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Abstract. We present a novel treatment of set theory in a four-valued paraconsistent and para-
complete logic, i.e., a logic in which propositions can be both true and false, and neither true nor
false. Our approach is a significant departure from previous research in paraconsistent set theory,
which has almost exclusively been motivated by a desire to avoid Russell’s paradox and fulfil naive
comprehension. Instead, we prioritise setting up a system with a clear ontology of non-classical
sets, which can be used to reason informally about incomplete and inconsistent phenomena,
and is sufficiently similar to ZFC to enable the development of interesting mathematics.

We propose an axiomatic system BZFC, obtained by analysing the ZFC-axioms and
translating them to a four-valued setting in a careful manner, avoiding many of the obstacles
encountered by other attempted formalizations. We introduce the anti-classicality axiom
postulating the existence of non-classical sets, and prove a surprising results stating that the
existence of a single non-classical set is sufficient to produce any other type of non-classical set.

Our theory is naturally bi-interpretable with ZFC, and provides a philosophically satisfying
view in which non-classical sets can be seen as a natural extension of classical ones, in a similar
way to the non-well-founded sets of Peter Aczel [1].

Finally, we provide an interesting application concerning Tarski semantics, showing that
the classical definition of the satisfaction relation yields a logic precisely reflecting the non-
classicality in the meta-theory.

§1. Introduction. The Zermelo–Fraenkel axiom system, ZFC, is generally accepted
as the foundation of mathematics. ZFC is formalized in classical logic, in which any
statement is either true or false, and cannot be both at the same time. Is there a possible
interest in considering a set theory in which statements can be neither true nor false
(paracomplete) or, more significantly, both true and false (paraconsistent)?

The most common motivation for developing such a theory has been the wish to
avoid Russell’s paradox and maintain some form of naive comprehension, i.e., the
axiom scheme “∃x∀y(y ∈ x ↔ ϕ(y))” for every ϕ. In spite of the inconsistency of
this scheme, many philosophers have found it more natural and intuitive than ZFC,

Received: September 30, 2022.
2020 Mathematics Subject Classification: Primary 03E70, 03B53, 03B60.
Key words and phrases: non-classical set theory, paraconsistent set theory, paraconsistent logic,

paraconsistent and paracomplete set theory.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic
Logic. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1 doi:10.1017/S1755020323000382

https://doi.org/10.1017/S1755020323000382 Published online by Cambridge University Press

https://orcid.org/0000-0002-1763-876X
https://orcid.org/0000-0003-1594-340X
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1017/S1755020323000382
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1755020323000382&domain=pdf
https://doi.org/10.1017/S1755020323000382


2 YURII KHOMSKII AND HRAFN VALTÝR ODDSSON

and have proposed alternative solutions, among others by adopting a logic in which
contradictory statements can co-exist without trivializing. See, for instance, the work
of Graham Priest [22], Greg Restall [24], Thierry Libert [17], the survey by Roland
Hinnion [14], and the recent book by Zach Weber [28].

Nevertheless, it is not hard to see, and has been known for a long time (see, e.g., [12]),
that paraconsistency or paracompleteness alone are not sufficient to sustain naive set
theory, since one can easily appeal to a version of Curry’s paradox instead, and consider

R = {x : (x ∈ x) → ϕ}
for an arbitrary proposition ϕ. Any logic satisfying Modus Ponens and the implication-
introduction rule can derive ϕ from the assumption that R is a set,1 showing that naive
comprehension can lead to a trivial theory without mentioning the negation connective
at all. The only way to truly avoid paradoxes is to consider a logic that either does not
have an implication (such as the logic of paradox of [22]), or whose “→”-symbol is
so far removed from its common usage that it violates basic principles of reasoning.
Either way, the price one has to pay seems too high.

Perhaps this pre-occupation with naive comprehension explains why most work in
paraconsistent set theory has so far remained speculative and philosophical in nature,
never really ‘lifting off the ground’.

But what if we focus our attention on other reasons for studying paracomplete
and paraconsistent phenomena in mathematics? After all, there are many ‘interesting
inconsistencies’ in mathematics quite aside of the semantic paradoxes. To name a
prominent example, think of Kunen’s inconsistency, a result that puts an upper bound
on the hierarchy of large cardinal axioms [16]. It is conceivable that paraconsistency
can shed new light on this or related phenomena. On a more down-to-earth level,
applications are conceivable in computer science, for example in the study of databases
or structures with incomplete or inconsistent information. Following Belnap [7, 8],
suppose we want an automated system to derive logical consequences from the
information in a given database. Presumably, this system should not be able to derive
any consequence whatsoever merely from the fact that A(x) ∧ ¬A(x) holds, which
could be due to a wrong entry in the database. Some other, more specific applications
to mathematical problems are listed in Section 11.

If a solid foundational framework for paracomplete and paraconsistent set theory
is to be set up, it should, in our view, satisfy a number of criteria:

1. It should be intuitive and philosophically motivated.
2. It should be sufficiently similar to ZFC to enable the development of interesting

mathematics in it.
3. There should be a tangible ‘ontology’, i.e., a working mathematician should be

able to understand and ‘visualize’ paracomplete and paraconsistent sets and
how to manipulate them, without a need to resort to formalism or double-check
the axioms.

4. The existence of paraconsistent and paracomplete sets should be guaranteed by
virtue of the axioms, and these sets should ‘extend’ the von Neumann universe
of classical sets.

1 The proof is exactly the same as the proof of Russell’s paradox with ϕ replacing ⊥.
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PARACONSISTENT AND PARACOMPLETE ZFC 3

5. It should be possible to construct a model for this theory starting from ZFC,
showing that it is no more problematic than classical set theory.

This paper provides an exposition of a system which, we claim, satisfies all of these
criteria. To the best of our knowledge, nothing like this has been done before.

Our theory is established in the logic BS4: a four-valued logic based on early
developments by Dunn [11], Belnap [7, 8] and [4], later appearing under the name
CLoNs in [6], and the predicate version due to Omori, Sano and Waragai [20, 25]
(from where we take its name). These logics are called logics of formal inconsistency by
Carnieli et al. [9]. In Section 2 we will introduce BS4, with a focus on semantics.

The axiom system we propose is called BZFC. Intuitively, it can be seen as
axiomatising a universe that properly extends the classical universe of sets and includes
incomplete sets (u such that for some x the statement x ∈ u ∨ x /∈ u fails to be true)
and inconsistent sets (u such that for some x, x ∈ u ∧ x /∈ u is true). Each non-classical
set u can be described by a positive extension (the collection of all x such that x ∈ u is
true) and a negative extension (the collection of all x such that x ∈ u is false).2

The first step of our task is finding an appropriate translation of the ZFC axioms to
the non-classical setting. This is more laborious than might be expected, and previous
attempts (e.g., [9]) may well have stumbled over an insufficiently careful treatment of
the ZFC axioms in this regard. It would be a mistake to copy them literally; instead, one
must think what the axioms were designed to achieve, and fine-tune the formulation
to match this design. This is done in Sections 3 and 4.

This leads us to an intermediate system, which we call PZFC: an appropriate
translation of the old axioms but not yet guaranteeing that any non-classical sets
do exist. Indeed, PZFC together with the statement that all sets are classical, is easily
seen to be equivalent to ZFC. The actual system BZFC is then obtained by adding
to PZFC an anti-classicality axiom, postulating the existence of paraconsistent and
paracomplete sets, which is done in Section 5. Here we prove an unexpected, yet
surprisingly simple result showing that, essentially, all ‘anti-classicality axioms’ are
equivalent (Theorem 5.2).

Hinging on this crucial fact, it is not difficult to construct a model W of BZFC
starting from classical ZFC. On the other hand, in BZFC itself we can define an inner
model HCL of ‘hereditarily classical’ sets and prove (in BZFC) that HCL |= ZFC.
In addition, this mutual interpretation is reversible leading to the fact that BZFC is
bi-interpretable with ZFC (Theorem 9.1) These results are proved in Sections 7–9,
preceded by Section 6 in which we build up some needed technology.

Some readers may feel that the bi-interpretability result limits the significance of
our theory, but we would argue for quite the contrary. To us, the resulting picture is
philosophically very satisfying: if one’s position favours the existence of paracomplete
and paraconsistent sets, one can view BZFC as describing the true universe, an
enrichment of the usual universe of classical sets. ZFC is the theory of the inner
model HCL in which all of classical mathematics takes place. As long as we are
only interested in classical mathematics, we can stay within HCL; but whenever we
encounters phenomena better described by paracomplete or paraconsistent sets, we
can look beyond and take full advantage of BZFC.

2 We will actually talk about the complement of the negative extension and call it the ?-
extension; the reason is explained in Section 3.
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On the other hand, if one is firmly committed to classical logic and cannot accept
true contradictions or the lack of excluded middle, one can still consider BZFC a
useful theory, namely the theory of the model W, using the semantics of BS4. All of
paraconsistent and paracomplete set theory as layed out in this paper, can then be
understood as formal statements that W believes to be true; but this fact is established
in classical ZFC.

Here, we would like to draw a parallel to another extension of classical set theory,
namely the theory ZFA of non-well-founded sets of Peter Aczel [1]. Note that ZFA is
also bi-interpretable with ZFC, and a similar philosophical freedom is available to the
reader as above. At the same time, ZFA and the concept of non-well-founded sets has
found many useful applications in mathematics, philosophy and computer science.

The final Section 10 is devoted to a question of interest for the philosophy of
logic, namely the relationship between properties of a formal language and the meta-
language in which it is defined. Starting from PZFC, we show that, if a consequence
relation |= is formalised with standard Tarski semantics, then the logic which is sound
and complete with respect to those semantics satisfies the same paraconsistency and
paracompleteness as in the meta-theory.

The work in this paper was carried out in the course of the Master’s thesis of the
second author [19]. On occasion, we will refer to the thesis which goes in more depth
on some points, and contains more details which have been left out of this paper for
clarity.

§2. The logic BS4. The logic BS4 is due to [25] with the exception that we take
the contradictory constant ⊥ as primary instead of the classicality operator ◦. In this
section, the meta-theory is classical ZFC.

2.1. Syntax and semantics. The main idea behind BS4 is the separation of truth
from falsity, i.e., if ϕ is a sentence and M a model, then ϕ can be or not be true in M
and, independently, can be or not be false in M. This is achieved by considering two
interpretation of all predicate symbols (a “true” and a “false” interpretation), adapting
the inductive definition for the connectives and quantifiers, and thus obtaining two
satisfaction relations: |=T and |=F . For convenience we will consider vocabularies
without function symbols.

Definition 2.1 (The syntax of BS4). The syntax of BS4 is the usual syntax of first-order
logic, except that we use “∼” to denote negation. We also use the constant connective ⊥.

Definition 2.2 (T/F-models). Suppose � is a vocabulary with constant and relation
symbols. A T/F-model M consist of a domain M together with the following:

• An element cM ∈M for every constant symbol c.
• For every n-ary relation symbol R, a “positive” interpretation (RM)+ ⊆Mn and

a “negative” interpretation (RM)– ⊆Mn.
• A binary relation =+ which coincides with the true equality relation; and a binary

relation =– satisfying a =– b iff b =– a.

Definition 2.3 (T/F-semantics for BS4). Suppose � is a vocabulary without function
symbols and M a T/F-model. We define |=T and |=F inductively:

1. M |=T (t = s)[a, b] ⇔ a =+ b.
M |=F (t = s)[a, b] ⇔ a =– b.
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2. M |=T R(t1, ... , tn)[a1 ... an] ⇔ R+(a1, ... , an) holds.
M |=F R(t1, ... , tn)[a1 ... an] ⇔ R–(a1, ... , an) holds.

3. M |=T ∼ϕ ⇔ M |=F ϕ.
M |=F ∼ϕ ⇔ M |=T ϕ.

4. M |=T ϕ ∧ � ⇔ M |=T ϕ and M |=T �.
M |=F ϕ ∧ � ⇔ M |=F ϕ or M |=F �.

5. M |=T ϕ ∨ � ⇔ M |=T ϕ or M |=T �.
M |=F ϕ ∨ � ⇔ M |=F ϕ and M |=F �.

6. M |=T ϕ → � ⇔ if M |=T ϕ then M |=T �.
M |=F ϕ → � ⇔ M |=T ϕ and M |=F �.

7. M |=T ϕ ↔ � ⇔ (M |=T ϕ if and only if M |=T �).
M |=F ϕ ↔ � ⇔ (M |=T ϕ and M |=F �) or (M |=F ϕ and M |=T �).

8. M |=T ∃xϕ(x) ⇔ M |=T ϕ[a] for some a ∈M .
M |=F ∃xϕ(x) ⇔ M |=F ϕ[a] for all a ∈M .

9. M |=T ∀xϕ(x) ⇔ M |=T ϕ[a] for all a ∈M .
M |=F ∀xϕ(x) ⇔ M |=F ϕ[a] for some a ∈M .

10. M |=T ⊥ ⇔ never.
M |=F ⊥ ⇔ always.

If M |=T ϕ then we say that ϕ is true in M, and if M |=F ϕ then we say that ϕ is
false in M.

Definition 2.4 (Semantic consequence). If Σ is a set of formulas andϕ another formula,
then semantic consequence is defined by

Σ �BS4 ϕ

iff for every T/F-model M, if M |=T Σ then M |=T ϕ.

Remark 2.5. While most of the inductive steps in Definition 2.3 are straightforward,
two points need to be addressed:

1. The falsum symbol “⊥” should not be understood as just a ‘contradiction’ but rather
as a strong form of falsity, one which cannot be satisfied even in ‘paraconsistent’
models. Some readers might initially find the addition to ⊥ to the logic distasteful,
as it seems to run counter to the idea of paraconsistency. However, in a vocabulary
with finitely many relation symbols, one can write the following sentence:

∀x∀y(x = y ∧ x �= y) ∧
∧
R∈S

∀x1 ...∀xn(R(x1, ... , xn) ∧ ∼R(x1, ... , xn)).

This sentence is satisfiable, but only in the trivial model consisting of exactly one
object a, which is both equal and not equal to itself (a =+ a and a =– a) and for
which all relation-interpretations are true and false. Adding “⊥” to the language
is equivalent to disregarding this trivial model. Since we focus on set theory, we
will have no interest in such a model and thus have no reservations about ⊥.

2. There is some freedom in choosing the truth- and falsity-conditions for the
implication. For example, in the logic LP from [22], an implication ϕ → � would
be an abbreviation for ∼ϕ ∨ �. But such a logic fails to satisfy implication-
introduction rule and the deduction theorem, leading to many undesirable
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Table 1. Truth tables for the propositional connectives of BS4.

∼
1 0
b b

n n

0 1

∧ 1 b n 0

1 1 b n 0
b b b 0 0
n n 0 n 0
0 0 0 0 0

∨ 1 b n 0

1 1 1 1 1
b 1 b 1 b

n 1 1 n n

0 1 b n 0

→ 1 b n 0

1 1 b n 0
b 1 b n 0
n 1 1 1 1
0 1 1 1 1

↔ 1 b n 0

1 1 b n 0
b b b n 0
n n n 1 1
0 0 0 1 1

consequences, such as finite models of set theory, see [24]. In BS4, the truth-
definition for the material implication reflects semantic consequence and makes
sure that the deduction theorem is satisfied, while the falsity-condition reflects the
existence of a counterexample.

Combining the material implication with ⊥, we will be able to define classical
negation, and refer not only to truth and falsity, but also to the absence of truth
and/or falsity, from within the system. But this should not be seen as a drawback of
the system; indeed the original formulation of BS4 from [25] explicitly contained
a ‘classicality’ operator which generates an equivalent logic.

Definition 2.6 (Truth value). For every ϕ and T/F-model M we define:

�ϕ�M :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if M |=T ϕ and M �|=F ϕ,
b, if M |=T ϕ and M |=F ϕ,
n, if M �|=T ϕ and M �|=F ϕ,
0, if M �|=T ϕ and M |=F ϕ.

We can now view BS4 as a four-valued logic with truth tables for propositional
connectives given in Table 1.

2.2. Defined connectives. We will need several defined connectives to make the
presentation more smooth and intuitive.

First let us consider material implication: notice that M |=T ϕ → � tells us that if
ϕ is true in M then � is true in M, but does not tell us that if � is false in M then ϕ
is false in M, as can easily be verified. Similarly, a bi-implication ϕ ↔ � tells us that,
in a model M, ϕ is true iff � is true, but not that ϕ is false iff � is false. In particular,
ϕ ↔ � does not allow us (as we are used from classical logic) to substitute an arbitrary
occurrences of ϕ with � within a larger formula.

For this reason, we define the following abbreviations, which we call strong
implication and strong bi-implication, respectively.3

3 The strong implication appears, e.g., in [23, chap. XII].
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Table 2. Truth table for ∼,¬, ! and ?.

ϕ ∼ϕ ¬ϕ !ϕ ?ϕ

1 0 0 1 1
b b 0 1 0
n n 1 0 1
0 1 1 0 0

• ϕ ⇒ � abbreviates (ϕ → �) ∧ (∼� → ∼ϕ).
• ϕ ⇔ � abbreviates (ϕ ↔ �) ∧ (∼ϕ ↔ ∼�).

In particular, if ϕ ⇔ � is true then any occurrence of ϕ may be substituted with
�, and vice versa. The distinction between regular and strong implication and bi-
implication will play a crucial role in the correct formulation of the axioms.

Next, following up on Remark 2.5 we define classical negation as follows:

• ¬ϕ abbreviates ϕ → ⊥.

One can easily check that M |=T ¬ϕ iff M �|=T ϕ while M |=F ¬ϕ iff M |=T ϕ. So
in a model M, ¬ϕ can be either true and not false (when M |=T ϕ) or false and not
true (when M �|=T ϕ). Using classical negation as a defined notion we can talk about
presence and absence of truth and falsity (and, more generally, specify the truth value of
a formula) from within the system. We will use the following important abbreviations:

• !ϕ abbreviates ∼¬ϕ.
• ?ϕ abbreviates ¬∼ϕ.

We think of !ϕ as presence of truth and ?ϕ as absence of falsity. The truth tables for
∼,¬, ! and ? in Table 2 make this clear. Notice that ¬ϕ, !ϕ and ?ϕ will always have
truth value 1 or 0. Moreover, the truth value of ¬ϕ and !ϕ depends only on whether
ϕ was true in the model, and completely disregards whether ϕ was false. Similarly, ?ϕ
depends only on whether ϕ was false and disregards whether it was true.

A BS4-formula is complete if it can never obtain the truth-value n, and consistent
if it can never obtain the truth-value b. It is called classical if it is both complete and
consistent, i.e., if in every model it has truth-value 1 or 0. In particular, ¬ϕ, !ϕ
and ?ϕ are classical formulas for any ϕ. Notice also that classicality, completeness
and consistency can each be expressed within the system, by !ϕ ↔ ?ϕ, ?ϕ → !ϕ and
!ϕ →?ϕ, respectively. We will use the following abbreviation in accordance to [4]:

• ◦ϕ abbreviates !ϕ ↔ ?ϕ.

It is easy to see that, taking ◦ as primary rather than ⊥, we obtain the same logic.

2.3. Proof system. A sound and complete proof calculus for BS4 is presented in
[25]. We use a slightly modified but equivalent version, with the following axioms and
rules of inference:
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• Axioms of classical predicate logic:

1. ϕ → (� → ϕ)
2. (ϕ → (� → �)) → ((ϕ → �) →

(ϕ → �))
3. ϕ ∨ (ϕ → �)
4. (ϕ ∧ �) → ϕ
5. (ϕ ∧ �) → �
6. ϕ → (� → (ϕ ∧ �))
7. ϕ → (ϕ ∨ �)

8. � → (ϕ ∨ �)
9. (ϕ → �) → ((� → �) → ((ϕ ∨
�) → �))

10. ⊥ → ϕ
11. ∀xϕ(x) → ϕ(t)
12. ϕ(t) → ∃xϕ(x)
13. x = x
14. x = y → (ϕ(x) → ϕ(y))

• Axioms for negation:
15. ∼∼ϕ ↔ ϕ,
16. ∼(ϕ ∧ �) ↔ (∼ϕ ∨ ∼�),
17. ∼(ϕ ∨ �) ↔ (∼ϕ ∧ ∼�),
18. ∼(ϕ → �) ↔ (ϕ ∧ ∼�),

19. ∼⊥,
20. ∼∀xϕ ↔ ∃x∼ϕ,
21. ∼∃xϕ ↔ ∀x∼ϕ,
22. ∼(x = y) → ∼(y = x).4

• The rules of inference:
23. From ϕ and ϕ → �, infer � (modus ponens).
24. Infer ϕ → ∀x� from ϕ → �, provided x does not occur free in ϕ.
25. Infer ∃xϕ → � from ϕ → �, provided x does not occur free in �.

Lemma 2.7. The calculus described above is sound and complete with respect to T/F-
semantics.

Proof. This follows by adapting the proof of [25, corollary 5.15] to refer to ⊥ rather
than the classicality operator ◦ as the primary symbol. We leave out the details.

In practice, we will reason informally within the system BS4 using arguments
formalizable in the calculus. We specifically mention some provable statements
concerning defined connectives, which will frequently be needed in later arguments.

Lemma 2.8. The following statements are provable in BS4:

• ϕ ↔ !ϕ.
• ∼ϕ ↔ ∼?ϕ.

(! talks only about truth and ? only about falsity.)
• x = y → (ϕ(x) ⇔ ϕ(y)).

(A true equality allows us to interchange terms.)
• ◦ϕ → ((ϕ ⇔ !ϕ) ∧ (ϕ ⇔ ?ϕ) ∧ (∼ϕ ⇔ ¬ϕ)).
• ◦ϕ ∧ ◦� → ((ϕ → �) ⇔ (ϕ ⇒ �)).

(For classical formulas there is no distinctions between strong and weak
implication, nor between native and classical negation, and ! and ? may be
omitted.)

§3. Non-classical sets. Before delving into the axioms, it is helpful to think about
the concept of a set in a paraconsistent and paracomplete setting from a naive point of

4 Axiom 22 does not occur in the original formulation in [25], but we need to add it to take
care of the semantic requirement that =– is a symmetric relation.
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PARACONSISTENT AND PARACOMPLETE ZFC 9

view. In classical ZFC, a set x is identified with the class of its elements {y : y ∈ x} and
divides the entire universe in two parts: those y that are in x, and those y that are not
in x. In the context of paraconsistent and paracomplete logic, we can have a situation
where a set y is both in x and not in x, or a situation where y is neither in x, nor is it
the case that y is not in x.

Therefore, it seems natural to identify a set x with the pair consisting of a positive
extension (those y for which “y ∈ x” is true) and a negative extension (those y for
which “y ∈ x” is false), without the added requirement that one be the complement
of the other. In fact, it makes sense to call a set consistent if its positive and negative
extensions do not intersect, complete if their union is the whole universe, and classical
if it is both consistent and complete.

There is, however, an asymmetry here: the positive extension is a set, while the
negative extension is a proper class. Therefore, it turns out to be more appropriate
to talk about the complement of the negative extension, i.e., those y for which the
statement “y ∈ x” is not false (or, equivalently for which the statement “y /∈ x” is not
true). We will refer to this collection as the ?-extension of x.

Although we have just referred to statements being true or false, which are seemingly
meta-theoretic notions, recall that the operators ! and ? allow us to discuss truth and
falsity from within the system as well. In particular, ! (y ∈ x) is true if and only if y ∈ x
is true, and ?(y ∈ x) is true if and only if y ∈ x is not false. This motivates the following:

Definition 3.1. Let x be a set:

• The !-extension of x is

x! := {y : ! (y ∈ x)}.

• The ?-extension of x is

x? := {y : ?(y ∈ x)}.

For the time being, it is not clear that the above collections describe sets and not proper
classes, but we shall set up the axiomatic framework in such a way that if x is a set, then
both x ! and x? are sets. The four boolean combinations of x ! and x? determine the
classes consisting of all y for which the statement “y ∈ x” has one of the four possible
truth-values, as visualized in Figure 1.

We remark that the property of sets being complete, consistent and classical can be
expressed within the system. In fact the following holds:

• x is complete iff ∀y (y ∈ x? → y ∈ x!).
• x is consistent iff ∀y (y ∈ x! → y ∈ x?).
• x is classical iff ∀y (y ∈ x! ↔ y ∈ x?).

Classical sets behave as we are used to in ZFC, i.e., the !-extension is exactly the ?-
extension, and consequently it does not matter whether we consider the native negation
∼ or classical negation ¬, nor whether we use → or ⇒. It is not hard to see that x ! and
x? are themselves classical.

Let us now look more closely at the notion of equality of two sets and the
extensionality principle. In ZFC, two sets are equal precisely if the classes of their
elements are the same; equivalently, two sets are different precisely if one set contains
an element which the other does not, or vice versa.
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Fig. 1. The four truth values of “y ∈ x” depending on the boolean combination of x! and x?.

In our setting, x = y and x �= y5 could both be true statements or it could happen
that neither x = y nor x �= y are true statements. But we still require that “x = y”
express the idea that x and y are the same set-theoretic objects, meaning that both
its !-extension and ?-extension must be the same. Likewise, we still want “x �= y” to
express that there is something in x which is not in y, or vice versa. So the guiding
principle behind the extensionality axiom must be the following:

• x = y ↔ (x! = y ! ∧ x? = y?),
• x �= y ↔ ∃z((z ∈ x ∧ z /∈ y) ∨ (z ∈ y ∧ z /∈ x)).

Figure 2 illustrates the situation in which two sets x and y are equal (because their
!-extensions and ?-extensions coincide) but also unequal (because there is a set z such
that z ∈ x but z /∈ y). In fact, if x is any inconsistent set, then x = x and x �= x.

It is customary in set theory to use notation such as {y : ϕ(y)} to refer to the set (if
it exists) of all objects y satisfying property ϕ. In our setting, where a set is determined
by its !-extension and ?-extension, it makes sense to agree on the following:

Convention 3.2.

x = {y : ϕ(y)} abbreviates ∀y (y ∈ x ⇔ ϕ(y)).

The use of the strong implication means that x ! is the set of all y for which ϕ(y) is true,
and x? is the set of all y for which ϕ(y) is not false.

Now it should be clear why the system under consideration cannot avoid Russell’s
paradox, since R := {x : ¬(x ∈ x)} cannot be a set by the usual argument. Likewise,
the universe of all sets does not form a set.

A last point of subtlety should be discussed: how do we understand notation such
as {u}, for a set u? One might initially assume that this is {y : y = u} (referring to
Convention 3.2). However, a closer look reveals the following: if {y : y = u} is a set,
then we would like its ?-extension to also be a set. However, a bit of work following the
definitions shows that this ?-extension would be the collection of all sets a such that

5 Again, we write x 	= y instead of ∼(x = y).
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Fig. 2. x = y and x 	= y.

a ! ⊆ u? and u! ⊆ a?. Since there is no upper bound on a?, it would seem (following
classical intuition) that there are class-many sets a satisfying this condition, meaning
that the ?-extension of this set is, in fact, a proper class.6

Instead, we opt for the following:

Convention 3.3. If u is a set, then {u} is the set {y : ! (y = u)}; and more generally
if u0, ... , un are sets, then {u0, ... , un} is the set {y : ! (y = u0) ∨ ··· ∨! (y = un)}. This is
always a classical set whose !-extension and ?-extension are exactly the finite set consisting
of the elements in question.

A similar phenomenon occurs with other set-theoretic operations, most notably the
power set operation.

§4. The theory PZFC. We now introduce the intermediate system PZFC by
carefully analysing the standard axioms of set theory and generalizing them in
accordance with the intuition described in the previous section.

4.1. Extensionality. The most essential axiom required to sustain an ontology of
sets is the following:

Extensionality: ∀x∀y(x = y ⇔ ∀z(z ∈ x ⇔ z ∈ y)).

Why do we choose strong rather than weak bi-implications? For the first one the
choice is clear: extensionality seeks to define the meaning of the expression “x = y” in
terms of the elements of x and y, and this needs to talk both about truth and falsity.
Notice that the use of this strong implications allows us to interchange the expression
“x = y” with the expression on the right-hand side within any given formula.

The second bi-implication is more interesting: recall that we want x = y to express
that both the !-extension and ?-extension of x and y coincide. The statement with a
weak implication ∀z(z ∈ x ↔ z ∈ y)) would only say that the !-extensions coincide.

6 We will provide a proper proof of this result in Lemma 6.6.
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At this point it is instructive to define subsets:

x ⊆ y abbreviates ∀z (z ∈ x ⇒ z ∈ y).

Again, the use of the strong implication makes sure that x ⊆ y says that both the
!-extensions and ?-extensions of x are included in that of y. In particular, the Axiom of
Extensionality can now be reformulated as follows: ∀x∀y(x = y ⇔ x ⊆ y ∧ y ⊆ x).

4.2. Comprehension. The next most important axiom is Comprehension.7

Comprehension: ∀u∃x∀y (y ∈ x ⇔ y ∈ u ∧ ϕ(y)).

The use of the strong implication means that, in accordance to Convention 3.2, for
any set u, the following is also a set:

x = {y ∈ u : ϕ(y)}.
4.3. Classical Supersets. The development of our theory is greatly simplified by

considering an axiom postulating that every set is contained within a classical superset.
In Section 3 we said that a set was classical if its !-extension and ?-extension are the
same. We do not know yet whether !-extensions and ?-extensions are sets, but we can
express that C is a classical set with the sentence ∀y ◦(y ∈ C ), where ◦ is the classicality
operator defined in Section 2.2.

Classical Superset: ∀x ∃C (x ⊆ C ∧ ∀y ◦(y ∈ C )).

This axiom is technically superfluous, since it can be proved to follow from the
remaining axioms in a roundabout way. However, adopting it at this stage allows us
to frame the remaining axioms, and the theory in general, in a more intuitive way. In
particular, it allows us to confirm several properties of sets we postulated earlier.

Lemma 4.1 (Cl. Superset + Comprehension). If x is a set, then its !-extension and
?-extension are sets.

Proof. Let C be a classical set with x ⊆ C . Then

x ! = {y ∈ C : ! (y ∈ x)}

x? = {y ∈ C : ?(y ∈ x)}
are both sets by the Comprehension axiom.

Since x ! and x? are classical, a posteriori we see that a particularly convenient
classical superset of x is obtained by considering x ! ∪ x?. This is the smallest classical
set containing x and we will call this the realm of x:

rlm(x) := x ! ∪ x?.

The next lemma elaborates on the meaning of equality and the subset relation
between sets.

Lemma 4.2 (Cl. Superset + Extensionality + Comprehension).

1. x ⊆ y ↔ x ! ⊆ y ! ∧ x? ⊆ y?,
2. x �⊆ y ↔ ∃z(z ∈ x ∧ z /∈ y) ↔ x ! �⊆ y?,
3. ?(x ⊆ y) ↔ x ! ⊆ y?,

7 We suppress mention of parameters to simplify notation.
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4. x = y ↔ x ! = y ! ∧ x? = y?,
5. x �= y ↔ ∃z((z ∈ x ∧ z /∈ y) ∨ (z ∈ y ∧ z /∈ x)) ↔ x ! �⊆ y? ∨ y ! �⊆ x?,
6. ?(x = y) ↔ x ! ⊆ y? ∧ y ! ⊆ x?.

Proof. We will provide detailed proofs of 1 and 2 in order to illustrate how reasoning
within BS4 works. The remaining proofs are left to the reader.

1. We have the following sequence of BS4-provable bi-implications:

x ⊆ y ⇔ ∀z((z ∈ x → z ∈ y) ∧ (∼(z ∈ y) → ∼(z ∈ x))
(∗)↔

∀z((! (z ∈ x) →! (z ∈ y)) ∧ (?(z ∈ x) →?(z ∈ y))
(∗∗)⇔ ∀z((z ∈ x ! ⇒ z ∈ y !) ∧ (z ∈ x? ⇒ z ∈ y?) ⇔ x ! ⊆ y ! ∧ x? ⊆ y?.

Here (∗) is due to the truth-functional definition of the implications and the !
and ? operators, while (∗∗) is due to the definition of x !, y !, x?, y? and the fact
that these sets are classical (so → and ⇒ are interchangeable). The first and last
strong bi-implication is the definition of ⊆.

2. We have the following sequence of bi-implications:

∼(x ⊆ y) ⇔ ∼∀z(z ∈ x ⇒ z ∈ y) ⇔ ∃z∼(z ∈ x ⇒ z ∈ y)
(∗)↔ ∃z(z ∈ x ∧

z /∈ y),
where (∗) is because we are only looking at the truth condition of ⇒. Further:

...
(∗∗)↔ ∃z(z ∈ x ! ∧ z /∈ y?) ⇔ x ! �⊆ y?, where (∗∗) is again due to the fact that

! refers to truth and ? to falsity.

4.4. Replacement. The next axiom we consider is Replacement.8 In ZFC the
Replacement axiom tells us that the image of a set under a class function is itself a set.
It is not immediately clear how to generalize class function. As a guiding principle we
rely on the intuition that in practice, mathematicians apply Replacement when there
is a pre-determined recipe by which each element of a given set is replaced by another
element in a non-ambiguous way. We will call such a recipe an operation:

Definition 4.3. An operation is a formula ϕ(x, y) such that:

1. ϕ is classical, and
2. ∀x∃y(ϕ(x, y) ∧ ∀z (ϕ(x, z) →! (y = z)).

The requirement on ϕ to be a classical formula reflects the notion that an operation
describes a well-defined recipe for replacing input x with output y. Likewise, the “!”
makes sure that the statement expressing that “every input has at most one output”
is a classical sentence, since we would not know how to interpret a situation in which
this statement is both true and false.9

Replacement: (◦ϕ ∧ ∀x∃y(ϕ(x, y) ∧ ∀z(ϕ(x, z) →! (y = z))) →
∀x∃y∀z(z ∈ y ⇔ ∃w(w ∈ x ∧ ϕ(w, z))).

After adopting this axiom, we can treat an operation ϕ as a class function F, and
use notation such as

F [X ] := {y : ∃x (x ∈ X ∧ ϕ(x, y)},
where X is a set.

8 As before, we suppress mention of parameters to simplify notation.
9 One can check that this will occur, for example, with the formula ϕ(x, y) ≡ ! (y = a),where

a is any non-classical set.
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4.5. Pairing. The Pairing axiom is normally needed to get set-theory ‘started’
and allow the definition of ordered pairs, relations, functions, and so on. Recall the
discussion in Convention 3.3 that we want notation such as {u, v} to stand for the
classical set whose !-extension and ?-extension contain exactly the two objects u and v.
This motivates the following:

Pairing: ∀u∀v∃x∀y(y ∈ x ⇔ (! (y = u)∨! (y = v))).

As discussed in Section 3, this falls in line with the intuition of an unordered pair
{u, v} as a classical set. Referring to Lemma 4.2(5) and (6), we now see that, if we had
used the definition {x : x = u ∨ x = v} for the unordered pair, then the ?-extension
would have been the collection of all x such that x ! ⊆ u? and u! ⊆ x?, or x ! ⊆ v?

and v! ⊆ x?. This is problematic since there is no upper bound on the size of x?.
Indeed, in Lemma 6.6 we will prove that if there exists at least one incomplete set, then
{x : x = u ∨ x = v} is a proper class.

4.6. Power Set. Suppose u is any set and we look at P (u) := {x : x ⊆ u}. Referring
to Lemma 4.2, we again notice that ?(x ⊆ u) ↔ x ! ⊆ u?, so the ?-extension of P (u)
consists of sets x such that x ! ⊆ u?, but with no special requirement on x?. Again,
it should be intuitively clear that there is a proper class of possible x satisfying this
requirement. As with Pairing, we instead opt for the following definition:

P !(u) := {x : ! (x ⊆ u)}.

Now P !(u) is a classical set containing exactly those sets x for which x ! ⊆ u! and
x? ⊆ u?. This motivates the axiom:

Power Set: ∀u∃v∀x(x ∈ v ⇔ ! (x ⊆ u)).

4.7. The remaining axioms. We will now list the remaining four axioms since they
are, mostly, non-problematic.

Union: ∀u∃x∀y(y ∈ x ⇔ ∃z (y ∈ z ∧ z ∈ u).

After adopting this axiom we can use the abbreviation
⋃
u := {x : ∃z (y ∈ z ∧ z ∈

u)}, and this coincides with Convention 3.2.

Infinity: ∃x (∅ ∈ x ∧ ∀y(y ∈ x → y ∪ {y} ∈ x).

Foundation: ∀x(∀y(y ∈ x! ∪ x? → ϕ(y)) → ϕ(x)) → ∀uϕ(u).

This axiom could more properly be called “set induction schema”. It allows us to view
the universe as being constructed by transfinite recursion, where each new level consists
of those x for which the realm x ! ∪ x? is a subset of the previous level. See [19, sec.
4.12] for details.

Choice: ∀u(∀x(x ∈ u → ∃y(y ∈ x)) → ∃f(dom(f) = u

∧ ∀x(x ∈ u → f(x) ∈ x))).

This is a standard formulation of the axiom of choice, however, it requires the
concept of a function which we have not properly defined yet. This will be done in
Section 6, however the current axiom is not required for that definition.
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§5. The anti-classicality axiom and BZFC. None of the axioms of PZFC guarantee
the existence of an inconsistent or incomplete set. In fact, the following should be clear:

Theorem 5.1. PZFC + ∀x(x ! = x?) is equivalent to ZFC.

Proof. If every set is classical, then there is no distinction between ∼ and ¬, nor
between → and ⇒. Likewise, ! and ? can be discarded. The Classical Superset Axiom
is trivial. So what remains of PZFC is precisely the collection of ZFC axioms.

Since we are interested in theories with non-classical sets, we would like to adopt an
axiom postulating their existence. Now we seem to be faced with a choice: exactly which
non-classical sets do we want to postulate the existence of ? Following a conservative
approach, we might want to require only that at least one inconsistent and at least one
incomplete set exists:

∃x(x ! �⊆ x?) ∧ ∃x(x? �⊆ x !).

On the other hand, a maximality approach might lead us to postulate the existence
of as many non-classical sets as possible, i.e., for any classical sets u, v, there exists a set
x whose !-extension is exactly u and whose ?-extension is exactly v

∀u∀v(u and v classical → ∃x (x ! = u ∧ x? = v)).

An unexpected, yet surprisingly simple result now shows that in the presence of the
other PZFC-axioms, any choice we make is equivalent, since the weakest of them (the
conservative one) already implies the strongest (the maximizing one). Indeed, this can
be viewed as a very central theorem on which the rest of our theory hinges in a crucial
way.

Theorem 5.2 (PZFC). Suppose there is an inconsistent and an incomplete set. Then for
any classical sets u, v, there is x such that x ! = u and x? = v.

Proof. From the assumption we have a ∈ b ∧ a /∈ b for some sets a, b and also
¬(c ∈ d ∨ c /∈ d ) for some sets c, d . Let us introduce the following abbreviation:

φb ≡ a ∈ b,

φn ≡ c ∈ d.

Note that φb and ∼φb are both true, while φn and ∼φn are both not true.
Let u and v be classical sets and define

x := {z ∈ u ∪ v : z ∈ (u ∩ v) ∨ (z ∈ (u \ v) ∧ φb) ∨ (z ∈ (v \ u) ∧ φn)}.

Then we have:

• z ∈ x ↔ z ∈ (u ∩ v) ∨ (z ∈ (u \ v) ∧ φb) ∨ (z ∈ (v \ u) ∧ φn) ↔ z ∈
(u ∩ v) ∨ z ∈ (u \ v) ↔ z ∈ u, and

• z /∈ x ↔ z /∈ (u ∩ v) ∧ (z /∈ (u \ v) ∨ ∼φb) ∧ (z /∈ (v \ u) ∨ ∼φn) ↔
z /∈ (u ∩ v) ∧ z /∈ (v \ u) ↔ z /∈ v.

It follows that z ∈ x ! ↔ z ∈ u and z ∈ x? ↔ z ∈ v. This completes the proof.
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Definition 5.3. We let the anti-classicality axiom be the statement:

ACLA : ∃x(x! �⊆ x?) ∧ ∃x(x? �⊆ x!),

and consider the system

BZFC ≡ PZFC + ACLA.

This is the main axiomatic system under consideration in this paper.

Remark 5.4. Some readers might be interested in a finer distinction and consider a
theory that has only incomplete but not inconsistent sets. The corresponding theory would
then be PZFC + ∃x(x? �⊆ x !) + ∀x(x ! ⊆ x?). A proof similar to the above would then
show that this implies that for any classical sets u, v with u ⊆ v, there is x such that
x ! = u and x? = v. Likewise, if one is interested in a theory that has only inconsistent but
not incomplete sets one can look at PZFC + ∃x(x ! �⊆ x?) + ∀x(x? ⊆ x !). This implies
that for any classical sets u, v with v ⊆ u, there is x such that x ! = u and x? = v. We will
return to this finer distinction in Section 10 in a specific context, but otherwise will not
pursue it in detail.

As a nice application of ACLA, we can show how to internally define truth values
in a succinct way. Let Ω := P !({∅}), i.e., the classical set containing sets x such that
x ! ⊆ {∅} and x? ⊆ {∅}. There are four possible combinations for such x, and ACLA
guarantees us that all four of them exist, and are members of Ω. We can give them
names as follows:

• x := 1 if x! = x? = {∅},
• x := 0 if x! = x? = ∅,
• x := n if x! = ∅ and x? = {∅},
• x := b if x! = {∅} and x? = ∅.

Then Ω = {1, b, n, 0} is called the set of truth values, and for any formula ϕ, we can
define the truth value of ϕ by

�ϕ� := {∅ : ϕ}.
We now have that ∅ ∈ �ϕ� is true precisely if ϕ is true, and false precisely if ϕ is false.
In other words, for any formula ϕ, from the point of view of the meta-theory, i.e.,
� ∅ ∈ �ϕ� � = �ϕ�.

§6. Mathematics in BZFC. In a typical set theory textbook, the introduction of the
ZFC-axioms is usually followed up by developing the tools needed to sustain modern
mathematics, e.g., ordered pairs, Cartesian products, relations, functions, induction
and recursion, ordinals, cardinals and their arithmetic.

In general, many non-trivial questions arise in the context of BZFC, such as the
exact nature of functions, images and pre-images, cardinality, cardinal arithmetic and
much more. Many of these questions deserve separate investigation. In this paper we
will present only as much mathematical formalism as is necessary for the subsequent
sections. Readers more interested in the foundational results can safely skip to the next
Section 7.

First, we would like to define an ordered pair (a, b) in such a way that

(a, b) = (a′, b′) ⇔ (a = a ∧ b = b′). (∗)
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The task is less trivial than it appears, since the falsity condition (a, b) �= (a′, b′) ↔
(a �= a′ ∨ b �= b′) refers to the native �= relation which is governed by the extensionality
axiom. The Kuratowski pair will not suffice for this purpose since this defines a classical
set. But we can define ordered pairs in a round-about way as follows:

• First, say that the classical ordered pair 〈u, v〉 is {{u}, {u, v}}.
• Then, for sets a and b define (a, b) := {〈x, 0〉 : x ∈ a} ∪ {〈y, 1〉 : y ∈ b}, where

0 is ∅ and 1 is {∅}.

Here, (a, b) is essentially the disjoint union of copies of a and b, so the non-classical
structure of the sets is unaffected. Showing that this definition indeed satisfies (∗) is
somewhat lengthy, so we leave the details to the reader. We should note that there
are other ways to encode ordered pairs, for example, see [19, appendix A]. The exact
method is inconsequential as long as condition (∗) is fulfilled.

The Cartesian product A× B := {(a, b) : a ∈ A ∧ b ∈ B} is defined as usual. It is
easy to see that (A× B)! = A! × B ! and (A× B)? = A? × B ?, so if A and B are classical,
A× B is as well. A binary relation between A and B is any R ⊆ A× B . We note that
R may fail to be classical even if A and B are. We can define the domain and range
of a relation by stipulating that dom(R) = {x : ∃y((x, y) ∈ R)} and ran(R) = {y :
∃x((x, y) ∈ R)}. It then follows that dom(R) ⊆ A and ran(R) ⊆ B . The domain and
range will generally be non-classical if R is non-classical. The following definition
deserves special attention:

Definition 6.1. E ⊆ X × X is called an equivalence relation if for all x, y, z in rlm(X )
(i.e., in X ! ∪ X ?) we have:

1. (x, x) ∈ E.
2. (x, y) ∈ E ⇔ (y, x) ∈ E.
3. (y, z) ∈ E → ((x, y) ∈ E ⇔ (x, z) ∈ E).

Notice that this tells us more than E being reflexive, symmetric and transitive; in
addition, 3 implies that if y and z are E-related, then they are indistinguishable with
respect to being E-related to another element x. If we now define the E-equivalence
class of an element x ∈ X by

[x]E := {y : (x, y) ∈ E},
we obtain the following:

Lemma 6.2. For all x, y ∈ rlm(X ) we have (x, y) ∈ E ⇔ [x]E = [y]E .

Proof. The positive equivalence (x, y) ∈ E ↔ [x]E = [y]E is obvious. Also, it is
clear that if (x, y) /∈ E, then by definition x /∈ [y]E , while (x, x) ∈ E implies that
x ∈ [x]E . Therefore there is a witness x which is in [x]E and not in [y]E , so [x]E �= [y]E
by extensionality.

Now, suppose [x]E �= [y]E . Then there exists z such that z ∈ [x]E and z /∈ [y]E , or
vice versa. Without loss assume the former, so by definition we have (z, x) ∈ E and
(z, y) /∈ E. But now the strong bi-implication in condition 3 gives us (x, y) /∈ E, as
required.

Next we look at the notion of a function. It is not entirely straightforward how the
concept of a non-classical function should be understood, nor how the related concepts
of image, pre-image etc. of such a function mean. However, for the purposes of this
paper, it will suffice to look only at classical functions.
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Definition 6.3. If A is a classical set, a classical function from A to B is a relation
R ⊆ A× B which is classical, satisfies dom(R) = A, and

∀x∀y∀z((x, y) ∈ f ∧ (x, z) ∈ f) →! (y = z)).

Classical functions take sets as inputs and generate other sets as outputs in a unique
way, just as ordinary functions do. Note, however, that even if f is classical, the inputs
and outputs need not be classical, so it is dangerous and potentially misleading to use
notation like “f(x) = y”. For example, suppose x and y are such that (x, y) ∈ f and
y �= y. If we write “f(x) = y” we should also write “f(x) �= y”. But this should not
be confused with “(x, y) /∈ f”.

Recall that we already introduced the concept of an operation (Definition 4.3).
If ϕ(x, y) is an operation and A a classical set, then {(x, y) : x ∈ A ∧ ϕ(x, y)} is a
classical function.10 Conversely, if f is a classical function with (classical) domain A,
and we fix an arbitrary y0, then the following formula is an operation which coincides
with f on A = dom(f):

ϕ(x, y) ≡ ((x ∈ A→ (x, y) ∈ f) ∧ ((x /∈ A→! (y = y0)).

When we talk about isomorphisms in the next sections, we will be referring to classical
functions when the structures are sets, or operations when they are proper classes.

We now turn our attention to the notions of ordinal, induction on ordinals, and
recursive definitions. Informally, ordinals will be classical transitive sets, totally ordered
by ∈, and containing only classical sets as members:

Definition 6.4. α is an ordinal iff :

• α is classical.
• ∀� (� ∈ α → � is classical).
• ∀� (� ∈ α → � ⊆ α).
• ∀� ∀	 ((� ∈ α ∧ 	 ∈ α) → (� ∈ 	 ∨ 	 ∈ � ∨ � = 	)).

All facts about ordinals known from ZFC are also true for this definition, because any
formula ϕ that refers only to ordinals and their members, will be a classical formula.
For example, one can show that elements of ordinals are themselves ordinals, that
ordinals are unique up to isomorphism, that any well-founded structure is isomorphic
to an ordinal, and so on. The same holds for the transfinite induction principle on
ordinals, stating that for any formula ϕ:

(
∀α(α is an ordinal → (∀�(� ∈ α ∧ ϕ(�)) → ϕ(α))

→ ∀α(α is an ordinal → ϕ(α)).

From this, the recursion principle follows by usual methods again.

Lemma 6.5 (Recursion principle). Let G be any operation. Then there exists a
unique operation F, such that F (x, y) implies that x is an ordinal, and such that for
every α we have

10 Here we use Replacement followed by Comprehension to ensure that this object is a set and
not just a proper class.
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F (α) = G(F �α).11

We end this section by providing the promised proof that a careless translation of
singletons, pairs and power sets would result in proper classes.

Lemma 6.6 (BZFC). For sets u, u1, ... un, the collections {y : y ⊆ u}, {y : y = u} and
{y : y = u1 ∨ ··· ∨ y = un} are proper classes.

Proof. We will only prove the first case since the others are similar. We know that
{x : ¬(x ∈ x)} is a proper class, and from this it easily follows that the collection C of
all classical sets forms a proper class.

Suppose there is a set X = {y : y ⊆ u}. By Lemma 4.1 we know that X ? is also a
set. By Lemma 4.2(3), we know that y ∈ X ? ⇔ y ! ⊆ u?. Consider the operation

F :
X ? → C
y �→ y?.

Formally, this operation is given by ϕ(y,w) ≡ ! (w = y?) which is a classical formula
and satisfies the conditions for the Replacement axiom. Moreover, by ACLA the
operation is surjective, i.e., for every classical w there is y ∈ X ? such that ϕ(y,w) holds
(take y with y ! = u? and y? = w). But then F [X ?] = C, and since X ? is a set, C should
be a set, which is a contradiction.

The above argument is somewhat informal, so readers may wonder what it means
to says that something is a proper class, or what a proof by contradiction means in the
paraconsistent setting. Formally, what we have proven is that if a set X as above exists,
then ⊥.

§7. A model of BZFC. In this section we construct a T/F-model for BZFC starting
from ZFC. Usually this would yield a relative consistency proof, i.e., a proof that if
ZFC is consistent then BZFC is consistent. Of course BZFC is, by design, inconsistent,
so instead we will talk of non-triviality.

Definition 7.1. A BS4-theory Γ is called non-trivial if Γ ��BS4 ⊥.

Definition 7.2 (ZFC). By induction on ordinals we define:

• W0 = ∅,
• Wα+1 := P (Wα) × P (Wα),
• W
 =

⋃
α<
Wα for limit 
,

• W :=
⋃
α∈Ord

Wα.

The positive and negative interpretations of ∈ and = are given by:

• (a, b) ∈+ (c, d ) iff (a, b) ∈ c,
• (a, b) ∈– (c, d ) iff (a, b) /∈ d,
• (a, b) =+ (c, d ) iff (a, b) = (c, d ),
• (a, b) =– (c, d ) iff ∃z ∈ a \ d or ∃z ∈ c \ b.

The following properties of W are easily verifiable.

11 Here we have abused notation somewhat, but recall that F and G are, by definition, given
by classical formulas, so this abuse of notation is consistent with its usage in classical ZFC.
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Lemma 7.3 (ZFC).

1. If α < � thenWα ⊆W� .
2. If (a, b) ∈Wα , a′ ⊆ a, and b′ ⊆ b then (a′, b′) ∈Wα .
3. x ∈ W iff x = (a, b) for some a, b ⊆ W.

Proof. Induction on the definition.

Now (W,∈+,∈–,=+,=–) may be considered a T/F-model in the language of set
theory, except that W is a proper class. Therefore, “W |= ϕ” must be understood via
relativization: for everyϕ we defineϕW,T andϕW,F by syntactic induction, generalizing
from Definition 2.3 in the obvious way (we leave the details to the reader). For a theory
Γ, W |= Γ means that for every ϕ in Γ, there is a proof of ϕW,T .

Theorem 7.4 (ZFC). W |= BZFC.

Proof. We will prove Extensionality and Comprehension in some detail and leave
the rest to the reader.

Written out in full, the relativization (Extensionality)W,T reads as follows:

∀(a, b) ∈ W ∀(c, d ) ∈ W :

(a, b) =+ (c, d ) ↔ ∀z ∈ W((z ∈+ (a, b) ↔ z ∈+ (c, d )) ∧ (z ∈– (a, b) ↔ z ∈– (c, d ))

∧ (a, b) =– (c, d ) ↔ ∃z ∈ W((z ∈+ (a, b) ∧ z ∈– (c, d )) ∨ (z ∈+ (c, d ) ∧ z ∈– (a, b)).

Assume (a, b) and (c, d ) are arbitrary, and we show that the two equivalences hold.
For the first we have

∀z ∈ W((z ∈+ (a, b) ↔ z ∈+ (c, d )) ∧ (z ∈– (a, b) ↔ z ∈– (c, d ))
(∗)↔ ∀z ∈ W((z ∈ a ↔ z ∈ c) ∧ (z /∈ b ↔ z /∈ d ))
(∗∗)↔ ∀z((z ∈ a ↔ z ∈ c) ∧ (z /∈ b ↔ z /∈ d ))
↔ a = c and b = d
↔ (a, b) =+ (c, d ),

where (∗) refers to the definition of ∈+ and ∈–, and (∗∗) is because W is “transitive”
in the sense that a, b, c, d ∈ W only contain sets which are also in W.

For the second equivalence we have
∃z ∈ W((z ∈+ (a, b) ∧ z ∈– (c, d )) ∨ (z ∈+ (c, d ) ∧ z ∈– (a, b))
↔ ∃z((z ∈ a ∧ z /∈ d ) ∨ (z ∈ c ∧ z /∈ b))
↔ (a, b) =– (c, d ).

Next we look at (Comprehension)W,T which is the following statement:12

∀(a, b) ∈ W ∃(c, d ) ∈ W ∀z ∈ W

((z ∈+ (c, d ) ↔ (z ∈+ (a, b) ∧ ϕ(z)W,T ) ∧ (z ∈– (c, d ) ↔ (z ∈– (a, b) ∨ ϕ(z)W,F )).

12 Again we suppress parameters, noting that if there are parameters these are understood to
be in W.
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Suppose (a, b) ∈ W and ϕ is given. Define

c := {z ∈ a : ϕ(z)W,T},

d := {z ∈ b : ¬ϕ(z)W,F }.13

Then (c, d ) ∈ W by construction and for all z we have z ∈ c ↔ (z ∈ a ∧ ϕ(z)W,T )
and z /∈ d ↔ (z /∈ b ∨ ϕ(z)W,F ). This is exactly the statement above as needs to be
proved.

Corollary 7.5. If ZFC is consistent then BZFC is non-trivial.

We have thus shown that BZFC is essentially not a more problematic theory than
ZFC. In addition, the canonical model W contains a natural copy of the classical
universe V.

Definition 7.6 (ZFC). For every x ∈ V , inductively define

x̌ := ({y̌ : y ∈ x}, {y̌ : y ∈ x}).

Also let V̌ := {x̌ : x ∈ V }.

Lemma 7.7 (ZFC). The mapping

i : V → V̌ ⊆ W

x �→ x̌

is an isomorphism between (V,∈, /∈,=, �=) and (V̌,∈+,∈–,=+,=–).

Proof. Easy consequence of the definitions.

§8. Hereditarily classical sets. Starting in BZFC, we can also construct a natural
model of ZFC: this is the class of “hereditarily classical” sets.

Definition 8.1 (BZFC). By induction on ordinals14 define:

• HCL0 = ∅,
• HCLα+1 := {X ⊆ HCLα : X is classical},15

• HCL
 =
⋃
α<
HCLα for limit 
,

• HCL :=
⋃
α∈Ord

HCLα.

HCL is a transitive proper class, and for all x, we have that x ∈ HCL if and only
if x is classical and x ⊆ HCL. Again, the notation HCL |= ϕ and HCL |= Γ refers to
relativization where quantification is restricted to range over HCL.

Theorem 8.2 (BZFC). HCL |= ZFC.

Proof. It is clear that HCL |= (every set is classical), so by the discussion in Section 5
it suffices to show that HCL |= PZFC. Most of the axioms are straightforward since

13 An equivalent definition is c = {z ∈ a : W |= !ϕ(z)} and d = {z ∈ b : W |= ?ϕ(z)}.
14 Recall from Section 6 that the recursion principle is valid in BZFC.
15 Here we technically use Power Set to first construct P !(HCLα) and then Comprehension to

select the classical sets.
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none of them postulate the existence of non-classical sets without assuming the
existence of non-classical sets.

We will only show (Comprehension)HCL. Suppose u is a hereditarily classical set
and ϕ any formula. It is enough to show that x := {y ∈ u : ϕHCL(y, a1, ... , an)} is a
hereditarily classical set if the parameters a1, ... , an are hereditarily classical.16 Since
x ⊆ u and u ⊆ HCL we know that x ⊆ HCL, so it remains to show that x itself is
classical. But from the fact that y, a1, ... an are classical sets, it follows by an easy
induction that ϕ is a classical formula, i.e., !ϕ ↔?ϕ. It follows that x ! = x?, so x is
classical.

Corollary 8.3. If BZFC is non-trivial, then ZFC is consistent.

In analogy to Definition 7.6, we can now consider an embedding from the universe
of BZFC (which we also refer to as V, hopefully not leading to confusion) to a natural
copy of it within HCL.

Definition 8.4 (BZFC). For every set x, inductively define:

x̂ := ({ŷ : y ∈ x !}, {ŷ : y ∈ x?}).

Also let V̂ := {x̂ : x ∈ V }. For x̂, ŷ ∈ V̂ define:

• x̂E+ŷ ↔ x ∈ y,
• x̂E–ŷ ↔ x /∈ y,
• x̂ ≈+ ŷ ↔ x = y
• x̂ ≈– ŷ ↔ x �= y.

Now x̂ are hereditarily classical sets, V̂ is a proper class of hereditarily classical sets,
and E+, E–,≈+,≈– are hereditarily classical, class-sized binary relations on V̂ .

Lemma 8.5 (BZFC). The mapping

j : V → V̂ ⊆ HCL

x �→ x̂

is an isomorphism between (V,∈, /∈,=, �=) and (V̂, E+, E–,≈+,≈–).

Proof. Follows immediately from the definitions.

§9. Bi-interpretability. We already know that ZFC in BZFC are mutually inter-
pretable, i.e., each theory can construct a natural model for the other. In fact we prove
more than that:

Theorem 9.1. BZFC and ZFC are bi-interpretable.

Here the term bi-interpretability may either be understood semantically, saying that
the model constructions interpreting the other theory are reversible up to isomorphism,
or syntactically, saying that a sentence is a consequence of one theory if and only if
its translation (relativisation) is a consequence of the other, and vice versa, in the
corresponding logics. Theorems 9.2 and 9.4 together with results from the previous

16 Here we are explicit about parameters a1, ... , an since otherwise ϕ might fail to be a classical
formula.
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sections concern the semantic understanding while Corollaries 9.3 and 9.5 refer to the
syntactic one.

In Lemma 7.7 we defined an isomorphism i : x �→ x̌ from V and V̌ , so it remains
only to show that V̌ is the same thing as what W believes HCL to be (provably in ZFC).

Lemma 9.2 (ZFC). HCL
W = V̌ .

Proof. To show ⊇ take x̌ ∈ V̌ . By construction x̌ = ({y̌ : y ∈ x}, {y̌ : y ∈ x}).
Inductively, we may assume that each y̌ appearing above is in HCL

W, therefore
W |= x̌ ⊆ HCL. Moreover, x̌ has the same !-extension as ?-extension, therefore
W |= (x̌ is classical). Together, this implies W |= x̌ ∈ HCL.

To show ⊆, suppose x ∈ HCL
W, i.e., x ∈ W and W |= (x is hereditarily classical).

Let a, b ∈ W be such that x = (a, b). Since W |= x is classical, in particular
W |= x ! = x?, therefore a = b. Moreover, W |= x ⊆ HCL which implies that
a ⊆ HCL

W. Inductively, we may assume that every element in a is of the form ž
for some z ∈ V . Let ã := {z : ž ∈ a}. Then x = ({ž : z ∈ ã}, {ž : z ∈ ã}) = (a, a) by
construction. But then, by definition, x = (ã )̌.

Corollary 9.3. ZFC � ϕ iff BZFC �BS4 (HCL |= ϕ).

Proof. If ZFC � ϕ then clearly BZFC �BS4 (HCL |= ϕ). Suppose BZFC �BS4

(HCL |= ϕ). Then ZFC � (W |= (HCL |= ϕ)), i.e., ZFC � (HCL
W |= ϕ). But by

the above we have HCL
W = V̌ ∼= V , so ZFC � ϕ.

For the reverse direction, if we start in BZFC we already have the j : x → x̂ from
Definition 8.4, so it remains to show that V̂ is the same as what HCL believes W to be,
provably in BZFC.

Lemma 9.4 (BZFC). W
HCL = V̂ .

Proof. Suppose x̂ ∈ V̂ . Then x̂ = ({ŷ : y ∈ x !}, {ŷ : y ∈ x?}), and since every ŷ
appearing here is in V̂ , inductively we can assume that it is also in W

HCL. By definition
x̂ is hereditarily classical and we have HCL |= (x̂ = (a, b) and a, b ⊆ W). By Lemma
7.3(3) applied in HCL, this means HCL |= x̂ ∈ W.

Conversely, suppose w ∈ W
HCL. Again by Lemma 7.3(3) we know that HCL |=

(w = (u, v) and u, v ⊆ W). Then u, v ⊆ W
HCL so, inductively, we have u, v ⊆ V̂ .

Therefore, let ũ = {y : ŷ ∈ u} and ṽ = {y : ŷ ∈ v}. Then ũ and ṽ are classical sets
(because u, v are), so by ACLA there exists a set x such that x ! = ũ and x? = ṽ. Then
we have

x̂ = ({ŷ : y ∈ x !}, {ŷ : y ∈ x?}) = ({ŷ : y ∈ ũ}, {ŷ : y ∈ ṽ}) = (u, v) = w.

This shows that w ∈ V̂ .

Corollary 9.5. BZFC �BS4 ϕ iff ZFC � (W |= ϕ).

Proof. If BZFC �BS4 ϕ then clearly ZFC � (W |= ϕ). Suppose ZFC � (W |= ϕ).
Then BZFC �BS4 (HCL |= (W |= ϕ)), so BZFC �BS4

(
W

HCL |= ϕ
)
. But in BZFC we

have that WHCL = V̂ ∼= V , giving us BZFC �BS4 ϕ.

§10. Tarski semantics in PZFC. A discussion that sometimes arises in the
philosophy of logic is the extent to which the meta-theory affects the formal theory
under consideration. For example, the recursive definition of the negation and
disjunction in Tarski semantics means that
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M |= ϕ ∨ ¬ϕ iff M |= ϕ or M �|= ϕ.
Thus excluded middle is a tautology in classical logic only because excluded middle is
covertly assumed to hold in the meta-theory. Likewise, since we have

M |= ϕ ∧ ¬ϕ iff M |= ϕ and M �|= ϕ,
a contradiction ϕ ∧ ¬ϕ is classically unsatisfiable only because M |= ϕ and M �|= ϕ
cannot both be true in the meta-theory.

Of course, non-classical logics may be set up by considering alternative (non-Tarski)
semantics, so that the formal system in question exhibit non-classicality while the
meta-theory remains classical. Such is the case, for example, with Kripke semantics
for intuitionistic logic, and the T/F-models for BS4 from Section 2. But this does not
shed any light on the question how the logic generated by Tarski semantics is affected
by the logic that holds in the meta-theory.

Questions of this sort have been considered, for example, by Shapiro in [27, chaps 6
and 7] or by Bacon in [5], and some related concerns about logical pluralism are voiced
in [21, 26]. No doubt, early logicians like Gödel and Tarski would have been aware
of this issue as well. Nevertheless, although the phenomenon of meta-logic affecting
formal logic seems to be a well-known concern in philosophy of language and theories
of truth, we do not know of a rigorous mathematical analysis of this phenomenon,
certainly not in the context of paraconsistency. Indeed, such an analysis would require
a sufficiently developed theory of paraconsistent mathematics to begin with, in which
the relevant model-theoretic definitions and proofs might be formalised and carried
out. Now that we have BZFC at our disposal, we are in a position to do exactly that.

The setup is as follows: in PZFC, we can define Tarski semantics by employing
the usual inductive definition (although predicates are interpretations non-classically).
This gives rise to a semantic consequence relation, which we shall denote by |=, and
one can study the logic which is sound and complete with respect to this relation. It
turns out that in BZFC (i.e., in the presence of the Anti-Classicality Axiom), this logic
is precisely BS4 (Theorem 10.3). On the other hand, in PZFC + “all sets are classical”,
it is simply classical logic.

In fact, we can be more specific by looking at only the paraconsistent, or only
the paracomplete, fragment of the Anti-Classicality Axiom. In PZFC, one can then
show that the logic generated by Tarski semantics satisfies the exact same level of
non-classicality as we assume to hold in the meta-theory (Theorems 10.10 and 10.11).

Definition 10.1 (PZFC). The syntax of first-order logic is assumed to be coded by
classical sets. A Tarski model M consists of a classical set M as a domain, and (not
necessarily classical ) interpretations for all constant and relation symbols. For simplicity
we will leave out function symbols. Inductively we define:

1. M |= (t = s)[a, b] ⇔ a = b.
2. M |= R(t1, ... , tn)[a1, ... , an] ⇔ RM(a1, ... an).
3. M |= ∼ϕ ⇔ M �|= ϕ.17

4. M |= ϕ ∧ � ⇔ M |= ϕ and M |= �.
5. M |= ϕ ∨ � ⇔ M |= ϕ or M |= �.
6. M |= ϕ → � ⇔ (M |= ϕ → M |= �).

17 This is an abbreviation of ∼(M |= ϕ).
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7. M |= ϕ ↔ � ⇔ (M |= ϕ ↔ M |= �).
8. M |= ∃xϕ(x) ⇔ M |= ϕ[a] for some a ∈M .
9. M |= ∀xϕ(x) ⇔ M |= ϕ[a] for all a ∈M .
10. M |= ⊥ ⇔ ⊥.

For a set of formulas Σ and a formula ϕ, the Tarski semantic consequence relation is
defined by

Σ |= ϕ
if for every Tarski model M, we have (M |= Σ → M |= ϕ).

For clarity, we will always refer to the above as Tarski models and Tarski semantics,
to keep them apart from T/F-semantics from Definition 2.3. We will also reserve the
notation |= for the Tarski satisfaction and consequence relation and use |=T and |=F
when referring to T/F-semantics.

Remark 10.2.

1. Definition 10.1 should be understood in the framework of PZFC, with all
equivalences being strong. The interpretations of relationsRM are not necessarily
classical. For example, it could happen that RM(a) is both true and false, in
which case we would have M |= R(x)[a] and M �|= R(x)[a], and subsequently
M |= (R(x) ∧ ∼R(x))[a].

2. The reader may easily verify that the defined connectives are also translated the
way we would expect, namely:

M |= ¬ϕ ⇔ ¬(M |= ϕ),

M |= !ϕ ⇔ ! (M |= ϕ),

M |= ?ϕ ⇔ ?(M |= ϕ).

Had we, for example, chosen ¬ as the primitive connective in BS4 instead of ⊥,
then Definition 10.1 would have given rise to the same logic.

3. Linguistically, it is useful to distinguish truth in a Tarski model from satisfaction
by a Tarski model. We say “M satisfies ϕ” to express “M |= ϕ” and “ϕ is true
in M” to express ! (M |= ϕ) (which is the same as “M |= !ϕ”). Satisfaction
captures the entire truth value of ϕ in M, and we can use the notation concerning
truth values from Section 5 to define the truth value of ϕ in a Tarski model M:

�ϕ�M := {∅ : M |= ϕ}.
Theorem 10.3 (BZFC). BS4 is sound and complete with respect to Tarski semantics:

Σ |= ϕ ↔ Σ �BS4 ϕ.

Remark 10.4. We should note here that the bi-implication is not a strong one, i.e.,
soundness and completeness only talks about truth in a model, not satisfaction by the
model. Indeed, note that �BS4 is a classical relation, while the Tarski-consequence relation
|= is not. For example, take any ϕ such that some model N |= ϕ ∧ ∼ϕ, and consider the
classical excluded middle ϕ ∨ ¬ϕ. Then for every M we have M |= ϕ ∨ ¬ϕ, but one can
verify that N �|= ϕ ∨ ¬ϕ. This means that “ϕ ∨ ¬ϕ” is a tautology, and is not tautology,
according to Tarski semantics.
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We will now prove Theorem 10.3. While this could be done by a classical soundness
and completeness proof within BZFC, here we will take a short-cut by recalling that
BS4 is sound and complete with respect to T/F-semantics (Lemma 2.7), arguing that
this fact remains true also when adapted to PZFC, and then showing that T/F-models
can be ‘simulated’ by Tarski models, and vice versa. This ‘simulation’ principle seems
to be an interesting phenomenon in its own right.

First we adapt Definition 2.3:

Definition 10.5 (PZFC). A T/F-model is defined as in Definition 2.3, with the added
condition that the domain M, all interpretations (RM)+ and (RM)– are classical subsets
ofMn, and =+ and =– are classical subsets ofM ×M . Moreover, it is required that for
a, b ∈M we have a =+ b ↔ ! (a = b).18

Lemma 10.6 (PZFC). BS4 is sound and complete with respect to T/F-semantics.

Proof. Since all relevant sets and relations are classical, the original proof of Lemma
2.7 can be repeated inside PZFC, yielding the desired result.

Lemma 10.7 (PZFC). For every Tarski model M, there exists a T/F-model M± such
that for every ϕ:

M |= ϕ ↔ M± |=T ϕ,

M �|= ϕ ↔ M± |=F ϕ.
Proof. Let M± have the same domain as M. For every relation symbol R define

classical relations (RM±
)+ and (RM±

)– (including equality):

(RM±
)+ := {(a1, ... an) ∈Mn : !R(a1, ... , an)},

(RM±
)– := {(a1, ... an) ∈Mn : ¬?R(a1, ... , an)}.

This definition makes sure that we have:

M |= R[a1 ... an] ↔ M± |=T R[a1 ... an],

M �|= R[a1 ... an] ↔ M± |=F R[a1 ... an].

An induction on the complexity of ϕ then shows that the two equivalences hold for all
sentences. To exhibit an example:

M |= ∼ϕ ⇔ M �|= ϕ IH↔ M± |=F ϕ ↔ M± |=T ∼ϕ,

M �|= ∼ϕ ⇔ M |= ϕ IH↔ M± |=T ϕ ↔ M± |=F ∼ϕ.
We leave the details to the reader.

Lemma 10.8 (BZFC). For every T/F-model N , there exists a Tarski model N 4 such
that for every ϕ:

N |=T ϕ ↔ N 4 |= ϕ,

N |=F ϕ ↔ N 4 �|= ϕ.

18 In other words, =+ is a classical relation such that a =+ b is true precisely when a = b is
true, and false precisely when a = b is not true. On the other hand =– is a classical and
symmetric binary relation, but need not have anything to do with the meta-theoretic a 	= b.
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Proof. First we take care of equality, since the negative relation =– of N is not a
priori related to the meta-theoretic �= for sets. We define an equivalence relation ≡ on
N as follows (appealing to the Anti-Classicality Axiom):

a ≡ b ↔ a = b,

a �≡ b ↔ a =– b.

It is not hard to verify that ≡ satisfies Definition 6.1, so if we consider equivalence
classes [a] := {b ∈ N : a ≡ b} then by Lemma 6.2 we know that:

[a] = [b] ↔ a = b,

[a] �= [b] ↔ a =– b.

Let the domain of N 4 be {[a] : a ∈ N} and notice that we have

N |=T (t = s)[a, b] ↔ a = b ↔ [a] = [b] ↔ N 4 |= (t = s)[[a], [b]],

N |=F (t = s)[a, b] ↔ a =– b ↔ [a] �= [b] ↔ N 4 �|= (t = s)[[a], [b]].

For every relation symbol R, define the interpretation RN 4
by:

RN 4
([a1] ... [an]) ↔ (RN )+(a1 ... an),

∼RN 4
([a1] ... [an]) ↔ (RN )–(a1 ... an),

which is again possible by appealing to the Anti-Classicality Axiom. Also note that
this is well-defined by the usual arguments.

Finally, we leave it to the reader to verify, by induction on the complexity of ϕ, that
for all a1, ... , an ∈ N we have:

N |=T ϕ[a1 ... an] ↔ N 4 |= ϕ[[a1] ... [an]],

N |=F ϕ[a1 ... an] ↔ N 4 �|= ϕ[[a1] ... [an]].

In particular this is true for all sentences ϕ, completing the proof.

Proof of Theorem 10.3 (BZFC). By Lemma 10.6, BS4 is sound and complete
with respect to T/F-semantics. But by Lemmas 10.7 and 10.8, T/F-models can be
replaced by Tarski-models and vice versa. Thus T/F-semantics are equivalent to Tarski-
semantics, which completes the proof.

Notice that while most of the theory in this section only required PZFC, Lemma
10.8 hinges on the Anti-Classicality Axiom. Indeed, we can now analyse the situation
in more detail.

Recall from Remark 5.4 that if one is interested in a set theory which has only
inconsistent but not incomplete sets, or only incomplete but not inconsistent sets, one
can consider these two fragments of the Anti-Classicality Axiom:

• ACLAcons : ∀x(x! ⊆ x?) ∧ ∃x(x? �⊆ x!)
(all sets are consistent, but there is an incomplete set).

• ACLAcomp : ∀x(x? ⊆ x!) ∧ ∃x(x! �⊆ x?)
(all sets are complete, but there is an inconsistent set).
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Now we consider some fragments of BS4, referring to them by the name under which
they (or a very similar version) have previously appeared in the literature.

Definition 10.9 (PZFC).

1. K3→: this logic is obtained if in Definition 2.2 we require (RM)+ ∩ (RM)– = ∅

for all relation symbols R (including equality). The propositional version appeared
in [13].

2. LFI1: this logic is obtained if in Definition 2.2 we require (RM)+ ∪ (RM)– =
M (the whole domain) for all relation symbols R (including equality). The
propositional version appeared in [10] .

3. FDE: the “→”- and “⊥”-free fragment of BS4, which appeared in [3].
4. K3: the “→”- and “⊥”-free fragment of K3→. The propositional version is the

widely known three-valued logic with indeterminate truth values of Kleene [15].
5. LP: the “→”- and “⊥”-free fragment of LFI1. The propositional version is the

well-known logic of paradox of Priest [22].

K3 and K3→ are three-valued logics designed to deal only with incompleteness but
not inconsistency, while LP and LFI1 are also three-valued and deal inconsistency but
not incompleteness. FDE and BS4 are four-valued and take incompleteness as well as
inconsistency into account. FOL refers to classical logic.

Theorem 10.10 (PZFC).

1. ACLA ↔ (Σ |= ϕ ↔ Σ � BS4 ϕ).
2. ACLAcons ↔ (Σ |= ϕ ↔ Σ � K3→ ϕ).
3. ACLAcomp ↔ (Σ |= ϕ ↔ Σ � LFI1 ϕ).
4. ∀x(x ! = x?) ↔ (Σ |= ϕ ↔ Σ � FOL ϕ).
5. Exactly one of the above holds.

If we restrict attention to formulas not containing implications or ⊥, we obtain the
same result for more familiar systems.

Theorem 10.11 (PZFC). Suppose Σ and ϕ do not contain “→” or “⊥”. Then:

1. ACLA ↔ (Σ |= ϕ ↔ Σ � FDE ϕ).
2. ACLAcons ↔ (Σ |= ϕ ↔ Σ � K3 ϕ).
3. ACLAcomp ↔ (Σ |= ϕ ↔ Σ � LP ϕ).
4. ∀x(x ! = x?) ↔ (Σ |= ϕ ↔ Σ � FOL ϕ).
5. Exactly one of the above holds.

The proofs of these theorems are variations of Theorem 10.3, and are left to the
reader.

§11. Future work. We would like to conclude by reflecting on a number of possible
future research directions.

1. Algebraic approach. The logic BS4 and set theory in BS4 can be approached
using algebraic semantics, in a manner similar to the work of Löwe and Tarafder,
[28], via so-called twist algebras. This can even be used to study an analogue of
Boolean-valued models (closely related to forcing over classical models of ZFC)
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in the PZFC- or BZFC-context. A significant part of this has been done in [19,
chaps 3 and 8] but there are more things that can be studied.

2. Constructive BZFC. It is also possible to consider an intuitionistic version
of BS4, defined syntactically by changing axioms 1–14 in Section 2.3 to an
intuitionistic version, or semantically by considering Kripke frames with T/F-
models at the nodes. In this logic, known as N4 and appearing in [2], ϕ ∨ ∼ϕ
and ϕ ∨ ¬ϕ both need not be true, and ϕ ∧ ∼ϕ does not lead to a strong
contradiction, but ϕ ∧ ¬ϕ does. Moreover, ∼∼ϕ is strongly equivalent to ϕ
while ¬¬ϕ is not.

What type of set theory do we obtain in such a logic if we combine the ideas
of this paper with constructive systems like IZF or CZF?

3. Computability theory in BZFC. There seems to be a natural application of BZFC
regarding computability theory. Recall that a Turing machine M computes a set
A ⊆ N if for all n:
• n ∈ A ↔ M halts on input n and outputs some non-0 value.
• n /∈ A ↔ M halts on input n and outputs 0.
Moreover, let us say that M recognizes a set A ⊆ N if for all n:
• n ∈ A ↔ M halts on input n and outputs a non-0 value.
Classically, every Turing machine recognizes a set, but not every Turing machine
computes a set (since it may not halt on a given input). Thus, one cannot use
sets A ⊆ N to represent decisions of a machine.

Let us revisit the situation in BZFC (or even PZFC + ACLAcons). Using the
same definition as above, it follows from Theorem 5.2 that every Turing machine
computes a set. If a given machine does not halt on input n, it means only that
it computes an incomplete set A, namely a set for which ¬(n ∈ A ∨ n /∈ A). In
particular, the decision process of a machine can be completely described by
subsets of N.

4. Cardinal arithmetic in BZFC. It is clear that we need a new notion of cardinality
and cardinal numbers to describe the size of non-classical sets. Such a notion
should capture the size of the entire structure of a non-classical sets, i.e., the
size of the !-extension, ?-extension, and all of the combinations, in one go. Some
preliminary work on this has already been done, and we expect that this will
lead to a rich theory of cardinals and cardinal arithmetic.
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