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Abstract

The dimension of models derived on the basis of data is commonly restricted by the number of observations, or in the
context of monitored systems, sensing nodes. This is particularly true for structural systems, which are typically high-
dimensional in nature. In the scope of physics-informedmachine learning, this article proposes a framework—termed
neural modal ordinary differential equations (Neural Modal ODEs)—to integrate physics-based modeling with deep
learning for modeling the dynamics of monitored and high-dimensional engineered systems. In this initiating
exploration, we restrict ourselves to linear or mildly nonlinear systems. We propose an architecture that couples a
dynamic version of variational autoencoders with physics-informed neural ODEs (Pi-Neural ODEs). An encoder, as a
part of the autoencoder, learns the mappings from the first few items of observational data to the initial values of the
latent variables, which drive the learning of embedded dynamics via Pi-Neural ODEs, imposing a modal model
structure on that latent space. The decoder of the proposed model adopts the eigenmodes derived from an
eigenanalysis applied to the linearized portion of a physics-based model: a process implicitly carrying the spatial
relationship between degrees-of-freedom (DOFs). The framework is validated on a numerical example, and an
experimental dataset of a scaled cable-stayed bridge, where the learned hybridmodel is shown to out perform a purely
physics-based approach to modeling. We further show the functionality of the proposed scheme within the context of
virtual sensing, that is, the recovery of generalized response quantities in unmeasured DOFs from spatially sparse
data.
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Impact Statement

We propose neural modal ordinary differential equations that learn generative dynamical models from spatially
sparse sensor data. The proposedmethod is in the format of dynamical variational autoencoders, andwe structure
the latent space of the measured data using physics-related features (e.g., modal features), allowing physically
interpretable architectures. The delivered models are able to reconstruct the full-field structural response,
meaning response in unmeasured locations, given limited sensing locations. We believe this proposed method
is helpful and meaningful to the community of structural digital twins, model updating, virtual sensing, and
structural health monitoring.

1. Introduction

Physics-based modeling (or first-principles modeling) forms an essential engineering approach to under-
stand and simulate the behavior of structural systems. Often implemented via the use of finite element
methods (FEM) (Waisman et al., 2010; Strpmmen, 2014), within the context of structural engineering,
physics-based modeling is capable of building high-dimensional and high-fidelity models for large and
complex civil/mechanical structures. However, such models often suffer from simplified assumptions and
approximations,while for the case ofmonitored operating systems, an establishedmodel often fails to reflect
a system as is, after possible experience of damaging and deterioration effects. Such limitations can be
tackled by means of uncertainty quantification analysis (Sankararaman and Mahadevan, 2013), or more
effectively via feedback frommonitoring (sensory) data (Farrar andWorden, 2012; Kamariotis et al., 2022).
The integration of data with physics-based models or physical laws—physics-informed machine learning
(Zhu et al., 2019; Willard et al., 2020; Karniadakis et al., 2021; Bae and Koumoutsakos, 2022) has grown
into an active research area for modeling physical systems in recent years.

Beyond their exploitation within a broader science and engineering context (Karpatne et al., 2017;Wu
et al., 2018; Kashinath et al., 2021), physics-informed machine learning has been specifically applied for
learning dynamical systems from either simulated or real-world data. This has been pursued in various
ways; for instance, by exploiting the automatic differentiation of neural networks (NNs) to form “custom”
activation and loss functions that are tailored to the underlying differential operator (Raissi et al., 2019), by
incorporating Lagrangian dynamics into the NN architecture (Cranmer et al., 2020; Roehrl et al., 2020),
by imposing the laws of dynamics as constraints to the network (Zhang et al., 2020), or via identification
of a sparse set of physics-informative basis functions to establish equations ofmotion of observed systems
(Lai and Nagarajaiah, 2019; Lai et al., 2020). It is further worth noting that a significant tool for fusion lies
in the reduction of physics-based models. Notably, Vlachas et al. (2022) propose a combination of a long
short-term memory (LSTM) network with an autoencoder (AE), jointly referred to as Learning Effective
Dynamics, which can be trained on data from simulations of dynamical systems. In a similar context,
applied for reduction of nonlinear structural dynamics, Simpson et al. (2021) combine an LSTM with an
AE for delivering fast and accurate simulators of complex high-dimensional structures. In an alternate
setting, reduction can efficiently be achieved, while respecting the underlying physics equations, via
projection-based methods (Carlberg et al., 2013; Qian et al., 2020; Vlachas et al., 2021). This yields a
powerful framework, which can eventually be combined with data, for instance via use of Bayesian
filtering as proposed in Tatsis et al. (2022) for the purpose of damage detection and flaw identification. In
previous work of part of the authoring team, we delivered hybrid representations that draw from the
availability of monitoring data (measurements/observations from the system), which combine a term that
reflects our often impartial knowledge of the physics, with a learning term which compensates what our
physics representations may not account for, via physics-informed neural ordinary differential equations
(ODEs) (Lai et al., 2021) and physics-guided Deep Markov Models (PgDMMs) (Liu et al., 2022).

Learning a dynamical system essentially boils down to learning a governing function (either in
parametric or nonparametric form) that describes the evolution of the “system’s state” over time. We
summarize themotivation of this article as follows. Firstly, in the context ofmonitoring, the representation
of a dynamical system is restricted by the number of sensing nodes. Compared to a model established by
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physics-based modeling, a data-driven model is often a reduced-order model, typically encompassing
contributing modes, which considerably sacrifices the true spatial resolution. Due to this, there often
exists an inconsistency between the coordinate spaces of the two models, with the high-dimensional
physics-based model (such as a FEM) corresponding to spatially dense degrees-of-freedom (DOFs),
while a data-driven model often reflects a latent space that is expressed in nonphysical coordinates
(Schmid, 2010; Lusch et al., 2018; Simpson et al., 2021). Secondly, the adopted data types are critical to
the learning of dynamical systems. If direct measurements of a latent space exist (e.g., in representing
structural dynamics, displacement and velocity are considered as such latent variables), it is straightfor-
ward to learn the dynamics that are inherent to the extracted data. However, this is not the case in practice,
as the measured response (data) is most commonly not a direct measurement of the latent variables; for
example, when accelerations are available in the context of vibration-based monitoring (Ou et al., 2021).
With these two aspects in mind, in this article, we propose a framework that is capable of integrating high-
dimensional physics-based models with machine learning schemes for modeling the dynamics of high-
dimensional structural systems, with linear or mildly nonlinear behavior. The term “mildly nonlinear”
refers to systems whose response is not significantly different from their linear approximation. Such a
discrepancy could be formally quantified using metrics such as the value of the coherence between the
input (load) and output (response) signal.

To achieve this, we propose to blend a dynamical version (Girin et al., 2020) of a variational
autoencoder (VAE) (Kingma and Welling, 2013), with a projection basis containing the eigenmodes that
are derived from the linearization of a physics-based model, termed as neural modal ODEs. We justify
these components in the proposed architecture as follows: (a) the majority of the aforementioned
projection-based methods, which commonly rely on proper orthogonal decomposition (POD (Liang
et al., 2002), have been applied for the reduction of nonlinear models/simulators (Abgrall and Amsallem,
2016; Amsallem et al., 2015; Balajewicz et al., 2016; Peherstorfer and Willcox, 2016; Marconia et al.,
2021; Vlachas et al., 2022). In this case, we rely on the availability of actual measured data but not
simulations of full-order models, whichmay bear withmodel bias. To this end, the probabilistic version of
autoencoders (Hinton and Zemel, 1994), that is, the VAE (Kingma andWelling, 2013), is adopted to learn
latent representations from data. Our aim is to devise a generative model, which is though inferred from
data availability, and not a mere observer. In doing so, we exploit data availability in order to infer the
initial values of the latent space, in this way boosting the learning of embedded dynamics. This scheme
actually falls in the category of nonintrusive model reduction (Swischuk et al., 2020). In contrast with
intrusive model reduction, nonintrusive is data-driven and does not require access to the full-order model.
(b) This type of nonintrusive model reduction generally allows for flexibility on the structure of the
learned latent space, which need not assume a physically meaningful representation. Since we are
interested in monitoring applications, it becomes important to achieve such a physics-based representa-
tion, especially for the latent space, since this allows virtual sensing tasks; meaning the inference of
structural response in locations that are not directly measured/observed (Vettori et al., 2022). To model
and structure the dynamics of the reduced-order models (latent dynamics), we herein adopt our previously
developed physics-informed neural ODEs (Pi-Neural ODEs) (Lai et al., 2021) to impose a modal
structure, in which, the dynamics are driven by superposing the modal representations derived from
physics-based modeling with a residual term learned by NNs. This allows accounting for the portion of
physics, which remains unaccounted for. (c) The implemented Pi-Neural ODEs allow for flexibility, as the
residual term adaptively accounts for various discrepancies. In this case, this makes up for the fact that our
reduction basis exploits linear eigenmodes. If the system exhibits amild level of nonlinearity, the resulting
discrepancy will be accounted for by the imposed NN term in the Pi-Neural ODEs.

We validate the efficacy of the proposed neural modal ODEs on a numerical example, and an
experimental dataset derived from a scaled cable-stayed bridge. Based on the results presented in this
article, the contribution of the study lies in: (a) establishing a generativemodeling approach that integrates
physics-based modeling with deep learning to model high-dimensional structural dynamical systems,
while retaining the format of an ordinary differential equation; (b) by introducing a physically structured
decoder, the model is capable of extrapolating the dynamics to unmeasured DOFs. Such a virtual sensing
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scheme can be applied to structures where observations are scarce (Sun et al., 2020); (c) since this is a
generative model, it further has the potential of being implemented within the context of model updating.

2. Neural Modal ODEs

We summarize the proposed architecture in the flowchart of Figure 1, which combines an encoder ΨNN

and a decoderΦp, with Pi-Neural ODEs (Lai et al., 2021) (Pi-Neural ODEs). The role of the encoder is to
perform inference of the initial conditions of the latent variables z0 from a handful of observational data of
measured DOFs.

The evolution of the dynamics initiating from z0 is learned and modeled by means of Pi-Neural ODEs.
It assumes that a system can be modeled as a superposition of a physics-based modeling term and a
learning-based term, where the latter aims to capture the discrepancy between the physics-based model
and the actual system. The physics-informed term in this framework adopts a modal representation
derived from the eigenanalysis of the structural matrices of the physics-based model. In the case of a
nonlinear system, we rely on the linearized portion of the model.

The prediction of latent quantities z0, z1,…, zt,…,zT at time step t0, t1,…, tT , obtained from the
previous step is mapped back to the full-order responses via the decoder, and then to the estimated
quantities in the original observation space (bx0, bx1,…, bxt,…, bxT ) via a selection matrix E (each row is a
one-hot row vector), selecting corresponding monitored quantities. This is then compared against the
actual measurements to minimize the prediction error, which effectuates the training of the proposed
model. The decoder is physically structured and also derived from the eigenanalysis of the structural
matrices.

In what follows, we offer the details of the formulation of the three outlined components (encoder,
Pi-Neural ODEs, and decoder) to the suggested framework.

Figure 1. Flow chart of the proposed framework, encompassing an encoder, Pi-Neural ODEs, and a
physically structured decoder. The encoder ΨNN is comprised of a multilayer perceptron (MLP) and a

recurrent neural network (RNN).

e34-4 Zhilu Lai et al.

https://doi.org/10.1017/dce.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.35


2.1. Encoder (inference model)

Consider an observation (measurement) datasetD¼ x ið Þ� �N

i¼1 withN independent sequences of time series
data. Each sequence reflects a multi-DOF time series record, defined as x ið Þ ¼ x0, x1, …f xt, …xTg ið Þ,
where the observation vector at time instance t, xt∈ℝm, reflectsmmonitored DOFs. When the underlying
physics equations are known, the observation xt at each time instance t can be assumed to be derived from a
corresponding latent (state) variable zt, assumed to completely describe the embedded dynamical state. In
practice, a common issue is that the latent variables are usually unobserved or only partially observed, via
indirectmeasurements. This limitation is often tackled in prior art via the use of an encoder parameterized by
a NN ΨNN, which is employed to infer the latent variables from observation data.

In delivering such an estimate, we adopt a temporal version (Girin et al., 2020) of the VAE (Kingma
and Welling, 2013), that has been implemented in existing literature (Krishnan et al., 2017; Yildiz et al.,
2019; Liu et al., 2022). The encoder ΨNN can be mathematically described as:

ΨNN z0jx0:ntð Þ¼ΨNN
q0
_q0

� �
jx0:nt

� �
¼N

μq0
μ _q0

" #
,

diag σ2q0

� 	
0

0 diag σ2_q0

� 	
264

375
0B@

1CA, (1a)

where the first few observations from x0 to xnt (denoted by x0:nt ) are used for inferring z0, that is, z0 is
conditioned on x0 to xnt ; the latent variables zt∈ℝ2p are assumed to have dimension of 2p, and the output
of the encoder is intentionally split into q0∈ℝp and _q0∈ℝp that are corresponding to displacement and

velocity states, respectively, that is, z0 ¼
q0
_q0

� �
. It is further assumed that the inferred state variable z0 is a

stochastic one, which is in this case essential for reflecting uncertainties, and follows a normal distribu-

tion, ofmean value
μq0
μ _q0

" #
and diagonal covariancematrix

diag σ2q0

� 	
0

0 diag σ2_q0

� 	
264

375. It should though be
noted that it is common to model uncertainty in structural systems, which are subjected to random
environmental influences, using a normal distribution. For most of dynamical VAEs frameworks, which
are adopted in the context of modeling dynamical systems with uncertainty, the inherent uncertainties are
accounted for via the use of normal distributions, as summarized in the work of Girin et al. (2020).

In practice, ΨNN is comprised of a feed-forward NN (MLP) and a RNN. We assume that the
displacement quantity q0 only depends on x0, per the assumption adopted in Yildiz et al. (2019):

μq0 , σ
2
q0

� 	
¼MLP x0ð Þ: (1b)

The output of this MLP is a stochastic variable of mean μq0 and variance σ2q0 ; the velocity quantity _q0 is
inferred from the first leading observations x0:nt , thus a RNN is implemented to take x0, x1,…, xnt into
account:

μ _q0
, σ2_q0

� 	
¼RNN x0:ntð Þ, (1c)

where the output of the RNN is a stochastic variable of mean μ _q0
and variance σ2_q0 ; nt need not necessarily

reflect a large number, larger nt might dilute the inference of the velocity quantity; for instance, based on
empirical trial, in our implementations nt ¼ 10. Once the normal distribution defined in equation (1a) is
derived, one can sample z0 from this distribution, and use it for computing the evolution of the latent
dynamics over time. We use θenc to denote all the parameters used in the ΨNN, that is, all the
hyperparameters involved in the formulation of the MLP and RNN architectures.

2.2. Modeling latent dynamics via Pi-Neural ODEs

There are generally two strategies in terms of how the temporal dependence between states z can be
modeled. The first strategy is to use a discrete-time model to describe the embedded dynamics, where the
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first-orderMarkovian property is assumed. A popular example, in the deep learning context, can be found
in the deep Markov models (Krishnan et al., 2015, 2017; Liu et al., 2022). An alternative lies in adopting
continuous models, usually in the form of differential equations, to describe the temporal dependence
embedded in the data. The neural ODEs (Chen et al., 2018) form a recently proposed tool that
parameterizes the governing differential equations by feed-forward NNs in a continuous format. A
specific merit of a continuous modeling approach is that nonequidistant sequential data can be used for
training the model. As the Neural ODEs effectively represent a differential equation construct, the trained
model can, in turn, be used as a generative model, meaning as a model which can predict the system
response given initial conditions or external excitation.

In the previous work of the authors (Lai et al., 2021), we introduced a Pi-Neural ODEs scheme,
assuming that a system can be modeled as a superposition of a physics-based modeling term and a
learning-based term, where the latter aims to capture the discrepancy between the physics-based model
and the actual system. A similar scheme is further discussed in Wagg et al. (2020) for application within
the context of digital twinning, as the learning-based term allows for adaptation. The scheme is formally
described as follows:

_z¼ f θdyn zð Þ¼ f phy zð Þþ f NN zð Þ, (2)

where f phy zð Þ is a physics-based model, which can be built by leveraging the best possible knowledge of
the system; f NN zð Þ is the learning-basedmodel that ismaterialized as aNN function of z. It is noted that the
former term f phy zð Þ is of a fixed and preassigned structure, while the latter term is adjustable during the
process of training the model. The parameter vector θdyn, reflects the set of hyperparameters involved in
the NN representation f NN zð Þ.

In this article, we adopt this modeling scheme for use within a reduced order modeling (ROM) setting,
to model the latent dynamics of a high-dimensional system.We restrict ourselves in this initiating effort to
the modeling of linear or mildly nonlinear systems. The mildly nonlinear system we refer to in this article
is that the system can be well approximated by the linearization of the system—the first-order Taylor
expansion.

In such a case, an approximation of the dynamics can be derived through the solution of an eigenvalue
problem of the structural matrices of the physics-based model (in the case of a nonlinear system, we rely
on the linearized part), and is reflected in the following decoupled low-dimensional linearized form:

_q

€q

� �
¼ 0 I

�Λ �Γ

� �
q

_q

� �
, (3a)

where,

Λ¼

ω2
1

ω2
2

⋱
ω2
p

26666664

37777775Γ¼

2ξ1ω1

2ξ2ω2

⋱
2ξpωp

26666664

37777775, (3b)

where Λ and Γ are both diagonal matrices; ω1, ω2,…, ωp are the first p leading natural frequencies (the
first pmaximum frequencies in a descending order) that are retrieved from an eigenanalysis of an a priori
available physics-based model; ξ1, ξ2,…, ξp are the corresponding modal damping ratios; I∈ℝp�p

denotes the identity matrix.
Our premise is that the physics-basedmodel in equation (3a) does not fully represent the actual system,

which implies that the model-derivedmodal parameters can be different from the parameters that describe
the actual operating system as-is, or that additionally, further to the parameters, the structure of the model
is lacking. The latter implies that certain mechanisms are not fully understood and are, thus, modeled
inaccurately, for instance, mechanisms related to nonlinearities or damping. To account for such sources
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of error or discrepancies, we add a learning-based term to model the dynamics that are unaccounted for,
with equation (3a) now defined as:

_z¼ 0 I

�Λ �Γ

� �
zþ 0

NN zð Þ

� �
with z 0ð Þ¼ z0, (4)

where z¼ q

_q

� �
; NN represents a feed-forward NN that is a function of z. It is noted that the structure

presented in equation (4) has the potential of breaking the fully decoupled structure, which is defined by
the first term. This is in fact welcomed since the hypothesis of fully decoupled damping matrices, relating
to a Rayleigh viscous damping assumption (Craig and Kurdila, 2006), is a known source of modeling
discrepancies for real-world systems (Satake et al., 2003). The learning-based termNN zð Þ is thus added to
account for possible sources of inconsistency and error. In this physics-informed architecture, during
training, the estimated gradients are obtained as the sum of the corresponding gradients derived from the
physics-based and learning-based terms. Since the gradients from the physics-based term are fixed, only
the gradients of the learning-based term are to be estimated. The combined gradients are restricted in a
regime that is closer to the true function’s gradients. Supplementary Appendix further elaborates on the
benefit of this physics-informed architecture, which boosts the search for the governing equations close to
the actual systems.

The Physics-informed Neural ODE equation (4) governs the evolution of the dynamics. The dynamics
of z tð Þ can be solved by numerically integrating z tð Þ¼ R t

t0
f θdyn zð Þdt from t0 to t given initial conditions z0,

with the estimate of the latent state vector z tð Þ at each time t offered as:

z tð Þ¼ODESOLVE f θdyn , z0, t0, t
� 	

, (5)

where ODESOLVE reflects the chosen numerical integration scheme, with Runge–Kutta methods
comprising a typical example of such solvers. The dynamics of the latent state z, with realization of

z0, z1,…, zt,…, zT (where zt ¼
qt
_qt

� �
), are thus computed at each time step, and can be subsequently fed

into the decoder model to reconstruct the full field response, as described in what follows.

2.3. Decoder

In the case of a linear dynamical system, the full-order response xfullt ∈ℝg comprises a modal represen-
tation of xfullt ≈Φ qt Φp∈ℝg�p;qt∈ℝp;p ≤ g


 �
, where Φp is the truncated eigenvector matrix, that is, the

leading p columns of full-order eigenvector matrix Φ (corresponding to the largest p eigenvalues).
As illustrated in Figure 1, an estimate of the evolution of the latent state over time z0, z1,…, zT can be

obtained by solving the Pi-Neural ODEs via equation (5). It is noted that, within the structural dynamics
context, important measurable quantities such as accelerations €q can further be computed on the basis of
the governing equation (4): €q¼ �Λ �Γ½ �zþNN zð Þ. Thus, beyond the latent states q, _q, we can derive
further response quantities of interest, such as the acceleration €q.

Each response quantity can be respectively emitted to the corresponding full-order response vector
(involving all structural DOFs) via the decoder Φp (ℝp !ℝg):

displacement : xfullt ¼Φp qtð Þ,
velocity : _xfullt ¼Φp _qtð Þ,
acceleration : €xfullt ¼Φp €qtð Þ, t¼ 0, 1, …, Tð Þ, (6a)

where xfullt , _xfullt , and €xfullt denote the reconstructed full-order displacement, velocity, and acceleration,
respectively. It is noted that further response quantities of interest, such as potentially strains, can be
inferred due to availability of a FEM model.
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We can only measure a limited of DOFs, xt∈ℝm (we use xt to denote measured quantities while bxt
denoting the corresponding estimated quantities), via use of appropriate sensors, which form a subset of
the full response vector:

bxt ¼E

xfullt

_xfullt

€xfullt

264
375, (6b)

where E∈ℝm�3g is a selection matrix (each row is a one-hot row vector), selecting corresponding
monitored quantities; bxt can represent an extended set of the estimated observations, which can
correspond to displacement, velocity, acceleration, or further computable response quantities (such as
strains). Since we only consider mild nonlinearity, we rely on the observability of the linearized part of the
system,where classical observability theory (Kalman, 1960) can be applied to analyze the observability—
estimating the full state vector from limited measurements.

The architecture of the proposed framework essentially comprises a sequential version of the VAE,
exploiting the presence of an underlying low-dimensional latent representation in the observed dynamics.
In the original VAE, the decoder is parameterized by a NN without regularization, which flexibly fits the
training data, without necessarily embodying a physical connotation. From an engineering perspective,
however, it would be beneficial if the decoder is bestowed with a direct linkage to physical DOFs. One
way to achieve this is to seed the modal shape information, computed from physics-based models, which
carries within it the spatial information of how each element/node in x is interconnected. Therefore, we
forcibly implement eigenmodes Φp as the decoder for emitting the latent variables to the observation
space.Φp ¼ ϕ1, ϕ2, :…, ϕp

� 

, where each column represents a single eigenmode, can be derived from the

structural matrices of the physics-based full order model, for example, a FE model. It is noted that Φp is
assumed to be time-invariant, thus reflecting an invariant encoding of the spatial relationship between
structural DOFs. However, the residual term NN zð Þ in the Pi-Neural ODE in equation (4) adaptively
accounts for discrepancies that stem frommild nonlinearities, which would also violate the assumption of
invariance. We remind that, in Section 2.2, a decoupled structure is adopted as a prior model to encourage
the model to mimic the process of a modal decomposition–reconstruction.

It is worth mentioning that, in this framework, the encoder process can be viewed as the transformation
from full-order physical coordinates to modal coordinates ΨNN : x! z. In real scenarios that involve
weakly nonlinear systems, this can be thought of as a “modal-like” coordinate as the learning term NN zð Þ
can violate the decoupled structure, while the decoder is viewed as the operator which enables the
transformation from the modal coordinates’ space to the measured physical coordinates (Φp : z! x).

2.4. Loss function

For the purpose of training the suggested Neural Modal ODEmodels, which capitalize on the availability
of physics information and data, we calculate the measurement prediction error. The model delivers an
estimatebx0:T of the measured response quantities x0:T , which in turn allows to minimize the error between
the predicted and actual observations, to train the model. The training of the encoder, decoder, and latent
dynamic models are performed simultaneously, and the loss function of the framework is given as:

Lðθ;xÞ¼LfDECODER½ODESOLVEðf θdyn ,ΨNNðx0:ntÞ,t0,TÞ�g, (7)

where θ¼ θenc
S
θdyn are all the parameters involved in the deep learning model; x0:nt is the first x0 to xnt

data fed into the encoderΨNN; x0:T is the whole sequence of the data set used for the decoder; the notation
DECODER denotes the process given in equations (6a) and (6b).

In the VAE formulation (Kingma and Welling, 2013), the loss function L is used to maximize a
variational lower bound of the data log-likelihood logp xð Þ; here x is short for x0:T. Using the variational
principle with the inference model ΨNN z0jx0:ntð Þ, which is only used to infer the initial condition of z0,
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the evidence lower bound (ELBO) of the data log-likelihood, which is the loss function, is given as
follows:

L θ;xð Þ¼
XT
t¼0

EΨNN z0jx0:ntð Þ logp xtjztð Þ½ ��EΨNN z0jx0:ntð Þ KL ΨNN z0jx0:ntð Þkp z0ð Þð Þ½ �
n o

, (8)

where KL stands for the Kullback–Leibler divergence; a statistical measure that evaluates the closeness of
two probability distributions p1 and p2, defined as KL p1 zð Þkp2 zð Þð Þ≔R

p1 zð Þ log p1 zð Þ
p2 zð Þdz. In the loss

function, the first term
PT

t¼0EΨNN z0jx0:ntð Þ logp xtjztð Þ½ � evaluates the reconstruction accuracy: z0 is

sampled from the distribution given in equation (1a), and with this given initial condition, one can

compute the predicted bxt �N bμt, bΣt

� 	
t¼ 0, 1, …, Tð Þ via the latent dynamics model in equation (5)

followed by the decoder. Thus, this term can be computed as
PT

t¼0 logp xtð Þ given z0 �ΨNN z0jx0:ntð Þ, and
logp xtð Þ has an analytical form when p xtð Þ follows a normal distribution:

logp xtð Þ¼�1
2

log jbΣtjþ xt�bμtð ÞTbΣ�1
t xt�bμtð Þþdx log 2πð Þ

h i
, (9)

which is the log-likelihood, and the training of themodel is expected tomaximize this likelihood given the
actual observation data xt; dx is the dimension of xt.

The second term�PT
t¼0EΨNN z0jx0:ntð Þ KL ΨNN z0jx0:ntð Þkp z0ð Þð Þ½ � evaluates the closeness of the inferred

initial condition with a prior distribution p z0ð Þ. In practice, p z0ð Þ can be assumed as a normal distribution
N 0, Ið Þ if no further prior knowledge is given. The KL terms acts as a penalty term when the inferred
initial value is distant from the prior distribution. This term can be alternatively computed as
�PT

t¼0KL ΨNN z0jx0:ntð Þkp z0ð Þð Þ given z0 �ΨNN z0jx0:ntð Þ. KL p1 zð Þkp2 zð Þð Þ is described by an analyt-
ical formula when both p1 zð Þ and p2 zð Þ are normal distributions and p2 zð Þ�N 0, Ið Þ:

KL ΨNN z0jx0:ntð Þkp z0ð Þð Þ¼� log ∣diag σz0ð Þ∣þ σz0k k2þ μz0
�� ��2

2
�dz

2
, (10)

inwhich, σz0 ¼
σq0
σ _q0

� �
; μz0 ¼

μq0
μ _q0

" #
; ∣ � ∣ is the determinant of amatrix; k � k is themodulus of a vector; dz is

the dimension of z.

2.5. Prediction of learned dynamics

The completion of the training process results in the definition of the hyperparameter sets θenc and θdyn. This
delivers an encoder ΨNN together with a learned dynamic model _z¼ f θdyn zð Þ, which retains the structure of
differential equations. Equations (5) and (6a) can be used for predicting the dynamics given an initial state z0.
z0 can be either be inferred from the observation dataset via the learned encoder ΨNN, or—when using the
derivedmodel as a generativemodel—themodeler can assign other specific values for the initial condition z0.

For those readers that are interested in reusing the developed algorithms, a demonstrative implemen-
tation in Python, reproducing all steps from Sections 2.1 to 2.5, will be made available at: https://
github.com/zlaidyn/Neural-Modal-ODE-Demo, including both linear and nonlinear cases of a demon-
strative example introduced in the next section.

3. Demonstrative Example of a 4-DOF Structural System

In this section, we implement the proposed framework on a simulated 4-DOF structural systems. The
structural system is governed by the following differential equations:

M€xþC _xþKxþ

0

0

0

knx31

26664
37775¼ 0, (11a)
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where the displacement vector x¼ x1, x2, x3, x4½ �T ; the mass matrix M¼ diag m1, m2, m3, m4ð Þ, and
m1 ¼ 1,m2 ¼ 2,m3 ¼ 3,m4 ¼ 4; the damping matrix C¼ diag c1, c2, c3, c4ð Þ, and c1 ¼ c2 ¼ c3 ¼
c4 ¼ 0:1; and the stiffness matrix:

K¼

k1þ k2 �k2 0 0

�k2 k2þ k3 �k3 0

0 �k3 k3þ k4 �k4
0 0 �k4 k4

26664
37775, (11b)

where k1 ¼ 1, k2 ¼ 2, k3 ¼ 3, k4 ¼ 4. To fully demonstrate the capability of the proposed framework for
both linear and nonlinear structural systems, we test three different cases with increasing nonlinearity
kn ¼ 0:0 linear caseð Þ,0:5, and 1.0, respectively. The linear portion of the three cases are set to be the same
and the only variation lies in the coefficient kn as the nonlinear term.

A total number of 1,000 realizations with randomized initial conditions from a standard normal
distribution are generated for each case (the randomization is identical for each case of kn). As mentioned,
we assume that in the here presented application scenarios only a limited subset of the full-order system
response quantities are available. In this example, only the displacement of the fourth DOF (x4) and the
accelerations of the first, third, and fourthDOFs (€x1, €x3, €x4) aremeasured.While it is feasible to implement
the framework with acceleration measurements only, the accounted displacement of a single DOF is here
used to alleviate possible drifting effects that occur in the reconstructed full state. The first n0 to nt ¼ 10
samples of the sequence are used for the RNN in the encoder to infer the initial latent velocity. As for the
decoderΦp, we make use of the first p¼ 4modes obtained via an eigenanalysis of the structural matrices
of the physics-based model, thus forming an 8-dimensional latent state. The implementation details are
listed in Table 1. The models are trained on the dataset of the first 800 realizations and tested on the
remaining 200 realizations.

Figure 2 shows the force-displacement loops of the first DOF of the reference system for different
values of the nonlinear coefficient kn. It indeed reveals that the simulated data delivers different levels of
nonlinearity and the measured data are contaminated with noise.

The testing results of an exemplary realization are shown in Figure 3 for all three cases. In this figure,
the label “FEM” indicates a linearized model of equation (11a) which is intentionally contaminated with
3% noise. The label “Hybrid model” denotes the proposed framework—neural modal ODEs.

As shown in Figure 3, the “FEM”model approximation does not well approximate the actual response
This is by design since we purposely added noise to the model in order to simulate modeling errors. The
corresponding normalized root mean squared error (NRMSE) and R2 for linear regression between true and
predicted responses, both averaged by the dimension 12, are shown in Table 2. It is observed that although
the model is recommended for use with linear or mildly nonlinear systems (e.g., kn ¼ 0:0,0:5), it also
performs satisfactorily for the systemwith relatively stronger nonlinearity (kn ¼ 1:0, which is comparable to
the linear stiffness k1 ¼ 1:0). This is due to the adaption ability of the learning-based term,which is supposed
to compensate the inaccuracy of the latent dynamicsmodel f phy, aswell as to account for the imperfection of

Table 1. Implementation details for the numerical study.

Encoder
Modeling latent

dynamics Decoder

RNN
(x0:nt )nt ¼ 10

MLP
(x0)

NN zð Þ in
equation (7)

Φp

No. of hidden layers 1 2 2 Invariant,Φp ¼ ϕ1, ϕ2, ϕ3, ϕ4½ �
No. of neurons in each

hidden layer
32 128 128
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the decoder Φp. It is also understandable that when the system becomes nonlinear, the assumption that the
decoder is invariant does not hold while the responses would become energy-dependent.

For kn ¼ 1:0 (Figure 3c), the recovery performance is not as good as in the other two cases. The
recovered response for x2, in particular, is not perfectly aligned with the measured data. This implies that
the decoder derived from the linear portion is not close to the actual one. Given the limited number of
measurements (observations), the model returns a discrepancy with respect to the true model.

4. Illustration on a Model Cable-Stayed Bridge

In this section, the proposed framework is validated on a laboratory-based monitoring dataset derived
from a scaled cable-stayed bridge, which was built and tested by the Research Division on Structural
Control and Health Monitoring at Tongji University, China.

4.1. Experimental setup and data description

As shown in Figure 4a, this model bridge consists of one 6-m continuous beam, 2 towers, and 16 cables.
The beam and towers are made of aluminum alloy, and additional metal weights are attached onto the
beam and towers, ensuring that the scaled model’s dynamic properties closely approximate those of the
real cable-stayed bridge.

Cable-stayed bridges are known for exhibiting geometric nonlinearities. Generally speaking, the
nonlinear effects in cable-stayed bridges include: (a) cable sag effects: cables sag because of their self-
weight, resulting in variation of their axial stiffness; (b) P-delta effects: the horizontal components of cable
forces bend the vertically compressed bridge pylon, introducing additional bending moments. The main
girder of a cable-stayed bridge also suffers from the P-delta effects, where the bending girder is
compressed by the horizontal components of cable forces; (c) large displacement effects: the displacement
of the girder can be large, as the main girder of a cable-stayed bridge is mainly supported by flexible
cables; thus, the small deformation assumption and linear beam theory do not apply in this scenario.

In this study, the model cable-stayed bridge exhibits nonlinearity in terms of the P-delta and large
displacement effects, but these two effects are mild owing to the relatively small dimension of the scaled
model. Further, the cable sag effects are negligible, as the steel cables are light. As a result, this scaled cable-
stayed bridge model manifests mild nonlinearity and can be well approximated by the proposed scheme.

Figure 2. The force-displacement loops of the first DOF of the reference system for different values of the
nonlinear coefficient kn.
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(a) kn = 0

(b) kn = 0.5

Figure 3. Recovered full-order response for the testing data set (only €x1,€x3,€x4, and x4 are measured). (a)
Linear case; (b) Mildly nonlinear case.
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Tomeasure the dynamic response of the bridgemodel, as highlighted in Figure 4, eightMEMS (Micro-
Electro-Mechanical System) accelerometers—labeled as A1–A8—are deployed on the structure, and a
wired connection is used to collect the acceleration data to a digital data acquisition system. Acceleration
measurements are collected at a sampling rate of 100 Hz, while the collected raw data is low-pass filtered
at 30 Hz, as the dominant power in the spectrum of the raw signal lies below 30 Hz.

A “pull-and-release” action was used to excite the bridge model. A 1 kg iron weight was hung on node
19 with a wire. When the bridge model and the weight were both stationary, the wire was abruptly cut,
inducing a damped free vibration of the bridge model, and those bridge responses were recorded with the
accelerometers. It is worth mentioning that the weight was hanged at the exact lateral center of the beam,
so the out-of-plane vibration such as torsion was supposed to be negligible.

Five repeated tests were performed. Four of these tests were used for training, with the remaining test
serving as a testing dataset.

4.2. Finite element modeling

A two-dimensional (2-D) finite element model (FEM) of the scaled bridge has been developed, in a
MATLAB environment (MATLAB, 2019), which serves as the physics-basedmodel to be adoptedwithin
the proposed deep learning framework.We consider a 2-Dmodel as the expectedmotion and the deployed

(c) kn = 1.0

Figure 3. (Continued) (c) Nonlinear case.

Table 2. Performance metrics for the numerical study.

Neural modal ODE FEM

NRMSE R2 NRMSE R2

kn ¼ 0:0 0.0342 0.9760 0.1549 0.5635
kn ¼ 0:5 0.0496 0.9407 0.1823 0.4240
kn ¼ 1:0 0.0584 0.9431 0.2399 0.1244
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sensors lie within a plane. The dimension, boundary conditions, node number, coordinate system, and
sensor position of the FEM are displayed in Figure 4b. Each node corresponds to three DOFs: horizontal
(x), vertical (y), and rotation. The notation “010” in Figure 4b signifies that vertical movement is
restricted, while the horizontal and rotational movement are free (nodes 1, 4, 7, 23, 26, 29 are of this
case); “111” signifies that all the three possible DOFs are restricted (nodes 30 and 43 are of this case). The
beam and towers are simulated using the Euler–Bernoulli beam element, and the cables are modeled with
the tension-only truss element. The total number of DOFs of the FEM model is 153, after applying the
boundary conditions.

Eigenanalysis is performed on the FEMmodel of this bridge, and the first four mode shapes (ϕ1 to ϕ4)
and corresponding frequencies (ω1

2π to ω4
2π) are shown in Figure 5, which are a horizontal drifting mode

(1.6387 Hz), followed by three vertical bending modes (3.4529, 6.3667, and 11.2516 Hz).

4.3. Model implementation

In this example, for modeling the latent dynamics via equation (4), we adopt the first 10 modes to construct
the latent dynamics, that is, p¼ 10;Λ¼ diag ω2

1, ω
2
2, …, ω2

10


 �
andΓ¼ diag 2ξ1ω1, 2ξ2ω2, …, 2ξ10ω10ð Þ.

The decoder Φp ¼ ϕ1, ϕ2, …, ϕ10½ �∈ℝ153�10, mapping the lower dimensional latent variables back to the
full order of 153; ϕ1 to ϕ10 are the first 10 mode shapes.

To train themodel, the channels A1, andA3–A8 are used, while it is noted that the channelA2 is left out
(considered as “unmeasured”) to be used for evaluating the performance of reconstruction, that is, the
model uses the sensor data at a few DOFs to reconstruct a full-order response.

The data set includesmultiple repeated free-vibration cases of the bridge, introduced by cutting a string
that hangs a 1 kg mass on node 19. The whole data set is divided into batches for training the model, and
the number of time steps for each batch is equally 500. Thus, for each batch, the initial conditions are

(a)

(b)

Figure 4. Scalemodel cable-stayed bridge: (a) in situ photo; (b) diagram of the finite elementmodel (unit:
mm). The eight deployed accelerometers are labeled as A1, A2,…, A8, with arrows indicating the sensing

directions; the coordinate system is defined by the direction of “X–Y” in the diagram.
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different, which is beneficial for training the encoder of themodel. In addition, we normalize themeasured
acceleration across fromA1 to A8, so that the maximum amplitude is 1.0, which is unitless. The details of
the involved NNs are listed in Table 3.

4.4. Results

Once the model has been trained, the trained model is used for predicting the structural responses. The
corresponding predictions of acceleration A1–A8 are shown in Figure 6, denoted by the blue lines. This
prediction is compared with the actual measurements in gray color and predictions by the FEMmodels in
red color. One can see that the FEMmodel offers satisfactory results, while some channel predictions are
out of phase and fail to accurately follow the actual measurement, most possibly due to the inaccurate
modeling of damping (this can be clearly observed in the A4 channel). The prediction from the proposed
hybrid model is evidently more accurate than the FEM model, almost aligning with the actual
measurements.

It is noted that the data of the A2 channel is unmeasured and not used for training the hybrid model,
denoted by dashed gray lines. The prediction shown in the A2 plot comes from the full-order recon-
structed responses. One can see that the reconstruction of A2 still highly agrees with the actual data, even
though it is not used for the training.

Figure 5. The first four mode shapes (denoted by red lines) derived from the eigenvalue analysis of the
FEM model.

Table 3. Implementation details for the experimental study.

Encoder
Modeling latent

dynamics Decoder

RNN
(x0:nt )nt ¼ 10

MLP
(x0)

NN zð Þ in
equation (4)

Φp

No. of hidden layers 1 2 2 Invariant,Φp ¼ ϕ1, ϕ2, …, ϕ10½ �
No. of neurons in each

hidden layer
128 128 128
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Figure 6.Comparisons of acceleration responses prediction between actual measurements, the proposed
hybrid model (neural modal ODEs), and FEMmodel (A1–A8 are normalized unitless data with maximum

value of 1; the horizontal axis k denotes the time step).
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Figure 7 shows the corresponding learned time history of latent variables q¼ q1, q2, …, q10½ �T and
_q¼ _q1, _q2, …, _q10½ �T , related to displacement and velocity in modal coordinates, respectively. It is
observed that: (a) q1 to q10 retains the order from low-frequency to high-frequency, that we impose in
the physics-informed term. In addition, these “modes” are near mono-frequent, almost preserving the
decoupled structure; (b) by examining the amplitude of the latent variables, we are able to tell the
contribution level of each mode. q1, q2, q3, and q4 (hence, _q1, _q2, _q3, and _q4) have the highest amplitudes,
dominating the vibration, while the amplitudes of other higher modes are much smaller (close to
residuals). This is well understandable since for this free vibration, only the first several modes are fully
excited while others are weakly present; (c) it is interesting to see that q1 initiates from a value and then
oscillates around an equilibriumwhich is not close to zero. q1 is the modal displacement corresponding to
the first horizontal driftingmode, which can only be picked up byA7 andA8 in the horizontal direction, at
Nodes 40 and 53. We show that in Figure 8 as an example, after the decoder, the reconstructed
displacement at Node 40 retains a reasonable vibration: initiating from a value and then oscillating
around zero.

As stated in equation (6a), in this trainedmodel, one has the flexibility of reconstructing different types
of responses. For example, we reconstruct the full-order displacement responses via xfullt ¼Φp qtð Þ.

Figure 7. The learned latent variables q¼ q1, q2, …, q10½ �T and _q¼ _q1, _q2, …, _q10½ �T (the x� axis in
each subplot is time step).

Figure 8. Reconstructed displacement at Node 40 (noted that in this example, as the acceleration is
normalized, the reconstructed displacement is only a scaled version).
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Figure 9 shows five consecutive snapshots of the full-order reconstructed displacements away from the
equilibrium position, and a more intuitive video is provided in the auxiliary files. It is observed that the
reconstruction preserves the legitimate spatial relationships between each node, due to the reason that the
decoder is imposed by invariant normal modes.We also did an experiment usingΦpþNN (normal modes
added by a trainable NN to consider the imperfection of the normalmodes) as a decoder. However, we find
and conclude that this is not an appropriate decoder since the learned NN breaks the inherent spatial
relationship between each node.

Since in this data set no reliable displacement measurements were achieved, in order to validate the
accuracy of reconstructed full-order displacement from limited acceleration data, we compare the initial
deformation (k¼ 0) with the one derived by the FEM model. The comparison result shown in Figure 10
indicates that the reconstructed displacement from the measured acceleration data highly agrees with the
computed one by the FEM model. Thus, it is valid to see that the proposed hybrid model is capable of
spatially extrapolating the dynamics and also of reconstructing other types of responses from a certain
type ofmeasurement (e.g., in this study case, the displacement and velocity are successfully reconstructed
from the acceleration).

Figure 9. The reconstruction of the full-order displacement responses (using the first five snapshots as an
example).
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5. Conclusions

In this article, we propose a framework for integrating physics-based modeling with deep learning for
modeling large civil/mechanical dynamical systems. The framework couples a dynamical VAE with a
Physics-informed Neural ODE scheme. The autoencoder encodes a limited amount of sensed data into an
estimate of the initial conditions of the latent space. This allows for the construction of a generative model
which aims at predicting the latent system dynamics via a learned Physics-informed Neural ODE. The
predicted dynamic response is then mapped back onto the measured physical space via an invariant
decoder, which is effectuated on the basis of the eigenmodes derived from a physics-based model. The
framework assimilates physics-related features from a physics-basedmodel into a deep learningmodel, to
yield a learned generative model, which is not eventually data-dependent and leads to an interpretable
architecture. The delivered models are able to reconstruct the full field structural response, meaning
response in unmeasured locations, given limited sensing locations. Future work will investigate boosting
the decoder via assimilation of a Bayesian NN.

6. Discussions

We want to further clarify that the extrapolation capability cannot be guaranteed if the dynamic regime
differs significantly from the training data we used to train the model, which is also typically the limitation
ofmost deep learningmethods. From the numerical study, it can be observed that the proposed framework
is able to capture unseen scenarios, when these do not excite a significantly higher level of nonlinearity.
This is why, we comment on the framework being applicable for mildly nonlinear systems, implying that
in presence of severe nonlinearity the extrapolation potential is limited.
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Figure 10. The comparisons of the initial deformation of the bridge between the reconstruction from the
proposed hybrid model (neural modal ODEs) and FEM model.

Data-Centric Engineering e34-19

https://doi.org/10.1017/dce.2022.35 Published online by Cambridge University Press

http://doi.org/10.1017/dce.2022.35
https://github.com/zlaidyn/Neural-Modal-ODE-Demo
https://doi.org/10.1017/dce.2022.35


References
Abgrall R, Amsallem D and Crisovan, R (2016) Robust model reduction by Ll-norm minimization and approximation via

dictionaries: Application to nonlinear hyperbolic problems.AdvancedModeling and Simulation in Engineering Sciences 3(1) doi
10.1186/s40323-015-0055-3, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84997090816&doi=10.1186/s40323-
015-0055-3&partnerID=40&md5=111e4c6afcabc3ea7450515a4dc4dc1d.

AmsallemD,ZahrMJandWashabaughK (2015) Fast local reduced basis updates for the efficient reduction of nonlinear systems
with hyper-reduction. Advances in Computational Mathematics 41(5), 1187–1230. http://doi.org/10.1007/s10444-015-9409-0

Bae HJ and Koumoutsakos P (2022) Scientific multi-agent reinforcement learning for wall-models of turbulent flows. Nature
Communications 13(1), 1–9.

Balajewicz M, Amsallem D and Farhat C (2016) Projection-based model reduction for contact problems. International Journal
for Numerical Methods in Engineering 106(8), 644–663.

Carlberg K, Farhat C, Cortial J and Amsallem D (2013) The gnat method for nonlinear model reduction: Effective implemen-
tation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 242, 623–647.

Chen RT, Rubanova Y, Bettencourt J and Duvenaud D (2018) Neural ordinary differential equations. arXiv preprint, arXiv:
1806.07366.

Craig RR and Kurdila AJ (2006) Fundamentals of Structural Dynamics. Hoboken, NJ: John Wiley & Sons.
CranmerM,Greydanus S,Hoyer S,Battaglia P, Spergel D andHo S (2020) Lagrangian neural networks. arXiv preprint, arXiv:

2003.04630.
Farrar CR andWorden K (2012) Structural Health Monitoring: A Machine Learning Perspective. Hoboken, NJ: John Wiley &

Sons.
Girin L, Leglaive S, Bie X, Diard J, Hueber T and Alameda-Pineda X (2020) Dynamical variational autoencoders: A

comprehensive review. arXiv preprint, arXiv:2008.12595.
Hinton GE and Zemel RS (1994) Autoencoders, minimum description length, and Helmholtz free energy. Advances in Neural

Information Processing Systems 6, 3–10.
KalmanRE (1960) On the general theory of control systems. In Proceedings First International Conference on Automatic Control.

Moscow: USSR, pp. 481–492.
Kamariotis A,Chatzi E and StraubD (2022) Value of information from vibration-based structural healthmonitoring extracted via

Bayesian model updating. Mechanical Systems and Signal Processing 166, 108465.
Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P,Wang S and Yang L (2021) Physics-informed machine learning. Nature

Reviews Physics 3(6), 422–440.
Karpatne A, Watkins W, Read J and Kumar V (2017) Physics-guided neural networks (PGNN): An application in lake

temperature modeling. arXiv preprint, arXiv:1710.11431.
KashinathK,MustafaM,Albert A,WuJL, Jiang C,Esmaeilzadeh S,Azizzadenesheli K,WangR,Chattopadhyay A, Singh

A,Manepalli A, Chirila D, Yu R,Walters R,White B, Xiao H, Tchelepi HA,Marcus P, Anandkumar A, Hassanzadeh P
and Prabhat (2021) Physics-informed machine learning: Case studies for weather and climate modelling. Philosophical
Transactions of the Royal Society A 379(2194), 20200093.

Kingma DP and Welling M (2013) Auto-encoding variational bayes. arXiv preprint, arXiv:1312.6114.
Krishnan RG, Shalit U and Sontag D (2015) Deep kalman filters. arXiv preprint, arXiv:1511.05121.
Krishnan R, Shalit U and Sontag D (2017) Structured inference networks for nonlinear state space models. In Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 31. San Francisco, California USA: AAAI PRESS.
Lai Z,Alzugaray I,ChliM andChatzi E (2020) Full-field structural monitoring using event cameras and physics-informed sparse

identification. Mechanical Systems and Signal Processing 145, 106905.
Lai Z,MylonasC,Nagarajaiah S andChatzi E (2021) Structural identificationwith physics-informed neural ordinary differential

equations. Journal of Sound and Vibration 508, 116196.
Lai Z and Nagarajaiah S (2019) Sparse structural system identification method for nonlinear dynamic systems with hysteresis/

inelastic behavior. Mechanical Systems and Signal Processing 117, 813–842.
Liang Y, Lee H, Lim S, Lin W, Lee K and Wu C (2002) Proper orthogonal decomposition and its applications—Part I: Theory.

Journal of Sound and Vibration 252(3), 527–544.
LiuW, Lai Z, Bacsa K and Chatzi E (2022) Physics-guided deep markov models for learning nonlinear dynamical systems with

uncertainty. Mechanical Systems and Signal Processing 178, 109276.
Lusch B, Kutz JN and Brunton SL (2018) Deep learning for universal linear embeddings of nonlinear dynamics. Nature

Communications 9(1), 1–10.
Marconia J,TisobP,QuadrelliaDEandBraghina F (2021)An enhanced parametric nonlinear reduced ordermodel for imperfect

structures using neumann expansion. arXiv preprint, arXiv:2102.01739.
MATLAB (2019) R2019b. Natick, MA: The MathWorks Inc.
Ou Y, Tatsis KE, Dertimanis VK, Spiridonakos MD and Chatzi EN (2021) Vibration-based monitoring of a small-scale wind

turbine blade under varying climate conditions. Part I: An experimental benchmark. Structural Control and Health Monitoring
28(6), e2660.

Peherstorfer B and Willcox K (2016) Dynamic data-driven model reduction: Adapting reduced models from incomplete data.
Advanced Modeling and Simulation in Engineering Sciences 3(1), 1–22.

e34-20 Zhilu Lai et al.

https://doi.org/10.1017/dce.2022.35 Published online by Cambridge University Press

https://doi.org/10.1186/s40323-015-0055-3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84997090816&doi=10.1186/s40323-015-0055-3&partnerID=40&md5=111e4c6afcabc3ea7450515a4dc4dc1d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84997090816&doi=10.1186/s40323-015-0055-3&partnerID=40&md5=111e4c6afcabc3ea7450515a4dc4dc1d
http://doi.org/10.1007/s10444-015-9409-0
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2003.04630
https://arxiv.org/abs/2003.04630
https://arxiv.org/abs/2008.12595
https://arxiv.org/abs/1710.11431
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1511.05121
https://arxiv.org/abs/2102.01739
https://doi.org/10.1017/dce.2022.35


Qian E, Kramer B, Peherstorfer B and Willcox K (2020) Lift & learn: Physics-informed machine learning for large-scale
nonlinear dynamical systems. Physica D: Nonlinear Phenomena 406, 132401.

Raissi M, Perdikaris P and Karniadakis GE (2019) Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378,
686–707.

RoehrlMA,Runkler TA,Brandtstetter V,TokicMandObermayer S (2020)Modeling system dynamics with physics-informed
neural networks based on Lagrangian mechanics. IFAC-PapersOnLine 53(2), 9195–9200.

Sankararaman S and Mahadevan S (2013) Bayesian methodology for diagnosis uncertainty quantification and health monitor-
ing. Structural Control and Health Monitoring 20(1), 88–106.

Satake N, SudaK-I,Arakawa T, Sasaki A and Tamura Y (2003) Damping evaluation using full-scale data of buildings in Japan.
Journal of Structural Engineering 129(4), 470–477.

Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics 656, 5–28.
Simpson T, Dervilis N and Chatzi E (2021) Machine learning approach to model order reduction of nonlinear systems via

autoencoder and lstm networks. Journal of Engineering Mechanics 147(10), 04021061.
StrpmmenEN (2014) The finite elementmethod in dynamics. In Structural Dynamics. Cham: Springer International, pp. 161–204.

https://doi.org/10.1007/978-3-319-01802-7_4
Sun L,Li Y,ZhuWand ZhangW (2020) Structural response reconstruction in physical coordinate from deficient measurements.

Engineering Structures 212, 110484.
Swischuk R, Kramer B, Huang C and Willcox K (2020) Learning physics-based reduced-order models for a single-injector

combustion process. AIAA Journal 58(6), 2658–2672.
Tatsis K,AgathosK,Chatzi E andDertimanis V (2022) A hierarchical output-only Bayesian approach for online vibration-based

crack detection using parametric reduced-order models.Mechanical Systems and Signal Processing 167, 108558. https://doi.org/
10.1016/j.ymssp.2021.108558. Available at https://www.sciencedirect.com/science/article/pii/S0888327021008967.

Vettori S, DiLorenzo E, Peeters B and Chatzi E (2022) Virtual sensing for wind turbine blade full field response estimation in
operational modal analysis. In Model Validation and Uncertainty Quantification, vol. 3. Cham: Springer, pp. 49–52.

Vlachas PR, Arampatzis G, Uhler C and Koumoutsakos P (2022) Multiscale simulations of complex systems by learning their
effective dynamics. Nature Machine Intelligence 4(4), 359–366. http://doi.org/10.1038/s42256-022-00464-w

Vlachas K, Tatsis K, Agathos K, Brink AR and Chatzi E (2021) A local basis approximation approach for nonlinear parametric
model order reduction. Journal of Sound and Vibration 502, 116055.

Vlachas K, Tatsis K, Agathos K, Brink AR, Quinn D and Chatzi E (2022) On the coupling of reduced order modeling with
substructuring of structural systems with component nonlinearities. In Dynamic Substructures, vol. 4. Cham: Springer,
pp. 35–43.

Wagg D, Worden K, Barthorpe R and Gardner P (2020) Digital twins: State-of-the-art and future directions for modeling and
simulation in engineering dynamics applications. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B:
Mechanical Engineering 6(3), 030901.

Waisman H, Chatzi E and Smyth AW (2010) Detection and quantification of flaws in structures by the extended finite element
method and genetic algorithms. International Journal for Numerical Methods in Engineering 82(3), 303–328.

Willard J, Jia X,Xu S, SteinbachM and Kumar V (2020) Integrating physics-based modeling with machine learning: A survey.
arXiv preprint arXiv:2003.04919 1(1), 1–34.

Wu JL, Xiao H and Paterson E (2018) Physics-informed machine learning approach for augmenting turbulence models: A
comprehensive framework. Physical Review Fluids 3(7), 074602.

Yildiz C, Heinonen M and Lähdesmäki H (2019) Ode2vae: Deep generative second order odes with bayesian neural networks.
Zhang R, Liu Y and Sun H (2020) Physics-guided convolutional neural network (phycnn) for data-driven seismic response

modeling. Engineering Structures 215, 110704.
Zhu Y, Zabaras N, Koutsourelakis P-S and Perdikaris P (2019) Physics-constrained deep learning for high-dimensional

surrogate modeling and uncertainty quantification without labeled data. Journal of Computational Physics 394, 56–81.

Cite this article: Lai Z, Liu W, Jian X, Bacsa K, Sun L and Chatzi E (2022). Neural modal ordinary differential equations:
Integrating physics-based modeling with neural ordinary differential equations for modeling high-dimensional monitored
structures. Data-Centric Engineering, 3, e34. doi:10.1017/dce.2022.35

Data-Centric Engineering e34-21

https://doi.org/10.1017/dce.2022.35 Published online by Cambridge University Press

https://doi.org/10.1007/978-3-319-01802-7_4
https://doi.org/10.1016/j.ymssp.2021.108558
https://doi.org/10.1016/j.ymssp.2021.108558
https://www.sciencedirect.com/science/article/pii/S0888327021008967
http://doi.org/10.1038/s42256-022-00464-w
https://arxiv.org/abs/1806.07366
https://doi.org/10.1017/dce.2022.35
https://doi.org/10.1017/dce.2022.35

	Neural modal ordinary differential equations: Integrating physics-based modeling with neural ordinary differential equations for modeling high-dimensional monitored structures
	Impact Statement
	Introduction
	Neural Modal ODEs
	Encoder (inference model)
	Modeling latent dynamics via Pi-Neural ODEs
	Decoder
	Loss function
	Prediction of learned dynamics

	Demonstrative Example of a 4-DOF Structural System
	Illustration on a Model Cable-Stayed Bridge
	Experimental setup and data description
	Finite element modeling
	Model implementation
	Results

	Conclusions
	Discussions
	Supplementary Materials
	Author Contributions
	Competing Interests
	Data Availability Statement
	Funding Statement
	References


