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Abstract. This paper studies several aspects of symbolic (i.e. subshift) factors of S-adic
subshifts of finite alphabet rank. First, we address a problem raised by Donoso et al
[Interplay between finite topological rank minimal Cantor systems, S-adic subshifts and
their complexity. Trans. Amer. Math. Soc. 374(5) (2021), 3453-3489] about the topological
rank of symbolic factors of S-adic subshifts and prove that this rank is at most the one
of the extension system, improving on the previous results [B. Espinoza. On symbolic
factors of S-adic subshifts of finite alphabet rank. Preprint, 2022, arXiv:2008.13689v2;
N. Golestani and M. Hosseini. On topological rank of factors of Cantor minimal systems.
Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2021.62. Published online 8 June 2021]. As a
consequence of our methods, we prove that finite topological rank systems are coalescent.
Second, we investigate the structure of fibers n_l(y) of factormaps w: (X, T) — (¥, S)
between minimal S-adic subshifts of finite alphabet rank and show that they have the same
finite cardinality for all y in a residual subset of Y. Finally, we prove that the number
of symbolic factors (up to conjugacy) of a fixed subshift of finite topological rank is
finite, thus extending Durand’s similar theorem on linearly recurrent subshifts [F. Durand.
Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod.
Th. & Dynam. Sys. 20(4) (2000), 1061-1078].
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1. Introduction

An ordered Bratteli diagram is an infinite directed graph B = (V, E, <) such that the

vertex set V and the edge set E are partitioned into levels V. = VU Vi U..-  E = EyU
- so that E,, are edges from V, 1| to V,, Vy is a singleton, each V,, is finite and < is a

partial order on E such that two edges are comparable if and only if they start at the same
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vertex. The order < can be extended to the set X p of all infinite paths in B, and the Vershik
action Vp on Xp is defined when B has unique minimal and maximal infinite paths with
respect to <. We say that (X p, Vp) is a Bratteli—Vershik (BV) representation of the Cantor
system (X, T) if both are conjugate. Bratteli diagrams are a tool coming from C*-algebras
that, at the beginning of the 1990’s, Herman et al [HPS92] used to study minimal Cantor
systems. Their success at characterizing the strong and weak orbit equivalence for systems
of this kind marked a milestone in the theory that motivated many posterior works. Some
of these works focused on using Bratteli diagrams to study specific classes of systems and,
as a consequence, many of the classical minimal systems have been characterized as BV
systems with a specific structure. Some examples include odometers as those systems that
have a BV representation with one vertex per level, substitutive subshifts as stationary
BV (all levels are the same) [DHS99], certain Toeplitz sequences as ‘equal row-sum’ BV
[GJ00], and (codings of) interval exchanges as BV where the diagram codifies a path in
a Rauzy graph [GJ02]. Now, almost all of these examples share certain coarse dynamical
behavior: they have finitely many ergodic measures, are not strongly mixing, have zero
entropy, are subshifts, and their BV representations have a bounded number of vertices
per level, among many others. It turns out that just having a BV representation with a
bounded number of vertices per level (or, from now on, having finite topological rank)
implies the previous properties (see, for example, [BKMS13, DMO08]). Hence, the finite
topological rank class arises as a possible framework for studying minimal subshifts and
proving general theorems.

This idea has been exploited in many works: Durand et al, in a series of papers (with
[DFM19] being the last one), developed techniques from the well-known substitutive
case and obtained criteria for any BV of finite topological rank to decide if a given
complex number is a continuous or measurable eigenvalue; Bezuglyi et al described in
[BKMS13] the simplex of invariant measures together with natural conditions for being
uniquely ergodic; Giordano et al bounded the rational rank of the dimension group by the
topological rank [HPS92, GHH18], among other works. It is important to remark that
these works were inspired by or first proved in the substitutive case.

Now, since Bratteli-Vershik systems with finite topological rank at least two are
conjugate to a subshift [DMOS], it is interesting to try to define them directly as a subshift.
This can be done by codifying the levels of the Bratteli diagram as substitutions and
then iterate them to obtain a sequence of symbols defining a subshift conjugate to the
initial BV system. This procedure also makes sense for arbitrary nested sequences of
substitutions (called directive sequences), independently from the Bratteli diagram and
the various additional properties of its codifying substitutions. Subshifts obtained in this
way are called S-adic (substitution-adic) and may be non-minimal (see, for example,
[BSTY19]).

Although there are some open problems about finite topological rank systems depending
directly on the combinatorics of the underlying Bratteli diagrams, others are more naturally
stated in the S-adic setting (e.g. when dealing with endomorphisms, it is useful to have the
Curtisdi—-Hedlunda-Lyndon theorem) and, hence, there exists an interplay between S-adic
subshifts and finite topological rank systems in which theorems and techniques obtained
for one of these classes can sometimes be transferred to the other. The question about which
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is the exact relation between these classes has been recently addressed in [DDMP21] and,
in particular, the authors proved the following.

THEOREM 1.1. [DDMP21] A minimal subshift (X, T) has topological rank at most K if
and only if it is generated by a proper, primitive, and recognizable S-adic sequence of
alphabet rank at most K.

In this context, a fundamental question is the following.

Question 1.2. Are subshift factors of finite topological rank systems of finite topological
rank?

Indeed, the topological rank controls various coarse dynamical properties (number of
ergodic measures, rational rank of dimension group, among others) which cannot increase
after a factor map, and we also know that big subclasses of the finite topological rank class
are stable under symbolic factors, such as the linearly recurrent and the non-superlineal
complexity classes [DDMP21], so it is expected that this question has an affirmative
answer. However, when trying to prove this using Theorem 1.1, we realize that the naturally
inherited S-adic structure of finite alphabet rank that a symbolic factor has is never
recognizable. Moreover, this last property is crucial for many of the currently known
techniques to handle finite topological rank systems (even in the substitutive case, it is a
deep and fundamental theorem of Mossé), so it is not clear why it would be always possible
to obtain this property while keeping the alphabet rank bounded or why recognizability is
not connected with a dynamical property of the system. Thus, an answer to this question
seems to be fundamental to the understanding of the finite topological rank class.

This question has been recently addressed, first in [Esp20] by purely combinatorial
methods, and then also in [GH21] in the BV formulation by using an abstract construction
from [AEG15]. In this work, we refine both approaches and obtain, as a first consequence,
the optimal answer to Question 1.2 in a more general, non-minimal context.

THEOREM 1.3. Let (X, T) be an S-adic subshift generated by an everywhere growing
and proper directive sequence of alphabet rank equal to K, and w: (X, T) — (Y, S) be
an aperiodic subshift factor. Then, (Y, S) is an S-adic subshift generated by an everywhere
growing, proper, and recognizable directive sequence of alphabet rank at most K.

Here, a directive sequence o = (oy: ﬂ;;r 1
lim, 00 Mingeq, 0o . . . op—1(a)| = oo, and a system (X, T) is aperiodic if every orbit
{T"x : n € Z} is infinite. Theorem 1.3 implies that the topological rank cannot increase
after a factor map (Corollary 4.8). Theorem 1.3 implies the following sufficient condition
for a system to be of finite topological rank.

— A nen is everywhere growing if

COROLLARY 1.4. Let (X, T) be an aperiodic minimal S-adic subshift generated by an

everywhere growing directive sequence of finite alphabet rank. Then, the topological rank
of (X, T) is finite.

An interesting corollary of the underlying construction of the proof of Theorem 1.3 is
the coalescence property for this kind of system, in the following stronger form.
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COROLLARY 1.5. Let (X, T) be an S-adic subshift generated by an everywhere growing
and proper directive sequence of alphabet rank equal to K, and (X, T) i (X1, T1) -
LB (X1, Tr) be a chain of aperiodic subshift factors. If L > log, K, then at least one
7Tj IS a conjugacy.

One of the results in [Dur00] is that factor maps between aperiodic linearly recurrent
subshifts are finite-to-one. In particular, they are almost k-to-1 for some finite k. For finite
topological rank subshifts, we prove the following.

THEOREM 1.6. Let w: (X, T) — (Y, S) be a factor map between aperiodic minimal
subshifts. Suppose that (X, T) has topological rank equal to K. Then m is almost k-to-1
for some k < K.

We use this theorem, in Corollary 4.12, to prove that Cantor factors of finite topological
rank subshifts are either odometers or subshifts.

In [Dur00], the author proved that linearly recurrent subshifts have finite topological
rank, and that this kind of system has finitely many aperiodic subshift factors up to
conjugacy. Inspired by this result, we use ideas from the proof of Theorem 1.3 to obtain
the following.

THEOREM 1.7. Let (X, T) be a minimal subshift of topological rank K. Then, (X, T) has
at most 3K)3?K aperiodic subshift factors up to conjugacy.

Altogether, these results give a rough picture of the set of totally disconnected factors of
a given finite topological rank system: they are either equicontinuous or subshifts satisfying
the properties in Theorems 1.3, 1.5, 1.7, and 1.6. Now, in a topological sense, totally
disconnected factors of a given system (X, 7) are ‘maximal,’” so, the natural next step
in the study of finite topological rank systems is asking about the connected factors. As we
have seen, the finite topological rank condition is a rigidity condition. By this reason, we
think that the following question has an affirmative answer.

Question 1.8. Let (X, T') be a minimal system of finite topological rank and 7 : (X, T) —
(Y, S) be a factor map. Suppose that Y is connected. Is (¥, S) an equicontinuous system?

We remark that the finite topological rank class contains all minimal subshifts of
non-superlinear complexity [DDMP21], but even for the much smaller class of linear
complexity subshifts, the author is not aware of results concerning Question 1.8.

1.1. Organization. In the next section, we give the basic background in topological and
symbolic dynamics needed in this article. Section 3 is devoted to prove some combinatorial
lemmas. The main results about the topological rank of factors are stated and proved in §4.
Next, in §5, we prove Theorem 1.6, which is mainly a consequence of the so-called critical
factorization theorem. Finally, in §6, we study the problem about the number of symbolic
factors and prove Theorem 1.7.
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2. Preliminaries
For us, the set of natural numbers starts with zero,i.e. N =1{0,1,2,...}.

2.1. Basics in topological dynamics. A topological dynamical system (or just a system)
is a pair (X, T), where X is a compact metric space and 7: X — X is a homeomorphism
of X. We denote by Orbz (x) the orbit {7"x : n € Z} of x € X. A point x € X is p-periodic
if TPx = x, periodic if it is p-periodic for some p > 1, and aperiodic otherwise. A
topological dynamical system is aperiodic if any point x € X is aperiodic, is minimal
if the orbit of every point is dense in X, and is Cantor if X is a Cantor space (i.e. X is totally
disconnected and does not have isolated points). We use the letter 7" to denote the action of
a topological dynamical system independently of the base set X. The hyperspace of (X, T')
is the system (2%, T'), where 2% is the set of all closed subsets of X with the topology
generated by the Hausdorff metric dy (A, B) = max(sup, ¢4 d(x, A), SUpycp d(y, A)),
and T the action A — T (A).

A factor between the topological dynamical systems (X, 7) and (Y, T') is a continuous
function 7w from X onto Y such that w o T = T o 7. We use the notation 7: (X, T) —
(Y, T) to indicate the factor. A factor map =w: (X,T) — (¥, T) is almost K-to-1 if
#m~!(y) = K for all y in a residual subset of Y. We say that 7 is distal if whenever
7w(x) = w(x") and x # x’, we have infyez dist(T*x, T*x") > 0.

Given a system (X, T), the Ellis semigroup E(X,T) associated with (X, T) is
defined as the closure of {x — T"x : n € Z} € X% in the product topology, where the
semi-group operation is given by the composition of functions. On X, we may consider
the E (X, T)-action given by x — ux. Then, the closure of the orbit under 7" of a point
x € X isequal to the orbit of x under E(X, T).If 7 : (X, T) — (Y, T) is a factor between
minimal systems, then 7 induces a surjective map 7#*: E(X,T) — E(Y, T), which is
characterized by the formula

mw(ux) =n*w)nw(x) forallu € E(X,T)and x € X.

If the context is clear, we will not distinguish between u and 7*(u). When u € EQ2X, T),
we write u o A instead of uA, the last symbol being reserved to mean uA = {ux :
x € A}. We can describe more explicitly u o A as follows: it is the set of all x €
X for which we can find nets x, € A and m) € Z such that lim, T"*x;, = x and
limy, 7" = u. Finally, we identify X with {{x} € 2% : x € X}, so that the restriction
map E(2X, T) — E(X, T), which sends u € E(2X, T) to the restriction u|x: X — X,
is an onto morphism of semigroups. As above, we will not distinguish between u € 2%
and u|yx.

2.2. Basics in symbolic dynamics.

2.2.1. Words and subshifts. Let A be an alphabet i.e. a finite set. Elements in A are
called letters and concatenations w = aj . . . ag of them are called words. The number ¢ is
the length of w and it is denoted by |w|, the set of all words in A of length ¢ is A, and
AT == A" The word w € AT is |u|-periodic, with u € AT, if w occurs in a word
of the form uu . . . u. We define per(w) as the smallest p for which w is p-periodic. We
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will use notation analogous to that introduced in this paragraph when dealing with infinite
words x € A" and bi-infinite words x € A~. The set A™ equipped with the operation of
concatenation can be viewed as the free semigroup on A. It is convenient to introduce
the empty word 1, which has length 0 and is a neutral element for the concatenation. In
particular, AT U {1} is the free monoid in A. Finally, for ‘W C AT, we write (W) :=
minycp |w| and |W| := maxyew |w|.

The shift map T: AL — A” is defined by T((xp)nez) = (Xnt1)nez. For x € A~
and integers i < j, we denote by x[; ;) the word x;x;41...x;. Analogous notation
will be used when dealing with intervals of the form [i, 00), (i, 00), (—o00,i], and
(—o00, 7). A subshift is a topological dynamical system (X, T'), where X is a closed and
T-invariant subset of A” (we consider the product topology in A%) and T is the shift
map. Classically one identifies (X, T) with X, so one says that X itself is a subshift. When
we say that a sequence in a subshift is periodic (respectively aperiodic), we implicitly
mean that this sequence is periodic (respectively aperiodic) for the action of the shift.
Therefore, if x € A% is periodic, then per(x) is equal to the size of the orbit of x. The
language of a subshift X € A” is the set L(X) of all words w € A1 that occur in
some x € X.

The pair (x, X) € A% x A” is right asymptotic if there exist k € Z satisfying X(ko0) =
X(koo) and xi # Xg. If moreover k =0, (x, X) is a centered right asymptotic. A right
asymptotic tail is an element x(o,~), Where (x, X) is a centered right asymptotic pair. We
make similar definitions for left asymptotic pairs and tails.

2.2.2. Morphisms and substitutions. Let A and B be finite alphabets and 7 : AT — BT
be a morphism between the free semigroups that they define. Then, T extends naturally to
maps from A" to itself and from A” to itself in the obvious way by concatenation (in the
case of a two-sided sequence, we apply 7 to positive and negative coordinates separately
and we concatenate the results at coordinate zero). We say that t is positive if for every
a € A, all letters b € B occur in t(a), is r-proper, with r > 1, if there exist u, v € 8" such
that t(a) starts with u and ends with v for any a € A, is proper when is 1-proper, and is
letter-onto if for every b € B there exists a € A such that b occurs in a. The minimum and
maximum lengths of T are respectively the numbers () := (t(A)) = minygc# |t (a)| and
IT] == [T1(A)| = maxgea T(a)l.

We observe that any map 7: A — BT can be naturally extended to a morphism (that
we also denote by 7) from AT to BT by concatenation, and any morphism 7: AT — BT
is uniquely determined by its restriction to A. From now on, we will use the same notation
for denoting a map 7: A — BT and its extension to a morphism 7: AT — BT,

Definition 2.1. Let X C A% be a subshift and o : AT — BT be a morphism. We say
that (k, x) € Z x X is a o-factorization of y € B2 in X if y = T¥o (x). If moreover k €
[0, | (x0)]), then (k, x) is a centered o -factorization in X.

The pair (X, o) is recognizable if every point y € 8% has at most one centered
o-factorization in X, and recognizable with constant r € N if whenever y|_, ,] = yE_r’r]
and (k, x), (k', x') are centered o -factorizations of y, y' € 8% in X, respectively, we have
(k, x0) = (K, x{)).
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The cuts of (k, x) are defined by

—k +lo(xp, )| if j >0,

Co ik, x) =
7! I—k—|a(x[,-,0))| if j <0.

We write Cy (k, x) = {co,j(k, x) : j € Z}.

Remark 2.2. In the context of the previous definition we have the following.
(i) The point y € B has a (centered) o -factorization in X if and only if y belongs to
the subshift ¥ := | J, ., 7”0 (X). Hence, (X, o) is recognizable if and only if every
y € Y has a exactly one centered o -factorization in X.
(i) If (k,x) is a o-factorization of y € B in X, then (cq,j(k, x), T/x) is a
o -factorization of y in X for any j € Z. There is exactly one factorization in this
class that is centered.

(i) If (X, o) is recognizable, then it is recognizable with constant r for some r € N
[DDMP21].

The behavior of recognizability under composition of morphisms is given by the
following lemma.

LEMMA 2.3.[BSTY19, Lemma 3.5] Leto: AT — B andt: BT — C* be morphisms,
X C AL be a subshift, and Y = UkeZ T*o (X). Then, (X, to) is recognizable if and only
if (X,0) and (Y, T) are recognizable.

Let X € A% and Z < CZ be subshifts and 7 : (X, T) — (Z,T) a factor map. The
classic Curtisi—Hedlunda—Lyndon theorem asserts that w has a local code, this is, a
function ¢ : A¥ ! — C, where r € N, such that 7 (x) = (¥ (x[i—r.i+r]))icz forall x € X.
The integer r is called the a radius of &. The following lemma relates the local code of a
factor map to proper morphisms.

LEMMA 2.4. Leto: AT — BT bea morphism, X C AL and Z - CZ be subshifts, and
Y = UkeZ chr(X). Suppose that w: (Y, T) — (Z,T) is a factor map of radius r and
that o is r-proper. Then, there exists a proper morphism ©: AT — CT such that |t (a)| =
lo(a)| foranya € A, Z = Uiy Tt (X) and the following diagram commutes:

X
l \ (1)

Yy X5 7

Proof. Let ¢ : A* ! — B be a local code of radius r for 7 and u, v € B” be such that
o(a) starts with u and ends with v for all @ € A. We define t: A — CT by 7(a) =
Y (vo (a)u). Then, since o is r-proper, t is proper and we have (o (x)) = 7(x) for all
x € X (that is, Diagram (1) commutes). In particular,

U Tk (X) = U Trr (o (X)) = n(Y) = Z. O

keZ keZ
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2.2.3. S-adic subshifts. We recall the definition of an S-adic subshift as stated in
[BSTY19]. A directive sequence 6 = (o, : ﬂ:{H — ?{,T),,GN is a sequence of morphisms.
For 0 < n < N, we denote by oy, ) the morphism 6, 0 0,41 0 - - - 0 oy—1. We say that &
is everywhere growing if

NI_I)I}:OO(U[O,N)) = +o0, 2

and primitive if for any n € N, there exists N > n such that oy, y) is positive. We remark
that this notion is slightly different from the usual one used in the context of substitutional
dynamical systems. Observe that o is everywhere growing if ¢ is primitive. Let # be a
property for morphisms (e.g. proper, letter-onto, etc). We say that o has property P if oy,
has property P for every n € N.

For n € N, we define

Xf,") ={x e .‘7{% : forall £ € N, x|_g,¢) occurs in oy, y)(a) for some N > n,a € Ay}.

This set clearly defines a subshift that we call the nth level of the S-adic subshift generated
by 0. We set X, = X,(,O) and simply call it the S-adic subshift generated by o. If o is
everywhere growing, then every X,(,"), n € N, is non-empty; if ¢ is primitive, then X,(,")
is minimal for every n € N. There are non-everywhere growing directive sequences that
generate minimal subshifts.

The relation between levels of an S-adic subshift is given by the following lemma.
LEMMA 2.5. [BSTY19, Lemma 4.2] Let 0 = (0,: A, |
sequence of morphisms. If 0 <n < N and x € Xén), then there exists a (centered)
o,N)-factorization in X,(,N). In particular, X,(,n) = UkeZ Tka[,,,N)(X,(,N)).

— ﬂ:)neN be a directive

The levels X((,") can be described in an alternative way if o satisfies the correct
hypothesis.

LEMMA 2.6. Let 0 = (0,: A, — A nen be an everywhere growing and proper

n+1
directive sequence. Then, for everyn € N,
x& = U T omn (AR 3)
N>n keZ

Proof. Let Z be the set in the right-hand side of (3). Since, by Lemma 2.5, X,(,") =
Uskez Tko[n,N)(Xf,N)) for any N > n, we have that X" included in Z.

Conversely, let x € Z and £ € N. We have to show that x[_ ¢) occurs in o[, n)(a) for
some N > nanda € Ay.Let N > n be big enough so that o[, y) is £-proper. Then, by the
definition of Z, there exists y € ?{% such that x[_¢ ¢ occurs in o7, ) (). Since (o[, n)) > £
(as ofu, ) 1s £-proper), we deduce that

X[—¢,¢) Occurs in o, Ny (ab) for some word ab of length 2 occurring in y. @

Hence, by denoting by u and v the suffix and prefix of length £ of 7, y)(a) and [, n) (D),
respectively, we have that x[_g ¢) occurs in oy, y)(a), in T[, n)(b), or in uv. In the first two
cases, we are done. In the last case, we observe that since o7, vy is £-proper, the following
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is true: for every M > N such that {o[y ) > 2, vu E o, m)(c) for any ¢ € Apy. In
particular, x{_¢.¢y = Tjn.ar)(c) for such M and c. We have proved that x € X3 0O

We define the alphabet rank of a directive sequence 7 as

AR(t) = lim inf #A,.

n——+00

A contraction of T is a sequence T = (T ) ﬂf{kﬂ — ?{f{k)keN, where 0 = ng <

n1 < np < ....Observe that any contraction of T generates the same S-adic subshift X ;.
When the context is clear, we will use the same notation to refer to T and its contractions.
If = has finite alphabet rank, then there exists a contraction T = (T(n; )" ?(,Tkﬂ —
ﬂf{k)keN of T in which A, has cardinality AR(7) for every k > 1.

Finite alphabet rank S-adic subshifts are eventually recognizable.

THEOREM 2.7. [DDMP21, Theorem 3.7] Let ¢ be an everywhere growing directive
sequence of alphabet rank equal to K. Suppose that X4 is aperiodic. Then, at most logy, K
levels (X ,(,"), 0y,) are not recognizable.

We will also need the following property.

THEOREM 2.8. [EM21, Theorem 3.3] Let (X, T) be an S-adic subshift generated by an
everywhere growing directive sequence of alphabet rank K. Then, X has at most 144K
right (respectively left) asymptotic tails.

Proof. In the proof of theorem 3.3 in [EM21], the authors show the following: the set
consisting of pairs (x, y) € X x X such that x(_x0,0) = ¥(—00,0) and xo # yo has at most
144K 7 elements. In our language, this is equivalent to saying that X has at most 144K’
left asymptotic tails. Since this is valid for any S-adic subshift generated by an everywhere
growing directive sequence of alphabet rank K, 144K is also an upper bound for right
asymptotic tails. O

3. Combinatorics on words lemmas
In this section, we present several combinatorial lemmas that will be used throughout the
article.

3.1. Lowering the rank. Let o: A" — BT be a morphism. Following ideas from
[RS97], we define the rank of o as the least cardinality of a set of words D C BT such
that o (AT) € DT. Equivalently, the rank is the minimum cardinality of an alphabet
C in a decomposition into morphisms AT ——> CT —£> B* such that o = pq. In this
subsection, we prove Lemma 3.6, which states that in certain technical situations, the rank
of the morphism ¢ under consideration is small and its decomposition o = pq satisfies
additional properties.

We start by defining some morphisms that will be used in the proofs of this subsection.
If a # b € A are different letters and a is a letter not in A, then we define ¢, : At >
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(ANBD T Ygp: AT > AT and 6, 5: AT — (AU {ahT by

Bun(©) c ifc#b, Vo (©) c ifc#b, 8, () ¢ ifc#a,
,h C) = ,b C) = ’~ C) = N .
¢ a ifc=0>n. ¢ ab ifc=0b. @ aa ifc=a.
Observe that these morphisms are letter-onto. Before stating the basic properties of these
morphisms, we need one more set of definitions.

For a morphism o : AT — BT, we define o] = Y, 4 |o(a)|. When u, v, w € A"
satisfy w = uv, we say that u is a prefix of w and that v a suffix of w. Recall that 1 stands
for the empty word.

LEMMA 3.1. Leto: AT — BT be a morphism.
() Ifo(a) =o(b) for some a # b € A, then 0 = o'Pyp, where o’: (A\ {b})T —
Bt is the restriction of o to (A \ {b)T.
(i) If o(a) is a prefix of o(b) and o (b) = o (a)t for some non-empty t € B, then
0 = 0'Vap, where o' : AT — BT is defined by
. b,
o' =17 F )
t ifc=0b.
(i) If o(a) = st for some s,t € BT and a € A, then o = c'0,;, where o’: (AU
{a))t — Bt is defined by

o(c) ifc#a,a,
o'(c)=1s ifc=a, (6)
a

Proof. The lemma follows from unraveling the definitions. For instance, in case
(ii), we have o' (Yap(a)) = o'(a) = 0 (a), o' (Yap(b)) = 0'(ab) = o(a)t = o (b), and
o' (Yap(c)) = 0'(c) = o(c) for all ¢ # a, b, which shows that o', = ©. O

LEMMA 3.2. Let {o;: AT — B}'}jej be a set of morphisms such that
for every fixeda € A, L, := |oj(a)| is constant for any chosen j € J, @)

and u, v € AT, with u of length at least £ = Zaeﬂ L,. Assume that u and v start with
different letters and that o j(u) is a prefix of o (v) for every j € J.

Then, there exists a letter-onto morphism q : AT — CT, with#C < #A, and morphisms
{p;: ct— B}_}jej satisfying a condition analogous to (7) and such that 6; = pjq.

Remark 3.3. 1If in the previous lemma we change the last hypothesis to ‘u and v end with
different letters and o7 (u) is a suffix of o (v) for every j € J’, then the same conclusion
holds. This observation will be used in the proof of Lemma 6.7.

Proof of Lemma 3.2. By contradiction, we assume that u, v, and {0} <, are counterex-
amples for the lemma. Moreover, we suppose that £ is as small as possible.
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Let us write # = au’ and v = bv’, where a, b € A. Since oj(u) is a prefix of o (v), we
have that for every j € J,

one of the words in {0 (a), o (b)} is a prefix of the other. (8)

We consider two cases. First, we suppose that £, = £,. In this case, (8) implies that
oj(a) = o;j(b) for every j € J. Hence, we can use (i) of Lemma 3.1 to decompose each
oj as oj’.qba,b, where aj’. is the restriction of o to (A \ {b})T. Since ¢, is letter-onto and
b = |a]/. (c)| forevery j € J, c € A\ {b}, the conclusion of the lemma holds, contrary to
our assumptions.

This leaves to consider the case in which ¢, # £;,. We only do the case ¢, < £} as the
other is similar. Then, by (8), for every j € J, there exists a non-empty word ¢; € Bﬁ.” ~ta
of length £, — £, such that 0 (b) = o(a)t;. Thus, we can use (ii) of Lemma 3.1 to write,
forany j € J,0; = aj/.lpa,b, where aj’. is defined as in (5).

Letit = ¥,5(u') and © = by, (v"). We want now to prove that i, 7, and {0]’. cjed}
satisfy the hypothesis of the lemma. First, we observe that for every j € J,

if c # b, then |a]’-(c)| = {., and |crj/»(b)| = |tj| = €y — La. 9)
Therefore, {ojf }jey satisfy (7). Also, since v, 5(c) never starts with b, we have that
u, v start with different letters. (10)
Furthermore, by using the symbol <, to denote the prefix relation, we can compute:
0} (@)0 (@) = 0j(@)0; () = 0, () <p 0;(v) = 0} Yup(V)) = 0} (@)} (D).

This and the fact that o (a) is equal to O’j/~ (a) imply that

a]/- (@) is a prefix of 0} (v) forevery j € J. (11)
Finally, we note
il = Jul =12 ) be—ta=:0. (12)
ceA

We conclude from (9), (10), (11), and (12) that i, v, and {ajf : j € J} satisfy the hypothesis
of this lemma. Since ¢’ < ¢, the minimality of £ implies that there exist a letter-onto
morphism ¢": AT — CT, with #C < #A, and morphisms {p;: C* — B;‘r}je 7 satisfying
a]’. = pjq’ and a property analogous to (7). However, then ¢ := ¢’ is also letter-onto
and the morphisms {p;};cs satisfy o; = p;q and a property analogous to (7). Thus, the
conclusion of the lemma holds for {0} e, contrary to our assumptions. O

LEMMA 3.4. Leto: AT — BT be a morphism, u, v € A, a, b be the first letters of u, v
respectively, and o (a) = st be a decomposition of o (a) in which t is non-empty. Assume
that o (u) is a prefix of so(v), |u| > |o|1 + |s|, and either that s = 1 and a # b or that
s # 1.

Then, there exist morphisms q: At — CT and p: CT — B such that #C < #4A, q is
letter-onto, |p|1 < |o|1, and o = pq.

https://doi.org/10.1017/etds.2022.21 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.21

1522 B. Espinoza

Remark 3.5. As in Lemma 3.2, there are symmetric hypotheses for the previous lemma
that involve suffixes instead of prefixes and which give the same conclusion. We will use
this in the proof of Lemma 3.6.

Proof of Lemma 3.4. Letus write u = au’ and v = bv’. We first consider the case in which
s = 1. In this situation, u and v start with different letters, so Lemma 3.2 can be applied
(with the index set J chosen as a singleton) to obtain a decomposition A™ Lot B gt
such that q is letter-onto, #C < #A, and 0 = pgq. Since C has strictly fewer elements than
A, we have |p|; < |o|;. Hence, the conclusion of the lemma holds in this case.

We now assume that s 7~ 1. In this case, ¢ and s are non-empty, so we can use (iii) of
Lemma 3.1 to factorize o = 0’6, 5, where d is a letter not in A and o’ is defined as in (6).
We set it = ab, ;(u’) and U = 6, ;(v). Our plan is to use Lemma 3.2 with i, 9 and o”.

Observe that 6, ;(c) never starts with a, so

i, v start with different letters. (13)
Also, by using, as in the previous proof, the symbol <, to denote the prefix relation,
so' (@) = 50" (@)a' (O (u)) = stoW') = o (u) <p 50 (V) = 50"(0,3(v)) = 50’ (D),
which implies that
o’ (i) is a prefix of o’ (D). (14)
Finally, we use (6) to compute:
i) = |ul — 1> |oli +Is| = 1 > o)1 = |o']1. 15)

We conclude, by (13), (14), and (15) that Lemma 3.2 can be applied with i, 7, and ¢’ (and
J as a singleton). Thus, there exist morphisms ¢": (AU {a})™ — C* and p: CT — BT
such that #C < #(A U {a}), ¢’ is letter-onto, and o’ = pq’. Then, #C < #A, ¢ := ¢'0,4
is letter-onto, and 0 = pq’6, ; = pq. Moreover, since 6, ; is not the identity function, we
have |p|1 < |o]1. O

The next lemma is the main result of this subsection. To state it, we introduce additional
notation. For an alphabet (A, let AT be the set of words w € AT in which all letters
occur. Observe that o : AT — BT is letter-onto if and only if o (ATT) € B+,

LEMMA 3.6. Let¢p: A" — C*, t: BT — Ct be morphisms such that t is £-proper, with
0> 9|3, and ¢(AT) NT(BTT) £ B. Then, there exist BT s o+ 5 o+ such that

(i) #D < #A, (i)t = pq, (iii) q is letter-onto and proper.

Proof. By contradiction, we suppose that the lemma does not hold for ¢ and t and,
moreover, that |¢|; as small as possible.

That ¢(A)T Nt(BTT) is non-empty means that there exist u =uj ...u, € A"
and w =wi ... wy, € BT with ¢u) = t(w). If m =1, then, since w € BT, we
have #8 = {v1} and the conclusion of the lemma trivially holds for D ={a € C:
a occurs in T(w1)}, ¢: BT — DT, wy — t(wy), and p: DT — CT the inclusion map,
contradicting our initial assumption. Therefore, m > 2 and {1, . .., m — 1} is non-empty.
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Letk € {l,...,m — 1}. We define iy as the smallest number in {1, ..., n} for which
[t(wy ... wp)| < |@uy...u;)l holds. Since [¢p(u1)| < |p|1 <€ < |t(wy...wp)l,ixis
at least 2 and, thus, |¢(u . .. u;,—1)| < |t(w; ... wy)| by minimality of ix. Hence, there

exists a decomposition ¢ (u;, ) = skt such that #; is non-empty and

tkfp(uik-i-] o Uy) = r(wk+1 C W) (16)

Our next objective is to use Lemma 3.4 to prove that s; and u; have a very particular

form.

CLAIM 3.6.1. Foreveryk e (l,...,m —1}, sy =1l anduy = u;,.

Proof. To prove this, we suppose that it is not true, that is, there exists k € {1, ..., m — 1}
such that

sk =1 or up #uj. (17)

Leti :=u;, ... Uit ipl2—1 and v :=uj ... Uygp3- We are going to check the hypothesis of
Lemma 3.4 for i, v and ¢.

First, we observe that, since ¢ (u#) = t(v), we have that ¢ (v) is a prefix of 7(v).
Moreover, given that |¢ (V)| < |¢>|‘1‘ < ¢ and that 7 is £-proper, ¢ (v) is a prefix of 7(b)
for every b € 8. In particular,

¢ (V) is a prefix of T (wg). (18)
Second, from (16) and the inequalities [tk (441 - . - uik+|¢l%—1)| < |¢>|f < £ < |t(wy)l,
we deduce that ¢ (u; 41 . . . uik+|¢|%*1) is a prefix of 7 (wy). Therefore,
@ (i) = st (WUip41 - - - ”ik+|¢|?—l) is a prefix of sp T (wg). (19)
We conclude from (18), (19), and the inequality |¢ (i1)| < |13 = |7] < |skg(D)] that
¢ (u) is a prefix of s (V).
This, the inequality |i| > |@|1 + |sk| and~(l7) allow us to use Lemma 3.4 with u«, v, and

¢ and obtain morphisms AT —> A" 5 ¢t such that #7 <#A, ¢ = ¢g and |p|; <
|¢l1. Then, £ > || > |$[} and (AT N T(B) contains the element d@Gw) = t(w),
and so t and ¢ satisfy the hypothesis of this lemma. Therefore, by the minimality of |¢|1,
there exists a decomposition 8+ L p+tr B ctofr satisfying conditions (i)—(iii) of this
lemma, contrary to our assumptions. U

An argument similar to the one used in the proof of the previous claim gives us that
up, =u;—1 foreverykefl,...,m—1}. (20)

We refer the reader to Remark 3.5 for further details.

Now we can finish the proof. First, from (16) and the first part of the claim, we get
that T(wy) = (ui_, ... uj;—1) for k€ {2,...,m—1}, t(wy)) =¢ @y ...u;—1) and
T(wp) = ¢, , - ..uy). Being w € BT, these equations imply that each 7(b), b € B,
can be written as a concatenation xj . . . xy, withx; € ¢ (A). Moreover, by the second part
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(4) (i) (iv)

FIGURE 1. Illustration of a local period.

of the claim and (20), we can choose this decomposition so that x; = u1 and xy = u,.
This defines (maybe non-unique) morphisms 8% N DT L ¢* such that T = P19,
#D1 <#o(W1), ..., d(uy)} < #A, and q is proper. If we define D as the set of letters
d € D that occur in some w € g(B), and p as the restriction of p; to D, then we obtain
a decomposition BT 2, ot L ¢+ that still satisfies the previous properties, but in
which g is letter-onto. Hence, p and g met conditions (i), (ii), and (iii). O]

3.2. Periodicity lemmas. We will also need classic results from combinatorics on words.
We follow the presentation of [RS97, Ch. 6].

Let w € A* be a non-empty word. We say that p is a local period of w at the position
lu| if w = uv, with u, v # 1, and there exists a word z, with |z| = p, such that one of the
following conditions holds for some words " and v':

(i) wu=uwzandv=2zv;
(i) z=wuandv=2zv; @
(iii)) u=u'zandz = vv';

(v) z=uu=ovv.

Further, the local period of w at the position |u|, in symbols per(w, u), is defined as the
smallest local period of w at the position u (see Fig. 1). It follows directly from (21) that
per(w, u) < per(w).

The following result is known as the critical factorization theorem.

THEOREM 3.7. (Theorem 6.2 and Ch. 6, [RS97]) Each non-empty word w € A*, with
|w| > 2, possesses at least one factorization w = uv, with u, v # 1, which is critical, i.e.
per(w) = per(w, u).

4. Rank of symbolic factors

In this section, we prove Theorem 1.3. We start by introducing the concept of factor
between directive sequences and, in Proposition 4.4, its relation with factor maps between
S-adic subshifts. These ideas are the S-adic analogs of the concept of premorphism
between ordered Bratteli diagrams from [AEG15] and their proposition 4.6. Although
Proposition 4.4 can be deduced from proposition 4.6 in [AEG15] by passing from directive
sequences to ordered Bratteli diagrams and backwards, we consider this a little bit artificial
since it is possible to provide a direct combinatorial proof; this is done in the Appendix.
It is interesting to note that our proof is constructive (in contrast of the existential proof in
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[AEG15]) and shows some additional features that are a consequence of the combinatorics
on words analysis made.

Next, we use ideas from [Esp20, GH21] to prove Theorem 1.3. In particular, this
improves the previous bounds in [Esp20, GH21] to the best possible one. We apply these
results, in Corollary 4.8, to answer affirmatively Question 1.2 and, in Theorem 1.5, to
prove a strong coalescence property for the class of systems considered in Theorem 1.3.
It is worth noting that this last result is only possible due to the bound in Theorem 1.3
being optimal. We end this section by proving that Cantor factors of finite topological rank
systems are either subshifts or odometers.

4.1. Rank of factors of directive sequences. The following is the S-adic analog of the
notion of premorphism between ordered Bratteli diagrams in [AEG15].
Definition 4.1. Let o = (A" | — ADnen, T= (B, > Bpen be directive
sequences. A factor ¢: 0 — T is a sequence of morphisms ¢ = (¢,),en, Where
do: ﬂT — BS‘ and ¢, : AT — B; for n > 1, such that ¢g = to¢p; and ¢,,0,, = T,,Pp+1
for every n > 1.

We say that ¢ is proper (respectively letter-onto) if ¢y, is proper (respectively letter-onto)
for every n € N.

Remark 4.2. Factors are not affected by contractions. More precisely, if 0 =ng < n; <
ny < ... then ¢’ = (¢, )ken is a factor from 6" = (o[ ;) keN 10 T = (T gy 1)) keN-

The next lemma will be needed at the end of this section.

LEMMA 4.3. Let ¢ = (¢n)n>1: 0 — T be a factor. Assume that ¢ and T are everywhere
growing and proper and that @ is letter-onto. Then, X: = |Uycy qubo(X‘(,l)) and Xg") =

Urez Tron (X for every n > 1.

Proof. We start by proving that X" € J, oy T*én(X). Let y € X and € € N. There
exist N > n and b € B, such that y_¢ occurs in tp, n)(b). In addition, since ¢y
is letter-onto, there exists a € Ay for which b occurs in ¢y (a). Then, yj_¢¢ occurs
in T[n,N)¢N(b) and, consequently, also in (ﬁnd[n,N)(b) as r[,,,N)q&N = ¢n0[n,N)- Hence,
by taking the limit £ — oo, we can find (k', x) € Z x X,(,") such that y = Tk,¢>n(x).
Therefore, y € Uyey Tk¢,,(X,(,")). To prove the other inclusion, we use Lemma 2.6 to
compute:

¢n(X$) = () U T*wotnmy (@) = () U T tiemyon (AR)

N>n keZ N>n keZ
< (M U rmm @) = X O
N>n keZ

As we mentioned before, the following proposition is a consequence of the main result
in [AEG15]. We provide a combinatorial proof in the Appendix.

PROPOSITION 4.4. Let 0 be a letter-onto, everywhere growing, and proper directive
sequence. Suppose that X is aperiodic. Then, there exist a contraction ¢’ = (0,)neN,
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a letter-onto, everywhere growing, proper and recognizable T = (t,),eN generating Xq,
and a letter-onto factor ¢ : ' — T, ¢ = (dy)nen, such that ¢y = o).

The next proposition is the main technical result of this section. To state it, it is
convenient to introduce the following concept. The directive sequences ¢ and 7T are
equivalent if ¢ =v', T =v” for some contractions v/, v” of a directive sequence v.
Observe that equivalent directive sequences generate the same S-adic subshift.

PROPOSITION 4.5. Let ¢p: 0 — T be a letter-onto factor between the everywhere growing
and proper directive sequences. Then, there exist a letter-onto and proper factor ¥ : ¢’ —
v, where:
(1) &' is a contraction of o;
(2) v is letter-onto, everywhere growing, proper, equivalent to T, AR(v) < AR(0), and
the first coordinate of ¥ and ¢ coincide;

(3) if T is recognizable, then v is recognizable.
Proof. Let us write 0 = (ﬂ:{H — AfMNpen and T = (B;;rl — B )nen. Up to contrac-
tions, we can suppose that for every n > 1, #A, = AR(0) and that 7, is |¢, |‘1*—proper (for
the last property, we used that 7 is everywhere growing and proper).

Using that ¢,,41 is letter-onto, we can compute:

(B 2 ta(@n1 (AL) = ¢ (00 (A)) S du(AD),
where in the middle step, we used the commutativity property of ¢. We deduce that

T (B;:fl) N ¢y (ﬂ:) # foreveryn € N.

This and the fact that 7, is a |¢, |‘1L-pr0per morphism allow us to use Lemma 3.6 to find

morphisms 8+ 25 oF 2 ¥ such that

n+1 n+1
1) #Dy41 < #A,, (i)t = pnqn+1, (i) g4 is letter-onto and proper.

We define vy := pg, the morphisms v, := g, p,: Z):H — Z),J{ and vy, 1= gnoy: ?(,f —
D,J{, n > 1, and the sequences v = (v;),en and ¥ = (¥y,)neN, Where ¥ := ¢o. We are
going to show that these objects satisfy the conclusion of the proposition.

We start by observing that it follows from the definitions that the diagram below

commutes for all n > 1:

M gt Wt
A > B > D
UnT TnT k Tvn

+ y + y +
ﬂn+l Gl n+1l gy Dn+l

In particular, v, v,4+1 = gnTn Pnt1. SO (Vnu+1]) = (7). Being T everywhere growing, this
implies that v has the same property. We also observe that condition (iii) implies that v, =
gn pn s letter-onto and proper. Altogether, these arguments prove that, up to contracting
the first levels, v is everywhere growing and proper.
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Next, we note that v and T are equivalent as both are contractions of (po, q1, p1, g2, - - .)-
This implies, by Lemma 2.3, that v is recognizable if t is recognizable. Further, by
condition (i), v has alphabet rank at most AR(0').

It is only left to prove that ¥ is a letter-onto and proper factor. By unraveling the
definitions we can compute:

Yo = ¢o = 10¢1 = poq1P1 = Vo1,

and from the diagram, we have o,¥,, = ¥,4+11t, for all n > 1. Therefore, ¥ is a factor.
Finally, since g, is letter-onto and proper by condition (iii) and ¢ was assumed to be
letter-onto, ¥, = gn ¢, is letter-onto and proper. O

4.2. Rank of factors of S-adic subshifts. In this section, we will prove Theorem 1.3 and
its consequences. We start with a technical lemma.

The next lemma will allow us to assume without loss of generality that our directive
sequences are letter-onto.
LEMMA 4.6. Let T = (t,: A’
directive sequence. Ifﬁln =A,N .E(X,(,")), T, Is the restriction of t, to ﬁlnﬂ and T =
(o, T1, . . .), then T is letter-onto and X(;") = Xg") for every n € N. Conversely, if T is
letter-onto, then ‘A, C L(X 5")) for everyn € N.

— AVnen be an everywhere growing and proper

- . T T >

Proof. By Lemma 2.5, 7, is letter-onto mapping A, ; into A,. Moreover, that lemma

also gives that for every x € X i") and N > n, there exists a 7y, y)-factorization (k’, x’) of
. . . . . ~7 .

xin X iN). This together with the inclusion X £N) C Ay imply that

~7
Z:= () | Ay 2 X
N>n keZ

Now, T is everywhere growing and proper, so we can apply Lemma 2.6 to obtain that
Xé”) =Z2 Xﬁ”). Since it is clear that X(;") - ng) as ﬁlN C Ay for every N, we
conclude that X (f") =X 5").

If 7 is letter-onto, then A, S L(Uiez Tkr[,,,N)(ﬂ%)) for every N > n, and hence, by
the formula in Lemma 2.6, A, < £(X"). O

Now we are ready to prove Theorem 1.3. We re-state it in a more precise way.

THEOREM 1.3. Let m: (X, T) — (Y, T) be a factor map between aperiodic subshifts.
Suppose that X is generated by the everywhere growing and proper directive sequence
o= (o, ?{:H — ANnen of alphabet rank K. Then, Y is generated by a letter-onto,
everywhere growing, proper, and recognizable directive sequence T of alphabet rank at
most K.

Moreover, if a is letter-onto, then, up to contracting the sequences, there exists a proper
factor ¢: 0 — T such that w(oo(x)) = ¢o(x) for all x € X,(,l) and |og(a)| = |po(a)| for
all a € A;.
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Proof. Thanks to Lemma 4.6, we can assume without loss of generality that o is
letter-onto. Moreover, in this case,

A, € LXW)  forevery n € N. (22)

Let us write ¢ = (0,: ﬂ:ﬂ — ANnen. By contracting o, we can further assume
that oq is r-proper and 7 has radius r. Then, Lemma 2.4 gives us a proper morphism
T: ?ﬁ" — BT, where B is the alphabet of Y, such that

m(op(x)) = t(x) forall x € X" and |og(a)| = |t(a)| foreverya € A;.  (23)

In particular, 7 (0(0,,)(x)) = T0[1,0)(x) and |o[)(a)| = |To[1,0)(a)| for all n € N, x €
X((,"), and a € A, so (23) holds for any contraction of 0.

We define 6 = (1, 01, 02, . . .) and observe this is a letter-onto, everywhere growing
and proper sequence generating Y. This and that Y is aperiodic allow us to use Proposition
4.4 and obtain, after a contraction, a letter-onto factor q~5: o — T, where ¢~>0 =6p=71
and T is a letter-onto, everywhere growing, proper, and recognizable directive sequence
generating Y. The sequence 7 has all the properties required by the theorem but having
alphabet rank bounded by K. To overcome this, we use Proposition 4.5 with (T) and do more
contractions to obtain a letter-onto and proper factor ¢: 6 — 7 such that ¢g = ¢~>o =T
and t is a letter-onto, everywhere growing, proper, and recognizable directive sequence
generating Y and satisfying AR(t) < AR(6) = AR(0).

It is left to prove the last part of the theorem. Observe that since 6 and o differ only
at their first coordinate, ¢ is also a factor from o to 7. Further, by (23) and the fact that
¢o = 7, we have m(op(x)) = t(x) = ¢o(x) and |og(a)| = |po(a)| for every x € X‘(,l) and
a e A. O]

COROLLARY 4.7. Let (X, T) be an aperiodic minimal subshift generated by an every-
where growing and proper directive sequence of alphabet rank K. Then, the topological
rank of X is at most K.

Proof. We can use Theorem 1.3 to obtain an everywhere growing, proper, and recog-
nizable directive sequence T = (7, : B:{H — B )en generating X and having alphabet
rank at most K. Due to Lemma 4.6, we can assume that T is letter-onto. In particular,
B, C L(Xg")) for every n € N.

We claim that X i") is minimal. Indeed, if Y C X 5") is a subshift, then (g ) (Y) is closed
(as tjon): X" _ X, is continuous), so Usez T*ri0m (Y) = U\k\f\floml T*z0.)(Y) is

a subshift in X; which, by minimality, is equal to it. Thus, any point x € Xi") has a
7[0,n)-factorization (k, z) with z € Y. The recognizability property of (X i"), 7[0,n)) then
implies that ¥ = X,

Now, we prove that for any n € N, there exists N > n such that 1y, ) is positive. This
would imply that the topological rank of X is at most K and hence would complete the
proof. Let n € N and R be a constant of recognizability for (Xi"), T[0,n))- Since Xi”) is
minimal, there exists a constant L > 1 such that two consecutive occurrences of a word
w e L(Xi")) N BﬁRH in a point x € Xﬁ”) are separated by at most L. Let N > n be big
enough so that (tjo x)) > L + 2R. Then, forall a € By C L(XiN)) and w € L(Xi")) N

https://doi.org/10.1017/etds.2022.21 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.21

Symbolic factors of S-adic subshifts of finite alphabet rank 1529
BrR*1 woccurs ata positioni € {R, R+ 1, ..., [to.n) (@) — R} of 7jo,n) (). Since Ris
a recognizability constant for (X 5") , T[0,n)), we deduce that for alla € By and b € B, b
occurs in 1, ) (a). Thus, [, ) is positive. O

We can now prove Corollary 1.4.

COROLLARY 1.4. Let (X, T) be an aperiodic minimal subshift generated by an every-
where growing directive sequence of finite alphabet rank. Then, the topological rank of
(X, T) is finite.

Proof. We are going to prove that X is generated by an everywhere growing and proper
directive sequence t of finite alphabet rank. This would imply, by Corollary 4.7, that the
topological rank of X is finite. Let o0 = (oy, : ﬂ; s A nen be an everywhere growing
directive sequence of finite alphabet rank generating X. We contract t in a way such that
#A, < K foreveryn > 1.

We are going to inductively define subshifts X, n € N. We start with X¢ := X. We now
assume that X, is defined for some n € N. Then the set X1/1+1 ={xe€ X((,"+1 con(x) € X,
is a subshift. We define X, as any minimal subshift contained in X, 41~ It follows from

the definition of X, that UkeZ Tkan(X,,+1) C X,. Being X, minimal,

U TkUn (Xng1) = X,. (24)
keZ

Let iln = A, N L(X,). Equation (24) and the fact that ¢ is everywhere growing allow us
to assume without loss of generality that, after a contraction of @, the following holds for
everyn € N:

ifa e ﬁlnﬂ and w € L(X,) has length 3, then w occurs twice in o, (a). 25)

Let us fix a word w,, = apb,cp € L(X,) of length 3. Then, by (25), we can decompose
on(a) = uy(a)v,(a) in a way such that

u,(a) ends with a,, v, (a) starts with b, c,, and |v,(a)| > 2. (26)

To define 7, we need to introduce additional notation first. Let 8, be the alphabet
consisting of tuples [;] such that ab € L(X,). Also, if w =wj ... wjy € L(X,) has
length |w| > 2, then y, (w) := [ﬁ;] [ﬁ] . [wl‘lll‘,‘u_‘l] € B andifw’ = [3;] o [wlm,‘u_\l] €
BS‘, then n(w’) := wy ... Wjy—1 € ?{6". Observe that n: B(')" — ?l(')" is a morphism.

We now define 7. Let 1, : ZS:H — B;l" be the unique morphism such that r,,([’;]) =
Xn(Vn(@un(a)by) for every [;] € B,11. Observe that since v, (a)up(a)by € L(X,), it is
indeed the case that 7, ([}]) € Bf. We set T = (70, 71, T2, . . ).

It follows from (26) that for every n € N and [Z] € Byti, rn([Z]) starts with [IC’Z] and
ends with [Z:] Thus, 7 is proper. Moreover, since |v,(a)| > 2, we have |v, (a@)u,(a)b,| >
3 and thus |r,,([Z])| > 2. Therefore, (t,) > 2 and t is everywhere growing. Also, #8,, <
#ﬂ,zl < K?for every n € N, so the alphabet rank of 7 is finite.

It remains to prove that X = X,;. By minimality, it is enough to prove that X D

X ;. Observe that since 1, x,+1(ab) = x, (vy(@)u, (b)b,), the word T, x,+1(ab) occurs
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in x,0,(ab). Moreover, for every w = wj ... W)y € L(X‘(,")), Tn Xn+1(w) occurs in
Xnon(w). Then, by using the symbol C to denote the ‘subword’ relation, we can write
foreveryn € Nand ab € .Z(X,(,")):

T[0.n) Xn(@b) E T[0,n—1) Xn—10n—1(ab)
C 1[0,1—2) Xn—20n—2,n)(@b) E - - - E x00[0,1)(ab).
Hence, n7j0.1)([£]) € nx00[0.1)(@b) T o100y (ab). We conclude that X € Xg = X. [

COROLLARY 4.8. Let (X,T) be a minimal subshift of topological rank K and
w: (X, T)— (Y, T)afactor map, where Y is an aperiodic subshift. Then, the topological
rank of Y is at most K.

Proof. By Theorem 1.1, (X,T) is generated by a proper and primitive direc-
tive sequence o of alphabet rank equal to K. In particular, o is everywhere
growing and proper, so we can use Theorem 1.3 to obtain an everywhere grow-
ing, proper, and recognizable directive sequence T = (1,: BL] — BN)ys0 gen-
erating (Y, T) and having alphabet rank at most K. Then, the hypothesis of
Corollary 4.7 holds for (Y, T), and thus the topological rank of (Y,7T) is at

most K. O

The following notion will be used in the proof of the theorem below: 0 = (o, : AT

n+1 g
An)n>0 has exact alphabet rank at most K if #A, < K foralln > 1.

COROLLARY 1.5. Let (X, T) be an S-adic subshift generated by an everywhere growing
and proper sequence of alphabet rank K, and 7;: (X;11,T) — (X;,T), j=0,...,L
be a chain of aperiodic symbolic factors, with X = X. Suppose that L > log,(K). Then
7 j is a conjugacy for some j.

Proof. We start by using Theorem 1.3 with the identity function id: (X, T) — (X, T) to
obtain a letter-onto, everywhere growing, proper, and recognizable directive sequence o,
of alphabet rank at most K generating X. By doing a contraction, we can assume that o7,
has exact alphabet rank at most K.

By Theorem 1.3 applied to w7 and o, there exists, after a contraction of oz, a
letter-onto factor ¢y _1: 07, — or—1, where o1 is letter-onto, everywhere growing,
proper, recognizable, has alphabet rank at most K, generates X;,_1, and, if ¢ 1,0 and o o
are the first coordinates of ¢ _1 and o7, respectively, then w71 (o7 0(x)) = ¢r—1,0(x) for
every x € X,(,IL) and o 0(a)| = |¢r—1,0(a)| for every letter a in the domain of oz, 9. By con-
tracting these sequences, we can also suppose that o7 _1 has exact alphabet rank at most K.
The same procedure applies to w7 _» and o7 —1. Thus, by continuing in this way, we obtain
for every j =0,...,L — 1 a letter-onto factor ¢;: 0j41 — o such that the following
holds.

e 0j is letter-onto, everywhere growing, proper, recognizable, has exact alphabet
rank at most K, generates X;, 7;(0;41,0(x)) = ¢;jo(x) for every x € X,(,lj)H, and
loj+1,0(@)| = |¢jo(a)| forevery a € Ajiq1.
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Here, we are using the notation oj = (0, ﬂ;ﬁnﬂ jn)néN’¢] = (Pjn: j+1 W
ﬂ JneN and X(") X(") We note that:

(Al) for every xexjjl, 7 (0j110(x)) = djo(x) = 0j0¢,1(x) since ¢;o=

00915
1 1
(Ay) X§ = Ures TF 9. ](xﬁjl) by Lemma 4.3.
Hence, the following diagram commutes:
1) %o, ) ¢j 1 ) P11 (1)
Xo —— - X7 —— X, — X
l"o,o lﬁj,o lﬂ j+1.0 lUL,O
(0) (0) (] 0
Xo o e X T S Xin X1

cram 4.8.1. IF(x‘"

jasy @ 1) is recognizable, then 1 is a conjugacy.

Proof. Let us assume that (Xgl_gl, ¢j1) is recognizable, and let, for i =0, 1, xie X;lJ:l
such that y = 7 % = 7T (x!). We have to show that x° = x!. First, we use Lemma 2.5
to find a centered o1 o-factorization (k', z') of x’ in X 521 Then, equation A allows us

to compute:
0 0 1
T80, 001" = TH 7j(0;11.0E") = 7% = ;") = TF 0 0.1 ().

This implies that (k%, z') is a 0;j,09;,1-factorization of y in X( | for i =0, 1. More-
over, these are centered factorizations as, by e, |0 0¢; 1(a)| = |a]+1,0(a)| for all a €
Aji1,1- Now, being (X;.l),Uo,j) and (Xﬁl,qu,]) recognizable, Lemma 2.3 gives that
(X;l_gl, oj1¢;,1) is recognizable, and thus we have that (ko, zo) = (kl, z1). Therefore,

x% = x! and 7 is a conjugacy. O

Now we can finish the proof. We assume, by contradiction, that 7; is not a conjugacy
for all j. Then, by the claim,

(X(.l), ¢1,;) is not recognizable for every j € {0, ..., L — 1}. 27
Let

v = (P01, P11, 92,1, - - - » PL—1,1,OL1,OL2, OL3, - - .).

The idea is to use Theorem 2.7 with v to obtain a contradiction. To do so, we first note that,
since v and o L) have the same ‘tail’, X ('"+L) =X; m+D for all m € N. Moreover, A and
the previous relation imply that

j+1
X)) = oy == T - o (x()
keZ keZ
1 1 1
=1 X = T 0 (X ==X,
keZ keZ
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This and (27) imply that for every j € {I,..., L — 1}, the level (X", ¢;1) of v is not
recognizable. Being v everywhere growing as a7, has this property, we conclude that
Theorem 2.7 can be applied and, therefore, that X(()l) = X, is periodic. However, then
Xo = Ukez Tkao,o(X(()l)) is periodic, contrary to our assumptions.

A system (X, T) is coalescent if every endomorphism 7: (X,T) — (X, T) is an
automorphism. This notion has been relevant in the context of topological dynamics; see
for example [Dow97].

COROLLARY 4.9. Let (X, T) be an S-adic subshift generated by an everywhere growing
and proper directive sequence of finite alphabet rank. Then, (X, T) is coalescent.

Remark 4.10. A linearly recurrent subshift of constant C is generated by a primitive and
proper directive sequence of alphabet rank at most C(C + 1)? [Dur00, Proposition 6]. In
[DHS99], the authors proved the following.

THEOREM 4.11. [DHS99, Theorem 3] For a linearly recurrent subshift X of constant C,
in any chain of factors w;: (X;,T) - (Xjy1,T), j=0,...,L, withXo=Xand L >
2c@c + 1)2)4C3(2C+1)2, there is at least one 7 j which is a conjugacy.

Thus, Theorem 1.5 is not only a generalization of this result to a much larger class of
systems, but also improves the previous super-exponential constant to a logarithmic one.

In Proposition 28 of [DHS99], the authors proved that Cantor factors of linearly
recurrent systems are either subshifts or odometers. Their proof only uses that this kind
of system satisfies the strong coalescence property that we proved in Corollary 4.9 for
finite topological rank systems. Therefore, by the same proof, we have the following.

COROLLARY 4.12. Let w: (X, T) — (Y, T) be a factor map between minimal systems.
Assume that (X, T) has finite topological rank and that (Y, T) is a Cantor system. Then,
(Y, T) is either a subshift or a odometer.

Proof. We sketch the proof from [DHS99] that we mentioned above.

Let (Pn)nen be a sequence of clopen partitions of Y such that $,,41 is finer than £, and
their union generates the topology of Y. Also, let ¥;, be the subshift obtained by codifying
the orbits of (¥, T') by using the atoms of #,,. Then, the fact that P, is a clopen partition
induces a factor map 7,,: (Y, T) — (Y, T). Moreover, since $,,4 is finer than #,,, there
exists a factor map &,: (Y41, T) — (¥, T) such that §,,41 = 7,. Hence, we have the
following chain of factors:

X.T) " (.1 T (1, 1) 2 ) 22 (v, T,
We conclude, by also using the fact that the partitions $,, generate the topology of Y, that
&
(Y, T) is conjugate to the inverse limit lim,,— 5o (Y5; &5).
Now we consider two cases. If Y}, is periodic for every n € N, then Y is the inverse limit
of periodic system, and hence an odometer. In the other case, we have, by Corollary 1.5,
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that &, is a conjugacy for all big enough n € N, and thus that (Y, T') is conjugate to one of
the subshifts Y,,. O]

5. Fibers of symbolic factors

The objective of this section is to prove Theorem 1.6, which states that factor maps
w: (X, T) — (Y, T)between S-adic subshifts of finite topological rank are always almost
k-to-1 for some k bounded by the topological rank of X. We start with some lemmas from
topological dynamics.

LEMMA 5.1. [Aus88] Let m: X — Y be a continuous map between compact metric
spaces. Then 1=': Y — 2% is continuous at every point of a residual subset of Y.

The next lemma gives a sufficient condition for a factor map 7 to be almost k-to-1.
Recall that E(X, T') stands for the Ellis semigroup of (X, T').

LEMMA 5.2. Let w: (X, T) — (Y, T) be a factor map between topological dynamical
systems, with (Y, T) minimal and K > 1 an integer. Suppose that for every y € Y, there
existsu € E(2X, T) such that #u o a1 (y) < K. Then,  is almost k-to-1 for some k < K.

Proof. First, we observe that by the description of u o A in terms of nets at the end of §2.1,
we have

#uoA <#A, forallu e EQX,T), Ae2X. (28)

Now, by the previous lemma, there exists a residual set Y CY of continuity points for
al Lety,y € Y be arbitrary. Since Y is minimal, there exists a sequence (1n¢), such
that limy, 7™y = y'. If w € E(2%, T) is the limit of a convergent subnet of (7"¢),, then
wy = y’. By the continuity of 7~ at y’ and (28), we have

#r'(y) = #n wy) = #w o (y) <#r ().

We deduce, by symmetry, that #r71(y") = #1771 (y). Hence, k := 7~ (y) does not depend
on the chosen y € Y. To end the proof, we have to show thatk < K. Wefix y € Y and take,
using the hypothesis, u € E (2X , T) such that #u o a1 (y) < K. As above, by minimality,
there exists v € E(2%, T') such that vuy = y. Then, by the continuity of 7! at y,

7 ) =7 wuy) = ) o TN (y) = vo (wor T (y)).
This and (28) imply that k = #7~(y) <#u o7~ '(y) < K. O

Leto: AT — BT be a morphism, (k, x) a centered o-factorization of y € B in ﬂZ,
and £ € Z. Note that there exists a unique j € Z such that £ € [cs,j(k, X), ¢, j+1(k, X))
(recall the notion of cut from Definition 2.1). In this context, we say that (¢, ; (k, x), x;) is
the symbol of (k, x) covering position £ of y.

THEOREM 1.6. Let w: (X, T) — (Y, T) be a factor between subshifts, with (Y, T)
minimal and aperiodic. Suppose that X is generated by a proper and everywhere growing
directive sequence a of alphabet rank K. Then, 1 is almost k-to-1 for some k < K.
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Proof. Let 0 = (0, Apt1 — An)n>0 be a proper and everywhere growing directive
sequence of alphabet rank at most K generating X. Due the possibility of contracting o,
we can assume without loss of generality that #A, < K for every n > 1 and that oy is
r-proper, where r is the radius of 7. Then, by Lemma 2.4, Y is generated by an everywhere
growing directive sequence of the form T = (7, 01, 02, . . .), where T: ﬂf — B1is such
that t(x) = m(og(x)) for every x € Xil) = X,(,l). We will use the notation t[g,,) = T0[1 ).
Further, for y € Y and n > 1, we write F;,(y) to denote the set of tjg ,)-factorizations of y
in YT(").
Before continuing, we prove the following claim.

CLAIM 5.2.1. There exist £, € Z and G, C Z x B, 41 with at most K elements such that
if (k, x) € Fy(y), then the symbol of (k, x) covering position £,, of y is in Gy,.

Proof. First, since Y is aperiodic, there exists L € N such that
all words w € L(Y) of length > L have at least period greater than |zo)|. 29)

We assume, by contradiction, that the claim does not hold. In particular, for every £ €
[0, L), there exist K + 17| ,)-factorizations (x, k) of y in YT(") such that their symbols
covering position £ of y are all different. Now, since #7[0,)(A+1) < K, we can use the
pigeonhole principle to find two of such factorizations, say (k, x) and (k’, x”), such that if
(c, a) and (c’, @’) are their symbols covering position £ of y, then @ = a” and ¢ < ¢’. Then,

Yiee+rom @11 = T02) (@) = V(e ./ +Itj0.m @]

and, thus, ye.¢' 7o, @] 18 (¢’ — ¢)-periodic. Being £ € (¢, ¢ + |tj0,n)(a)]), we deduce
that the local period of yyo, ) at £ is at most ¢’ — ¢ < |70, Since this is true for every £ €
[0, L) and since, by Theorem 3.7, per(yjo,.)) = per(y[o,r), yjo,¢)) for some € € [0, L), we
conclude that per(yjo,1.)) < |7[0,,)|- This contradicts (29) and proves thereby the claim. [J

Now we prove the theorem. It is enough to show that the hypothesis of Lemma 5.2
holds. Let y € Y and Fy (y) € F,(y) be such that #F), (y) = #G,, and the set consisting
of all the symbols of factorizations (k, x) € F,(y) covering position £, of y is equal to
Gn.Letz e w7 1(y) and (k, x) be a ofo,n)-factorization of z in Xf,”). Then, Tkr[o,,,)(x) =
Tkn(a[o,n)(x)) =m(z) =y and (k, x) is a 7)o ,)-factorization of y in Y,("). Thus, we can
find (k/, x') € F,(y) such that the symbols of (k, x) and (k/, x") covering position £, of y
are the same; let (m, a) be this common symbol. Since ¢ is proper, we have

/
Lm={o10.n—1))m+1010.) (@] +{0100-1))] = L[m—(010,0—1))sm+lo[0,m) (@) |+{0[0,0—1)) ]’
where 7/ = Tk/a[o,n)(x’) € X is the point that (k’, x) factorizes in (X((,"), 0(0,n))- Then, as
&y € (m, m + |ojon (a)ll,
/
Z(Zn_(U[O,nfl)>aen+(a[0,n71))] = Z(fn—((f[oyn_|)),Zn+<o'[(),n_1))]'

Thus, dist(T%z, T% P, (y)) < exp(—({0j0.1—1))), Where P,(y) C 7w~ (y) is the set of all
points Tk”o[o’n)(x”) € X such that (K, x”") € F,(y). Since this holds for every n > 1,
we obtain that dg (T 7~ (y), Tt P,(y)) converges to zero as n goes to infinity (where,
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we recall, dy is the Hausdorff distance). By taking an appropriate convergent subnet u €
EQX, T) of (T*),en, we obtain #u o 7~ (y) < sup,cy #P, = sup,cy #G, < K. This
proves that the hypothesis of Lemma 5.2 holds. Therefore, 7 is almost k-to-1 for some
k<K.

6. Number of symbolic factors

In this section, we prove Theorem 1.7. To do this, we split the proof into three subsections.
First, in Lemma 6.3 of §6.1, we deal with the case of Theorem 1.7 in which the
factor maps are distal. Next, we show in Lemma 6.7 from §6.2 that in certain technical
situation—which will arise when we consider non-distal factor maps—it is possible to
reduce the problem to a similar one, but where the alphabet is smaller. Then, we prove
Theorem 1.7 in §6.3 by a repeated application of the previous lemmas.

6.1. Distal factor maps. We start with some definitions. If (X, T) is a system, then we
always give X the diagonal action TW =T x...xT.Xfn: (X, T)—> (Y, T) is a
factor map and k > 1, then we define Rf; = (.., eXx i = .. = 2.
Observe that R,"T is a closed T'¥l-invariant subset of X*.

The next lemma follows from classical ideas from topological dynamics. See, for
example, theorem 6 in ch. 10 of [Aus88].

LEMMA 6.1. Let wr: (X, T) — (Y, T) be a distal almost k-to-1 factor between minimal
systems, 7 = (zl, e, zk) € Rf, and Z = ET[kJ (2). Then, 1 is k-to-1 and Z is minimal.

We will also need the following lemma.

LEMMA 6.2. [Dur00, Lemma 21] Let w;: (X, T) — (Y;, T), i =0, 1, be two factors
between aperiodic minimal systems. Suppose that 7 is finite-to-one. If x, y € X are such
that wo(x) = mo(y) and w1 (x) = TP (y), then p = 0.

LEMMA 6.3. Let (X, T) be an infinite minimal subshift of topological rank K and J an
index set of cardinality #J > K (144K7)K . Suppose that for every j € J there exists a
distal symbolic factor wj: (X, T) — (Yj, T). Then, there arei # j € J such that (Y;, T)
is conjugate to (Y;, T).

Proof. We start by introducing the necessary objects for the proof and doing some general
observations about them. First, thanks to Theorem 1.6, we know that 7; is almost & ;-to-1
for some k; < K, so, by the pigeonhole principle, there exist J;1 € J and k < K such
that #J; > #J/K > (144K")X and k; = k for every j € J;. For j € Ji, we fix z/ =

(z{, - ,zljc) € Rﬁj with zj, # zj, for all n % m. Let Z; =%T[k](zj) and p: X¥ > X

be the factor map that projects onto the first coordinate. By Lemma 6.1, 7; is k-to-1 and
Z; minimal. This implies thatif x = (x1, ..., x;) € Z;, then

{x1,...,x} = nj_l(rrj(xn)) foralln € {1,...,k}, 30)

Xp # Xy foralln,m e {1,...,k}. 31

https://doi.org/10.1017/etds.2022.21 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.21

1536 B. Espinoza

Indeed, since Z; is minimal, (T'¥)"¢z — x for some sequence (1¢)¢, so,

inf dist(x,, x,) > inf dist(T'z,, T'z,n) > 0,
n#m n#Em,leZ

where in the last step is due to the fact that 7 is distal. This gives (31). For (30), we first
note that {x1,...,xx} C Jt (n j(xn)) as x € Ry, and then that the equality must hold

since #nj_l(nj(xn)) =k = #{xl, ..., Xk} by (31).
The next step is to prove that asymptotic pairs in Z; are well-behaved.

CLAIM 6.3.1. Let j € J and (x/ = (x]j, - ,x,{), 3= ()?lj, e )E,f)) be a right asymp-
totic pair in Z;, this is,

lim dist(7"Y'xd, T3y =0 and x/ # 7/, (32)
n——0o0

Then, (x,{, )Z,{) is right asymptotic for everyn € {1, ..., k}.
Proof. Suppose, with the aim to obtain a contradiction, that (x;{ , )E,{) is not right
asymptotic for some n € {1, . . ., k}. Observe that (32) implies that
foreverym € {1, ..., k}, either (x,j,',, )Z,{l) is right asymptotic or x,{ = id 33)
Therefore, x| = /. Using this and that x/, ¥/ e Rf;j, we can compute:
() =7 () = 7 (8)) = 7 (§)) forallm,l e (l,... k)
and thus, by (30),

o = ) = A @) = (F L]

The last equation, (31), and that xJ #* 7/ imply that th@re exist m #1ef{l,...,k}such
that JZIJ = x;},. This last equality and (33) tell us that x;, and xlj are either asymptotic or

equal. However, in both cases a contradiction occurs: in the first one with the distality of
7 and in the second one with (31). O]

Let j € Ji. Since Y; is infinite, Z; is a infinite subshift. It is a well-known fact
from symbolic dynamics that this implies that there exists a right asymptotic pair (x) =
(xl, - ,xk), 7= (xl, .. xk)) in Z;. We are now going to use Theorem 2.8 to prove
the following.

CLAIM 6.3.2. There exists i, j € J1, i # j, such that Z; = Z ;.

Proof. On one hand, by the previous claim, (xn, x,,) € X% is right asymptotic for every

nef{l,...,k}and j € J;. Let p{; € Z be such that (Tp"xn, Tp"x,{) is centered right
asymptotic. On the other hand, Theorem 2.8 asserts that the set

{x(0,00) : (x, X) is centered right asymptotic in X}
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has at most 144K elements. Since #J; > (144K7)X, we conclude, by the pigeonhole
principle, that there exist i, j € Jy,i # j, such that

Tpilxﬁl and T”"ix,{ agree on (0, co) foreveryn € {1, ..., k}. (34)

We are going to show that Z; = Z;.
Using (34), we can find u € E(X, T) such that uTvaxj, = uTP'ix,{ for every n. Then,
by putting y!, = ux!, ys = ux; and g, = ps — p., we have
Yoi=00 oD €Ziny = (... yD) € Zjand y), = Ty;.
Hence, n(yfl) = Tq"n(y,{) and Lemma 6.2 can be applied to deduce that g := ¢, has the
same value for every n. We conclude that y' = T9y/ € T9Z; = Z;, that Z; N Z; is not
empty, and, therefore, that Z; = Z; as these are minimal systems. O

We can now finish the proof. Let i # j € J; be the elements given by the previous
claim,sothat Z :=Z; = Z;. Lety € Y; and x = (x1, ..., x;) € p_lrrf](y) N Z. Then,
by (30), nifl(y) ={x1,...,x} = njfl(nj (x1)), and so y'rjnfl(y) contains exactly one
element, which is 77 (x1). We define ¥ : ¥; — Y; by ¥ (y) = 7 (x1).

Observe that ni_lz Y; — 2% is continuous (as 7; is distal and hence open) and
commutes with 7. Being 7; a factor map, ¥ is continuous and commutes with 7.
Therefore, ¥ : (Y;, T) — (¥;, T) is a factor map. A similar construction gives a factor
map ¢: Y; — Y; which is the inverse function of y. We conclude that v is a conjugacy
and, thus, that ¥; and Y; are conjugate. O

6.2. Non-distal factor maps and asymptotic pairs lying in fibers. To deal with non-factor
maps, we study asymptotic pairs belonging to fibers of this kind of factor. The starting point
is the following lemma.

LEMMA 6.4. Letm: (X, T) — (Y, T) be a factor between minimal subshifts. Then, either
7 is distal or there exists a fiber w ~ ' (y) containing a pair of right or left asymptotic points.

Proof. Assume that 7 is not distal. Then, we can find a fiber 7 ! (y) and proximal points
x,x" € w~1(y), with x # x’. This implies that for every k € N, there exist a (may be
infinite) interval Iy = (ay, by) C Z, with by — a > k, for which x and x’ coincide on I,
and I is maximal (with respect to the inclusion) with this property. Since x # x’, then
ar > —o0 or by < 0o. Hence, there exists an infinite set £ C N such that a; > —o0o for
every k € E or by < oo for every k € E. In the first case, we have that (Thk (x, x"))keE
has a left asymptotic pair (z, z’) as an accumulation point, while in the second case, it is
a right asymptotic pair (z, z’) which is an accumulation point of (7% (x, x’))xcg. In both
cases we have that (z, ') € R2 since (T% (x, x'))rer and (T% (x, x'))kek are contained
in RJZT and RJZT is closed. Therefore, the fiber 7 ~!(;r(z)) contains a pair z, 7’ of asymptotic
points. O

The next lemma allows us to pass from morphisms o: X — Y to factors 7: X' — Y
in such a way that X’ is defined on the same alphabet as X and has the ‘same’ asymptotic
pairs. We remark that its proof is simple, but tedious.
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LEMMA 6.5. Let X C A" be an aperiodic subshift, o: AT — BT be a morphism,
and Y = Jyey, Tko (X). Define the morphism iy: At — At by iy(a) =al"@! a €
A, and X' =y, T*iy(X). Then, centered asymptotic pairs in X' are of the form
(ig (x), iy (X)), where (x, X) is a centered asymptotic pair in X, and there exists a factor
mapm: (X', T) — (Y, T) such that w(i; (x)) = t(x) forall x € X.

Proof. Our first objective is to prove that (X, i) is recognizable. We start by observing
that

if (k, x), (k, X) are centered i, -factorizations of y € X',  then xo = Xo. (35)

Indeed, since the factorizations are centered, we have xg = iy (x0)x = Yo = is(X0) P = X0.

Let A be the set of tuples (k,x,k, X) such that (k,x), (k,X) are centered
i, -factorizations of the same point. Moreover, for R € {=, >}, let Ag be the set of those
(k, x, k, ¥) € A satisfying k R k.

CLAIM 6.5.1. If (k, x,k, %) € A—, then (0, Tx,0, T%) € A, and if (k, x,k,%) € A-,
then (lig (x0)| —k + k, %,0, Tx) € A~.

Proof. If (k,~x,lg, X) € A—, then, since xg = Xg by (35), we can write iy (Tx) =
Tkiy (x) = T*iy (%) = i (TX). Thus, (0, Tx,0, TX) € A—. Let now (k,x,k, %) € A~
and y := Tki, (x) = T*i, (¥). We note that

T‘iO(XO)l_k+];ig(f) — Tlia(xo)\—ky — T\ia(xo)lia (x) = iy (Tx),

SO (lig(x0)| — k + k, %) and (0, Tx) are i,-factorizations of the same point. Now, since
xo0 = Xo (by (35)) and (k, x), (/E, x) are centered, we have k, ke [0, |is (x0)|). This and the
fact that k > k imply that k — k € (0, |is (x0)|). Therefore, |iy (x0)| — k 4+ k € (0, |ig (x0)])
and, consequently, (|i, (x0)| — k + 12, X,0,Tx) € A~. O

We prove now that (X, i,) is recognizable. Let (k, x, lg, x) € A. We have to show
that (k, x) = (IE, x). First, we consider the case in which k = k. In this situation, the
previous claim implies that (0, Tx,0, Tx) € A—. We use again the claim, but with
(0, Tx, 0, Tx), to obtain that (0, T2x,0, T2%) € A_. By continuing in this way, we get
(0,T"x,0, T"x) € A= for any n > 0. Then, (35) implies that x, = x,, for all n > 0.
A similar argument shows that x, = X,, for any n <0, and so (k, x) = (12, X). We now
do the case k > k. Another application of the claim gives us (p1,x,0, Tx) € A for
some p; € Z. As before, we iterate this procedure to obtain that (p», Tx,0, Tx) €
A, (p3,Tx, 0, T2x) € A~, and so on. From these relations and (35), we deduce that
X0 = Xo, ¥o = (Tx)o = x1, x1 = (Tx)g = (TH)o = &1, ¥1 = (TF)o = (T*x)9 = x2, etc.
We conclude that x,, = X, = x¢ for any n > 0. Then, by compacity, the periodic point
-+« X0.X0Xo - - - belongs to X, contrary to our aperiodicity hypothesis on X. Thus, the case
k > k does not occur. This proves that (X, i) is recognizable.

Using the property we just proved, we can define the factor map 7: X' — Y as
follows: if x” € X', then we set 7 (x’) = T*1(x) € Y, where (k, x) is the unique centered
i,-factorization of x" in X. To show that 7 is indeed a factor map, we first observe that
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since
|t(a)| = lig(a)| foralla € A, (36)

w commutes with 7. Moreover, thanks to condition (iii) in Remark 2.2, 7 is continuous.
Finally, if y € Y, then by the definition of Y, there exist a centered (k, x)t-factorization
of y in X. Thus, by (36), (k, x) is a centered i, factorization of x" := T*i; (x). Therefore,
7 (x) = y and 7 is onto. Altogether, these arguments show that 7 is a factor map. That
7 (is (x)) = t(x) for every x € X follows directly from the definition of 7.

It is left to prove the property about the asymptotic pairs. We only prove it for left
asymptotic pairs since the other case is similar. We will use the following notation: if Z is
a subshift, then A(Z) denotes the set of centered left asymptotic pairs. To start, we observe
that (i, (x), iy (x)) € A(X') for every (x, ¥) € A(X). Let now (z, Z) € A(X’), and (k, x)
and (k, ¥) be the unique centered i, -factorizations of z and 7 in X, respectively. We have to
show that k = k = 0 and that (x, ¥) € A(X). Due to condition (iii) in Remark 2.2, (X, i)
has a recognizability constant. This and the fact that (z, 7) is centered left asymptotic imply
that (k, x) and (l;, X) have a common cut in (—oo, 0], this is, that there exist p, ¢ < 0 such
that

m = —k — lig (X p.0))| = —k — |is (F4.0))| € (—00, 0].

We take m as big as possible with this property. Then, x, # X,. Moreover, being z,, = x,
and Z,, = X, by the definition of i,, we have that z,, # Z,, and consequently, by also
using that (z, 7) is centered left asymptotic, that m > 0. We conclude that m = 0, i.e.
that k + |is (x[p,0)] = k + lig (¥14,00)| = 0. Hence, k = k= p=gq =0. Now, it is clear
that x(_co,p] = X(—c0,q]> SO from the last equations, we obtain that (x, ¥) € A(X). This
completes the proof. O

We will also need the following lemma to slightly strengthen Proposition 2.8.

LEMMA 6.6. Let X C A% be an aperiodic subshift with L asymptotic tails. Then, (X, T)
has at most 2L? - #A> centered asymptotic pairs.

Proof. Let P, be the set of centered right asymptotic pairs in X and 7, = {x(0,c0) :
(x,X) e A} C AN=1 be the set of right asymptotic tails, where N> = {1, 2, .. .}. We are
going to prove that

#P, < HT? H#HA° (37)

Once this is done, we will have by symmetry the same relation for the centered left
asymptotic pairs #;, and thus we are going to be able to conclude that the number of
centered asymptotic pairs in X is at most (#7'% + #7'12) CH#A? < 2L7% - #A%, completing the
proof.

Let (x,x) € Pr and Ry = {k <0 : X(x,00) € 7). We claim that #R, < #7.. Indeed, if
this is not the case, then, by the pigeonhole principle, we can find &’ < k and w € 7,
such that w = X(,00) = X(k’,00)- However, this implies that w has period k — k', and so
X contains a point of period k — k’, contrary to the aperiodicity hypothesis. Thus, Ry is
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finite and, since R, is non-empty as it contains x(,co), kx := min R, is a well-defined
non-positive integer.
Let now ¢: P, — 72 x A be the function defined by

2
D (x, %) = (X(ky,00)» X(kz,00)» Xhky» Xk;)-

If ¢ is injective, then (37) follows. Let us then prove that ¢ is injective.

We argue by contradiction and assume that there exist (x, X) # (y, ¥) such that
o(x,x) =¢(y,y) = (2, Z, a,a). Without loss of generality, we may assume that x # y.
Then, X(k,,00) = Z = Y(k,,00) and xg, = a = yk,. Being x # y, this implies that (x, y) is
asymptotic. Furthermore, it implies that there exist p < k and ¢ < € such that (T?x, T?y)
is centered right asymptotic. In particular, x(p,00) € 7, and p < k,, contrary to the
definition of k,. We conclude that ¢ is injective and thereby complete the proof of the
lemma. O

LEMMA 6.7. Let X C A% be a subshift of topological rank K, J be an index set, and, for

jed, letz;: AT — B}' be a morphism. Suppose that for every j € J:

(M Y = Uiy TF7(X) is aperiodic;

(II)  for every fixed a € A, |tj(a)| is equal to a constant £, independent of j € J.

Then, one of the following situations occur.

(1) Thereexisti, j € J,i # j, such that (Y;, T) is conjugate to (Y, T).

(2) There exist ¢: AT — ﬂi" with #A; < #A, a set J; € J having at least
#J/2#\7{2(144K7)2 — K(144K)K  elements, and morphisms T;: CT — B,
J € Ji, such that T; = t/’.qb. In particular, the hypothesis of this lemma holds for

X1 := Uez T*¢(X) and i, j € Ju.

Proof. Let i: AT — A’ be the morphism defined by i(a) = a’e, a € A, and X' =
Ukez Tki(X). We use Lemma 6.5 with X and 7; to obtain a factor map 7;: (X', T) —
(Y, T) such that

m(i(x)) =71j(x) foreveryx € X. (38)

If r; is distal for K (144K 7)K + 1 different values of j € J, then by Lemma 6.3, we can
find 7, j such that (¥;, T) is conjugate to (Y, T'). Therefore, we can suppose that there
exists J' C J such that

#J' > #J — K(144K")X and 7 is not distal for every j € J'. (39)

From this and Lemma 6.4, we obtain, for every j € J’, a centered asymptotic pair
(x, £y in X’ such that r; (x)) = 7;(¥)). This and (38) imply that

.[j(x(j)) — ﬂj(x(j)) — ﬂj(f(j)) — ‘L'.,'()E(j)). (40)
Now, by Lemma 6.6, X has at most 2#A>(144K7)? centered asymptotic pairs and thus,
thanks to Lemma 6.5, the same bound holds for X’. Therefore, by the pigeonhole prin-
ciple, there exist J; C J satisfying #J; > #J'/2#A>(144K"7)? > #J |2#A>(144K7)? —
K (144K7)K and a centered asymptotic pair (x, X) in X’ such that (x, ) = (x(/), ¥
for every j € J1.
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We assume that (x, X) is right asymptotic as the other case is similar. Then, (40) implies
thatif £ = ), 4 La. then, for every j € Ji,

one of the words in {7 (x[0,¢)), T (X[0,¢))} is a prefix of the other. 41)

This, hypothesis (II), and the fact that, since (x,x) is a centered asymptotic pair,
X0 # Xo allows us to use Lemma 3.2 with u := xq0,0), v := X[0,¢), J := Ji, and wl =
7 (X[0,00))[0,¢)> and obtain morphisms ¢ : AT — ﬂf‘ and 1:]/.: ﬂf' — B}', j € Ji, such
that #A) < #A,7; = r}d}, and

forevery a € Ay, €, := |'L']/- (c)| does not depend on the chosen j € J. (42)

Finally, we observe that X; and t’, j € Jj, satisfy the hypothesis of the lemma:
condition (I) holds since, by the relation 7; = 7@, the subshift X := J;¢y T*¢(X)
satisfies that UkeZ Tkr} (X1) =Y; is aperiodic; condition (II) is given by (42). ]

6.3. Proof of main result. 'We now prove Theorem 1.7. We restate it for convenience.

THEOREM 1.7. Let (X, T) be an minimal subshift of topological rank K. Then, (X, T) has
at most 3K)3?*X aperiodic symbolic factors up to conjugacy.

Proof. We set R = (3K)32K. We prove the theorem by contradiction: assume that there
exist X C AL of topological rank K and, for j € {0, ..., R}, factormaps 7 : (X, T) —
(Yj, T) such that (¥;, T) is not conjugate to (Y;, T) for every i # j € {0,..., R}. We
remark that X must be infinite as, otherwise, it would not have any aperiodic factor.

To start, we build S-representations for the subshifts X and Y;. Let 0 = (0, : ?(;’H —
AN nen be the primitive and proper directive sequence of alphabet rank K generating X
given by Theorem 1.1. Let » € N be such that every 7; has a radius r and let 8; be the
alphabet of Y;. By contracting o', we can assume that oy is r-proper and ##, = K for all

n > 1. Then, we can use Lemma 2.4 to find morphisms 7; : ﬂf — B}L such that

mi(o1(x)) = 7;(x) forallx € X"’ and |t;(a)| = |op(a)| foralla € A;. (43)

Next, we inductively define subshifts X,, C C% and morphisms {7, ; : CI— 8 i J €

J,} such that:
(i) X, has topological rank at most K

(i) Yj = UkeZ Tn,j(Xn);
(iii) forevery c € Cy, £nq = |7p,j(c)| does not depend on the chosen j € J,.
First, we set Xo = X,(,l), Co = Ay, Jo = J, and, for j € Jy, 10,; = 7, and note that by the
hypothesis and (43), they satisfy conditions (i), (ii), and (iii). Let now n > 0 and suppose
that X,, C C% and 7,,j, j € Ju, has been defined in a way such that conditions (i), (ii), and
(iii) hold. If #J,, / 2#A?(144K7)? — K (144K7)K < 1, then the procedure stops. Otherwise,
we define step n + 1 as follows. Thanks to conditions (i), (ii), and (iii), we can use
Lemma 6.7, and since there are no two conjugate (Y;, T), this lemma gives us a morphism

¢:CH — CLl, aset Jy11 € Jy, and morphisms {7,41,;: C:{H — 87 2 j € Jut1} such
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that
#Cpi1 < #HCy, #Jpi1 = #J,/24C2(144KT)? — K (144K K and 1, = 1y -

Furthermore, X, := UkeZ Tk¢n (X») and 1,41,; satisfy the hypothesis of that lemma,
that is, conditions (ii) and (iii) above. Since (¢, . . . ¢go1, 02, 03, . . .) is a primitive and
proper sequence of alphabet rank K generating X,,+1, Theorem 1.3 implies that condition
(i) is met as well.

Since #Co > #C1 > . . ., there is a last C defined. Our next objective is to prove that
N > K. Observe that #C,, < K, so

#J,1 > #J,/2K>(144K7)> — K(144K)X  foranyn € {0,..., N —1}.

Using this recurrence and the inequalities #Jy > (3K y32K and K > 2, it is routine to verify
that the following bound holds for every n € {0, ..., K — 1} such that the nth step is
defined:

#J,/24C2 (144K 7)> — K (144K HK > 1.
Therefore, N > K. We conclude that #Cy < #Coy — K = 0, which is a contradiction. [

Remark 6.8. In theorem 1 of [Dur(00], the author proved that linearly recurrent subshifts
have finitely many aperiodic symbolic factors up to conjugacy. Since this kind of systems
have finite topological rank (see Remark 4.10), Theorem 1.7 generalizes the theorem of
[Dur00] to the much larger class of minimal finite topological rank subshifts.

Acknowledgements. This research was partially supported by grant ANID-AFB
170001. The first author thanks Doctoral Fellowship CONICYT-PFCHA/Doctorado
Nacional/2020-21202229.

A. Appendix
To prove Proposition 4.4, we start with some lemmas concerning how to construct
recognizable pairs (Z, 7) for a fixed subshift ¥ = |, T*7(2).

A.l. Codings of subshifts. 1If Y C B is a subshift, U C Y and y € Y, we denote by
Ry (y) the set of return times of y to U, this is, Ry(y) ={k e Z: Tky € U}. We recall
that the set C; (k, z) in the lemma below corresponds to the cuts of (k, z) (see Definition
2.1 for further details).

LEMMA Al Let Y C B% be an aperiodic subshift, with B C L(Y). Suppose that
UCYis:

(I)  d-syndetic, for every y € Y there exists k € [0,d — 11 with T¥y € U;

D)  of radius r, U C Uueﬂr’veﬂiﬂ»l [u.v];
(1) €-proper, U C [u.v] for some u, v € At
V) p-separated, U, TU, ..., TP~U are disjoint.
Then, there exist a letter-onto morphism t: CT — BT and a subshift Z C CZ such that:
(1) Y=U,ez T"t(Z) and C < L(Y);
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(2) (Z, 7) is recognizable with constant r + d;
3) |t £d, () = p and T is min(p, £)-proper;
@) Ci(tk,z) =Ry () forall y € Y and t-factorization (k, z) of y in Z.

Remark A.2. If U C Y satisfies condition (IIT), then U is p := min per(Ly(Y))-separated.
Indeed, if U N TXU # @ for some k > 0, then [v] N T¥[v] # @, where v € A’ is such that
U C [v]. Hence, v is k periodic and k > p.

Proof. Let y € Y. By condition (I), the sets Ry (y) N[0, o0), Ry(y) N (—o0, 0] are
infinite. Thus, we can write Ry (y) = {- - - k—1(y) < ko(y) < k1(y) - - - }, with min{i €
Z:ki(y) >0} = L. Let W = {y,(s) s (v)) : ¥ €Y, i € Z} € BT. By condition (I), W
is finite, so we can write C := {1, . . ., #W} and choose a bijection ¢: C — ‘W. Then, ¢
extends to a morphism 7 : Ct — BT. As B C L(Y), ¢ is letter-onto. We define ¢: ¥ —
c? by ¥ (y) = (¢71(y[k[()7),ki+1(y))))iez and set Z = ¥ (Y). We are going to prove that T
and Z satisfy items (1-4).

CLAIM A.2.1.
W) I Vi—d—rd+r1 = Y_a_rasrp then ¥ (3o = ¥ (3o
(i) () =ThWy.
(i) T/y () =y (Ty) for j € Zandk € [k;(y), kj+1()).

Proof. Let y,y" €Y such that y—g—rd+r) = Y{_4_, 44, BY condition (I), we have
kiy1(y) —ki(y) <d for all i € Z and, thus, |ko(y)|, |k1(y)| < d. Since U has radius
roand y_g—rdir] = y[’_d_r’dH], we deduce that ko(y) = ko(y’) and ki (y) = ko(y’).

Hence, ¥(y)0 = ¢~ Olto0da ) = &' Oy vyt 57yy) = ¥ (7)o- To prove claim (ii) we
Compute:

(Y () =7t(-- ¢_1()’[k,l(y),ko(y)))-fﬁ_l(y[ko(y),kl(y))) cee)
k
= Vo1 0)ko)-Yiko ki () = T70y.

Finally, for claim (iii) we write, for k € [k;(y), kj+1(y)),

TIy(y) =" ¢_1(y[k_,'_1(y),kj(y)))-¢_](y[kj()*),kj+1(y'))) =Y (THY).

Now we prove the desired properties of 7 and Z.

(1) From claim (i), we see that ¥ is continuous and, therefore, Z is closed. By claim
(iii), Z is also shift-invariant and, then, a subshift. By claim (ii), ¥ = Un ez T"t(Z). The
condition C € £L(Y) follows from the definition of ‘W and .

(2) We claim that the only centered t-interpretation in Z of a point y € Y is
(—ko(y), ¥(¥)). Indeed, this pair is a t-interpretation in Z by claim (ii), and it is
centered because ko(y) < 0 < ki(y) implies —ko(y) € [0, k1(y) — ko(y)) = [0, [¥(y)ol)-
Let (n, z) be another centered t-interpretation of y in Z. By the definition of Z, there exists
y' € Y with z = (). Then, by claim (ii),

T"+H000 Y = T (g (y)) = T"1(2) = . (44
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Now, on one hand, we have |t(z0)| = |t(¥(y)o)| = k1(y’) — ko(y"). On the other
hand, that (n, ¥ (y")) is centered gives that n € [0, |t(z0)|). Therefore, n + ko(y') €
(ko(y"), k1(y")]. We conclude from this, claim (iii), and (44) that ¥ (") = ¥ (y).
Hence, y = T"ty(y') = Tt (y) = T" W)y which implies that n = —ko(y) as ¥
is aperiodic. This proves that (—ko(y), ¥ (y)) is the only t-interpretation of y in Z. From
this and claim (i), we deduce property (2).

(3) Since U is d-syndetic, |T(¥(¥)i)l = |Vik;(»).kip100)] = ki+1(y) —ki(y) <d for
yeY and i € Z, so |r| <d. Similarly, we can obtain (r) > p using that U is
p-separated. Let u, v € B satisfying U C [u.v]. Since k;, kj+1 € Ry(y), we have that
U= Yiki () ki )+ub)> U= Vikis1 () —lvlkis1 () and, thus, that 7 is min(¢, (r))-proper. In
particular, it is min(¢, p)-proper.

(4) This follows directly from the definition of T and Ry (y). O

LEMMA A.3. For j € (0,1}, let 0j: ﬂj — Bt be a morphism and X; C ﬂjzz be a
subshift such that Y = J,c;, T"0j(X;) and A; C L(X) for every j € {0, 1}. Suppose
that:
(1) (Xo, 00) is recognizable with constant £;
(2) o1 is L-proper;
3) Cq k%, x%)(y) 2 Co, k', xYY(y) forall y € Y and oj-factorizations k7, x7) of y in
X, j=0,1L

Then, there exist a letter-onto and proper morphism v : ﬂf — ﬂar such that o1 = opv

and Xo = Uyey TF0(X1).

Proof. Since o7 is £-proper, we can find u, v € B¢ such that o1(a) starts with u and
ends with v for every a € A;. We define v as follows. Let a € A; and x € X such
that a = xg. Since o7 is £-proper, the word v.op(a)u occurs in o1(x) € Y at position 0.
By item (3), we can find w € L(Xg) with o1(xg) = op(w). We set v(a) = w. Since
(X0, 0p) is recognizable with constant £ and u, v have length ¢, w uniquely determined
by v.o1(a)u and, therefore, v is well defined. Moreover, the recognizability implies that
the first letter of v(a) depends only on v.u, so v is left-proper. A symmetric argument
shows that v is right-proper and, in conclusion, that it is proper. We also note that v is
letter-onto as Ay C L(Xgp). It follows from the definition of v that oy = ogv. Now, let
x € X1 and (k, x") be a centered og-factorization of o (x) in X. By item (3), k = 0 and
o1(xj) = UO(X[/kj,ij)) for some sequence - - - < k_1 < kop < - - - Hence, by the definition
of v, v(x) = x" € Xo. This argument shows that X[, :=|J,cz T"v(X1) € Xo. Then,
Unez T"00(X() = U,z T"00v(X1) = Y, where in the last step, we used that ogv = o7.
Since the points in ¥ have exactly one oo-factorization, we must have X{; = Xo. This ends
the proof. O

A.2. Factors of S-adic sequences. Now we are ready to prove Proposition 4.4. For
convenience, we repeat its statement.

PROPOSITION A 4. Leto = (0, Ap = An—1)n>0 be a letter-onto, everywhere growing,
and proper directive sequence. Suppose that Xy is aperiodic. Then, there exists a
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contraction o' = (on )kenN and a letter-onto and proper factor ¢: o' — 1, where T is
letter-onto, everywhere growing, proper, recognizable, and generates X .

Proof. We start by observing that from Lemma 4.6, we can get that
A, C L(Xf,”)) for every n € N. (45)

Let p, = min{per(ojo,)(a)) : a € A,}. Since o is everywhere growing and X, is aperi-
odic, lim,,_, »c p, = 00. Hence, we can contract ¢ in a way such that, for every n > 2,

(@Ly) pn = 3loon-nl,  ly) oo, is 3|o70,,—1)|-proper.

Forn > 2,let U, = Uu,ueﬂﬁ [010,1) (u.v)]. Observe that U, is |og ,)|-syndetic, has radius
2lo10,m)l, is 3lo70,,—1)|-proper and, by Remark A.2, is p,-separated. Thus, by (I,), U is
3|o10,1—1)|-separated. We can then use Lemma A.1 with (X ,(,n), 010,2)) to obtain a letter-onto
morphism v, : 8 — A and a subshift ¥, C BZ such that:

(P Xo = Uey TFva(Yy) and 8, € L(Yy);

(Pnz) (Y, vy) is recognizable with constant 3|oo )

(P |vnl < lofomls (va) = 3logoa—1l, and vy is 3|ojo,n—1)|-proper;

(P,f) C,,(k,y) =Ry, (x) for all x € X4 and v, -factorization (k, y) of xin Y),.

We write C,, (x) := C,, (k, y) if x € X4 and (k, y) is the unique v,-factorization of x in
Yy. Observe that U, 41 € U, for n > 2. Thus, C,,,, (x) = Ry, (x) € Ry, (x) = Cy, (x)
for all x € X4. This, (Pnz) and (Pn3+1) allow us to use Lemma A.3 with (Y;41, Vnt1)
and (Y, v,) and find a letter-onto and proper morphism t,: B:{H — B:{ such that
VnTn = vyt and Yy = Urez, Tt (Yat1)-

Next, we claim that C,, (x) 2 Cq,,,, (k, 2) for all x € X and o79,n+1)-factorization
(k, z) of x in X((,n'H). Indeed, if j € Z, then 7m0 ®3 ¢ o0+ (zZj-1-2j2j+1)] €
[o10,n)(a.bc)] € Uy, where a is the last letter of 0,,(z;—1) and bc the first two letters of
01(2jZj+1)5 80 Coyg 41,5 (ks 2) € Ry, (x) = Cy, (x), as desired.

Thanks to the claim, (Pnz), (I,+1), and (45), we can use Lemma A.3 with (Y}, v,) and
(X,(,"+l), 0[0,n+1)) to obtain a proper morphism ¢;: .?IL_I
Vot and ¥y, = ey TRn (XTI,

Now we can define the morphisms 71 := v, and ¢ := v¢> and the sequence:

— B} such that ojg,11) =

¢ = (Pn>1,T = (T)p>1 and o' = (0702), 02,03, . . Jp>2.

We are going to prove that ¢, ¢’, and T are the objects that satisfy the conclusion of the
proposition.

These sequences are letter-onto as each v, and each ¢, is letter-onto. Next, we show
that ¢ is a factor. The relation ¢; = t1¢, follows from the definitions. To prove the other
relations, we observe that from the commutative relations for t, and ¢,, we have that

ViPpOntl = 0[0,0+1)0n+1 = 0[0,042) = Vnt1Pntl = VnTn@Pnil- (46)

In particular, v,¢,0,4+1(x) = v, Ty¢p+1(x) for any x € X((,n+2). Since ¢,0,4+1(x) and
Ty¢n+1(x) are both elements of Y, and (Y,,v,) is recognizable, we deduce that
Gnont1(x) = Typ+1(x) for any x € X,(,”+2). Thus, one of the words in {¢,0,,+1(xp),
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Ty dn+1(x0)} is a prefix of the other. Since A,42 C L(X,(,"+2) ), we deduce that, for any
a € A4, one of the words in {t,¢,,+1(a), v,¢,0,41(a)} is a prefix of the other. However,
by (46), the words v, T, ¢y,+1(a) and v, ¢, 0,,+1(a) have the same length, so ¢,,0,,41 (@) must
be equal to 7,,¢,,+1(a) for every n > 2. This proves that ¢,,0,,+1 = T,¢n41 foreveryn > 2
and that ¢ : ¢’ — T is a factor.

The following commutative diagram, valid for all n > 2, summarizes the construction
so far:
O10.n+1)

+ +
ﬂn+2 > A

\ﬂa‘

¢n+ll V1
+ +
—>
BnJr] T Bn

As shown in the diagram, we have that v, 7, = v,,41 forn > 2. Thus, 1172 . . . T, = V41,
and hence (1172 . .. Ty) = (Vn+1) = Pn —n—oo 00. Therefore, 7 is everywhere growing.

Also, by using Lemma 2.3 with (Y, v,) = (Y, 1172 . . . Ty—1), we deduce that (Y, 7,—1)
is recognizable for every n > 2, which implies that t is recognizable. Finally, as each 7,
is proper, T is proper. O
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