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FROBENIUS-AFFINE STRUCTURES AND TANGO CURVES

YUICHIRO HOSHI

Abstract. In a previous paper, we discussed Frobenius-projective structures

on projective smooth curves in positive characteristic and established a

relationship between pseudo-coordinates and Frobenius-indigenous structures

by means of Frobenius-projective structures. In the present paper, we discuss

an “affine version” of this study of Frobenius-projective structures. More

specifically, we discuss Frobenius-affine structures and establish a similar

relationship between Tango functions and Frobenius-affine-indigenous struc-

tures by means of Frobenius-affine structures. Moreover, we also consider a

relationship between these objects and Tango curves.

§1. Introduction

In the previous paper [7], we discussed Frobenius-projective structures on projective

smooth curves in positive characteristic and established a relationship between certain

rational functions (i.e., pseudo-coordinates) and certain P
1-bundles equipped with sections

(that may be regarded as an analogue, in positive characteristic, of indigenous bundles in

the classical theory of Riemann surfaces; i.e., Frobenius-indigenous structures) by means

of Frobenius-projective structures. In the present paper, we discuss an “affine version” of

this study of Frobenius-projective structures. More specifically, we discuss Frobenius-affine

structures and establish a similar relationship between Tango functions and Frobenius-

affine-indigenous structures. Moreover, we also consider a relationship between these objects

and Tango curves (cf., e.g., [8], [9]).

Let p be a prime number, let k be an algebraically closed field of characteristic p, let g

be a nonnegative integer, and let

X

be a projective smooth curve over k of genus g (i.e., a connected scheme that is projective

and smooth over k such that the module of global sections of the relative cotangent sheaf

over k is of rank g). Throughout the present paper, let us fix a positive integer

N.

Write XF for the base change of X by (not the pth if N �= 1 but) the pN th power Frobenius

endomorphism of k, Φ: X →XF for the relative pN th power Frobenius morphism over k,

PGL2,XF for the sheaf of groups on XF obtained by considering automorphisms of the

trivial P1-bundle over XF (cf. Definition 2.1(ii)), PGL∞
2,XF ⊆ PGL2,XF for the subsheaf of

PGL2,XF obtained by considering automorphisms of the trivial P1-bundle over XF that
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386 Y. HOSHI

restrict to automorphisms of the trivial A1-bundle over XF (cf. Definition 2.1(ii)), and

B def
= Φ−1PGL∞

2,XF ⊆ G def
= Φ−1PGL2,XF .

Write, moreover, Brtn ⊆ Grtn for the groups obtained by forming the stalks of the sheaves

B ⊆ G of groups at the generic point of X, respectively.

A Frobenius-affine structure of level N on X is defined to be a subsheaf of the sheaf on X

of étale morphisms to the affine line A
1
k over k which forms a B-torsor with respect to the

natural action of B on the sheaf on X of morphisms to A
1
k over k (cf. Definition 3.1).

One finds easily that the notion of Frobenius-affine structures may be regarded as an

“affine version” of the notion of Frobenius-projective structures discussed in [7] and,

moreover, may be regarded as an analogue, in positive characteristic, of the notion of

complex affine structures (cf., e.g., [1, §2]) in the classical theory of Riemann surfaces.

The main result of the present paper yields a relationship between a certain rational

function on X (i.e., a Tango function) and a certain A
1-bundle (cf. Remark 4.3.2, and

also Remark 2.1.1) equipped with a section (i.e., a Frobenius-affine-indigenous structure)

obtained by considering Frobenius-affine structures.

A Tango function of level N on X is defined to be a (necessarily generically étale)

morphism f : X → P
1
k over k such that, for each closed point x ∈ X of X, there exist an

open subscheme U ⊆X of X and an element g ∈ Brtn such that x ∈ U , and, moreover, the

restriction g(f)|U to U of the result g(f) of the action of g ∈ Brtn on f is an étale morphism

U →A
1
k (cf. Definition 2.3). For instance, if p= 2, then every generically étale morphism to

P
1
k over k is a Tango function of level 1 (cf. Remark 2.7.1). Moreover, we prove the following

result (cf. Corollary 2.11).

Theorem A. It holds that X is a Tango curve (cf. Definition 2.8(ii)) if and only if X

has a Tango function of level 1.

A Frobenius-affine-indigenous structure of level N on X is defined to be a pair of an

A
1-bundle A → XF over XF and a section σ of the pullback Φ∗A → X such that the

Kodaira–Spencer section of the PD-connection ∇Φ∗A on Φ∗A at σ is nowhere vanishing

(cf. Definition 4.3). One may find that the notion of Frobenius-affine-indigenous structures

of level 1 is closely related to the notion of dormant Miura GL2-opers discussed in [10] (cf.

Remark 5.2.3 and Proposition 5.7).

The main result of the present paper is as follows (cf. Theorem 4.10).

Theorem B. There exist bijective maps between the following three sets:

(1) the set of Brtn-orbits of Tango functions of level N on X;

(2) the set of Frobenius-affine structures of level N on X;

(3) the set of isomorphism classes of Frobenius-affine-indigenous structures of level N on X.

Note that if (p,N) �= (2,1), then the bijective maps of Theorem B are compatible with

the bijective maps between the following three sets of [7, Th. A] (cf. Remark 4.10.1):

• the set of Grtn-orbits of pseudo-coordinates of level N on X ;

• the set of Frobenius-projective structures of level N on X ;

• the set of isomorphism classes of Frobenius-indigenous structures of level N on X.
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FROBENIUS-AFFINE STRUCTURES AND TANGO CURVES 387

As already observed, the notion of Frobenius-affine structures may be regarded as an

analogue, in positive characteristic, of the notion of complex affine structures in the classical

theory of Riemann surfaces. Moreover, it is well-known that if a compact Riemann surface

admits a complex affine structure, then the compact Riemann surface is of genus 1. On

the other hand, one may conclude from Theorem B that there exists a projective smooth

curve over k of genus ≥ 2 that has a Frobenius-affine structure of level N (cf. Remark 3.7.1).

One application of Theorem B is as follows. Suppose that g ≥ 2. Write FrX : X →X for

the pth power Frobenius endomorphism of X. Then one may verify (cf. Remark 5.2.4 and

Proposition 5.7) that there exists a bijective map between the set of Theorem B(3) and

the set of P-equivalence (cf. Definition 5.1) classes of pairs (E ,L) of locally free coherent

OX -modules E of rank 2 and invertible subsheaves L⊆E that satisfy the following condition:

if, for a nonnegative integer i, we write

Li
def
=

i︷ ︸︸ ︷
Fr∗X · · ·Fr∗X L ⊆ Ei def

=

i︷ ︸︸ ︷
Fr∗X · · ·Fr∗X E ,

then

• the locally free coherent OX -module EN−1, hence also E , is stable, but
• there exist an invertible sheafM on X of degree pN

2 ·deg(E)+g−1= 1
2 ·deg(EN )+g−1 and

a locally split injective homomorphism M ↪→EN of OX -modules such that the inclusions

LN , M ↪→EN determine an isomorphism LN ⊕M ∼→EN of OX -modules. (In particular,

the locally free coherent OX -module FN is not semistable.)

Thus, by applying Theorem B and some previous works, we obtain the following

application in small characteristic cases (cf. Corollary 6.5(ii)).

Theorem C. Suppose that g ≥ 2, and that p= 2 (resp. p= 3). Suppose, moreover, that

N ≥ 2 whenever p= 2. Then the following two conditions are equivalent:

(1) The curve X has a Tango function of level N.

(2) There exist:

• a (necessarily stable) locally free coherent OX-module E of rank 2,

• an invertible sheaf Q on X of degree (2g−2)/pN (resp. (4g−4)/pN),

• a surjective homomorphism E � Q of OX-modules, and

• an isomorphism (FrX)∗OX
∼→EN−1 (resp. BX

∼→EN−1) of OX-modules,

where we write

BX
def
= Coker

(
OX → (FrX)∗OX

)
for the OX-module obtained by forming the cokernel of the homomorphism OX →
(FrX)∗OX induced by FrX.

§2. Tango functions

In the present section, we introduce and discuss the notion of Tango functions (cf.

Definition 2.3). Moreover, we also discuss a relationship between Tango functions and Tango

curves studied in, for instance, [8] and [9] (cf. Theorem 2.9 and Corollary 2.11).

https://doi.org/10.1017/nmj.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.36


388 Y. HOSHI

In the present section, let p be a prime number, let k be an algebraically closed field of

characteristic p, let g be a nonnegative integer, and let

X

be a projective smooth curve over k of genus g (i.e., a connected scheme that is projective

and smooth over k such that the module of global sections of the relative cotangent sheaf

over k is of rank g). Throughout the present paper, let us fix a positive integer

N.

If “(−)” is an object over k, then we shall write “(−)F ” for the object over k obtained by

forming the base change of “(−)” by (not the pth if N �= 1 but) the pN th power Frobenius

endomorphism of k. We shall write

W : XF �� X

for the morphism obtained by forming the base change of the pN th power Frobenius

endomorphism of Spec(k) by the structure morphism X → Spec(k). Thus, the pN th power

Frobenius endomorphism of X factors as a composite

X �� XF W �� X.

We shall write

Φ: X �� XF

for the first arrow in this composite, that is, the relative pN th power Frobenius morphism

over k. Note that XF is a projective smooth curve over k of genus g, and Φ is a finite flat

morphism over k of degree pN .

Definition 2.1. Let S be a scheme.

(i) We shall write

A
1
S

�� S

for the trivial A1-bundle over S,

P
1
S

�� S

for the trivial P1-bundle over S obtained by forming the smooth compactification of

A
1
S → S, and

∞S ∈ P
1
S(S)

for the section of P1
S → S obtained by considering the complement of A1

S in P
1
S . Thus,

A
1
k

def
= A

1
Spec(k) ⊆ P

1
k

def
= P

1
Spec(k) denote the affine, projective lines over k, respectively,

and ∞k
def
= ∞Spec(k) ∈ P

1
k(k) denotes the k -rational closed point of P

1
k obtained by

considering the complement of A1
k in P

1
k.

(ii) We shall write

PGL2,S
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for the sheaf of groups on S that assigns, to an open subscheme T ⊆ S, the group

AutT (P
1
T ) of automorphisms over T of the trivial P1-bundle P

1
T → T and

PGL∞
2,S ⊆ PGL2,S

for the sheaf of groups on S that assigns, to an open subscheme T ⊆ S, the subgroup

of AutT (P
1
T ) consisting of automorphisms over T of the trivial P1-bundle P1

T → T that

preserve the section ∞T ∈ P
1
T (T ), or, equivalently, restrict to automorphisms of the

open subscheme A
1
T ⊆ P

1
T over T (cf. Remark 2.1.1).

(iii) We shall write

B def
= Φ−1PGL∞

2,XF ⊆ G def
= Φ−1PGL2,XF

and

Brtn ⊆ Grtn

for the groups obtained by forming the stalks of B ⊆ G at the generic point of X,

respectively.

Remark 2.1.1. One verifies easily that, in the situation of Definition 2.1, if the scheme S

is integral, then the sheaf of groups on S that assigns, to an open subscheme T ⊆S, the group

AutT (A
1
T ) of automorphisms over T of the trivial A1-bundle A

1
T → T may be naturally

identified with the subsheaf PGL∞
2,S ⊆ PGL2,S of PGL2,S of Definition 2.1(ii).

Definition 2.2.

(i) We shall write

P

for the sheaf of sets on X that assigns, to an open subscheme U ⊆ X, the set of

morphisms from U to P
1
k over k,

Pgét ⊆ P

for the subsheaf of P that assigns, to an open subscheme U ⊆X, the set of generically

étale morphisms from U to P
1
k over k, and

P ét ⊆ Pgét

for the subsheaf of Pgét that assigns, to an open subscheme U ⊆ X, the set of étale

morphisms from U to P
1
k over k.

(ii) We shall write

A (⊆ P)

for the sheaf of sets on X that assigns, to an open subscheme U ⊆ X, the set of

morphisms from U to A
1
k over k and

Aét def
= A×P P ét ⊆A

for the subsheaf of A that assigns, to an open subscheme U ⊆ X, the set of étale

morphisms from U to A
1
k over k.
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Remark 2.2.1.

(i) One verifies easily that both P and Pgét are (isomorphic to) constant sheaves.

(ii) One verifies easily that P, A may be naturally identified with the sheaves of sets on X

that assign, to an open subscheme U ⊆X, the sets of sections of the trivial P1-bundle

P
1
U → U , the trivial A1-bundle A

1
U → U , respectively.

(iii) It follows immediately from (ii) that G, hence also B, naturally acts, via Φ, on P.

Moreover, one verifies easily that the subsheaves P ét ⊆Pgét ⊆P of P are preserved by

this action of G, hence also of B, on P.

(iv) It is immediate from (i) that the actions of G on P, Pgét of (iii) determine actions of

Grtn on P(X), Pgét(X), respectively. In particular, the actions of B on P, Pgét of (iii)

determine actions of Brtn on P(X), Pgét(X), respectively.

(v) It follows immediately from (ii) that B naturally acts, via Φ, on A. In particular, it

follows from (iii) that the subsheaf Aét ⊆A of A is preserved by this action of B on A.

Definition 2.3. We shall say that a generically étale morphism f : X → P
1
k over k is

a Tango function of level N if, for each closed point x ∈ X of X, there exists an element

g ∈ Brtn such that the morphism g(f) : X → P
1
k (cf. Remark 2.2.1(iv)) over k is étale at

x ∈X, and, moreover, g(f)(x) �=∞k.

We shall write

TfN (X)⊆ Pgét(X)

for the subset of Tango functions of level N.

Remark 2.3.1. One verifies easily that if a global section of Pgét is a Tango function

of level N, then every element of the Brtn-orbit (⊆Pgét(X)) of the global section is a Tango

function of level N.

Remark 2.3.2. It is immediate that an arbitrary Tango function of level N is a pseudo-

coordinate of level N (cf. [7, Def. 2.3]). Thus, we have a commutative diagram

TfN (X) �
� ��

����

pcdN (X)

����
TfN (X)/Brtn

�� pcdN (X)/Grtn

(cf. Remark 2.3.1, [7, Def. 2.3], and [7, Rem. 2.3.1]).

Definition 2.4. Let f ∈ Pgét(X) be a global section of Pgét, and let x ∈X be a closed

point of X. Let us identify A
def
= k[[t]] with the completion ÔX,x of the local ring OX,x by

means of a fixed isomorphism A
∼→ ÔX,x over k. Write F ∈ OX,x for the image, via f, in

OX,x of a fixed uniformizer of the discrete valuation ring OP
1
k,f(x)

and

F =
∑

i≥1ait
i ∈A

for the expansion of F in A. Thus, the positive integer

indx(f)
def
= νA(F ) = min{ i ∈ Z≥1 | ai �= 0}
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(where νA denotes the t-adic valuation on A = k[[t]] that maps t ∈ A to 1) coincides with

the ramification index of the dominant morphism f : X → P
1
k at x ∈X. Then we shall write

ind �∈pN

x (f)
def
= min{ i ∈ Z≥1 | ai �= 0 and i �∈ pNZ}

(
≥ indx(f)

)
and

ind �∈pN

x (f)

for the uniquely determined positive integer such that 1 ≤ ind �∈pN

x (f) ≤ pN − 1, and,

moreover, ind �∈pN

x (f)− ind �∈pN

x (f) ∈ pNZ.

Note that one verifies easily that since f is a global section of Pgét, it holds that

ind �∈pN

x (f) <∞. Moreover, one also verifies easily that both ind �∈pN

x (f) and ind �∈pN

x (f) are

independent of the choices of the fixed isomorphism A
∼→ÔX,x and the fixed uniformizer of

OP
1
k,f(x)

.

Lemma 2.5. Let f ∈Pgét(X) be a global section of Pgét, and let x ∈X be a closed point

of X. Then the following assertions hold:

(i) Suppose that f(x) �=∞k. Then there exists an element g ∈ Brtn such that

g(f)(x) �=∞k, indx
(
g(f)

)
= ind �∈pN

x (f)

(which thus implies that indx(g(f)) = ind �∈pN

x (g(f))).

(ii) Suppose that f(x) =∞k, and that indx(f) = ind �∈pN

x (f). Then there exists an element

g ∈ Brtn such that

g(f)(x) �=∞k, indx
(
g(f)

)
= pN − ind �∈pN

x (f)

(which thus implies that indx(g(f)) = ind �∈pN

x (g(f)) = pN − ind �∈pN

x (g(f))).

(iii) Suppose that f(x) =∞k, and that indx(f) �= ind �∈pN

x (f). Then there exists an element

g ∈ Brtn such that

g(f)(x) �=∞k, indx
(
g(f)

)
= ind �∈pN

x (f)

(which thus implies that indx(g(f)) = ind �∈pN

x (g(f))).

Proof. Write KX for the function field of X. Let us identify the scheme Proj(k[u,v])

with P
1
k by means of a fixed isomorphism Proj(k[u,v])

∼→ P
1
k over k that maps the point

“(u,v) = (1,0)” to the closed point ∞k. Thus, the global section f ∈ Pgét(X) determines

and is determined by an element F of KX \Kp
X (i.e., the image of u/v ∈ k(u/v) in KX

via f). Now, let us first observe that if f(x) �= ∞k, then we may assume without loss of

generality, by replacing f by the composite of f and a suitable element of Autk(A
1
k), that

f(x) is the point “(u,v) = (0,1),” that is, that F ∈mx. Let us identify A
def
= k[[t]] with the

completion ÔX,x of the local ring OX,x by means of a fixed isomorphism A
∼→ ÔX,x over

k that maps t ∈ A into OX,x ⊆ ÔX,x. (Thus, it holds that F ∈ tA[[t]] (resp. F−1 ∈ tA[[t]])

whenever f(x) �=∞k (resp. f(x) =∞k).) Write d0
def
= ind �∈pN

x (f).

Now, we verify assertion (i). Let us first observe that it follows from the definition of

“ind �∈pN

x (f)” that there exist a ∈ OX,x, u ∈ A×, and a nonnegative integer r such that
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F = ap
N − trp

N+d0u, and, moreover, either a= 0 or νA(a
pN

) (= pNνA(a)) < rpN +d0. Then

one verifies immediately from the various definitions involved that the global section of Pgét

that corresponds to the element t−rpN

(F −ap
N

) of KX \Kp
X is contained in the Brtn-orbit

of f and satisfies the condition in the statement of assertion (i). This completes the proof

of assertion (i).

Next, we verify assertions (ii) and (iii). Let us first observe that it follows from the

definition of “ind �∈pN

x (f)” that there exist a ∈ OX,x, u ∈ A×, and a nonnegative integer

r such that F−1 = ap
N − trp

N+d0u, and, moreover, a = 0 in the situation of assertion (ii)

(resp. νA(a
pN

)(= pNνA(a))< rpN +d0 in the situation of assertion (iii)). Then one verifies

immediately from the various definitions involved that if we are in the situation of assertion

(ii), then the global section of Pgét that corresponds to the element t(r+1)pN

F of KX \Kp
X is

contained in the Brtn-orbit of f and satisfies the condition in the statement of assertion (ii).

This completes the proof of assertion (ii).

Next, to verify assertion (iii), observe that, in the situation of assertion (iii), since F−1 =

ap
N − trp

N+d0u= ap
N

(1−a−pN

trp
N+d0u), and 0< rpN +d0−pNνA(a), it follows that

F = a−pN

(1+a−pN

trp
N+d0u+a−2pN

t2rp
N+2d0u2+ · · ·).

Then one verifies immediately from the various definitions involved that the global section

of Pgét that corresponds to the element t−rpN

a2p
N

F − t−rpN

ap
N

of KX \Kp
X is contained

in the Brtn-orbit of f and satisfies the condition in the statement of assertion (iii). This

completes the proof of assertion (iii), hence also of Lemma 2.5.

Lemma 2.6. Let f ∈Pgét(X) be a global section of Pgét, and let x ∈X be a closed point

of X. Suppose that f(x) �=∞k, and that ind �∈pN

x (f) �= 1. Then, for each g ∈ Brtn, the result

g(f) ∈ Pgét(X) of the action of g ∈ Brtn on f ∈ Pgét(X) either is not étale at x or maps x

to ∞k.

Proof. Let us first observe that it follows immediately from Lemma 2.5(i) that we may

assume without loss of generality, by replacing f by the result of the action of a suitable

element of Brtn on f, that

(a) indx(f) = d0
def
= ind �∈pN

x (f) ( �= 1).

Let us identify A
def
= k[[t]] with the completion ÔX,x of the local ring OX,x by means of

a fixed isomorphism A
∼→ ÔX,x over k. Then it is immediate that, to verify Lemma 2.6, it

suffices to verify that

(∗1): for each g ∈Brtn, the composite of the natural morphism Spec(A)→X with

g(f) : X → P
1
k is not formally étale whenever this composite does not map the

closed point of Spec(A) to ∞k.

Let g be an element of Brtn. Next, let us identify the scheme Proj(k[u,v]) with P
1
k by

means of a fixed isomorphism Proj(k[u,v])
∼→ P

1
k over k that maps the point “(u,v) = (1,0)”

to the closed point ∞k. Write K for the field of fractions of A and

Proj(k[u,v]) ←− Spec(A); (u,v) 
→ (fu,fv)

(where fu, fv ∈A) for the composite of the natural morphism Spec(A)→X with f : X →P
1
k.

Thus, there exist ag, bg, dg ∈ k[[tp
N

]] = ApN ⊆ A (which thus implies that νA(ag), νA(bg),
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νA(dg) ∈ pNZ) such that agdg �= 0, and, moreover, the composite of the natural morphism

Spec(A)→X with g(f) : X →P
1
k coincides with the morphism determined by the composite

Proj(k[u,v]) ←− Proj(K[u,v]) ←− Proj(K[u,v]) ←− Spec(K)

(u,v) 
→ (u,v)

(u,v) 
→ (agu+ bgv,dgv)

(u,v) 
→ (fu,fv).

Next, let us observe that, to verify (∗1), we may assume without loss of generality, by

replacing f by the composite of f and a suitable element of Autk(A
1
k), that the image of

x ∈X via f is the point “(u,v) = (0,1),” that is, that (cf. (a))

(b) νA(fu) = d0, and fv = 1. (Recall that 2≤ d0 ≤ pN −1; cf. (a).)

Next, let us observe that, to verify (∗1), we may assume without loss of generality, by

replacing g by the product of g and a suitable element of Autk(A
1
k), that the image of

x ∈X via g(f) is the point “(u,v) = (0,1),” that is, that (cf. (b))

(c) if we write

F
def
=

agfu+ bg
dg

∈ K,

then F ∈A, and, moreover, νA(F )≥ 1.

Thus, it is immediate that, to verify (∗1), it suffices to verify that

(∗2): νA(F ) �= 1.

Next, let us observe that, to verify (∗2), we may assume without loss of generality, by

replacing (ag, bg,dg) by t−min{νA(ag),νA(bg),νA(dg)} · (ag, bg,dg), that
(d) 0 ∈ {νA(ag),νA(bg),νA(dg)}.

Here, let us verify that

(e) νA(bg)≥ pN .

Indeed, if νA(bg) = 0, then it follows from (b) that νA(agfu+ bg) = 0, which thus implies

that νA(F )≤ 0—in contradiction to (c). This completes the proof of (e).

Next, suppose that νA(dg) = 0. Then it follows from (b) and (e) that νA(F ) =

νA(agfu+bg)≥ 2, as desired. Thus, to verify (∗2), we may assume without loss of generality

that

(f) νA(dg)≥ pN .

Thus, it follows from (d)–(f) that νA(ag) = 0. Then it follows from (b) and (e) that

νA(agfu+bg) = d0. In particular, it follows from (b) and (f) that νA(F ) = d0−νA(dg)< 0—

in contradiction to (c). This completes the proof of (∗2), hence also of Lemma 2.6.

Proposition 2.7. Let f ∈ Pgét(X) be a global section of Pgét. Then it holds that f is a

Tango function of level N if and only if, for each closed point x ∈X of X, the equality

ind �∈pN

x (f) =

{
1, if either f(x) �=∞k or indx(f) �= ind �∈pN

x (f)

pN −1, if f(x) =∞k and indx(f) = ind �∈pN

x (f)

holds.
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Proof. The sufficiency follows immediately from Lemma 2.5(i)–(iii). The necessity

follows from Lemma 2.5(ii) and (iii) and Lemma 2.6.

Remark 2.7.1. Suppose that (p,N) = (2,1). Then one verifies easily from Proposi-

tion 2.7 that every global section of Pgét is a Tango function of level N :

Pgét(X) = TfN (X).

Moreover, one also verifies easily that

�
(
Pgét(X)/Brtn

)
= �

(
TfN (X)/Brtn

)
= 1.

Remark 2.7.2. One may construct some examples of Tango functions by means of the

well-known structure of the maximal pro-prime-to-p quotient of the abelianization of the

étale fundamental group of an open subscheme of the projective line over an algebraically

closed field of characteristic p as follows: Let r be a positive integer. Write d
def
= (rpN −1)

(pN − 1). Let a1, . . . ,ad−(pN−1) ∈ A
1
k be distinct d− (pN − 1) closed points of A

1
k. Write

a0
def
= ∞k ∈ P

1
k, P for the ring obtained by forming the pro-prime-to-p completion of the ring

Z of rational integers, and Q for the maximal pro-prime-to-p quotient of the abelianization

of the étale fundamental group of A
1
k \ {a1, . . . ,ad−(pN−1)} = P

1
k \ {a0,a1, . . . ,ad−(pN−1)}.

Then it is well-known that, for each i ∈ {0,1, . . . ,d− (pN −1)}, there exists an element γi of

Q such that:

(a) these elements of Q determine an isomorphism between Q and the quotient of the

free P -module freely generated by the γi’s (where i ∈ {0,1, . . . ,d− (pN − 1)}) by the

P -submodule generated by γ0+γ1+ · · ·+γd−(pN−1), and, moreover,

(b) for each i ∈ {0,1, . . . ,d− (pN − 1)}, the element γi topologically generates the inertia

subgroup of Q associated with the closed point ai of P
1
k.

Thus, it follows from (a) that there exists a surjective homomorphism Q� Z/dZ of groups

that maps the element γ0 to pN −1 ∈ Z/dZ and, for each i ∈ {1, . . . ,d− (pN −1)}, maps the

element γi to 1 ∈ Z/dZ. Write

fN,r : CN,r
�� P1

k

for the morphism over k (that is necessarily finite and of degree d) obtained by forming

the smooth compactification of the finite étale Galois covering of P1
k \{a0,a1, . . . ,ad−(pN−1)}

determined by a surjective homomorphism Q � Z/dZ as above. Thus, it follows from (b)

and the condition imposed on the surjective homomorphism Q � Z/dZ that:

(c) the finite morphism fN,r is étale over the open subscheme P
1
k \ {a0,a1, . . . ,ad−(pN−1)}

of P1
k,

(d) the fiber f−1
N,r(a0) is of cardinality pN −1, and the equality indx(fN,r) = rpN −1 holds

for each x ∈ f−1
N,r(a0), and

(e) for each i ∈ {1, . . . ,d− (pN −1)}, the fiber f−1
N,r(ai) is of cardinality 1, and the equality

indx(fN,r) = d holds for each x ∈ f−1
N,r(ai).

In particular, it follows from Proposition 2.7, together with (c)–(e), that the global section

fN,r of “Pgét” for the projective smooth curve CN,r over k is a Tango function of level N.
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Note that it follows from the Riemann–Hurwitz formula that if one writes gN,r for the

genus of CN,r, then the equalities

2gN,r−2 = d(d−pN −1) = dpN
(
r(pN −1)−2

)
hold. In particular, one concludes that the inequality gN,r ≥ 2 holds if and only if (p,N,r) �∈
{(2,1,1),(2,1,2),(3,1,1)}.

Finally, we discuss a relationship between Tango functions and Tango curves studied in,

for instance, [8] and [9].

Definition 2.8.

(i) Let f ∈ Pgét(X) be a global section of Pgét. Then we shall write

n(N ;f)
def
=

∑
x∈X: closed[νx(df)/p

N ]

(where we write νx for the discrete valuation on the function field of X that corresponds

to the closed point x and maps a uniformizer of OX,x to 1 and “[−]” for the uniquely

determined maximal integer less than or equal to “(−)”; cf. [9, Def. 9]).

(ii) We shall say that X is a Tango curve if there exists a global section f ∈ Pgét(X) of

Pgét such that n(1;f) = (2g−2)/p (cf., e.g., [9] and [8, §2.1]).

Theorem 2.9. Let f ∈Pgét(X) be a global section of Pgét. Then the following assertions

hold:

(i) If f is a Tango function of level N, then the equality n(N ;f) = (2g−2)/pN holds.

(ii) It holds that f is a Tango function of level 1 if and only if the equality n(1;f) =

(2g−2)/p holds.

Proof. These assertions follow immediately from Proposition 2.7, together with the well-

known fact that the relative cotangent sheaf of X/k is of degree 2g−2.

Corollary 2.10. If X has a Tango function of level N of X, then 2g− 2 is divisible

by pN .

Proof. This assertion is an immediate consequence of Theorem 2.9(i).

Corollary 2.11. It holds that X is a Tango curve if and only if X has a Tango function

of level 1.

Proof. This assertion is an immediate consequence of Theorem 2.9(ii).

§3. Frobenius-affine structures

In the present section, we introduce and discuss the notion of Frobenius-affine structures

(cf. Definition 3.1). Moreover, we also discuss a relationship between Frobenius-affine

structures and Tango functions (cf. Proposition 3.7). In the present section, we maintain

the notational conventions introduced at the beginning of §2.

Definition 3.1. We shall say that a subsheaf S ⊆ Aét of Aét is a Frobenius-affine

structure of level N on X if S is preserved by the action of B on Aét (cf. Remark 2.2.1(v)),

and, moreover, the sheaf S forms, by the resulting action of B on S, a B-torsor on X.
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We shall write

FasN (X)

for the set of Frobenius-affine structures of level N on X.

Remark 3.1.1.

(i) One finds easily that the notion of Frobenius-affine structures may be regarded as

an “affine version” of the notion of Frobenius-projective structures (cf. [7, Def. 3.1])

discussed in [7].

(ii) One also finds easily that the notion of Frobenius-affine structures may be regarded

as an analogue, in positive characteristic, of the notion of complex affine structures

(cf., e.g., [1, §2]) in the classical theory of Riemann surfaces.

Lemma 3.2. Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Then the

following assertions hold:

(i) Let U, V ⊆X be open subschemes of X, fU ∈ S(U), and fV ∈ S(V ). Then the global

section of Pgét determined by fU ∈ S(U) (cf. Remark 2.2.1(i)) is contained in the

Brtn-orbit of the global section of Pgét determined by fV ∈ S(V ).

(ii) The global section of Pgét determined by a local section of S is a Tango function of

level N.

Proof. Since X is irreducible, assertion (i) follows from the fact that S is a B-torsor.
Assertion (ii) follows from assertion (i), together with the fact that S is contained

in Aét.

Definition 3.3. Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Then it

follows from Lemma 3.2(i) and (ii) that S determines a Brtn-orbit of Tango functions of

level N. We shall refer to this Brtn-orbit as the Tango-orbit of level N associated with S.
Thus, we obtain a map

FasN (X) �� TfN (X)/Brtn.

Lemma 3.4. Let U ⊆ X be an open subscheme of X, f ∈ Aét(U), and g ∈ Brtn. Then

it holds that the result g(f) ∈ Pgét(U) of the action of g ∈ Brtn on f ∈ Aét(U) ⊆ Pgét(U)

(cf. Remark 2.2.1(i) and (iv)) is contained in the subset Aét(U) ⊆ Pgét(U) if and only if

g ∈ Brtn is contained in the subgroup B(U)⊆ Brtn.

Proof. The sufficiency follows from Remark 2.2.1(v). To verify the necessity, suppose

that g �∈ B(U). Write KX for the function field of X. Let x ∈X be a closed point of X such

that x ∈ U , and, moreover, g �∈ PGL2(OX,x) (if we regard g as an element of PGL2(KX)).

Let us identify A
def
= k[[t]] with the completion ÔX,x of the local ring OX,x by means of a

fixed isomorphism A
∼→ ÔX,x over k. Then it is immediate that, to verify the necessity, it

suffices to verify that

(∗1): the composite of the natural morphism Spec(A) → X with g(f) : X → P
1
k

is not formally étale whenever this composite does not map the closed point of

Spec(A) to ∞k.

Next, let us identify the scheme Proj(k[u,v]) with P
1
k by means of a fixed isomorphism

Proj(k[u,v])
∼→ P

1
k over k that maps the point “(u,v) = (1,0)” to the closed point ∞k. Write
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K for the field of fractions of A and

Proj(k[u,v]) Spec(A);�� (u,v) 
→ (fu,fv)

(where fu, fv ∈A) for the composite of the natural morphism Spec(A)→X with f : X →P
1
k.

Thus, there exist ag, bg, dg ∈ k[[tp
N

]] = ApN ⊆ A (which thus implies that νA(ag), νA(bg),

νA(dg) ∈ pNZ) such that agdg �= 0, and, moreover, the composite of the natural morphism

Spec(A)→X with g(f) : X →P
1
k coincides with the morphism determined by the composite

Proj(k[u,v]) ←− Proj(K[u,v]) ←− Proj(K[u,v]) ←− Spec(K)

(u,v) 
→ (u,v)

(u,v) 
→ (agu+ bgv,dgv)

(u,v) 
→ (fu,fv).

Now, let us observe that, to verify (∗1), we may assume without loss of generality, by

replacing (ag, bg,dg) by t−min{νA(ag),νA(bg),νA(dg)} · (ag, bg,dg), that

(a) 0 ∈ {νA(ag),νA(bg),νA(dg)}.

Moreover, let us observe that since g �∈ PGL2(OX,x), it holds that

(b) νA(agdg)≥ pN .

Next, let us observe that, to verify (∗1), we may assume without loss of generality, by

replacing f by the composite of f and a suitable element of Autk(A
1
k), that the image of

x ∈X via f is the point “(u,v) = (0,1),” that is, that

(c) νA(fu) = 1 (cf. our assumption that f ∈ Aét(U)), and fv = 1.

Moreover, let us observe that, to verify (∗1), we may assume without loss of generality, by

replacing g by the product of g and a suitable element of Autk(A
1
k), that the image of x∈X

via g(f) is the point “(u,v) = (0,1),” that is, that (cf. (c))

(d) if we write

F
def
=

agfu+bg
dg

∈K,

then F ∈A, and, moreover, νA(F )≥ 1.

Thus, it is immediate that, to verify (∗1), it suffices to verify that

(∗2): νA(F ) �= 1.

Here, let us verify that

(e) νA(bg)≥ pN .

Indeed, if νA(bg) = 0, then it follows from (c) that νA(agfu+ bg) = 0, which thus implies

that νA(F )≤ 0—in contradiction to (d). This completes the proof of (e).

Next, suppose that νA(dg) = 0. Then it follows from (b) that νA(ag)≥ pN . In particular,

it follows from (e) that νA(F ) = νA(agfu+ bg) ≥ pN ≥ 2, as desired. Thus, to verify (∗2),
we may assume without loss of generality that

(f) νA(dg)≥ pN .
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It follows from (a), (e), and (f) that νA(ag) = 0. Thus, it follows from (c) and (e) that

νA(agfu + bg) = 1. In particular, it follows from (f) that νA(F ) = 1− νA(dg) ≤ −1—in

contradiction to (d). This completes the proof of (∗2), and hence also of Lemma 3.4.

Lemma 3.5. Let f ∈ Pgét(X) be a Tango function of level N. Then the following

assertions hold:

(i) Write Sf ⊆ Aét for the subsheaf of Aét that assigns, to an open subscheme U ⊆ X,

the subset of Aét(U) obtained by forming the intersection of Aét(U) and the Brtn-orbit

(⊆ Pgét(U)) of f |U (cf. Remark 2.2.1(i) and (iv)):

Sf (U)
def
= Aét(U)∩ (Brtn ·f |U ).

Then the subsheaf Sf is a Frobenius-affine structure of level N on X.

(ii) Let g ∈ Pgét(X) be a global section of Pgét, which is contained in the Brtn-orbit of

f ∈ Pgét(X). (So g is a Tango function of level N; cf. Remark 2.3.1.) Then Sf = Sg

(cf. (i)).

Proof. Assertion (i) follows immediately from Lemma 3.4, together with the definition

of a Tango function of level N. Assertion (ii) follows immediately from the definition of

“Sf .”

Definition 3.6. Let f ∈ Pgét(X) be a Tango function of level N. Then it follows from

Lemma 3.5(i) that f determines a Frobenius-affine structure of level N. We shall refer to this

Frobenius-affine structure of level N as the Frobenius-affine structure of level N associated

with f. Thus, we obtain a map

TfN (X)/Brtn
�� FasN (X)

(cf. Lemma 3.5, (ii)).

Proposition 3.7. The assignments of Definitions 3.3 and 3.6 determine a bijective

map

FasN (X)
∼ �� TfN (X)/Brtn.

Proof. This assertion follows immediately from the constructions of Lemmas 3.2

and 3.5.

Remark 3.7.1. As observed in Remark 3.1.1(ii), the notion of Frobenius-affine

structures may be regarded as an analogue, in positive characteristic, of the notion of

complex affine structures in the classical theory of Riemann surfaces. Moreover, it is well-

known (cf., e.g., [1, Lem. 1]) that if a compact Riemann surface admits a complex affine

structure, then the compact Riemann surface is of genus 1. On the other hand, one may

conclude from Remark 2.7.2 and Proposition 3.7 that, for an arbitrary algebraically closed

field F of positive characteristic and an arbitrary positive integer N, there exists a projective

smooth curve over F of genus ≥ 2 that has a Frobenius-affine structure of level N.

Lemma 3.8. Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Then the

subsheaf SG of P ét that assigns, to an open subscheme U ⊆X, the subset of P ét(U) obtained

by forming the intersection of P ét(U) and the union of the Grtn-orbits (⊆ Pgét(U)) of the
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elements of S(U) (cf. Remark 2.2.1(i) and (iv)):

SG(U)
def
= P ét(U)∩

(
Grtn · S(U)

)
.

Then the subsheaf SG of P ét is a Frobenius-projective structure of level N on X (cf. [7, Def.

3.1]).

Proof. This assertion follows—in light of Remark 2.3.2—from [7, Lem. 3.5(i)].

Definition 3.9. Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Then

it follows from Lemma 3.8 that S determines a Frobenius-projective structure of level N.

We shall refer to this Frobenius-projective structure as the Frobenius-projective structure

of level N associated with S. Thus, we obtain a map

FasN (X) �� FpsN (X)

(cf. [7, Def. 3.1]).

Remark 3.9.1. One verifies easily from the various definitions involved that the

diagram

TfN (X)/Brtn
��

�
��

pcdN (X)/Grtn

�
��

FasN (X) �� FpsN (X)

(where the upper horizontal arrow is the lower horizontal arrow of the diagram of Remark

2.3.2, the lower horizontal arrow is the map of Definition 3.9, the left-hand vertical arrow

is the inverse of the bijective map of Proposition 3.7, and the right-hand vertical arrow is

the inverse of the bijective map of [7, Prop. 3.7]) is commutative.

§4. Frobenius-affine-indigenous structures

In the present section, we introduce and discuss the notion of Frobenius-affine-indigenous

structures (cf. Definition 4.3). Moreover, we also discuss a relationship between Frobenius-

affine-indigenous structures and Frobenius-affine structures (cf. Proposition 4.9).

In the present section, we maintain the notational conventions introduced at the

beginning of §2. Write, moreover,

Xf

for the “XF ” in the case where N = 1 and

φ : X �� Xf

for the “Φ” in the case where N =1. Thus, the morphism Φ: X →XF factors as a composite

X
φ �� Xf �� XF .

We shall write

Φf→F : Xf �� XF
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for the second arrow in this composite (i.e., the “Φ” in the case where we take the pair

“(X,N)” to be (Xf ,N −1)).

Definition 4.1. Let Z be a scheme that is smooth over XF . Thus, the base change

Φ∗Z → X of the structure morphism Z → XF by the morphism Φ: X → XF may be

regarded as an object of the category SmSch of [5, Def. 1.7] in the case where we take

the “(S,X)” of [5] to be (Spec(k),X). Let us recall from [6, Prop. 3.3] that the natural

Frobenius-descent datum on Φ∗Z = φ∗(Φ∗
f→FZ)→X (i.e., the natural descent datum on

Φ∗Z = φ∗(Φ∗
f→FZ) → X with respect to the morphism φ : X → Xf ; cf. [6, Def. 3.2(iv)])

gives rise to an Fr-stratification on Φ∗Z → X (cf. [4, Def. 4.6] and [6, Def. 1.8]), which

thus determines (cf. [4, Lem. 4.12(i)] and [6, Prop. 1.11]) a PD-stratification on Φ∗Z →X

(cf. [4, Def. 4.6] and [5, Def. 2.5]); i.e., in the case where we take the “(S,X)” of [4]–[6] to

be (Spec(k),X). We shall write

∇Φ∗Z

for the PD-connection on Φ∗Z →X (cf. [4, Def. 4.1(iii)] and [5, Def. 2.5]) determined by

the resulting PD-stratification on Φ∗Z →X (cf. also [7, Def. 4.2(i) and (ii)]).

Definition 4.2. Let Z be a scheme that is smooth over X, and let σ be a section of

Z →X. Thus, the structure morphism Z →X may be regarded as an object of the category

SmSch of [5, Def. 1.7] in the case where we take the “(S,X)” of [5] to be (Spec(k),X). Let ∇
be a PD-connection on Z →X (cf. [4, Def. 4.1(iii)] and [5, Def. 2.5])—i.e., in the case where

we take the “(S,X)” of [4] and [5] to be (Spec(k),X). Then, by considering the difference

between the two deformations

PDP 1
(PDpr11)

∗σ �� (PDpr11)
∗Z, PDP 1

(PDpr12)
∗σ �� (PDpr12)

∗Z ∼
∇ �� (PDpr11)

∗Z

(cf. [4, Def. 2.3(ii)] and [5, Def. 2.5]) of the section σ, we have a global section of the

OX -module

HomOX
(σ∗Ω1

Z/X ,Ω1
X/k).

(Note that let us recall from elementary algebraic geometry that the set of deforma-

tions PDP 1 → (PDpr11)
∗Z of the section σ : X → Z forms a torsor under the module

Γ(X,HomOX
(σ∗Ω1

Z/X ,Ω1
X/k)).) We shall refer to this global section as the Kodaira–Spencer

section of ∇ at σ (cf. also [7, Def. 4.3]).

Definition 4.3. We shall say that a pair (A → XF ,σ) consisting of an A
1-bundle

A→XF over XF (cf. Remark 4.3.2, and also Remark 2.1.1) and a section σ of the pull-back

Φ∗A→X is a Frobenius-affine-indigenous structure of level N on X if the Kodaira–Spencer

section (cf. Definition 4.2) of the PD-connection ∇Φ∗A (cf. Definition 4.1) at σ is nowhere

vanishing.

For two Frobenius-affine-indigenous structures I1 = (A1 → XF ,σ1) and I2 = (A2 →
XF ,σ2) of level N on X, we shall say that I1 is isomorphic to I2 if there exists an

isomorphism A1
∼→A2 over XF compatible with σ1 and σ2.

We shall write

FaisN (X)

for the set of isomorphism classes of Frobenius-affine-indigenous structures of level N on X.
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Remark 4.3.1. One finds easily that the notion of Frobenius-affine-indigenous struc-

tures may be regarded as an “affine version” of the notion of Frobenius-indigenous structures

(cf. [7, Def. 4.4]).

Remark 4.3.2. In the present paper, an A
1-bundle (resp. a P

1-bundle) over a scheme S

is defined to be a scheme Z over S such that, for each point s ∈ S of S, there exist an open

subscheme U ⊆ S of S that contains s ∈ S and an isomorphism of Z|U with A
1
U (resp. P1

U )

over U.

Lemma 4.4. Let (A→XF ,σ) be a Frobenius-affine-indigenous structure of level N on X.

Write P →XF for the P
1-bundle over XF obtained by forming the smooth compactification

of A → XF . Then the pair of the P
1-bundle P → XF and the section of the P

1-bundle

P →XF determined by σ is a Frobenius-indigenous structure of level N on X (cf. [7, Def.

4.4]).

Proof. This assertion follows immediately from the various definitions involved.

Remark 4.4.1. Let I = (A→XF ,σ) be a Frobenius-affine-indigenous structure of level

N on X. Then it follows from Lemma 4.4 that I determines a Frobenius-indigenous structure

of level N. We shall refer to this Frobenius-indigenous structure of level N as the Frobenius-

indigenous structure of level N associated with I. Thus, we obtain a map

FaisN (X) �� FisN (X)

(cf. [7, Def. 4.4]).

Remark 4.4.2. One verifies immediately from Lemma 4.4 that giving a Frobenius-

affine-indigenous structure of level N on X is “equivalent” to giving a collection (P →XF ,

σ∞,σ) of data consisting of a P
1-bundle P → XF over XF , a section σ∞ of the P

1-

bundle P → XF , and a section σ of the pull-back Φ∗P → X that satisfies the following

two conditions:

(1) The image of Φ∗σ∞ does not intersect the image of σ.

(2) The Kodaira–Spencer section (cf. Definition 4.2) of the PD-connection ∇Φ∗P

(cf. Definition 4.1) at σ is nowhere vanishing.

Lemma 4.5. Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Thus, the

sheaf Φ∗S is a PGL∞
2,XF -torsor on XF . Write AS → XF for the A

1-bundle associated

with the PGL∞
2,XF -torsor Φ∗S (i.e., the quotient of Φ∗S ×XF A

1
XF by the diagonal action

of PGL∞
2,XF ). For each local section s of Φ∗S, write σs for the local section of the trivial

A
1-bundle A1

X →X that corresponds to s (cf. Remark 2.2.1(ii)). Then the pair consisting of:

(1) the A
1-bundle AS →XF over XF and

(2) the section of Φ∗AS →X determined by the various pairs “(s,σs)” (where “s” ranges

over the local sections of Φ∗S)

is a Frobenius-affine-indigenous structure of level N on X.

Proof. Write SG ⊆P ét for the Frobenius-projective structure of level N associated with

S (cf. Definition 3.9), I = (P → XF ,σ) for the Frobenius-indigenous structure of level

N associated with SG (cf. [7, Def. 4.8]), σ∞ for the section of the P
1-bundle P → XF

determined by the “Borel subgroup” PGL∞
2,XF ⊆ PGL2,XF of PGL2,XF (cf. also the
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construction of [7, Lem. 4.7]), and A → XF for the A
1-bundle obtained by forming the

complement of the image of σ∞ in P. Then one verifies immediately from the various

definitions involved (cf. also the construction of [7, Lem. 4.7]) that there exists an

isomorphism AS
∼→A over XF compatible with the section of (2) and σ. Thus, Lemma 4.5

is a formal consequence of [7, Lem. 4.7]. This completes the proof of Lemma 4.5.

Definition 4.6. Let S ⊆ Aét be a Frobenius-affine structure of level N on X. Then it

follows from Lemma 4.5 that S determines a Frobenius-affine-indigenous structure of level

N. We shall refer to this Frobenius-affine-indigenous structure of level N as the Frobenius-

affine-indigenous structure of level N associated with S. Thus, we obtain a map

FasN (X) �� FaisN (X).

Remark 4.6.1. One verifies easily from the various definitions involved that the

diagram

FasN (X) ��

��

FpsN (X)

�
��

FaisN (X) �� FisN (X)

(where the upper horizontal arrow is the map of Definition 3.9, the lower horizontal arrow

is the map of Remark 4.4.1, the left-hand vertical arrow is the map of Definition 4.6, and

the right-hand vertical arrow is the bijective map of [7, Prop. 4.11]) is commutative.

Lemma 4.7. Let (A→XF ,σ) be a Frobenius-affine-indigenous structure of level N on X.

Write (P →XF ,σ∞,σ) for the collection of data discussed in Remark 4.4.2 that corresponds

to the Frobenius-affine-indigenous structure (A → XF ,σ). Then the following assertions

hold:

(i) Let U ⊆ X be an open subscheme of X such that the restriction A|UF is isomorphic

to the trivial A1-bundle over UF , which thus implies that there exists an isomorphism

ιU : P |UF
∼→ P

1
UF over UF compatible with the sections σ∞|UF and ∞UF . Write fU,ιU ∈

P(U) for the section of P obtained by forming the composite

U
σ|U �� (Φ∗P )|U

Φ∗ιU
∼

�� P1
U P

1
k×kU

pr1 �� P1
k.

Then fU,ιU ∈ P ét(U).

(ii) The collection of sections fU,ιU ∈ P ét(U) (cf. (i)) (where (U,ιU ) ranges over the pairs

as in (i)) determines a Frobenius-affine structure of level N on X.

Proof. First, we verify assertion (i). Write τ : U → P
1
U for the section of the trivial P1-

bundle obtained by forming the composite of the first two arrows of the displayed composite

of the statement of assertion (i), that is, the composite of the section σ|U : U → (Φ∗P )|U and

the isomorphism Φ∗ιU : (Φ∗P )|U ∼→ P
1
U . Then it is tautology (cf. the factorization discussed

in [6, Lem. 1.3]) that the Kodaira–Spencer section f∗
U,ιU

Ω1
P
1
k/k

= τ∗pr∗1Ω
1
P
1
k/k

= τ∗Ω1
P
1
U/U

→
Ω1

U/k of this section τ : U → P
1
U coincides with the homomorphism f∗

U,ιU
Ω1

P
1
k/k

→ Ω1
U/k

induced by the morphism fU,ιU : U → P
1
k. Thus, since (we have assumed that) the Kodaira–

Spencer section of σ|U , hence also the Kodaira–Spencer section of τ , is nowhere vanishing,
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one may conclude that fU,ιU ∈P ét(U), as desired. This completes the proof of assertion (i).

Assertion (ii) follows immediately from assertion (i).

Definition 4.8. Let I be a Frobenius-affine-indigenous structure of level N on X. Then

it follows from Lemma 4.7(ii) that I determines a Frobenius-affine structure of level N. We

shall refer to this Frobenius-affine structure of level N as the Frobenius-affine structure of

level N associated with I. Thus, we obtain a map

FaisN (X) �� FasN (X).

Proposition 4.9. The assignments of Definitions 4.6 and 4.8 determine a bijective

map

FasN (X)
∼ �� FaisN (X).

Proof. This assertion follows immediately from the constructions of Lemmas 4.5 and

4.7.

The main result of the present paper is as follows.

Theorem 4.10. There exist bijective maps

TfN (X)/Brtn
∼ �� FasN (X)

∼ �� FaisN (X).

Proof. This assertion follows from Propositions 3.7 and 4.9.

Remark 4.10.1. If (p,N) �= (2,1), then the bijective maps of Theorem 4.10 are

compatible with the bijective maps of [7, Th. 4.13] (cf. Remarks 3.9.1 and 4.6.1).

§5. Relationship between certain Frobenius-destabilized bundles

In the present section, we discuss a relationship between Frobenius-affine-indigenous

structures and certain Frobenius-destabilized bundles over XF (cf. Proposition 5.7). In the

present section, we maintain the notational conventions introduced at the beginning of §4.
Suppose, moreover, that

g ≥ 2.

Definition 5.1. Let S be a scheme. For each i ∈ {1,2}, let Ei be an OS-module and let

Fi ⊆ Ei be an OS-submodule of Ei. Then we shall say that the pair (E1,F1) is P-equivalent

to (E2,F2) if there exist an invertible sheaf L on S and an isomorphism E1⊗OS
L ∼→ E2 of

OS-modules that restricts to an isomorphism F1⊗OS
L ∼→F2. We shall write

(E1,F1)∼P (E2,F2)

if (E1,F1) is P-equivalent to (E2,F2).

Remark 5.1.1. In the situation of Definition 5.1, it is immediate that if (E1,F1) is

P-equivalent to (E2,F2) (in the sense of Definition 5.1), then E1 is P-equivalent to E2 in the

sense of [7, Def. 5.1].

Definition 5.2. Let d be a positive integer, let E be a locally free coherent OXF -

module of rank 2, and let L⊆ E be an invertible subsheaf of E . Then we shall say that the

pair (E ,L) is (N,d)-Frobenius-splitting if the invertible sheaf L is of degree 1
2 ·deg(E)−

d
pN ,

the locally free coherent OXf -module Φ∗
f→FE of rank 2 (hence also the locally free coherent
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OXF -module E of rank 2) is stable, and, moreover, the natural inclusion Φ∗L ↪→Φ∗E has a

section (which thus implies that the locally free coherent OX -module Φ∗E = φ∗Φ∗
f→FE of

rank 2 is not semistable).

We shall write

FspN (X)

for the set of P-equivalence classes (cf. Remark 5.2.1) of (N,g−1)-Frobenius-splitting pairs

on X.

Remark 5.2.1. For each i ∈ {1,2}, let Ei be a locally free coherent OXF -module of

rank 2 and let Li ⊆ Ei be an invertible subsheaf of Ei. Suppose that (E1,L1) ∼P (E2,L2).

Then one verifies easily that (E1,L1) is (N,g−1)-Frobenius-splitting if and only if (E2,L2)

is (N,g−1)-Frobenius-splitting.

Remark 5.2.2. Let (E ,L) be an (N,g− 1)-Frobenius-splitting pair on X. Then it is

immediate that the locally free coherent OXF -module E is (N,g−1)-Frobenius-destabilized

(cf. [7, Def. 5.2]). In particular, we have a map

FspN (X) �� FdsN (X)

(cf. Remark 5.1.1 and [7, Def. 5.2]).

Remark 5.2.3. Suppose that p �= 2, and that N = 1. Then one verifies immediately

from the various definitions involved (cf. also Remark 5.2.2 and the proof of [7, Lem. 5.3])

that giving an (N,g−1)-Frobenius-splitting pair on X is “equivalent” to giving a dormant

Miura GL2-oper (cf. [10, Def. 4.2.1] and [10, Def. 4.2.2]).

Remark 5.2.4. Write FrX : X →X for the pth power Frobenius endomorphism of X.

Then one verifies easily that the assignment “(E ,L) 
→ (W∗E ,W∗L)” determines a bijective

map of the set FspN (X) with the set of P-equivalence classes of pairs (F ,G) of locally free

coherent OX -modules F of rank 2 and invertible subsheaves G ⊆F that satisfy the following

condition: if, for a nonnegative integer i, we write

Gi
def
=

i︷ ︸︸ ︷
Fr∗X · · ·Fr∗X G ⊆ Fi

def
=

i︷ ︸︸ ︷
Fr∗X · · ·Fr∗XF ,

then

• the locally free coherent OX -module FN−1, hence also F , is stable, but

• there exist an invertible sheaf M on X of degree pN

2 · deg(F) + g− 1 = 1
2 · deg(FN ) +

g− 1 and a locally split injective homomorphism M ↪→ FN of OX -modules such that

the inclusions GN , M ↪→FN determine an isomorphism GN ⊕M ∼→FN of OX -modules.

(In particular, the locally free coherent OX -module FN is not semistable.)

Lemma 5.3. Let (E ,L) be an (N,g− 1)-Frobenius-splitting pair on X. Write P(E) →
XF for the projectivization of E and σ∞(L) for the section of P(E)→XF determined by

L⊆ E (cf. Definition 5.2). Then there exists a (uniquely determined; cf. Remark 5.2.2 and

[7, Lem. 4.6]) section σ of Φ∗
P(E) → X such that the collection (P(E) → XF ,σ∞(L),σ)

of data is a collection of data discussed in Remark 4.4.2 that corresponds to a Frobenius-

affine-indigenous structure of level N on X.
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Proof. This assertion follows—in light of Remark 5.2.2—from [7, Lem. 5.3] (cf. also the

proof of [7, Lem. 5.3]).

Definition 5.4. Let (E ,L) be an (N,g− 1)-Frobenius-splitting pair on X. Then it

follows from Lemma 5.3 that (E ,L) determines a Frobenius-affine-indigenous structure

of level N. We shall refer to this Frobenius-affine-indigenous structure of level N as the

Frobenius-affine-indigenous structure of level N associated with (E ,L). Thus, we obtain a

map

FspN (X) �� FaisN (X).

Remark 5.4.1. One verifies easily from the various definitions involved that the

diagram

FspN (X) ��

��

FdsN (X)

�
��

FaisN (X) �� FisN (X)

(where the upper horizontal arrow is the map of Remark 5.2.2, the lower horizontal arrow

is the map of Remark 4.4.1, the left-hand vertical arrow is the map of Definition 5.4, and

the right-hand vertical arrow is the bijective map of [7, Prop. 5.7]) is commutative.

Lemma 5.5. Let (P →XF ,σ∞,σ) be a collection of data discussed in Remark 4.4.2 that

corresponds to a Frobenius-affine-indigenous structure of level N on X and E a locally free

coherent OXF -module of rank 2 whose projectivization is isomorphic to P over XF . Write

L ⊆ E for the invertible subsheaf of E determined by the section σ∞. Then the pair (E ,L)
is (N,g−1)-Frobenius-splitting.

Proof. This assertion follows—in light of Remark 5.2.2—from [7, Lem. 5.5] (cf. also the

proof of [7, Lem. 5.5]).

Definition 5.6. Let I be a Frobenius-affine-indigenous structure of level N on X. Then

it follows from Lemma 5.5 that I determines a P-equivalence class of (N,g−1)-Frobenius-

splitting pair. We shall refer to this P-equivalence class as the (N,g−1)-Frobenius-splitting

class associated with I. Thus, we obtain a map

FaisN (X) �� FspN (X).

Proposition 5.7. The assignments of Definitions 5.4 and 5.6 determine a bijective map

FspN (X)
∼ �� FaisN (X).

Proof. This assertion follows immediately from the constructions of Lemmas 5.3 and

5.5.

Corollary 5.8. Suppose that g ≥ 2. Then there exist bijective maps

TfN (X)/Brtn
∼ �� FasN (X)

∼ �� FaisN (X)
∼ �� FspN (X).

Proof. This assertion follows from Theorem 4.10 and Proposition 5.7.

Remark 5.8.1. If (p,N) �= (2,1), then the bijective maps of Corollary 5.8 are compatible

with the bijective maps of [7, Cor. 5.8] (cf. Remarks 4.10.1 and 5.4.1).
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Remark 5.8.2. Suppose that p �=2. Then it follows from Corollary 5.8 that the existence

of a Tango function of level N is equivalent to the existence of an (N,g− 1)-Frobenius-

splitting pair. In particular, by applying this equivalence to the case where N = 1, we

conclude from Corollary 2.11 and Remark 5.2.3 that X is a Tango curve if and only if X

has a dormant Miura GL2-oper (cf. [10, Def. 4.2.1] and [10, Def. 4.2.2]). On the other hand,

this equivalence (i.e., in the case where N = 1) is an immediate consequence of [10, Th.

A(i)]. Thus, one concludes that Corollary 5.8 may be regarded as a “higher level version”

of this equivalence (i.e., in the case where N = 1) derived from [10, Th. A(i)].

Corollary 5.9. Suppose that p �= 2, that g ≥ 2, and that N = 1. Suppose, moreover,

that there exists a projective smooth curve over k of genus g that has a Tango function of

level N (which thus implies that g−1 is divisible by p; cf. Corollary 2.10). Then there exists

a closed subscheme of the coarse moduli space of projective smooth curves over k of genus g

of pure codimension (g−1)(p−2)/p such that if the curve X is parametrized by the closed

subscheme, then the four sets

TfN (X), FasN (X), FaisN (X), FspN (X)

are nonempty

Proof. This assertion follows from [10, Th. B], together with Corollary 5.8.

§6. Some results in small characteristic cases

In the present section, we prove some results related to Frobenius-affine structures in the

case where p≤ 3. In the present section, we maintain the notational conventions introduced

at the beginning of §4.
Proposition 6.1. Suppose that (p,N) = (2,1). Then the following assertions hold:

(i) The collection of data consisting of

• the P1-bundle P →XF over XF obtained by forming the projectivization of the locally

free coherent OXF -module Φ∗OX of rank 2,

• the section of P →XF determined by the invertible subsheaf OXF ⊆ Φ∗OX obtained

by forming the image of the homomorphism OXF →Φ∗OX of OXF -modules induced

by Φ, and

• the section of Φ∗P → X determined by the (necessarily surjective) homomorphism

Φ∗Φ∗OX � OX of OX-modules obtained by multiplication

is a collection of data discussed in Remark 4.4.2 that corresponds to a Frobenius-affine-

indigenous structure of level N on X.

(ii) Every Frobenius-affine-indigenous structure of level N on X is isomorphic to the

Frobenius-affine-indigenous structure of level N of (i).

Proof. Assertion (i) follows from [7, Lem. 6.2]. Assertion (ii) follows from Remark 2.7.1

and Theorem 4.10.

Corollary 6.2. Suppose that (p,N) = (2,1), and that g ≥ 2. Then every (N,g− 1)-

Frobenius-splitting pair on X is P-equivalent to the pair (Φ∗OX ,OXF ) consisting of the

locally free coherent OXF -module Φ∗OX of rank 2 and the invertible subsheaf OXF ⊆Φ∗OX

obtained by forming the image of the homomorphism OXF → Φ∗OX of OXF -modules

induced by Φ.
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Proof. This assertion follows from Corollary 5.8 and Proposition 6.1(ii).

Lemma 6.3. Suppose that p = 2, that g ≥ 2, and that N ≥ 2. Let E be a locally free

coherent OXF -module of rank 2. Then the following assertions hold:

(i) Suppose that g is odd. Then it holds that E is (N,g−1)-Frobenius-destabilized (cf. [7,

Def. 5.2]) if and only if Φ∗
f→FE is P-equivalent (cf. [7, Def. 5.1]) to φ∗OX .

(ii) Suppose that E is (N,g− 1)-Frobenius-destabilized. Then the following two conditions

are equivalent:

(1) There exists an invertible subsheaf L ⊆ E such that the pair (E ,L) is (N,g− 1)-

Frobenius-splitting.

(2) There exist invertible sheaves M, Q on XF , a surjective homomorphism E ⊗OXF

M � Q of OXF -modules, and an isomorphism φ∗OX
∼→ Φ∗

f→F (E ⊗OXF
M) of

OXf -modules such that Q is of degree (2g−2)/pN .

If, moreover, one of conditions (1) and (2) is satisfied, then g is odd.

Proof. First, we verify assertion (i). Let us first observe that since p = 2, and N ≥ 2,

the OXf -module Φ∗
f→FE is of even degree. Next, let us observe that since g is odd, it

follows from [7, Prop. 5.7], [7, Lem. 6.4(ii)], and [7, Prop. 6.6(iii)] that every (1,g− 1)-

Frobenius-destabilized locally free coherent OXf -module of rank 2 of even degree is

P-equivalent to φ∗OX . Thus, assertion (i) follows from [7, Rem. 5.2.2(i)]. This completes

the proof of assertion (i).

Next, we verify assertion (ii). First, to verify the implication (1) ⇒ (2), let L be

as in condition (1). Then since N ≥ 2, it follows immediately from Corollary 2.10 and

Corollary 5.8 that g−1 is divisible by 2N−1, which thus implies that g is odd. In particular,

since E is (N,g− 1)-Frobenius-destabilized, it follows from assertion (i) that Φ∗
f→FE is

P-equivalent to φ∗OX . Thus, since the locally free coherent OXf -module φ∗OX of rank

2 is of degree g− 1 (cf., e.g., [7, Lem. 6.4(ii)]), we may assume without loss of generality,

by replacing E by the tensor product of E and a suitable invertible sheaf on XF , that

Φ∗
f→FE is isomorphic to φ∗OX , and, moreover, the quotient E/L of E by L⊆ E is of degree

(2g− 2)/pN (cf. Definition 5.2), as desired. This completes the proof of the implication

(1) ⇒ (2).

Next, to verify the implication (2) ⇒ (1), let M, Q be as in condition (2). Then

since the locally free coherent OXf -module φ∗OX of rank 2 is of degree g− 1 (cf., e.g.,

[7, Lem. 6.4(ii)]), one verifies immediately from assertion (i), together with the proof

of [7, Lem. 5.3], that if one writes K ⊆ E ⊗OXF
M for the kernel of the surjective

homomorphism E ⊗OXF
M � Q of condition (2), then the pair (E ,K ⊗OXF

M−1) is

(N,g − 1)-Frobenius-splitting, as desired. This completes the proof of the implication

(2) ⇒ (1).

Finally, since N ≥ 2, the final assertion follows from Corollaries 2.10 and 5.8. This

completes the proof of assertion (ii), hence also of Lemma 6.3.

Lemma 6.4. Suppose that p= 3, and that g ≥ 2. Write

BXf
def
= Coker(OXf → φ∗OX)

https://doi.org/10.1017/nmj.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.36


408 Y. HOSHI

for the OXf -module obtained by forming the cokernel of the homomorphism OXf → φ∗OX

of OXf -modules induced by φ. Let E be a locally free coherent OXF -module of rank 2. Then

the following assertions hold:

(i) It holds that E is (N,g−1)-Frobenius-destabilized if and only if Φ∗
f→FE is P-equivalent

to BXf .

(ii) Suppose that E is (N,g− 1)-Frobenius-destabilized. Then the following two conditions

are equivalent:

(1) There exists an invertible subsheaf L ⊆ E such that the pair (E ,L) is (N,g− 1)-

Frobenius-splitting.

(2) There exist invertible sheaves M, Q on XF , a surjective homomorphism E ⊗OXF

M�Q of OXF -modules, and an isomorphism BXf
∼→Φ∗

f→F (E⊗OXF
M) of OXf -

modules such that Q is of degree (4g−4)/pN .

Proof. First, we verify assertion (i). Let us first observe that it follows from [7, Cor. 5.8]

and [2, Th. A] (cf. also [3, §1]), together with [7, Rem. 4.4.1(ii)] and the construction of

[7, Lem. 5.5], that every (1,g−1)-Frobenius-destabilized locally free coherent OXf -module

of rank 2 is P-equivalent to BXf . Thus, assertion (i) follows from [7, Rem. 5.2.2(i)]. This

completes the proof of assertion (i).

Next, we verify assertion (ii). First, to verify the implication (1) ⇒ (2), let L be as in

condition (1). Then since E is (N,g−1)-Frobenius-destabilized, it follows from assertion (i)

that Φ∗
f→FE is P-equivalent to BXf . Now, let us observe that it follows from Corollaries 2.10

and 5.8 that 2g− 2 is divisible by pN . Thus, since the locally free coherent OXf -module

BXf of rank 2 is of degree 2g− 2 (cf., e.g., [2, Lem. 1.2]), we may assume without loss of

generality, by replacing E by the tensor product of E and a suitable invertible sheaf on

XF , that Φ∗
f→FE is isomorphic to BXf , and, moreover, the quotient E/L of E by L ⊆ E

is of degree (4g− 4)/pN (cf. Definition 5.2), as desired. This completes the proof of the

implication (1) ⇒ (2).

Next, to verify the implication (2) ⇒ (1), let M, Q be as in condition (2). Then since the

locally free coherent OXf -module BXf of rank 2 is of degree 2g−2 (cf., e.g., [2, Lem. 1.2]),

one verifies immediately from assertion (i), together with the proof of [7, Lem. 5.3], that if

one writes K ⊆ E ⊗OXF
M for the kernel of the surjective homomorphism E ⊗OXF

M � Q
of condition (2), then the pair (E ,K⊗OXF

M−1) is (N,g−1)-Frobenius-splitting, as desired.

This completes the proof of the implication (2) ⇒ (1), hence also of assertion (ii).

Corollary 6.5. Suppose that g ≥ 2. Suppose, moreover, that N ≥ 2 whenever p = 2.

Write

BXf
def
= Coker(OXf → φ∗OX)

for the OXf -module obtained by forming the cokernel of the homomorphism OXf → φ∗OX

of OXf -modules induced by φ. Then the following assertions hold:

(i) Suppose that p = 2 (resp. p = 3). Suppose, moreover, that g is odd whenever p = 2.

Then it holds that X has a pseudo-coordinate of level N (cf. [7, Def. 2.3]) if and only

if there exists a locally free coherent OXF -module E of rank 2 such that φ∗OX (resp.

BXf ) is P-equivalent to Φ∗
f→FE.

(ii) Suppose that p= 2 (resp. p= 3). Then it holds that X has a Tango function of level N

if and only if there exist a locally free coherent OXF -module E of rank 2, an invertible
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sheaf Q on XF of degree (2g−2)/pN (resp. (4g−4)/pN), a surjective homomorphism

E � Q of OXF -modules, and an isomorphism φ∗OX
∼→Φ∗

f→FE (resp. BXf
∼→Φ∗

f→FE)
of OXf -modules.

Proof. First, we verify assertion (i). Let us first observe that it follows from [7, Cor. 5.8]

that X has a pseudo-coordinate of level N if and only if there exists an (N,g−1)-Frobenius-

destabilized locally free coherent OXF -module of rank 2. Thus, assertion (i) follows from

Lemmas 6.3(i) and 6.4(i). This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows from Corollary 5.8 that

X has a Tango function of level N if and only if there exists an (N,g−1)-Frobenius-splitting

pair on X. Thus, assertion (ii) follows from Lemmas 6.3(ii) and 6.4(ii). This completes the

proof of assertion (ii), hence also of Corollary 6.5.
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