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Abstract

Given maps f1, . . . , fn : X → Y between (finite and connected) graphs, with n ≥ 3 (the case n = 2 is well
known), we say that they are loose if they can be deformed by homotopy to coincidence free maps, and
totally loose if they can be deformed by homotopy to maps which are two by two coincidence free. We
prove that: (i) if Y is not homeomorphic to the circle, then any maps are totally loose; (ii) otherwise, any
maps are loose and they are totally loose if and only if they are homotopic.
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1. Introduction and main theorem

Let f1, . . . , fn : X → Y be n ≥ 2 (continuous) maps between topological spaces. We
consider two kinds of coincidences for these maps:

• the multiple coincidence set, Coin( f1, . . . , fn) = {x ∈ X : f1(x) = · · · = fn(x)};
• the partial coincidence set, C2( f1, . . . , fn) =

⋃
i�j Coin( fi, fj).

Let f = ( f1, . . . , fn) : X → Yn be the map defined by f (x) = ( f1(x), . . . , fn(x)), where
Yn denotes the Cartesian product of n copies of Y. Then:

• Coin( f1, . . . , fn) = ∅ if and only if f (X) ⊂ Yn \ Δ, where Δ is the diagonal in Yn, that
is, Δ = {(y, . . . , y) ∈ Yn : y ∈ Y};

• C2( f1, . . . , fn) = ∅ if and only if f (X) ⊂ Confn(Y), where Confn(Y) is the n-points
configuration space of Y, that is,

Confn(Y) = {(y1, . . . , yn) ∈ Yn : yi � yj if i � j}.

We study, in a specific setting, the conditions under which the maps f1, . . . , fn can
be deformed by homotopy to avoid coincidences of one kind or another. To make the
language easier, we say that the maps f1, . . . , fn are:

• loose if there exist f ′1 � f1, . . . , f ′n � fn such that Coin( f ′1, . . . , f ′n) = ∅;
• totally loose if there exist f ′1 � f1, . . . , f ′n � fn such that C2( f ′1, . . . , f ′n) = ∅.
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2 M. C. Fenille [2]

The goal is to provide conditions under which given maps f1, . . . , fn : X → Y between
graphs are loose or totally loose. By a graph, we mean a finite and connected
one-dimensional CW-complex.

For n ≥ 3 maps f1, . . . , fn to be loose, it suffices that two of them are loose. In
fact, if (without loss of generality) f1, f2 are loose, then there exist maps f ′1 � f1 and
f ′2 � f2 such that Coin( f ′1, f ′2) = ∅, which forces Coin( f ′1, f ′2, f3, . . . , fn) = ∅. However,
for f1, . . . , fn to be totally loose, it is necessary that fi, fj be loose whenever i � j, with
the ‘loosening’ being realised by a same set of maps f ′1, . . . , f ′n .

Of course, totally loose implies loose. The converse is not true; for instance,
consider the maps f1, f2, f3 : S1 → S1 defined by f1 = identity and f2 = f3 = constant.
The triple f1, f2, f3 is loose, since the pair ( f2, f3) is loose ( f2 and f3 can be deformed
to different constant maps). However, f1, f2, f3 are not totally loose; in fact, since
deg( f1) = 1, and f2 and f3 are constant, it follows from [3, Proposition 8.4, page 23]
that the pairs ( f1, f2) and ( f1, f3) have one essential coincidence each.

For n = 2, we have Coin( f1, f2) = C2( f1, f2) and loose = totally loose. In this case,
[1, Theorem 3.1] and [4, Theorem 2.4] provide the following solution.

THEOREM 1.1. Let f1, f2 : X → Y be maps between graphs. If Y is not homeomorphic
to the circle, then f1, f2 are loose. Otherwise, f1, f2 are loose if and only if f1 � f2.

The following theorem answers the problem for n ≥ 3.

THEOREM 1.2 (Main Theorem). Let f1, . . . , fn : X → Y be maps between graphs,
n ≥ 3.

(1) If Y is not homeomorphic to the circle, then f1, . . . , fn are totally loose.
(2) If Y is homeomorphic to the circle, then f1, . . . , fn are loose. Furthermore,

f1, . . . , fn are totally loose if and only if they are all homotopic.

In each of Sections 2–4, we prove a part of Theorem 1.2.

2. When the range is not a circle

Let f1, . . . , fn : X → Y be maps between graphs and suppose that Y is not homeo-
morphic to the circle S1. We will prove that f1, . . . , fn are totally loose.

If Y is contractible, the result is trivial. Otherwise, we can change the cellular
decomposition of Y, if necessary, so that no edge is a loop and every edge has a vertex
of degree at least three. Figure 1 illustrates such a change of cellular decomposition.

Let α1, . . . ,αp be the edges of X. Each αi can be identified with a (one-to-one, except
possibly at the final points) parametrisation α̂i : [0, 1]→ X. So a map f : X → Y may
be seen as a family f 1, . . . , f p : [0, 1]→ Y of maps defined as follows: if x ∈ αk, then
x = α̂k(tx) for some tx ∈ [0, 1] and f k(x) = f (α̂k(tx)).

Following [4], we can suppose (up to homotopy) that C2( f1, . . . , fn) is finite and
does not contain vertices of X and that f (C2( f1, . . . , fn)) does not contain vertices of Y.

Suppose x0 ∈ C2( f1, . . . , fn). Then there exists a unique edge α of X such that
x0 ∈ α (in fact, x0 is in the interior of α) and a unique t0 ∈ (0, 1) such that x0 = α̂(t0).
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change

FIGURE 1. A change of cellular decomposition.

FIGURE 2. The graph of the maps fi|J0 .

Furthermore, there exists ε > 0 such that I0 = [t0 − ε, t0 + ε] ⊂ (0, 1) and for
J0 = α̂(I0), one has J0 ∩ C2( f1, . . . , fn) = {x0}.

Without loss of generality, we can suppose that x0 ∈ Coin( f1, f2). Let β be the
unique edge of Y containing the point y0 = f1(x0) = f2(x0) in its interior. Without loss
of generality, we can suppose that, for a certain n0 ∈ {2, . . . , n}, we have fi(x0) ∈ β for
1 ≤ i ≤ n0 and fj(x0) � β for j > n0. We can decrease ε, if necessary, so that

fi(J0) ⊂ int(β) for 1 ≤ i ≤ n0 and fj(J0) ⊂ Y \ β for j > n0.

Then there exists an open set V ⊂ Y such that β ⊂ V and fj(J0) ⊂ Y \ V for j > n0.
We will prove that f1, . . . , fn0 can be deformed just in the interior of J0 to maps

f ′1 � f1, . . . , f ′n0
� fn0 such that J0 ∩ C2( f ′1, . . . , f ′n0

) = ∅ and f ′i (J0) ⊂ V , which forces

J0 ∩ C2( f ′1, . . . , f ′n0
, fn0+1, . . . , fn) = ∅.

Each restricted map fi|J0 can be seen as a map from the closed arc J0 ⊂ im(α) into a
closed arc K0 ⊂ int(β). Hence, by composing this map with parametrisations of α and
β, it can be seen as a map between closed intervals, and hence we can draw its graph
as a subset of a rectangle. Figure 2 shows a scenario in which n0 = 6 and we have
f1(x0) = f2(x0) = f3(x0) = y0 � y′0 = f4(x0) = f5(x0) and f6 coincides with none of the
other maps in J0.

We remark that the map f3, whose graph corresponds to the blue solid line, can be
deformed to a map f ′3, whose graph corresponds to the blue dashed line. This generates
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FIGURE 3. Maps with just a simple coincidence.

two new partial coincidences. However, we can decrease the interval I0, and so the
arc J0, in such a way that x0 is the unique partial coincidence in J0.

This kind of deformation can be done in a general situation. Therefore, up to
homotopy, we can assume that all the partial coincidences are simple coincidences,
that is, coincidences for pairs of maps, but not for triples.

For instance, in Figure 2, after deforming f3 to f ′3, x0 is a coincidence for the pairs
( f1, f2) and ( f4, f5), but there are no three maps that coincide at x0. Of course, the
map f4 could be deformed so that the coincidence for ( f4, f5) goes from x0 to a nearby
point x1, and thus x0 is a coincidence just for ( f1, f2). However, this procedure is not
relevant. In fact, we will show that we can annihilate a simple coincidence, even if it is
a coincidence for more than one pair of maps. Therefore, a general situation will look
like the one shown in Figure 3.

Thus, we have reduced the problem to the annihilation of isolated simple coinci-
dences. We solve this problem using the idea of Staecker in [4].

One of the vertices of β, say v0, is also a vertex of two more edges of Y, say γ and σ.
For each pair of maps fi, fj for which x0 is a coincidence, we will deform these maps
just on the interior of J0 as follows: we push fi to γ without leaving the neighbourhood
V and then we pull back, and we push fj to σ without leaving V and then we pull back.
Figure 4 shows how this can be done for each pair fi, fj to annihilate the coincidence.
In Figure 4, solid lines represent images in β, dashed lines in γ and dotted lines in σ.
Thus, the maps f1, f3 and f4 are ‘deflected’ through γ, and the maps f2 and f5 are
‘deflected’ through σ. The map f6 does not need to be deformed.

We remark that the map f3 can be either deformed through γ or deformed through
σ, independently of the other maps, since it does not coincide with any other. However,
for the pair f1, f2, if f1 is deformed through γ, then f2 must be deformed through σ
and vice versa. The same happens for the pair f4, f5. We emphasise that the choice of
which edge will be used to deform f1 does not interfere with the choice of which edge
will be used to deform f4. This means that the simple coincidences can be annihilated
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FIGURE 4. Deformations to annihilate coincidences.

independently of each other. Therefore, it is easy to see that the procedure works
regardless of the number of pairs of maps with coincidences, that is, the procedure
works for any n0.

Finally, since the point x0 is arbitrary, the same technique can be used for each
isolated partial coincidence x ∈ C2( f1, . . . , fn). Therefore, all the partial coincidences
can be annihilated by way of local deformations of the maps (without producing new
coincidences).

3. More than two maps into the circle are loose

In this section, we prove the first statement of item (2) of Theorem 1.2.
We consider the circle S1 with its minimal cellular decomposition, namely,

S1 = s0 ∪ s1. We take a 0-cell x0 in X and the 0-cell s0 in S1 to be base points for X and
S1, respectively. Up to homotopy, each map f : X → S1 given a priori may be supposed
to be cellular and so based (that is, f (x0) = s0). Thus, f induces a homomorphism

f# : π1(X, x0)→ π1(S1, s0).

To prove that any maps f1, . . . , fn : X → S1, with n ≥ 3, are loose, it is sufficient to
prove that f1, f2, f3 are loose. Moreover, as we have seen, we may suppose that these
maps take x0 to s0. We consider the map

f : X → M = S1 × S1 × S1 given by f (x) = ( f1(x), f2(x), f3(x)).

We take s0 = (s0, s0, s0) ∈ M to be the base point of M. Then f is a based map and so it
induces the homomorphism f# : π1(X, x0)→ π1(M, s0), which is given, up to the natu-
ral isomorphism π1(M, s0) ≈ π1(S1, s0) × π1(S1, s0) × π1(S1, s0) by f# = ( f1# , f2# , f3# ).

The space M = S1 × S1 × S1 corresponds to the quotient space obtained from
the cube Q = [0, 1]3 via the identifications (x, y, 0) ∼ (x, y, 1), (x, 0, z) ∼ (x, 1, z) and
(0, y, z) ∼ (1, y, z), that is, the identifications of the opposite faces.
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FIGURE 5. The cube Q with three distinguished squares.

Figure 5 illustrates the cube Q and three inside squares, namely: Sx (with equation
x = 1/2, and so orthogonal to the x-axis), Sy (with equation y = 1/2, and so orthogonal
to the y-axis) and Sz (with equation z = 1/2, and so orthogonal to the z-axis). After
the identifications of the opposite faces of Q, each of these squares becomes a
two-dimensional torus embedded into the three-dimensional torus M, labelled Tx, Ty

and Tz, respectively.
To obtain the space M \ Δ, we delete the eight vertices of Q (since all of them

correspond to the point s0 in M, which belongs to the diagonal of Q) and also
the diagonal of Q. Only then do we identify the opposite faces. After deleting the
vertices of Q and before identifying the opposite faces, we can ‘break walls’ from each
vertex inside the corresponding octant, so providing a strong deformation retraction
of Q \ {vertices} onto Sx ∪ Sy ∪ Sz. After identifying the opposite faces, this provides
a strong deformation retraction of M \ {s0} onto Tx ∪ Ty ∪ Tz. Since the diagonal of
Q meets Sx ∪ Sy ∪ Sz just in the central point p0 = (1/2, 1/2, 1/2), it follows that the
construction gives a strong deformation retraction of M \ Δ onto (Tx ∪ Ty ∪ Ty) \ {p0}.
In its turn, (Tx ∪ Ty ∪ Ty) \ {p0} has a strong deformation retraction (by way of a ‘radial
retraction’) to the graph L illustrated in Figure 6 on the right. The dashed edge c does
not belong to L. Moreover, the two vertices of each edge must be identified with each
other.

Following [2, Section 3], we attach an arc c ⊂ M (which meets Δ just in s0 and
meets L just in a point) to L so obtaining a graph G = L ∪ c ⊂ M and a strong
deformation retraction of {s0} ∪ (M \ Δ) onto G. The graph G is homotopy equivalent
to the bouquet of seven circles (see Figure 7). It follows that π1(G, s0) is the free group
F7 = F(z1, . . . , z7) of rank 7, in which the generators correspond to the loops indicated
in the second column of Table 1. Let � : (G, s0) ↪→ (M, s0) be the natural inclusion.
The third column of Table 1 indicates the images �#(zi) ∈ π1(M, s0) ≈ Z × Z × Z. It is
obvious that �# is surjective.
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FIGURE 6. The retractions M \ Δ→ (Tx ∪ Ty ∪ Ty) \ {p0} → L.

FIGURE 7. The graph G = L ∪ c ⊂ M.

TABLE 1. The homomorphism �#.

Generator Loop �#( · )

z1 cc1c2c̄ (0, 1, 0)
z2 cc1c3c4c̄1c̄ (0, 0, 1)
z3 cc1c3c5c6c̄3c̄1c̄ (1, 0, 0)
z4 cc1c3c5c7c8c̄5c̄3c̄1c̄ (0, 1, 0)
z5 cc1c3c5c7c9c10c̄7c̄5c̄3c̄1c̄ (0, 0,−1)
z6 cc1c3c5c7c9c11c12c̄9c̄7c̄5c̄3c̄1c̄ (1, 0, 0)
z7 cc1c3c5c7c9c11c̄ (1, 1, 0)

To fill the third column of the table, we consider the correspondence between the
generators (1, 0, 0), (0, 1, 0) and (0, 0, 1) of Z × Z × Z ≈ π1(M, s0) and the based loops
that traverse the 3-torus M in the x-direction, in the y-direction and in the z-direction,
respectively. As indicated in Figure 5, we consider the standard oriented basis for the
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three-dimensional space. Thus, c5c6 and c12c11 are in the x-direction, c1c2 and c8c7 are
in the y-direction, and c4c3 and c̄10c̄9 are in the z-direction.

Since the group π1(X, x0) is free and �# is surjective, there exists a homomorphism
φ : π1(X, x0)→ F7 such that �# ◦ φ = f#. In fact, for each free generator σ of π1(X, x0),
we choose a word w(σ) ∈ F7 such that �#(w(σ)) = f#(σ). Then we extend the function
σ �→ w(σ) to a homomorphism φ : π1(X, x0)→ F7 satisfying �# ◦ φ = f#. This gives
the commutative diagram:

π1(G, s0) ≈ F7

�#

��
π1(X, x0)

f#
��

φ
�������������
π1(M, s0)

Since X and G are graphs, φ may be realised as the homomorphism induced on
fundamental groups by a cellular map ϕ : (X, x0)→ (G, s0), that is, φ = ϕ#.

For each i = 1, 2, 3, we consider the composite f ′′i = pi ◦ � ◦ ϕ : X → G→ M → S1,
where pi : M → S1 is the projection onto the ith coordinate. Then

f ′′i# = pi# ◦ �# ◦ ϕ# = pi# ◦ f# = fi# .

It follows that f ′′i � fi (since the homotopy classes of maps from a graph into the circle
are uniquely defined by the homomorphisms induced on the fundamental groups).

Now we consider the composite

f ′ = ι ◦ κ ◦ r ◦ ϕ : X → G→ L ↪→ M \ Δ ↪→ M,

where ι and κ are the natural inclusions and r : G→ L is the natural strong deformation
retraction (namely, the one obtained by retracting the arc c through itself). It is obvious
that ι ◦ κ ◦ r � � and hence f ′ � f ′′ = ( f ′′1 , f ′′2 , f ′′3 ).

Finally, for each i = 1, 2, 3, we define f ′i = pi ◦ f ′ : X → M → S1. Then f ′i � fi.
Therefore, we have defined maps f ′1, f ′2, f ′3 : X → S1 such that f ′1 � f1, f ′2 � f2, f ′3 � f3
and Coin( f ′1, f ′2, f ′3) = ∅, since f ′ = ( f ′1, f ′2, f ′3) : X → M lifts to κ ◦ r ◦ ϕ through ι.

4. Totally loose maps into the circle are homotopic

In this section, we prove the second statement of item (2) of Theorem 1.2.
Let f1, . . . , fn : X → S1 be maps from a graph into the circle, which we may suppose

to be cellular and so based. As in Section 3, we consider the based spaces (X, x0) and
(S1, s0).

Let {a1, b1}, . . . , {ak, bk} be all the k := n! /2(n − 2)! subsets of {1, . . . , n} of cardi-
nality two. For each i = 1, . . . , k, let pi = (ai, bi) be a fixed ordering for the elements
ai, bi. We define the map f : X → (S1 × S1)k by setting

f (x) = ( fa1 (x), fb1 (x), fa2 (x), fb2 (x), . . . , fak (x), fbk (x)).

The space S1 × S1 \ Δ strong deformation retracts to a subspace L ⊂ S1 × S1

homeomorphic to S1. This subspace may be extended, by attaching an arc c, to a graph
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FIGURE 8. The maps S1 × S1 \ Δ→ L ↪→ G.

G = L ∪ c ⊂ S1 × S1 containing the point s0 = (s0, s0) and so that there exists a strong
deformation retraction G→ L (see Figure 8).

The natural inclusion � : G→ S1 × S1 induces the homomorphism

�# : Z ≈ π1(G, s0)→ π1(S1 × S1, s0) ≈ Z × Z given by 1 �→ (1, 1),

since the loop cc1c2c̄ makes a longitudinal turn and a latitudinal turn in the torus
S1 × S1 (see Figure 8 again). This homomorphism was described in [1, Section 3].

It follows that the inclusion �k : Gk ↪→ (S1 × S1)k induces the homomorphism

�k# : Zk ≈ π1(Gk, sk
0)→ π1((S1 × S1)k, sk

0) ≈ (Z × Z)k

given by e1 �→ (1, 1, 0, 0, . . . , 0, 0), . . . , ek �→ (0, 0, . . . , 0, 0, 1, 1), where {e1, . . . , ek} is
the canonical base of the free abelian group Zk.

Suppose f1, . . . , fn are totally loose. Then there exist maps f ′′1 � f1, . . . , f ′′n � fn
such that im( f ′′) ⊂ (S1 × S1 \ Δ)k, where

f ′′ = ( f ′′a1
, f ′′b1

, f ′′a2
, f ′′b2

, . . . , f ′′ak
, f ′′bk

) : X → (S1 × S1)k.

For each index i, we define the map f ′i : (X, x0)→ (G, s0) to be a cellular approx-
imation of the composite ι ◦ ρ ◦ f ′′i : X → G, where ρ : S1 × S1 \ Δ→ L is a strong
deformation retraction and ι : L ↪→ G is the natural inclusion. Then � ◦ f ′i � fi, which
implies that the induced homomorphism fi# = �# ◦ f ′i# : π1(X, x0)→ π1(S1 × S1, s0).

Consider the map

f ′ = ( f ′a1
, f ′b1

, f ′a2
, f ′b2

, . . . , f ′ak
, f ′bk

) : X → Gk.

We have f# = �k# ◦ f ′# , which forces

im( f#) ⊂ im(�k#) = 〈(1, 1, 0, 0, . . . , 0, 0), . . . , (0, 0, . . . , 0, 0, 1, 1)〉.
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10 M. C. Fenille [10]

Thus, fai# = fbi# for each i = 1, . . . , k and, since we are dealing with maps between
graphs, it follows that fai � fbi . Therefore, the maps f1, . . . , fn are all homotopic.

Conversely, we will prove that n copies of a map f : X → S1 are totally loose, which
is equivalent to saying that any homotopic maps f1, . . . , fn : X → S1 are totally loose.
We consider n points 0 = t1 < t2 < · · · < tn of the interval [0, 1). For each j = 1 . . . , n,
we define the map f ′j : X → S1 by setting f ′j (x) = f (x)e2πitj . In other words, fj is the
composite of f with the clockwise rotation of angle 2πtj. Of course, each f ′j � f and,
moreover, C2( f ′1, . . . , f ′n) = ∅.
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