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FROBENIUS-AFFINE STRUCTURES AND TANGO CURVES

YUICHIRO HOSHI

Abstract. In a previous paper, we discussed Frobenius-projective structures
on projective smooth curves in positive characteristic and established a
relationship between pseudo-coordinates and Frobenius-indigenous structures
by means of Frobenius-projective structures. In the present paper, we discuss
an “affine version” of this study of Frobenius-projective structures. More
specifically, we discuss Frobenius-affine structures and establish a similar
relationship between Tango functions and Frobenius-affine-indigenous struc-
tures by means of Frobenius-affine structures. Moreover, we also consider a
relationship between these objects and Tango curves.

§81. Introduction

In the previous paper [7], we discussed Frobenius-projective structures on projective
smooth curves in positive characteristic and established a relationship between certain
rational functions (i.e., pseudo-coordinates) and certain P!-bundles equipped with sections
(that may be regarded as an analogue, in positive characteristic, of indigenous bundles in
the classical theory of Riemann surfaces; i.e., Frobenius-indigenous structures) by means
of Frobenius-projective structures. In the present paper, we discuss an “affine version” of
this study of Frobenius-projective structures. More specifically, we discuss Frobenius-affine
structures and establish a similar relationship between Tango functions and Frobenius-
affine-indigenous structures. Moreover, we also consider a relationship between these objects
and Tango curves (cf., e.g., [8], [9]).

Let p be a prime number, let k£ be an algebraically closed field of characteristic p, let g
be a nonnegative integer, and let

X

be a projective smooth curve over k of genus g (i.e., a connected scheme that is projective
and smooth over k£ such that the module of global sections of the relative cotangent sheaf
over k is of rank g). Throughout the present paper, let us fix a positive integer

N.

Write X for the base change of X by (not the pth if N # 1 but) the pth power Frobenius
endomorphism of k, ®: X — X for the relative pVth power Frobenius morphism over £,
PGL;y xr for the sheaf of groups on X F obtained by considering automorphisms of the
trivial P'-bundle over X*' (cf. Definition 2.1(ii)), PGL’xr C PGLy xr for the subsheaf of
PGLy xr obtained by considering automorphisms of the trivial Pl-bundle over X that
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386 Y. HOSHI

restrict to automorphisms of the trivial Al-bundle over X" (cf. Definition 2.1(ii)), and

B & 'PGLEr C G % @ 'PGLy xr.

Write, moreover, By C Giin for the groups obtained by forming the stalks of the sheaves
B C G of groups at the generic point of X, respectively.

A Frobenius-affine structure of level N on X is defined to be a subsheaf of the sheaf on X
of étale morphisms to the affine line A} over k& which forms a B-torsor with respect to the
natural action of B on the sheaf on X of morphisms to A} over k (cf. Definition 3.1).
One finds easily that the notion of Frobenius-affine structures may be regarded as an
“affine version” of the notion of Frobenius-projective structures discussed in [7] and,
moreover, may be regarded as an analogue, in positive characteristic, of the notion of
complex affine structures (cf., e.g., [1, §2]) in the classical theory of Riemann surfaces.
The main result of the present paper yields a relationship between a certain rational
function on X (i.e., a Tango function) and a certain A'-bundle (cf. Remark 4.3.2, and
also Remark 2.1.1) equipped with a section (i.e., a Frobenius-affine-indigenous structure)
obtained by considering Frobenius-affine structures.

A Tango function of level N on X is defined to be a (necessarily generically étale)
morphism f: X — P} over k such that, for each closed point € X of X, there exist an
open subscheme U C X of X and an element g € B,, such that x € U, and, moreover, the
restriction g(f)|y to U of the result g(f) of the action of g € By, on f is an étale morphism
U — A} (cf. Definition 2.3). For instance, if p =2, then every generically étale morphism to
PP} over k is a Tango function of level 1 (cf. Remark 2.7.1). Moreover, we prove the following
result (cf. Corollary 2.11).

THEOREM A. It holds that X is a Tango curve (cf. Definition 2.8(ii)) if and only if X
has a Tango function of level 1.

A Frobenius-affine-indigenous structure of level N on X is defined to be a pair of an
Al-bundle A — X over X and a section o of the pullback ®*A — X such that the
Kodaira—Spencer section of the PD-connection Vg+«4 on ®*A at o is nowhere vanishing
(cf. Definition 4.3). One may find that the notion of Frobenius-affine-indigenous structures
of level 1 is closely related to the notion of dormant Miura GL2-opers discussed in [10] (cf.
Remark 5.2.3 and Proposition 5.7).

The main result of the present paper is as follows (cf. Theorem 4.10).

THEOREM B. There exist bijective maps between the following three sets:

(1) the set of Byn-orbits of Tango functions of level N on X;
(2) the set of Frobenius-affine structures of level N on X;
(3) the set of isomorphism classes of Frobenius-affine-indigenous structures of level N on X.

Note that if (p, N) # (2,1), then the bijective maps of Theorem B are compatible with
the bijective maps between the following three sets of [7, Th. A] (cf. Remark 4.10.1):

e the set of G,,-orbits of pseudo-coordinates of level N on X
e the set of Frobenius-projective structures of level N on X;
e the set of isomorphism classes of Frobenius-indigenous structures of level N on X.
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As already observed, the notion of Frobenius-affine structures may be regarded as an
analogue, in positive characteristic, of the notion of complex affine structures in the classical
theory of Riemann surfaces. Moreover, it is well-known that if a compact Riemann surface
admits a complex affine structure, then the compact Riemann surface is of genus 1. On
the other hand, one may conclude from Theorem B that there exists a projective smooth
curve over k of genus > 2 that has a Frobenius-affine structure of level N (cf. Remark 3.7.1).

One application of Theorem B is as follows. Suppose that g > 2. Write Frx: X — X for
the pth power Frobenius endomorphism of X. Then one may verify (cf. Remark 5.2.4 and
Proposition 5.7) that there exists a bijective map between the set of Theorem B(3) and
the set of P-equivalence (cf. Definition 5.1) classes of pairs (£,£) of locally free coherent
Ox-modules £ of rank 2 and invertible subsheaves £ C £ that satisfy the following condition:
if, for a nonnegative integer i, we write

i i

def

def S o "
FI‘X:FI‘XEQEI - Frx“'Fng,

L, =
then

e the locally free coherent Ox-module Ex_1, hence also &, is stable, but

e there exist an invertible sheaf M on X of degree % -deg(E)+g—1=1-deg(én)+g—1and
a locally split injective homomorphism M — Ex of Ox-modules such that the inclusions
L, M < Ex determine an isomorphism Ly ® M = Ex of Ox-modules. (In particular,
the locally free coherent Ox-module Fy is not semistable.)

Thus, by applying Theorem B and some previous works, we obtain the following
application in small characteristic cases (cf. Corollary 6.5(ii)).

THEOREM C. Suppose that g > 2, and that p=2 (resp. p=3). Suppose, moreover, that
N > 2 whenever p=2. Then the following two conditions are equivalent:

(1) The curve X has a Tango function of level N.
(2) There exist:

e a (necessarily stable) locally free coherent Ox-module € of rank 2,

e an invertible sheaf Q on X of degree (2g—2)/p™ (resp. (4g—4)/pN),

e a surjective homomorphism € — Q of Ox -modules, and

e an isomorphism (Frx).Ox = En_1 (resp. Bx = En_1) of Ox-modules,

where we write
Bx def Coker((’)X — (FrX)*OX)

for the Ox-module obtained by forming the cokernel of the homomorphism Ox —
(Frx).Ox induced by Frx.
§2. Tango functions

In the present section, we introduce and discuss the notion of Tango functions (cf.
Definition 2.3). Moreover, we also discuss a relationship between Tango functions and Tango
curves studied in, for instance, [8] and [9] (cf. Theorem 2.9 and Corollary 2.11).
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In the present section, let p be a prime number, let k£ be an algebraically closed field of
characteristic p, let g be a nonnegative integer, and let

X

be a projective smooth curve over k of genus g (i.e., a connected scheme that is projective
and smooth over k£ such that the module of global sections of the relative cotangent sheaf
over k is of rank g). Throughout the present paper, let us fix a positive integer

N.

If “(—)” is an object over k, then we shall write “(—)¥” for the object over k obtained by

forming the base change of “(—)” by (not the pth if N # 1 but) the p"th power Frobenius
endomorphism of k. We shall write

W.XF s> X

for the morphism obtained by forming the base change of the pNth power Frobenius
endomorphism of Spec(k) by the structure morphism X — Spec(k). Thus, the p™th power
Frobenius endomorphism of X factors as a composite

X —-xF W, x
We shall write
o: X —= XF

for the first arrow in this composite, that is, the relative p™ th power Frobenius morphism
over k. Note that X' is a projective smooth curve over k of genus g, and ® is a finite flat
morphism over k of degree p¥.

DEFINITION 2.1. Let S be a scheme.

(i) We shall write

for the trivial A'-bundle over S,

P}QHS

for the trivial P'-bundle over S obtained by forming the smooth compactification of
A}; — 5, and

x5 € ]P’};(S)

for the section of P — S obtained by considering the complement of A} in PY. Thus,

A} def A cP; def ]P’épec(k) denote the affine, projective lines over k, respectively,

pec(k) =
and oo def OOspec(k) € ]P’,lc(k;) denotes the k-rational closed point of IP’}€ obtained by

considering the complement of A} in P}.
(ii) We shall write

PGL; s
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for the sheaf of groups on S that assigns, to an open subscheme T C S, the group
Autr(PL) of automorphisms over T of the trivial P!-bundle PL. — T and

PGL$% C PGLa,s

for the sheaf of groups on S that assigns, to an open subscheme 7' C S, the subgroup
of Autr(PL) consisting of automorphisms over T of the trivial P!-bundle P} — T that
preserve the section oo € PL(T), or, equivalently, restrict to automorphisms of the
open subscheme Al CPL over T (cf. Remark 2.1.1).

(iii) We shall write

B & 'PALYr CG % & 'PGLy xr
and
Brtn € Grin
for the groups obtained by forming the stalks of B C G at the generic point of X,
respectively.

REMARK 2.1.1. One verifies easily that, in the situation of Definition 2.1, if the scheme S
is integral, then the sheaf of groups on § that assigns, to an open subscheme T'C S, the group
Autr(AL) of automorphisms over T’ of the trivial A'-bundle A}, — T may be naturally
identified with the subsheaf PGL5’g € PGLy s of PGLy s of Definition 2.1(ii).

DEFINITION 2.2.
(i) We shall write
P

for the sheaf of sets on X that assigns, to an open subscheme U C X, the set of
morphisms from U to P}, over £,

peét C P

for the subsheaf of P that assigns, to an open subscheme U C X, the set of generically
étale morphisms from U to P} over k, and

fPét C ngét

for the subsheaf of P& that assigns, to an open subscheme U C X, the set of étale
morphisms from U to ]P’,lC over k.
(ii) We shall write

A(SP)

for the sheaf of sets on X that assigns, to an open subscheme U C X, the set of
morphisms from U to A} over k and

A A xppitc A

for the subsheaf of A that assigns, to an open subscheme U C X, the set of étale
morphisms from U to A} over k.
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REMARK 2.2.1.

(i) One verifies easily that both P and P& are (isomorphic to) constant sheaves.

(ii) One verifies easily that P, A may be naturally identified with the sheaves of sets on X
that assign, to an open subscheme U C X, the sets of sections of the trivial P!-bundle
P}, — U, the trivial A'-bundle A}, — U, respectively.

(iii) It follows immediately from (ii) that G, hence also B, naturally acts, via ®, on P.
Moreover, one verifies easily that the subsheaves P¢ C P& C P of P are preserved by
this action of G, hence also of B, on P.

(iv) Tt is immediate from (i) that the actions of G on P, P& of (iii) determine actions of
Grtn o0 P(X), PE(X), respectively. In particular, the actions of B on P, P& of (iii)
determine actions of By, on P(X), P& (X), respectively.

(v) It follows immediately from (ii) that B naturally acts, via ®, on A. In particular, it
follows from (iii) that the subsheaf A% C A of A is preserved by this action of B on A.

DEFINITION 2.3. We shall say that a generically étale morphism f: X — P} over k is
a Tango function of level N if, for each closed point x € X of X, there exists an element
g € Bytn such that the morphism g(f): X — P} (cf. Remark 2.2.1(iv)) over k is étale at
x € X, and, moreover, g(f)(x) # ook.

We shall write

Tfn (X) S PE(X)
for the subset of Tango functions of level N.

REMARK 2.3.1. One verifies easily that if a global section of P& is a Tango function
of level N, then every element of the B,-orbit (C P8¢ (X)) of the global section is a Tango
function of level N.

REMARK 2.3.2. It is immediate that an arbitrary Tango function of level N is a pseudo-
coordinate of level N (cf. [7, Def. 2.3]). Thus, we have a commutative diagram

Tfv (X) = peon (X)
SfN (X)/Brtn - PCDN(X)/grtn
(cf. Remark 2.3.1, [7, Def. 2.3], and [7, Rem. 2.3.1]).

DEFINITION 2.4. Let f € P8%(X) be a global section of P&, and let x € X be a closed
point of X. Let us identify A def k[[t]] with the completion O x,o of the local ring Ox , by

~

means of a fixed isomorphism A = Ox , over k. Write F' € O, for the image, via f, in
Ox,» of a fixed uniformizer of the discrete valuation ring Op: ¢(,) and

F = Zi21aiti cA

for the expansion of F' in A. Thus, the positive integer

ind, (f) < vu(F) =min{i € Zzy | a; #£0}
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(where v4 denotes the t-adic valuation on A = k[[t]] that maps ¢ € A to 1) coincides with
the ramification index of the dominant morphism f: X — P} at z € X. Then we shall write

indf?" (f) < min{i € Zsy | a; #0 and i g pNZ} (> indy(f))

and
ind#" (f)

for the uniquely determined positive integer such that 1 < mgpzv( f) <pV —1, and,
moreover, ind?”" (f) —ind%" (f) € pNZ.

Note that one verifies easily that since f is a global section of P&, it holds that
indpr( f) < oo. Moreover, one also verifies easily that both indgpN (f) and @?N( f) are
independent of the choices of the fixed isomorphism A = O x,2 and the fixed uniformizer of

Op1, f(2)-

LEMMA 2.5. Let f € P&¥(X) be a global section of P&, and let x € X be a closed point
of X. Then the following assertions hold:

(i)  Suppose that f(x) # ook. Then there exists an element g € Byyn such that
9(f)(x) # ook, ind, (9(f)) = mgpN(f)

(which thus implies that ind,(g(f)) = mgpN (g()).
(ii) Suppose that f(x) = ook, and that ind,(f) = indpr (f). Then there exists an element
g € Bitn such that

9(f)(x) # oox, ind, (¢(f)) = p" — ind#" (f)

(which thus implies that ind,(g(f)) = mpr (g(f) =p"N —@%pN (9(f))).
(i) Suppose that f(z) = ook, and that ind,(f) # ind%P" (f). Then there exists an element
g € By such that

g(f)(@) # ook, inda(g(f)) =ind?" (f)

(which thus implies that ind,(g(f)) = ind2”" (¢(f))).

Proof. Write Kx for the function field of X. Let us identify the scheme Proj(k[u,v])
with PL by means of a fixed isomorphism Proj(k[u,v]) = Pi over k that maps the point
“(u,v) = (1,0)” to the closed point oog. Thus, the global section f € P& (X) determines
and is determined by an element F of Kx \ K% (i.e., the image of u/v € k(u/v) in Kx
via f). Now, let us first observe that if f(x) # ook, then we may assume without loss of
generality, by replacing f by the composite of f and a suitable element of Auty(A}), that
f(x) is the point “(u,v) = (0,1),” that is, that F' € m,. Let us identify A def E[[t]] with the
completion @X,I of the local ring Ox , by means of a fixed isomorphism A =0 X,z OVer
k that maps t € A into Ox 5 C @X@. (Thus, it holds that F € tA[[t]] (vesp. F~1 € tA[[t]])
whenever f(z) # ooy, (resp. f(x) = oox).) Write dy Lo m;fPN(f).

Now, we verify assertion (i). Let us first observe that it follows from the definition of
“mgp” (f)” that there exist a € Ox 5, u € A*, and a nonnegative integer r such that
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F=a" — tTpN+4°u, and, moreover, either a =0 or VA(apN) (=pNva(a)) <rpN +dy. Then
one verifies immediately from the various definitions involved that the global section of P8¢t
that corresponds to the element t_TpN(F — apN) of Kx \ K% is contained in the B,-orbit
of f and satisfies the condition in the statement of assertion (i). This completes the proof
of assertion (i).

Next, we verify assertions (ii) and (iii). Let us first observe that it follows from the
definition of “mﬁfp” (f)” that there exist a € Ox 5, u € A*, and a nonnegative integer
r such that F~1 =a?" —¢?" +doy,and, moreover, a = 0 in the situation of assertion (ii)
(resp. va (apN)(: pNva(a)) < rpN +dy in the situation of assertion (iii)). Then one verifies
immediately from the various definitions involved that if we are in the situation of assertion
(ii), then the global section of P& that corresponds to the element ¢"+DP" F of K x \ K% is
contained in the B,,-orbit of f and satisfies the condition in the statement of assertion (ii).
This completes the proof of assertion (ii).

Next, to verify assertion (iii), observe that, in the situation of assertion (iii), since F~! =

aP” — " Hdoy — gp" (1— a*pNt’“pN*dOu), and 0 < rp™ +do —pNva(a), it follows that

N N N N N
F=aP (1+a P 7 Fdoyq= 2P ¢2rp" +2dog2 4 ...,

Then one verifies immediately from the various definitions involved that the global section
of P& that corresponds to the element ¢t~"7" a2*" F — =" qP" of Kx \ K% is contained
in the Byn-orbit of f and satisfies the condition in the statement of assertion (iii). This
completes the proof of assertion (iii), hence also of Lemma 2.5. U

LEMMA 2.6. Let f € P&(X) be a global section of P&, and let x € X be a closed point
N
of X. Suppose that f(z) # oor, and that ind?P" (f) # 1. Then, for each g € Byn, the result
g(f) € P&¢(X) of the action of g € Bun on f € P&Y(X) either is not étale at x or maps x
to oo

Proof. Let us first observe that it follows immediately from Lemma 2.5(i) that we may
assume without loss of generality, by replacing f by the result of the action of a suitable
element of B, on f, that

(2) ind,(f) = do % ind#" (f) (#1).

Let us identify A def k[[t]] with the completion O x,o Of the local ring Ox , by means of

a fixed isomorphism A = Ox ., over k. Then it is immediate that, to verify Lemma 2.6, it
suffices to verify that

(%1): for each g € Bytn, the composite of the natural morphism Spec(A) — X with
g(f): X — P} is not formally étale whenever this composite does not map the
closed point of Spec(A) to ocoy.

Let g be an element of B,. Next, let us identify the scheme Proj(k[u,v]) with P} by
means of a fixed isomorphism Proj(k[u,v]) = P}, over k that maps the point “(u,v) = (1,0)"
to the closed point cog. Write K for the field of fractions of A and

Proj(k[u,v]) <— Spec(4); (u,v) = (fu,fv)

(where f,, f, € A) for the composite of the natural morphism Spec(A4) — X with f: X — P}.
Thus, there exist ag4, by, dg € k:[[t’pNH = AP" C A (which thus implies that valag), va(by),
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va(dg) € pV7Z) such that agdy # 0, and, moreover, the composite of the natural morphism
Spec(A) — X with g(f): X =P} coincides with the morphism determined by the composite
Proj(k[u,v]) <— Proj(K[u,v]) <— Proj(K[u,v]) <— Spec(K)
(u,v) = (u,v)
(u,v) = (agu+bgv,dyv)
(u7v) = (fu7f’U)

Next, let us observe that, to verify (x1), we may assume without loss of generality, by
replacing f by the composite of f and a suitable element of Auty(A}), that the image of
x € X via f is the point “(u,v) = (0,1),” that is, that (cf. (a))

(b) va(fu)=do, and f, = 1. (Recall that 2 < dy < p" —1; cf. (a).)
Next, let us observe that, to verify (*;), we may assume without loss of generality, by
replacing g by the product of g and a suitable element of Auty(A}), that the image of
x € X via g(f) is the point “(u,v) = (0,1),” that is, that (cf. (b))
(c) if we write

def g fu+by c K.
dy

then F' € A, and, moreover, va(F) > 1.
Thus, it is immediate that, to verify (x1), it suffices to verify that
(*2): va(F) # 1.

Next, let us observe that, to verify (x2), we may assume without loss of generality, by
replacing (ag,by,d,) by t~min{valag)valbe)valdo)} . (g, b, d,), that

(d) 0€{valag),valby),va(dy)}-
Here, let us verify that
(&) valby) = p".

Indeed, if v4(by) =0, then it follows from (b) that va(agfy +by) = 0, which thus implies
that v4(F) < 0—in contradiction to (c). This completes the proof of (e).

Next, suppose that v4(dy;) = 0. Then it follows from (b) and (e) that vs(F) =
va(agfu+bg) > 2, as desired. Thus, to verify (*2), we may assume without loss of generality
that

() va(dg) = p".

Thus, it follows from (d)-(f) that va(ay) = 0. Then it follows from (b) and (e) that
va(agfu+by)=do. In particular, it follows from (b) and (f) that v4(F) =do—va(dy) <0—
in contradiction to (c). This completes the proof of (k2), hence also of Lemma 2.6. 0

PROPOSITION 2.7. Let f € P&(X) be a global section of P&. Then it holds that f is a
Tango function of level N if and only if, for each closed point x € X of X, the equality

ind2r” (f) = 1, if either f(x) # ooy orind,(f) # ind%‘pN (f)
o pN =1, if f(z) =oop and ind,(f) = jndgpN (f)

holds.
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Proof. The sufficiency follows immediately from Lemma 2.5(i)—(iii). The necessity
follows from Lemma 2.5(ii) and (iii) and Lemma 2.6. 0

REMARK 2.7.1. Suppose that (p, N) = (2,1). Then one verifies easily from Proposi-
tion 2.7 that every global section of P& is a Tango function of level N:

PE(X) = Tfn(X).
Moreover, one also verifies easily that
8(PE(X)/Brtn) = 4(ZFN(X)/Brtn) = 1.

REMARK 2.7.2. One may construct some examples of Tango functions by means of the
well-known structure of the maximal pro-prime-to-p quotient of the abelianization of the
étale fundamental group of an open subscheme of the projective line over an algebraically
closed field of characteristic p as follows: Let r be a positive integer. Write d et (rpN —1)
(pN —1). Let a1y Q4_(pN_1) € A} be distinct d — (p™ —1) closed points of A}. Write
ag f o x € P, P for the ring obtained by forming the pro-prime-to-p completion of the ring
Z of rational integers, and @ for the maximal pro-prime-to-p quotient of the abelianization
of the étale fundamental group of A} \{a1,...,aq_v_1} =P\ {ao,a1,...,aq_pv_1)}.
Then it is well-known that, for each i € {0,1,...,d— (p" — 1)}, there exists an element ; of
@ such that:

(a) these elements of @ determine an isomorphism between @ and the quotient of the
free P-module freely generated by the 7;’s (where i € {0,1,...,d — (p™ —1)}) by the
P-submodule generated by vo+7v1+ - +7Y4—(p~—1), and, moreover,

(b) for each i € {0,1,...,d— (p¥ — 1)}, the element ~; topologically generates the inertia
subgroup of @ associated with the closed point a; of P;.

Thus, it follows from (a) that there exists a surjective homomorphism @ — Z/dZ of groups
that maps the element vy to p™ — 1 € Z/dZ and, for each i € {1,...,d— (p" — 1)}, maps the
element ~; to 1 € Z/dZ. Write

. 1
fN,r- CN,’I” > Pk

for the morphism over k (that is necessarily finite and of degree d) obtained by forming
the smooth compactification of the finite étale Galois covering of P} \ {ao,ay,..., Adg—(pN—1)}
determined by a surjective homomorphism @) — Z/dZ as above. Thus, it follows from (b)
and the condition imposed on the surjective homomorphism @ — Z/dZ that:

(c) the finite morphism fy . is étale over the open subscheme P} \ {ao,a1,...;a4-p~_1)}
of Py,

(d) the fiber f]?,,lr(ao) is of cardinality p¥ — 1, and the equality ind,(fx.) =rp™ —1 holds
for each x € f]ﬁlr(ao), and

(e) for each i€ {1,...,d— (p" —1)}, the fiber f]\*,,lr(ai) is of cardinality 1, and the equality
ind, (fn,r) = d holds for each z € f{,}T(ai).

In particular, it follows from Proposition 2.7, together with (c)—(e), that the global section
fn.r of “P&” for the projective smooth curve Cy - over k is a Tango function of level N.
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Note that it follows from the Riemann-Hurwitz formula that if one writes gy, for the
genus of Cy ., then the equalities

29N+ —2=d(d—p" —1) = dp" (r(pN —-1)— 2)
hold. In particular, one concludes that the inequality gy, > 2 holds if and only if (p, N,r) ¢
{(2,1,1),(2,1,2),(3,1,1)}.

Finally, we discuss a relationship between Tango functions and Tango curves studied in,
for instance, [8] and [9].

DEFINITION 2.8.

(i) Let f € P&*(X) be a global section of P2, Then we shall write

n(N: ) S S, e xetosealva (@) /0]

(where we write v, for the discrete valuation on the function field of X that corresponds
to the closed point z and maps a uniformizer of Ox , to 1 and “[—]” for the uniquely
determined maximal integer less than or equal to “(—)”; cf. [9, Def. 9]).

(i) We shall say that X is a Tango curve if there exists a global section f € P& (X) of
P&t such that n(1; f) = (29 —2)/p (cf., e.g., [9] and [8, §2.1]).

THEOREM 2.9. Let f € P&¢(X) be a global section of P&¢*. Then the following assertions
hold:

(i) If fis a Tango function of level N, then the equality n(N; f) = (29 —2)/p" holds.
(ii) It holds that f is a Tango function of level 1 if and only if the equality n(1;f) =
(29 —2)/p holds.

Proof. These assertions follow immediately from Proposition 2.7, together with the well-

known fact that the relative cotangent sheaf of X/k is of degree 2g — 2. U
COROLLARY 2.10. If X has a Tango function of level N of X, then 29 — 2 1is divisible
by p".
Proof. This assertion is an immediate consequence of Theorem 2.9(i). [

COROLLARY 2.11. [t holds that X is a Tango curve if and only if X has a Tango function
of level 1.

Proof. This assertion is an immediate consequence of Theorem 2.9(ii). 0

83. Frobenius-affine structures

In the present section, we introduce and discuss the notion of Frobenius-affine structures
(cf. Definition 3.1). Moreover, we also discuss a relationship between Frobenius-affine
structures and Tango functions (cf. Proposition 3.7). In the present section, we maintain
the notational conventions introduced at the beginning of §2.

DEFINITION 3.1. We shall say that a subsheaf S C A% of A% is a Frobenius-affine
structure of level N on X if S is preserved by the action of B on A (cf. Remark 2.2.1(v)),
and, moreover, the sheaf S forms, by the resulting action of B on S, a B-torsor on X.
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We shall write
Fasy (X)

for the set of Frobenius-affine structures of level N on X.
REMARK 3.1.1.

(i) One finds easily that the notion of Frobenius-affine structures may be regarded as
an “affine version” of the notion of Frobenius-projective structures (cf. [7, Def. 3.1])
discussed in [7].

(ii) One also finds easily that the notion of Frobenius-affine structures may be regarded
as an analogue, in positive characteristic, of the notion of compler affine structures
(cf., e.g., [1, §2]) in the classical theory of Riemann surfaces.

LEMMA 3.2. Let S C A% be a Frobenius-affine structure of level N on X. Then the
following assertions hold:

(i) Let U, V C X be open subschemes of X, fu € S(U), and fy € S(V). Then the global
section of P& determined by fu € S(U) (cf. Remark 2.2.1(i)) is contained in the
Biin-orbit of the global section of P&t determined by fir € S(V).

(ii) The global section of P& determined by a local section of S is a Tango function of
level N.

Proof. Since X is irreducible, assertion (i) follows from the fact that S is a B-torsor.
Assertion (ii) follows from assertion (i), together with the fact that S is contained
in A% O

DEFINITION 3.3. Let S C A% be a Frobenius-affine structure of level N on X. Then it
follows from Lemma 3.2(i) and (ii) that S determines a By¢,-orbit of Tango functions of
level N. We shall refer to this B,iy-orbit as the Tango-orbit of level N associated with S.
Thus, we obtain a map

SaﬁN(X) HSfN(X)/Brm.

LEMMA 3.4. Let U C X be an open subscheme of X, f € A*(U), and g € Bitn. Then
it holds that the result g(f) € P& (U) of the action of g € Bun on f € AS(U) C PeEY(U)
(cf. Remark 2.2.1(i) and (iv)) is contained in the subset A*(U) C P& (U) if and only if
g € By is contained in the subgroup B(U) C Byiy.

Proof. The sufficiency follows from Remark 2.2.1(v). To verify the necessity, suppose
that g & B(U). Write K x for the function field of X. Let = € X be a closed point of X such
that € U, and, moreover, g ¢ PGLy(Ox ;) (if we regard g as an element of PGLy(Kx)).

Let us identify A e k[[t]] with the completion @X@ of the local ring Ox , by means of a

fixed isomorphism 4 = O x,2 over k. Then it is immediate that, to verify the necessity, it
suffices to verify that

(x1): the composite of the natural morphism Spec(A4) — X with g(f): X — P}
is not formally étale whenever this composite does not map the closed point of
Spec(A) to ooy

Next, let us identify the scheme Proj(k[u,v]) with P} by means of a fixed isomorphism
Proj(k[u,v]) = PL over k that maps the point “(u,v) = (1,0)” to the closed point coj. Write
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K for the field of fractions of A and
Proj(k[u,v]) <—— Spec(A); (u,v) = (fu, fo)

(where f,, f, € A) for the composite of the natural morphism Spec(A4) — X with f: X —Pj.
Thus, there exist ag, by, dg € k[[tpN]] =Ar" C A (which thus implies that va(ag), va(by),
va(dy) € pNZ) such that agdy # 0, and, moreover, the composite of the natural morphism
Spec(A) — X with g(f): X =P} coincides with the morphism determined by the composite

Proj(k[u,v]) <— Proj(K[u,v]) <«— Proj(K[u,v]) <— Spec(K)
(u,v) — (u,v)
(u,v) = (agu+byv,dyv)

(u,v) = (fur fo)-

Now, let us observe that, to verify (x;), we may assume without loss of generality, by
replacing (ag4,by,dg) by t~ min{va(ag),va(bg).valdg)} . (ag,bq,dg), that

(a) 0€{valag),valby),valdg)}.
Moreover, let us observe that since g ¢ PGLy(Ox ), it holds that
(b) va(agdg) >p".

Next, let us observe that, to verify (x1), we may assume without loss of generality, by
replacing f by the composite of f and a suitable element of Auty(A}), that the image of
x € X via f is the point “(u,v) = (0,1),” that is, that

(¢) va(fu)=1 (cf. our assumption that f € A**(U)), and f, = 1.

Moreover, let us observe that, to verify (x1), we may assume without loss of generality, by
replacing g by the product of g and a suitable element of Autg(A}), that the image of z € X
via g(f) is the point “(u,v) = (0,1),” that is, that (cf. (c))

(d) if we write

def ay fu+bg
=4, S K,

then F' € A, and, moreover, va(F) > 1.

Thus, it is immediate that, to verify (*1), it suffices to verify that
(%2): va(F) # 1.
Here, let us verify that
(e) va(by) =p™.

Indeed, if v4(by) =0, then it follows from (c) that va(agf, +bg) =0, which thus implies
that v4(F) <0—in contradiction to (d). This completes the proof of (e).

Next, suppose that v4(d,) = 0. Then it follows from (b) that v4(ay) > p~. In particular,
it follows from (e) that va(F) =va(agfu+by) > pY > 2, as desired. Thus, to verify (x2),
we may assume without loss of generality that

() va(dg) = p™.
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It follows from (a), (e), and (f) that v4(agy) = 0. Thus, it follows from (c) and (e) that
va(agfu+0bg) = 1. In particular, it follows from (f) that vs(F) =1—-wva(dy) < —1—in
contradiction to (d). This completes the proof of (x2), and hence also of Lemma 3.4. 0

LEMMA 3.5. Let f € P&¢(X) be a Tango function of level N. Then the following
assertions hold:

(i) Write Sg C A% for the subsheaf of A®* that assigns, to an open subscheme U C X,
the subset of A (U) obtained by forming the intersection of A (U) and the Byin-orbit
(C P (U)) of flu (cf Remark 2.2.1(i) and (iv)):

def

§;(U) = AYU)N(Brwn - flv)-

Then the subsheaf Sy is a Frobenius-affine structure of level N on X.

(ii) Let g € P& (X) be a global section of P&, which is contained in the Byyy,-orbit of
fePeX). (So gis a Tango function of level N; cf. Remark 2.3.1.) Then S; =S,
(cf. (i)-

Proof. Assertion (i) follows immediately from Lemma 3.4, together with the definition
of a Tango function of level N. Assertion (ii) follows immediately from the definition of

“Sf.” D

DEFINITION 3.6. Let f € P&*(X) be a Tango function of level N. Then it follows from
Lemma 3.5(i) that f determines a Frobenius-affine structure of level N. We shall refer to this
Frobenius-affine structure of level N as the Frobenius-affine structure of level N associated
with f. Thus, we obtain a map

TN (X)) Bepn — Fasy (X)
(cf. Lemma 3.5, (ii)).

PrOPOSITION 3.7. The assignments of Definitions 3.3 and 3.6 determine a bijective
map

SCLEN(X) —— TfN(X)/Brtn.

Proof. This assertion follows immediately from the constructions of Lemmas 3.2
and 3.5. O

REMARK 3.7.1. As observed in Remark 3.1.1(ii), the notion of Frobenius-affine
structures may be regarded as an analogue, in positive characteristic, of the notion of
complex affine structures in the classical theory of Riemann surfaces. Moreover, it is well-
known (cf., e.g., [1, Lem. 1]) that if a compact Riemann surface admits a complex affine
structure, then the compact Riemann surface is of genus 1. On the other hand, one may
conclude from Remark 2.7.2 and Proposition 3.7 that, for an arbitrary algebraically closed
field F' of positive characteristic and an arbitrary positive integer N, there exists a projective
smooth curve over F' of genus > 2 that has a Frobenius-affine structure of level N.

LEMMA 3.8. Let S C A% be a Frobenius-affine structure of level N on X. Then the
subsheaf Sg of Pt that assigns, to an open subscheme U C X, the subset of P¢*(U) obtained
by forming the intersection of P(U) and the union of the Guun-orbits (C P&(U)) of the
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elements of S(U) (cf. Remark 2.2.1(1) and (iv)):

def

Sg(U) € PU) N (Go - S(U)).

Then the subsheaf Sg of P is a Frobenius-projective structure of level N on X (cf. [7, Def.
3.1]).

Proof. This assertion follows—in light of Remark 2.3.2—from [7, Lem. 3.5(i)]. 0

DEFINITION 3.9. Let S C A% be a Frobenius-affine structure of level N on X. Then
it follows from Lemma 3.8 that S determines a Frobenius-projective structure of level N.
We shall refer to this Frobenius-projective structure as the Frobenius-projective structure
of level N associated with §. Thus, we obtain a map

gasN(X) HSPEN(X)
(cf. [7, Def. 3.1]).

REMARK 3.9.1. One verifies easily from the various definitions involved that the
diagram

TfN (X)/Brtn - pCDN(X)/grtn

| |

Fasn(X) Spsn(X)

(where the upper horizontal arrow is the lower horizontal arrow of the diagram of Remark
2.3.2, the lower horizontal arrow is the map of Definition 3.9, the left-hand vertical arrow
is the inverse of the bijective map of Proposition 3.7, and the right-hand vertical arrow is
the inverse of the bijective map of [7, Prop. 3.7]) is commutative.

84. Frobenius-affine-indigenous structures

In the present section, we introduce and discuss the notion of Frobenius-affine-indigenous
structures (cf. Definition 4.3). Moreover, we also discuss a relationship between Frobenius-
affine-indigenous structures and Frobenius-affine structures (cf. Proposition 4.9).

In the present section, we maintain the notational conventions introduced at the
beginning of §2. Write, moreover,

x/f
for the “X¥” in the case where N =1 and
¢: X —= X/
for the “®” in the case where N = 1. Thus, the morphism ®: X — X factors as a composite
X2 xf > XF.
We shall write

Op: X ——= XF
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for the second arrow in this composite (i.e., the “®” in the case where we take the pair
“(X,N)” to be (X,N—1)).

DEFINITION 4.1. Let Z be a scheme that is smooth over X*". Thus, the base change
®*Z — X of the structure morphism Z — X by the morphism ®: X — X% may be
regarded as an object of the category SmSch of [5, Def. 1.7] in the case where we take
the “(S,X)” of [5] to be (Spec(k),X). Let us recall from [6, Prop. 3.3] that the natural
Frobenius-descent datum on ®*Z = ¢*(®}_,pZ) — X (i.e., the natural descent datum on
®*Z = ¢*(®}_,pZ) — X with respect to the morphism ¢: X — X7; cf. [6, Def. 3.2(iv)])
gives rise to an Fr-stratification on ®*Z — X (cf. [4, Def. 4.6] and [6, Def. 1.8]), which
thus determines (cf. [4, Lem. 4.12(i)] and [6, Prop. 1.11]) a PD-stratification on ®*Z — X
(cf. [4, Def. 4.6] and [5, Def. 2.5]); i.e., in the case where we take the “(S,X)” of [4]-[6] to
be (Spec(k), X ). We shall write

VQ*Z

for the PD-connection on ®*Z — X (cf. [4, Def. 4.1(iii)] and [5, Def. 2.5]) determined by
the resulting PD-stratification on ®*Z — X (cf. also [7, Def. 4.2(i) and (ii)]).

DEFINITION 4.2. Let Z be a scheme that is smooth over X, and let o be a section of
7 — X. Thus, the structure morphism Z — X may be regarded as an object of the category
SmSch of [5, Def. 1.7] in the case where we take the “(.S, X)” of [5] to be (Spec(k), X). Let V
be a PD-connection on Z — X (cf. [4, Def. 4.1(iii)] and [5, Def. 2.5])—i.e., in the case where
we take the “(S,X)” of [4] and [5] to be (Spec(k),X). Then, by considering the difference
between the two deformations
ppp1 (PO pp 1. ppp1 PO ppivi, YV (PD_ 1y«

P ("Ppri)Z, P (Ppry)*Z —= ("pri)*Z
(cf. [4, Def. 2.3(ii)] and [5, Def. 2.5]) of the section o, we have a global section of the
O x-module

Homoy (U*le/X7Q_1X/k)'

(Note that let us recall from elementary algebraic geometry that the set of deforma-
tions FPP! — (PPpri)*Z of the section o: X — Z forms a torsor under the module
(X, Homp, (O'*le/X, Qéf/k))) We shall refer to this global section as the Kodaira—Spencer
section of V at o (cf. also [7, Def. 4.3]).

DEFINITION 4.3. We shall say that a pair (4 — X% o) consisting of an Al-bundle
A— XT over XT' (cf. Remark 4.3.2, and also Remark 2.1.1) and a section o of the pull-back
®* A — X is a Frobenius-affine-indigenous structure of level N on X if the Kodaira—Spencer
section (cf. Definition 4.2) of the PD-connection V-4 (cf. Definition 4.1) at o is nowhere
vanishing.

For two Frobenius-affine-indigenous structures 7; = (4; — X F ,01) and Zy = (Ag —
XF o9) of level N on X, we shall say that Z; is isomorphic to I, if there exists an
isomorphism A; = A, over X' compatible with o and .

We shall write

Faisy (X)

for the set of isomorphism classes of Frobenius-affine-indigenous structures of level N on X.
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REMARK 4.3.1. One finds easily that the notion of Frobenius-affine-indigenous struc-
tures may be regarded as an “affine version” of the notion of Frobenius-indigenous structures
(cf. [7, Def. 4.4]).

REMARK 4.3.2. In the present paper, an Al-bundle (resp. a PL-bundle) over a scheme S
is defined to be a scheme Z over S such that, for each point s € S of S, there exist an open
subscheme U C S of S that contains s € S and an isomorphism of Z| with A}, (resp. Pf;)
over U.

LEMMA 4.4. Let (A— X o) be a Frobenius-affine-indigenous structure of level N on X.
Write P — X ¥ for the P'-bundle over X' obtained by forming the smooth compactification
of A — XFT. Then the pair of the P'-bundle P — X and the section of the P'-bundle
P — XT determined by o is a Frobenius-indigenous structure of level N on X (cf. [7, Def.

4-41)-
Proof. This assertion follows immediately from the various definitions involved. 0

REMARK 4.4.1. Let Z= (A — X o) be a Frobenius-affine-indigenous structure of level
N on X. Then it follows from Lemma 4.4 that Z determines a Frobenius-indigenous structure
of level N. We shall refer to this Frobenius-indigenous structure of level N as the Frobenius-
indigenous structure of level N associated with Z. Thus, we obtain a map

SaisN(X) —— SiﬁN(X)
(cf. [7, Def. 4.4]).

REMARK 4.4.2. One verifies immediately from Lemma 4.4 that giving a Frobenius-
affine-indigenous structure of level N on X is “equivalent” to giving a collection (P — X ¥,
0>®,0) of data consisting of a Pl-bundle P — X over X', a section 0 of the P!-
bundle P — X', and a section o of the pull-back ®*P — X that satisfies the following
two conditions:

(1) The image of ®*o>° does not intersect the image of o.
(2) The Kodaira—Spencer section (cf. Definition 4.2) of the PD-connection Vg«p
(cf. Definition 4.1) at o is nowhere vanishing.

LEMMA 4.5. Let S C A% be a Frobenius-affine structure of level N on X. Thus, the
sheaf ®.S is a PGLy yr-torsor on XF. Write As — X for the Al-bundle associated
with the PGLy xr-torsor ®.S (i.e., the quotient of ®.S X xr AkF by the diagonal action
of PGLy xr). For each local section s of ®.S, write o5 for the local section of the trivial
Al-bundle A\ — X that corresponds to s (cf. Remark 2.2.1(ii)). Then the pair consisting of:

(1) the At-bundle As — X over X' and
(2) the section of ®*As — X determined by the various pairs “(s,05)” (where “s” ranges
over the local sections of .S)

is a Frobenius-affine-indigenous structure of level N on X.

Proof. Write Sg C Pt for the Frobenius-projective structure of level N associated with
S (cf. Definition 3.9), Z = (P — X' o) for the Frobenius-indigenous structure of level
N associated with Sg (cf. [7, Def. 4.8]), 0® for the section of the P'-bundle P — XF
determined by the “Borel subgroup” PGL;?XF C PGLy xr of PGLy xr (cf. also the
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construction of [7, Lem. 4.7]), and A — X¥ for the Al-bundle obtained by forming the
complement of the image of ¢°° in P. Then one verifies immediately from the various
definitions involved (cf. also the construction of [7, Lem. 4.7]) that there exists an
isomorphism Ags —+ A over X¥' compatible with the section of (2) and ¢. Thus, Lemma 4.5
is a formal consequence of [7, Lem. 4.7]. This completes the proof of Lemma 4.5. O

DEFINITION 4.6. Let S C A% be a Frobenius-affine structure of level N on X. Then it
follows from Lemma 4.5 that S determines a Frobenius-affine-indigenous structure of level
N. We shall refer to this Frobenius-affine-indigenous structure of level N as the Frobenius-
affine-indigenous structure of level N associated with S. Thus, we obtain a map

3Cl5N(X) —>{§aisN(X).

REMARK 4.6.1. One verifies easily from the various definitions involved that the
diagram

Fasn (X) —— Fpsn(X)

i ]

SaiﬁN(X) 4>315N(X)

(where the upper horizontal arrow is the map of Definition 3.9, the lower horizontal arrow
is the map of Remark 4.4.1, the left-hand vertical arrow is the map of Definition 4.6, and
the right-hand vertical arrow is the bijective map of [7, Prop. 4.11]) is commutative.

LEMMA 4.7. Let (A— X o) be a Frobenius-affine-indigenous structure of level N on X.
Write (P — X ,0%,0) for the collection of data discussed in Remark /J.4.2 that corresponds
to the Frobenius-affine-indigenous structure (A — XT' o). Then the following assertions

hold:

(i) Let U C X be an open subscheme of X such that the restriction A|yr is isomorphic
to the trivial A'-bundle over UT, which thus implies that there exists an isomorphism
v Plyr S Pl over UY compatible with the sections 0™|yr and ooyr. Write fu,,, €
P(U) for the section of P obtained by forming the composite

olu

U -2 (3P)|y 25 P,

1 PTy 1
P xp U ——=Pp.

Then fu.,, € PU).
(ii) The collection of sections fir.,, € PY(U) (cf. (i) (where (U,iy) ranges over the pairs
as in (i)) determines a Frobenius-affine structure of level N on X.

Proof. First, we verify assertion (i). Write 7: U — P, for the section of the trivial P!-
bundle obtained by forming the composite of the first two arrows of the displayed composite
of the statement of assertion (i), that is, the composite of the section o|y: U — (®*P)|y and
the isomorphism ®*iy: (®*P)|y = P};. Then it is tautology (cf. the factorization discussed
in1 [6, Lem. '1.3]) t.hat the KodaifafSPen.cer sec.tion f{}vLUQ%}C/k | %//{ :17—*(2%)(5/(]1%
QU/k of this section 7: U — P, coincides with the homomorphism nyLUQIP’i/k — QU/k
induced by the morphism fy,,, : U — Pi. Thus, since (we have assumed that) the Kodaira—
Spencer section of o|y, hence also the Kodaira—Spencer section of 7, is nowhere vanishing,

= 7*priQd
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one may conclude that fy,,, € P (U), as desired. This completes the proof of assertion (i).
Assertion (ii) follows immediately from assertion (i). 0

DEFINITION 4.8. Let Z be a Frobenius-affine-indigenous structure of level N on X. Then
it follows from Lemma 4.7(ii) that Z determines a Frobenius-affine structure of level N. We
shall refer to this Frobenius-affine structure of level N as the Frobenius-affine structure of
level N associated with Z. Thus, we obtain a map

Faisy (X) — Fasy (X).
PROPOSITION 4.9. The assignments of Definitions 4.6 and /.8 determine a bijective
map
Fasy (X) —— Faisy (X).
Proof. This assertion follows immediately from the constructions of Lemmas 4.5 and
4.7. 0
The main result of the present paper is as follows.

THEOREM 4.10. There exist bijective maps
(ZfN(X)/Brtn ~ Sch(X) —— SaisN(X).
Proof. This assertion follows from Propositions 3.7 and 4.9. 0

REMARK 4.10.1. If (p,N) # (2,1), then the bijective maps of Theorem 4.10 are
compatible with the bijective maps of [7, Th. 4.13] (cf. Remarks 3.9.1 and 4.6.1).

85. Relationship between certain Frobenius-destabilized bundles

In the present section, we discuss a relationship between Frobenius-affine-indigenous
structures and certain Frobenius-destabilized bundles over X (cf. Proposition 5.7). In the
present section, we maintain the notational conventions introduced at the beginning of §4.
Suppose, moreover, that

g>2.

DEFINITION 5.1. Let S be a scheme. For each i € {1,2}, let & be an Og-module and let
Fi C&; be an Og-submodule of &;. Then we shall say that the pair (£1,F7) is P-equivalent
to (a9, F2) if there exist an invertible sheaf £ on S and an isomorphism & ®o4 £ =5 & of
Og-modules that restricts to an isomorphism F; ®p £ — Fo. We shall write

(&1,F1) ~p (E2,F2)
if (£1,F1) is P-equivalent to (&2, F2).

REMARK 5.1.1. In the situation of Definition 5.1, it is immediate that if (&;,F7) is
P-equivalent to (£2,F2) (in the sense of Definition 5.1), then &; is P-equivalent to £ in the
sense of [7, Def. 5.1].

DEFINITION 5.2. Let d be a positive integer, let £ be a locally free coherent O xr-
module of rank 2, and let £ C £ be an invertible subsheaf of £. Then we shall say that the
pair (€,L) is (N,d)-Frobenius-splitting if the invertible sheaf £ is of degree % -deg(€) — piN,
the locally free coherent Oxs-module @} _, € of rank 2 (hence also the locally free coherent
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Oxr-module £ of rank 2) is stable, and, moreover, the natural inclusion ®*L£ < ®*£ has a
section (which thus implies that the locally free coherent Ox-module ®*€ = ¢*®%_, € of
rank 2 is not semistable).

We shall write

Fspn (X)

for the set of P-equivalence classes (cf. Remark 5.2.1) of (N, g — 1)-Frobenius-splitting pairs
on X.

REMARK 5.2.1. For each i € {1,2}, let & be a locally free coherent Oyr-module of
rank 2 and let £; C &; be an invertible subsheaf of &;. Suppose that (€1,L£1) ~p (E2,L2).
Then one verifies easily that (£1,£) is (N,g— 1)-Frobenius-splitting if and only if (€, Ls)
is (N, g — 1)-Frobenius-splitting.

REMARK 5.2.2. Let (£,£) be an (N, g — 1)-Frobenius-splitting pair on X. Then it is
immediate that the locally free coherent Oy r-module & is (N, g — 1)-Frobenius-destabilized
(cf. [7, Def. 5.2]). In particular, we have a map

SﬁpN(X) HSOEN(X)
(cf. Remark 5.1.1 and [7, Def. 5.2]).

REMARK 5.2.3. Suppose that p # 2, and that N = 1. Then one verifies immediately
from the various definitions involved (cf. also Remark 5.2.2 and the proof of [7, Lem. 5.3])
that giving an (N, g — 1)-Frobenius-splitting pair on X is “equivalent” to giving a dormant
Miura GLg-oper (cf. [10, Def. 4.2.1] and [10, Def. 4.2.2]).

REMARK 5.2.4. Write Frx: X — X for the pth power Frobenius endomorphism of X.
Then one verifies easily that the assignment “(&,L) — (W.E,W.L)” determines a bijective
map of the set Fspn(X) with the set of P-equivalence classes of pairs (F,G) of locally free
coherent O x-modules F of rank 2 and invertible subsheaves G C F that satisfy the following
condition: if, for a nonnegative integer ¢, we write

def “r oo def Sr
gz‘ — FI‘XFI‘ngf, — FI‘X'-‘FI‘X.F,
then

e the locally free coherent Ox-module Fx_1, hence also F, is stable, but

e there exist an invertible sheaf M on X of degree % -deg(F)+g—1=1-deg(Fn)+
g—1 and a locally split injective homomorphism M — Fx of Ox-modules such that
the inclusions Gy, M < Fy determine an isomorphism Gy ® M = Fn of Ox-modules.

(In particular, the locally free coherent Ox-module Fy is not semistable.)

LEMMA 5.3. Let (€,L£) be an (N,g— 1)-Frobenius-splitting pair on X. Write P(€) —
X for the projectivization of € and c°° (L) for the section of P(€) — X determined by
L CE (cf. Definition 5.2). Then there ezists a (uniquely determined; cf. Remark 5.2.2 and
[7, Lem. 4.6]) section o of ®*P(E) — X such that the collection (P(E) — XTI ,0°°(L),0)
of data is a collection of data discussed in Remark j.4.2 that corresponds to a Frobenius-
affine-indigenous structure of level N on X.
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Proof. This assertion follows—in light of Remark 5.2.2—from [7, Lem. 5.3] (cf. also the
proof of [7, Lem. 5.3]). 0

DEFINITION 5.4. Let (£,£) be an (INV,g — 1)-Frobenius-splitting pair on X. Then it
follows from Lemma 5.3 that (£,£) determines a Frobenius-affine-indigenous structure
of level N. We shall refer to this Frobenius-affine-indigenous structure of level N as the
Frobenius-affine-indigenous structure of level N associated with (€,L). Thus, we obtain a

map
Fspn (X) —— Faisn (X).
REMARK 5.4.1. One verifies easily from the various definitions involved that the
diagram
Fspn (X) ——=Fosn(X)

| ]

Faisy (X) —— Fisn (X)

(where the upper horizontal arrow is the map of Remark 5.2.2, the lower horizontal arrow
is the map of Remark 4.4.1, the left-hand vertical arrow is the map of Definition 5.4, and
the right-hand vertical arrow is the bijective map of [7, Prop. 5.7]) is commutative.

LEMMA 5.5. Let (P— XT 0%, 0) be a collection of data discussed in Remark 4./.2 that
corresponds to a Frobenius-affine-indigenous structure of level N on X and € a locally free
coherent O xr-module of rank 2 whose projectivization is isomorphic to P over XT'. Write
L C & for the invertible subsheaf of £ determined by the section 0. Then the pair (E€,L)
is (N, g — 1)-Frobenius-splitting.

Proof. This assertion follows—in light of Remark 5.2.2—from [7, Lem. 5.5] (cf. also the
proof of [7, Lem. 5.5]). 0

DEFINITION 5.6. Let Z be a Frobenius-affine-indigenous structure of level N on X. Then
it follows from Lemma 5.5 that Z determines a P-equivalence class of (IV,g — 1)-Frobenius-
splitting pair. We shall refer to this P-equivalence class as the (N, g — 1)-Frobenius-splitting
class associated with L. Thus, we obtain a map

SaiﬁN(X) —_— SEPN(X)
PROPOSITION 5.7.  The assignments of Definitions 5.4 and 5.6 determine a bijective map
Fspn (X) —— Faisy (X).

Proof. This assertion follows immediately from the constructions of Lemmas 5.3 and
5.5. 0

COROLLARY 5.8. Suppose that g > 2. Then there exist bijective maps
TN (X)/Brpn —— Fasn (X) ——= Faisy (X) ——= Fspn (X).
Proof. This assertion follows from Theorem 4.10 and Proposition 5.7. [

REMARK 5.8.1. If (p,N) # (2,1), then the bijective maps of Corollary 5.8 are compatible
with the bijective maps of [7, Cor. 5.8] (cf. Remarks 4.10.1 and 5.4.1).
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REMARK 5.8.2. Suppose that p # 2. Then it follows from Corollary 5.8 that the existence
of a Tango function of level N is equivalent to the existence of an (N,g— 1)-Frobenius-
splitting pair. In particular, by applying this equivalence to the case where N =1, we
conclude from Corollary 2.11 and Remark 5.2.3 that X is a Tango curve if and only if X
has a dormant Miura GLg-oper (cf. [10, Def. 4.2.1] and [10, Def. 4.2.2]). On the other hand,
this equivalence (i.e., in the case where N =1) is an immediate consequence of [10, Th.
A(i)]. Thus, one concludes that Corollary 5.8 may be regarded as a “higher level version”
of this equivalence (i.e., in the case where N = 1) derived from [10, Th. A(i)].

COROLLARY 5.9. Suppose that p £ 2, that g > 2, and that N = 1. Suppose, moreover,
that there exists a projective smooth curve over k of genus g that has a Tango function of
level N (which thus implies that g—1 is divisible by p; cf. Corollary 2.10). Then there exists
a closed subscheme of the coarse moduli space of projective smooth curves over k of genus g
of pure codimension (g—1)(p—2)/p such that if the curve X is parametrized by the closed
subscheme, then the four sets

Tin (X)), Fasn (X)), Saisy (X), Sspw (X)
are nonempty

Proof. This assertion follows from [10, Th. B], together with Corollary 5.8. O

86. Some results in small characteristic cases

In the present section, we prove some results related to Frobenius-affine structures in the
case where p < 3. In the present section, we maintain the notational conventions introduced
at the beginning of §4.

PROPOSITION 6.1. Suppose that (p, N) = (2,1). Then the following assertions hold:
(i) The collection of data consisting of

o the Pl-bundle P — X T over X' obtained by forming the projectivization of the locally
free coherent Oxr-module ®,Ox of rank 2,

e the section of P — X' determined by the invertible subsheaf Oxr C ®,0x obtained
by forming the image of the homomorphism Oxr — ®,Ox of Oxr-modules induced
by ®, and

e the section of ®*P — X determined by the (necessarily surjective) homomorphism
P*®,0x - Ox of Ox-modules obtained by multiplication

s a collection of data discussed in Remark 4.4.2 that corresponds to a Frobenius-affine-
indigenous structure of level N on X.

(ii) Every Frobenius-affine-indigenous structure of level N on X is isomorphic to the
Frobenius-affine-indigenous structure of level N of (i).

Proof. Assertion (i) follows from [7, Lem. 6.2]. Assertion (ii) follows from Remark 2.7.1
and Theorem 4.10. 0

COROLLARY 6.2. Suppose that (p,N) = (2,1), and that g > 2. Then every (N,g—1)-
Frobenius-splitting pair on X is P-equivalent to the pair (®.Ox,0Oxr) consisting of the
locally free coherent O xr-module ®,Ox of rank 2 and the invertible subsheaf Oxr C ®,Ox

obtained by forming the image of the homomorphism Oxr — ®,0x of Oxr-modules
induced by .
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Proof. This assertion follows from Corollary 5.8 and Proposition 6.1(ii). U

LEMMA 6.3. Suppose that p =2, that g > 2, and that N > 2. Let £ be a locally free
coherent O xr-module of rank 2. Then the following assertions hold:

(i) Suppose that g is odd. Then it holds that £ is (N,g — 1)-Frobenius-destabilized (cf. [7,
Def. 5.2]) if and only if ®}_, p€ is P-equivalent (cf. [7, Def. 5.1]) to $.Ox.

(i1) Suppose that & is (N,g — 1)-Frobenius-destabilized. Then the following two conditions
are equivalent:

(1) There exists an invertible subsheaf L C E such that the pair (€,L) is (N,g—1)-
Frobenius-splitting.

(2) There exist invertible sheaves M, Q on X¥', a surjective homomorphism E®O
M = Q of Oxr-modules, and an isomorphism ¢.Ox — @’}_ﬂ,ﬂ(é’ ®o,.» M) of
Oxs-modules such that Q is of degree (2g—2)/p" .

If, moreover, one of conditions (1) and (2) is satisfied, then g is odd.

Proof. First, we verify assertion (i). Let us first observe that since p =2, and N > 2,
the Oxs-module @}, & is of even degree. Next, let us observe that since g is odd, it
follows from [7, Prop. 5.7], [7, Lem. 6.4(ii)], and [7, Prop. 6.6(iii)] that every (1,9 —1)-
Frobenius-destabilized locally free coherent Oyxs-module of rank 2 of even degree is
P-equivalent to ¢.Ox. Thus, assertion (i) follows from [7, Rem. 5.2.2(i)]. This completes
the proof of assertion (i).

Next, we verify assertion (ii). First, to verify the implication (1) = (2), let £ be
as in condition (1). Then since N > 2, it follows immediately from Corollary 2.10 and
Corollary 5.8 that g — 1 is divisible by 2V ~1, which thus implies that g is odd. In particular,
since € is (N,g — 1)-Frobenius-destabilized, it follows from assertion (i) that ®% & is
P-equivalent to ¢,.Ox. Thus, since the locally free coherent Oxs-module ¢.Ox of rank
2 is of degree g—1 (cf., e.g., [7, Lem. 6.4(ii)]), we may assume without loss of generality,
by replacing £ by the tensor product of £ and a suitable invertible sheaf on X¥' that
@?_)FE is isomorphic to ¢.Ox, and, moreover, the quotient £/L of £ by L C £ is of degree
(29 —2)/pN (cf. Definition 5.2), as desired. This completes the proof of the implication
(1) = (2).

Next, to verify the implication (2) = (1), let M, Q be as in condition (2). Then
since the locally free coherent Oy s-module ¢,Ox of rank 2 is of degree g—1 (cf., e.g.,
[7, Lem. 6.4(ii)]), one verifies immediately from assertion (i), together with the proof
of [7, Lem. 5.3], that if one writes K C £ ®o_, M for the kernel of the surjective
homomorphism € ®o_, M — Q of condition (2), then the pair (£,K®o ., M) is
(N, g — 1)-Frobenius-splitting, as desired. This completes the proof of the implication

(2) = (1).
Finally, since N > 2, the final assertion follows from Corollaries 2.10 and 5.8. This
completes the proof of assertion (ii), hence also of Lemma 6.3. 0

LEMMA 6.4. Suppose that p=3, and that g > 2. Write

Bxs % Coker(Oxs — ¢,.0x)
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for the Oxs-module obtained by forming the cokernel of the homomorphism O — ¢.Ox
of Oxr-modules induced by ¢. Let £ be a locally free coherent O xr-module of rank 2. Then
the following assertions hold:

(i) It holds that € is (N,g—1)-Frobenius-destabilized if and only if ®%_, € is P-equivalent
to Bxr.

(ii) Suppose that € is (N,g — 1)-Frobenius-destabilized. Then the following two conditions
are equivalent:

(1) There exists an invertible subsheaf L C E such that the pair (£,L£) is (N,g—1)-
Frobenius-splitting.

(2) There exist invertible sheaves M, Q on X', a surjective homomorphism € ®o
M = Q of Oxr-modules, and an isomorphism Bxs — P L p(E®0, M) of Oxs-
modules such that Q is of degree (4g—4)/p™.

Proof. First, we verify assertion (i). Let us first observe that it follows from [7, Cor. 5.8]
and [2, Th. A] (cf. also [3, §1]), together with [7, Rem. 4.4.1(ii)] and the construction of
[7, Lem. 5.5], that every (1,9 — 1)-Frobenius-destabilized locally free coherent O ys-module
of rank 2 is P-equivalent to Bxs. Thus, assertion (i) follows from [7, Rem. 5.2.2(i)]. This
completes the proof of assertion (i).

Next, we verify assertion (ii). First, to verify the implication (1) = (2), let £ be as in
condition (1). Then since £ is (IV,g —1)-Frobenius-destabilized, it follows from assertion (i)
that ®%_, € is P-equivalent to By ;. Now, let us observe that it follows from Corollaries 2.10
and 5.8 that 2g — 2 is divisible by p". Thus, since the locally free coherent Oy s-module
By of rank 2 is of degree 2g —2 (cf., e.g., [2, Lem. 1.2]), we may assume without loss of
generality, by replacing £ by the tensor product of £ and a suitable invertible sheaf on
XF that <I>}_)F€ is isomorphic to Bxs, and, moreover, the quotient £/L of € by LC E
is of degree (4g—4)/pYN (cf. Definition 5.2), as desired. This completes the proof of the
implication (1) = (2).

Next, to verify the implication (2) = (1), let M, Q be as in condition (2). Then since the
locally free coherent Oy s-module By of rank 2 is of degree 29 —2 (cf., e.g., [2, Lem. 1.2]),
one verifies immediately from assertion (i), together with the proof of [7, Lem. 5.3], that if
one writes £ C £®o, . M for the kernel of the surjective homomorphism £ ®o . M — Q
of condition (2), then the pair (£,K®0 . M™')is (N,g—1)-Frobenius-splitting, as desired.
This completes the proof of the implication (2) = (1), hence also of assertion (ii). O

COROLLARY 6.5. Suppose that g > 2. Suppose, moreover, that N > 2 whenever p = 2.
Write

By & Coker(Oxs — ¢.0x)

for the Oxs-module obtained by forming the cokernel of the homomorphism O — ¢.Ox
of Oxr-modules induced by ¢. Then the following assertions hold:

(i) Suppose that p =2 (resp. p = 3). Suppose, moreover, that g is odd whenever p = 2.
Then it holds that X has a pseudo-coordinate of level N (cf. [7, Def. 2.3]) if and only
if there exists a locally free coherent Oxr-module £ of rank 2 such that ¢.Ox (resp.
Bxr) is P-equivalent to ®%_, €.

(ii) Suppose that p=2 (resp. p=3). Then it holds that X has a Tango function of level N
if and only if there exist a locally free coherent Oxr-module £ of rank 2, an invertible
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sheaf @ on X T of degree (2g—2)/pN (resp. (4g—4)/p" ), a surjective homomorphism
E — Q of Oxr-modules, and an isomorphism ¢,Ox — % & (resp. Bxs = <I>’}_>F5)
of Oxr-modules.

Proof. First, we verify assertion (i). Let us first observe that it follows from [7, Cor. 5.8]
that X has a pseudo-coordinate of level N if and only if there exists an (N, g— 1)-Frobenius-
destabilized locally free coherent Oy r-module of rank 2. Thus, assertion (i) follows from
Lemmas 6.3(i) and 6.4(i). This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows from Corollary 5.8 that
X has a Tango function of level N if and only if there exists an (N, g — 1)-Frobenius-splitting
pair on X. Thus, assertion (ii) follows from Lemmas 6.3(ii) and 6.4(ii). This completes the
proof of assertion (ii), hence also of Corollary 6.5. 0
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