Dt, at
two vertical slices for the gravity current propagating on a no-slip boundary at Re = 3450. The time instance
is chosen at t = 5.37 dimensionless units (H̃ũ−1

b ). One vertical slice is taken at (a) x1 = 10.21, which is at the
leading edge of the lobes, and the other vertical slice is taken at (b) x1 = 10.04, which is at the steepening bulges
approximately 0.38d behind the leading edge of the gravity current. The S2 term is visualized by the colour
contours, and the S4 term is visualized by the thin solid (dashed) lines for positive (negative) contributions.
The thick solid lines indicate the surface of the head visualized by a density contour ρ = 0.1.

x2 vorticity and the component −(∂u1/∂x2)(∂u1/∂x3) in the tilting of x3 vorticity cancel
exactly and have no net effects.

Figure 6 shows the contribution of the twisting of x2 vorticity, i.e. the S2 term, and
the contribution of the baroclinic production of vorticity, i.e. the S4 term, to the time
rate of change of the streamwise vorticity, Dω1/Dt, at two vertical slices for the gravity
current propagating on a no-slip boundary at Re = 3450. The time instance is chosen at
t = 5.37 dimensionless units (H̃ũ−1

b ). Following figure 5, one vertical slice is taken at
x1 = 10.21 (figure 6a) at the leading edge of the lobes, and the other vertical slice is taken
at x1 = 10.04 (figure 6b) at the steepening bulges approximately 0.38d behind the leading
edge of the gravity current. The contributions of the stretching of x1 vorticity, tilting of x3
vorticity and diffusion of x1 vorticity, i.e. the S1, S3 and S5 terms, are less than or even
of opposite sign to the time rate of change of streamwise vorticity, and are not shown
for brevity. From comparison between figures 5 and 6, it is worth noting that both the
streamwise vorticity at the leading edge of the lobes in the lower part of the head and the
streamwise vorticity at the steepening bulges in the upper part of the head are contributed
from the twisting of x2 vorticity, i.e. the S2 term shown by the colour contours, and the
baroclinic production of vorticity, i.e. the S4 term shown by the thin solid and dashed lines.
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It is interesting to note that in figure 5(b), the regions of positive and negative streamwise
vorticity in the upper and lower parts of the head are positioned at staggered spanwise
locations. As we discussed above, the steepening bulges protrude from the upright surface
above the clefts, and due to the geometric features of the lobes and the steepening
bulges, the streamwise velocity may vary in the spanwise direction. The variation of the
streamwise velocity in the spanwise direction results in positive (negative) ∂u1/∂x2 in the
right-hand (left-hand) part of a lobe, and positive (negative) ∂u1/∂x2 in the right-hand
(left-hand) part of a steepening bulge. Therefore, the spanwise vorticity is twisted by
∂u1/∂x2 into the streamwise direction. The contribution of the baroclinic production
of vorticity, i.e. the S4 term, reinforces the twisting of spanwise vorticity, i.e. the S2
term, to the time rate of change of the streamwise vorticity. While the ambient fluid
rising from the clefts creates positive (negative) baroclinic production of vorticity in the
left-hand (right-hand) part of a lobe, the steepening bulge on the upright surface creates
positive (negative) baroclinic production of vorticity in the left-hand (right-hand) part of
a steepening bulge on the upright surface.

3.4. Visualization of the flow using tracers
In order to address the questions regarding how the ambient fluid ingested in the clefts
ascends within the head of a gravity current, and whether the heavy fluid inside a lobe can
be transported to neighbouring lobes in the spanwise direction, we adopt the technique in
Dai, Huang & Hsieh (2021) and Dai et al. (2023) to introduce two passive tracers in the
simulations in order to track the motion of the ambient fluid ingested in the clefts and
the motion of the heavy fluid inside a lobe. The idea of introducing the passive tracers in
the simulations is the same as injecting blobs of dye for visualization in the experiments
but without intrusively disturbing the propagating gravity current. The passive tracers in
the simulations are assumed to have diffusion coefficient κ̃ identical to that of the density
field, and in like manner follow the transport equation (2.3).

Figure 7 shows the time evolution of the two tracers implemented in the simulations
for the gravity current propagating on a no-slip boundary at Re = 3450. The red tracer
is used to track the motion of the ambient fluid ingested in and rising from a cleft, and
the blue tracer is used to track the motion of the heavy fluid inside a lobe. The initial
concentrations for both the red and blue tracers were specified at the time instance t = 5.37
dimensionless units (H̃ũ−1

b ). The initial concentration for the red tracer was set at unity in a
mushroom-like shape region, where the ambient fluid ingested in the cleft was rising from
the bottom boundary, and zero elsewhere. The initial concentration for the blue tracer
was set at unity in a rectangular parallelepiped region, where the heavy fluid was inside
the lobe, and zero elsewhere. The evolution of the red tracer shows that the ambient fluid
ingested in the cleft rises from the bottom boundary and is being swept towards the leading
edge of a gravity current. Afterwards, the ambient fluid rising from the cleft is being
carried upwards from the leading edge to the upright surface above the left and right
neighbouring lobes. The evolution of the blue tracer shows that the heavy fluid inside a
lobe may descend while approaching the leading edge of a gravity current. After moving
close to the bottom boundary, the heavy fluid inside a lobe may flow forwards towards
the leading edge and outwards towards the neighbouring clefts, and ultimately be carried
upwards to the upright surface above the left and right neighbouring lobes. Our results
indicate that the ambient fluid ingested in a cleft may rise from the bottom boundary to the
upright surface through the connection of upward motion between the lower part of the
head and the upper part of the head in the leading edge of the lobes, and the heavy fluid
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Figure 7. Time evolution of two passive tracers implemented in the simulations for the gravity current
propagating on a no-slip boundary at Re = 3450. Time instances are chosen at (a) t = 5.37 , (b) t = 5.59,
(c) t = 6.22 and (d) t = 7.57 dimensionless time units (H̃ũ−1

b ). The red and blue tracers are used to track the
motion of the ambient fluid ingested in a cleft and the motion of the heavy fluid inside a lobe, respectively. The
geometry of the head is visualized by a density isosurface ρ = 0.1 with transparent light blue colour. The red
and blue tracers are visualized by concentration isosurfaces of 0.1. Spacing between consecutive grid lines in
the x1 and x2 directions is chosen at one-tenth of a dimensionless unit.

inside a lobe may be transported in the streamwise direction and in the spanwise direction
across the lobes and clefts.

4. Conclusions

Gravity currents in the slumping phase from a full-depth lock-exchange configuration
with a no-slip boundary are investigated by means of three-dimensional high-resolution
simulations of the incompressible Navier–Stokes equations with the Boussinesq
approximation. This study complements the findings of tooth-like vortices in Dai & Huang
(2022), and our focus is on the flow within the head of a gravity current propagating on a
no-slip boundary.

Our simulations successfully exhibit the geometric features of the head as observed
in the laboratory experiments. The geometry of the head is of a three-dimensional nature,
which has a series of projecting lobes separated by clefts. Furthermore, the upright surface
above the lobes and clefts is corrugated, with steepening bulges protruding from the
upright surface above the clefts.

997 A42-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

80
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.807


A. Dai and Y.-L. Huang

The flow within the head of a gravity current is also of a three-dimensional nature. In
the translating coordinate system, the gravity current continuously feeds the head from
behind through jets of heavy fluid into the lobe regions. The flux of heavy fluid from the
gravity current towards the stationary head (Q2) is in balance with the flux of heavy fluid
carried away by the bottom boundary (Q3) and the flux of heavy fluid convected away
from the head into the layer above the following current (Q4). The ratios Q3/Q2 ≈ 16 %
and Q4/Q2 ≈ 84 % at Reynolds number Re = 17 000 (Ref = 3553) appear to be consistent
with the laboratory observations by Simpson & Britter (1979). No measurements of the
above-mentioned fluxes and ratios have been reported for the head of geophysical gravity
currents in the literature. However, Simpson & Britter (1979, 1980) indicate that by
comparing with the shape of a dust-laden thunderstorm outflow in Sudan (Lawson 1971)
in which the Reynolds number can be estimated to be approximately O(108), the shape
of the gravity current head is essentially independent of the front Reynolds number when
Ref � O(103). Our results of the fluxes and ratios within the head can serve as a reasonable
guide for the gravity currents at higher Reynolds numbers, as Simpson & Britter (1979,
1980) alluded to. The fraction of the total flux of ambient fluid ingested in the clefts
(Q1/Q0) decreases as the Reynolds number increases, but appears discernibly greater than
the corresponding estimates based on the two-dimensional simulations in Härtel et al.
(2000b). The reason for this discrepancy is that in the three-dimensional simulations, the
ambient fluid may flow into the clefts directly or may be diverted around the lobes before
entering the clefts, while in the two-dimensional simulations, only a thin layer of ambient
fluid below the stagnation streamline close to the bottom boundary was deemed to be
entering the head. It should be stressed that although the ratio Q1/Q0 is relatively small, it
is essential in the self-sustaining mechanism of the lobe-and-cleft structure, as elucidated
by Dai & Huang (2022), and is nevertheless non-trivial for the geophysical gravity currents
at very large Reynolds numbers, e.g. a Sudanese haboob pictured in figure 3.14 of Turner
(1979), where the consequent lobe-and-cleft structure is present.

In the lower part of the head of a gravity current, the horizontal velocity diverges from
the lobes and converges to the clefts, and the wall-normal velocity is downwards in the
lobe regions and upwards in the clefts and in the leading edge of the lobes. In the upper
part of the head of a gravity current, the streamwise velocity is higher away from the
upright surface, and the wall-normal velocity is downwards away from the upright surface
and upwards only in immediate proximity behind the upright surface. Our findings suggest
that the downward motion of heavy fluid within the head may continue from the upper part
of the head to the lower part of the head in the lobe regions, and the upward motion of
heavy fluid within the head may continue from the leading edge of the lobes in the lower
part of the head to the region in immediate proximity behind the upright surface in the
upper part of the head. Therefore, the lower part of the head and the upper part of the
head are interconnected, and the heavy fluid within the head may circulate from the upper
part of the head to the lower part of the head in the lobe regions, and ultimately back
to the upper part of the head through the leading edge of the lobes. Be mindful that in
the two-dimensional model envisioned by Simpson (1972) and Simpson & Britter (1979),
the upward circulation in the upper part of the head was thought to be separated from
the downward circulation in the lower part of the head by a stagnation streamline, and it
was not permissible for the heavy fluid in the upper part of the head to reach the bottom
boundary in the lower part of the head. Our results shed a novel light on the understanding
of the three-dimensional flow field within the head region.

Based on the results from a vertical slice taken in the spanwise direction within the head,
there are regions of positive and negative streamwise vorticity not only in the lower part
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but also in the upper part of the head. The regions of positive and negative streamwise
vorticity in the upper part and in the lower part of the head are positioned at staggered
spanwise locations. We have shown that both the streamwise vorticity at the leading edge
of the lobes in the lower part of the head and the streamwise vorticity at the steepening
bulges in the upper part of the head are contributed from the twisting of spanwise vorticity
into the streamwise direction, due to the geometric features of the lobes and the steepening
bulges, and contributed from the baroclinic production of vorticity.

Visualization using tracers shows the motion of the ambient fluid ingested in the clefts
and the motion of the heavy fluid inside lobes. The ambient fluid ingested in and rising
from a cleft is being swept towards the leading edge of a gravity current before being
carried upwards from the leading edge to the upright surface above the left and right
neighbouring lobes. The heavy fluid inside a lobe may move forwards towards the leading
edge and outwards towards the neighbouring clefts, and ultimately be carried upwards
to the upright surface above the left and right neighbouring lobes. Our results indicate
that the heavy fluid within the head of a gravity current can be transported not only in
the streamwise direction but also in the spanwise direction across the lobes and clefts.
With the knowledge that the erosive power of a gravity current is concentrated in the head
region, it is plausible that the bed material, once resuspended by a gravity current, may
be lifted up away from the bottom boundary and be dispersed in both the streamwise and
spanwise directions.

The present study complements existing findings in the accompanying paper by Dai &
Huang (2022), and provides new insights into the three-dimensional flow field within the
head of a gravity current.
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