σ_{4} -ACTIONS ON HOMOTOPY SPHERES

CHAO-CHU LIANG

Let σ_4 denote the group of all permutations of $\{a, b, c, d\}$. It has 24 elements, partitioned into five conjugacy classes: (1) the identity 1; (2) 6 transpositions: $(ab), \ldots, (cd)$; (3) 8 elements of order 3: $(abc), \ldots, (bcd)$; (4) 6 elements of order 4: $(abcd), \ldots, (adcb)$; (5) 3 elements of order 2: x = (ab)(cd), y = (ac)(bd), z = (ad)(bc).

In this paper, we study the differentiable actions of σ_4 on odd-dimensional homotopy spheres modelled on the linear actions, with the fixed point set of each transposition a codimension two homotopy sphere.

A simple (2n-1)-knot is a differentiable embedding of a homotopy sphere K^{2n-1} into a homotopy sphere Σ^{2n+1} such that $\pi_j(\Sigma - K) = \pi_j(S^1)$ for j < n. For $n \ge 3$, the isotopy type of a simple (2n-1)-knot is determined by any one of its Seifert matrices, an integral matrix with

$$\det (A + \epsilon A') = \pm 1,$$

where A' denotes the transpose of A and $\epsilon = (-1)^n$ [5, p. 186].

For $g \in \sigma_4$, we let F(g) denote the fixed point set of g under the σ_4 -action.

In this paper, we will construct infinitely many distinct differentiable σ_4 -actions on (2n+1)-homotopy spheres Σ^{2n+1} with F((ab)) a simple (2n-1)-knot for $n \geq 3$. Actually, for n=2k, we will show that the cobordism classes of σ_4 -action on (4k+1)-homotopy spheres (see the definition in Section 3 below) contains infinitely many copies of the integers \mathbb{Z} .

1. In this section, we review the linear representations of σ_4 . We know that σ_4 is a semi-direct product of the normal subgroup $H = \{1, x, y, z\}$ and the subgroup σ_3 generated by (ab) and (abc).

There are five inequivalent irreducible real representations for σ_4 : the trivial representation I; the sign representation ϵ mapping odd permutations to -1, and even ones to 1; the 2-dimensional representation θ induced from the one on $\sigma_4/H = \sigma_3$ by sending (ab) to a reflection along an axis and (abc) to the rotation by $2\pi/3$; a 3-dimensional representation ψ permuting four vectors $\{e_1, e_2, e_3, e_4\}$ in \mathbb{R}^3 with the first three linearly independent and $e_1 + e_2 + e_3 + e_4 = 0$, e.g. with respect to the basis

Received February 27, 1979. This research was supported by the University of Kansas General Research Fund.

 $\{e_1, e_2, e_3\}$ we have

$$(ab) \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, (abc) \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \text{ and } (ab)(cd) \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix},$$

[11, p. 77]; and $\epsilon \psi$, the tensor product of ϵ and ψ . We have the following table (compare the character table in [9, p. 43]):

	I	ϵ	θ	ψ	$\epsilon \psi$
dim of representation	1	1	2	3	3
codim of $F((ab))$	0	1	1	1	2
codim of $F((abc))$	0	0	2	2	2
codim of $F(x)$	0	0	0	2	2

Therefore, we have the following six types of linear action of σ_4 on \mathbb{R}^m with codim F((ab)) = 2: (0) $(m-2)I + \epsilon + \epsilon$; (I) $(m-3)I + \epsilon + \theta$; (II) $(m-4)I + \theta + \theta$; (III) $(m-3)I + \epsilon \psi$; (IV) $(m-4)I + \epsilon + \psi$; (V) $(m-5)I + \theta + \psi$.

We refer to a σ_4 -action as one of type (r) (where r is one of the above six types) if the slice representation at a fixed point [1, p. 171] is the same as that of the linear action of type (r). Types (0), (I), and (II) have been studied in [7], [8].

By examining the character table in [9, p. 43], we see the two restrictions $\epsilon \psi | \sigma_3 = \epsilon + \theta$ and $\psi | \sigma_3 = I + \theta$.

2. A σ_4 -action of type (0) is a semifree involution, and a σ_4 -action of type (I) or (II) is a σ_3 -action. Thus the following theorem is essentially proved in [7] and [8].

THEOREM 1. Let C be a Seifert matrix of the form

$$C = A(A - \epsilon A')^{-1}A$$

with

$$|\det (A + \epsilon A')| = 1 = |\det (A - \epsilon A')|.$$

Then there exists a differentiable σ_4 -action of type (r) (r = 0, I, II) on a homotopy sphere Σ^{2n+1} , $n \geq 3$, such that the simple knot $(\Sigma, F((ab)))$ has C as its Seifert matrix.

Recall that σ_4 can be expressed as the semi-direct product of H and σ_3 , i.e., $0 \to H \to \sigma_4 \to \sigma_3 \to 0$, with $\sigma_3 = \{1, t, t^2, w_1, w_2, w_3\}$, where $P((ab)) = w_1, P((abc)) = t$, etc.

THEOREM 2. Let r = III, IV, or V. Let C be a Seifert matrix of the form $\begin{pmatrix} B & O \\ O - B \end{pmatrix}$ with

$$B = A(A - \epsilon A')^{-1}A,$$

and

$$|\det (A + \epsilon A')| = 1 = |\det (A - \epsilon A')|.$$

Then there exists a differentiable σ_4 -action of type (r) on a homotopy sphere Σ^{2n+1} , $n \geq 3$, such that the simple knot $(\Sigma, F((ab)))$ has C as its Seifert matrix.

Proof. Consider a linear action of type (III), (IV) or (V) on a standard sphere. Since $H = Z_2 + Z_2$, and codim $F(x) = \operatorname{codim} F(y) = \operatorname{codim} F(z) = 2$, the orbit space $S^{2n+1}/H = S^{2n+1}/\{x\}/\{y\}$ is again a sphere M_1 . Also, we have an induced σ_3 -action on $M_1 = S^{2n+1}/H$. But we have

$$0 \to Z_3 \to \sigma_3 \to Z_2 \to 0$$
.

Thus $t \in \sigma_3$ gives rise to a Z_3 -action on M_1 . Finally, w_1 generates an involution T on $M_1/\{t\}$. That is, we have the following sequence, where each φ_i is an orbit map.

$$S^{2n+1} \xrightarrow{\varphi_1} S^{2n+1}/H \xrightarrow{\varphi_2} S^{2n+1}/H/\{t\} \xrightarrow{\varphi_3} S^{2n+1}/\sigma_4$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$M_1 \qquad \qquad M_2 \qquad M_3$$

Using the explicit expression of the representations mentioned in Section 1, it is easy to see that $\varphi_1(F((ab)))$ is a (2n-1)-disk in M_1 , and $\varphi_2\varphi_1(F((ab)))$ is a (2n-1)-disk D_1 in M_2 . Also, $\varphi_1(F(x) \cup F(y) \cup F(z))$ is a union of three (2n-1)-disks whose common intersection $\varphi_1(F(H))$ is a (2n-2)-sphere, and $\varphi_2\varphi_1(F(x) \cup F(y) \cup F(z))$ is a (2n-1)-disk D_2 in M_2 . Furthermore, the (2n-1)-sphere $D_1 \cup D_2$ is the fixed point set of the involution T on M_2 . We write $D_1' = \varphi_3(D_1)$ and $D_2' = \varphi_3(D_2)$ in $M_3 = S^{2n+1}/\sigma_4$.

If the action is of type (III) or (IV), then codim F((abc)) = 2. Thus M_2 is a sphere, and so is M_3 . But when the action is of type (V), then codim F((abc)) = 4, and M_2 is no longer a manifold.

Let W be a small open neighborhood of D_2' in M_3 . Then we define $U = (\varphi_3 \circ \varphi_2 \circ \varphi_1)^{-1}(W)$.

From the principal orbit type theorem [1, p. 179], we know that we may embed a disk D^{2n+1} in M_3 near D_1' such that

$$D^{2n+1} \cap \varphi_3 \varphi_2 \varphi_1(F(g)) = \emptyset$$
 for all $g \in \sigma_4$ and $D^{2n+1} \cap W = \emptyset$.

We construct a simple knot K^{2n-1} in D^{2n+1} with A as its Seifert matrix, [3, p. 255-257]. We then take the connected sum of K^{2n-1} and D_1' in M_3 (the connected sum operation # takes place away from $\varphi_3\varphi_2\varphi_1(F(g))$ and W). Now we use $D_2' \cup D_1' \# K^{2n-1}$ as the branched point set to construct

a 2-fold branched covering

$$\beta_3$$
 $\Sigma_2 \to M_3$

[2]. The branched covering transformation gives us an involution T' on Σ_2 .

Since a neighborhood of $\varphi_3\varphi_2\varphi_1(F((abc)))$ is disjoint from K^{2n-1} , we may identify $\varphi_2\varphi_1(F((abc)))$ with

$$\beta_3^{-1}\varphi_3\varphi_2\varphi_1(F((abc))).$$

We construct a 3-fold branched covering

$$egin{array}{c} eta_2 \ \Sigma_1
ightarrow \Sigma_2 \end{array}$$

with $\varphi_2\varphi_1(F((abc)))$ as branched point set. In [8], we showed that Σ_1 is a homotopy sphere, and that we may lift the involution T' to Σ_1 , which together with the branched covering transformation Z_3 on Σ_1 gives us a σ_3 -action Σ_1

As in the preceding paragraph, we may identify $(\varphi_3\varphi_2)^{-1}(W)$ with $(\beta_3\beta_2)^{-1}(W)$. We then construct an H-action on a homotopy sphere Σ with an orbit space Σ_1 as follows: we first use $\varphi_1(F(z) \cup F(y))$ as branched point set to construct a 2-fold branched cover

$$egin{array}{c} lpha_2 \ \Sigma'
ightarrow \Sigma_1 \end{array}$$

with associated involution G_2 , then use $\alpha_2'\varphi_1(F(x))$ as branched point set to construct a 2-fold branched cover

$$\begin{array}{c} \alpha_1 \\ \Sigma \to \Sigma' \end{array}$$

with involution G_1 . We define $\beta_1 = \alpha_2 \circ \alpha_1$. It is easy to see that the H-action on

$$U' = \beta_1^{-1}(\varphi_3\varphi_2)^{-1}(W)$$

is equivalent to the H-action on

$$U = (\varphi_3 \varphi_2 \varphi_1)^{-1}(W).$$

The map of the complement $\Sigma - U' \to \Sigma' - \varphi(U')$ is a regular covering. According to [1, p. 64-67], we may lift G_2 to $\Sigma - U'$ inducing an H'-action on $\Sigma - U'$, where H' is a semidirect product of Z_2 and Z_2 . Since the lifting is unique [1, p. 66], and we may take $H|\partial U = H'|\partial U$, then H' = H.

Now we have an H-action on Σ , and a σ_3 -action on $\Sigma_1 = \Sigma/H$. We then use the argument in the preceding paragraph to lift the σ_3 -action via the regular covering

$$\Sigma - U' \xrightarrow{\beta_1} \Sigma_1 - \beta_1(U'),$$

thus inducing a *J*-action on $\Sigma - U'$, where *J* is defined by $0 \to H \to J \to \sigma_3 \to 0$. Since

$$U' = (\beta_3 \beta_2 \beta_1)^{-1} (D_2')$$

is σ_4 -equivariantly diffeomorphic to

$$U = (\varphi_3 \varphi_2 \varphi_1)^{-1} (D_2'),$$

then from the uniqueness of the lifting [1, p. 66], we conclude that $J = \sigma_4$ and we thus obtain a σ_4 -action on Σ . We have the following sequence, with $\beta_1 = \alpha_2 \alpha_1$:

$$\Sigma \xrightarrow{\alpha_1} \Sigma/\{x\} \xrightarrow{\alpha_2} \Sigma/H \xrightarrow{\beta_2} \Sigma_1/\{t\} \xrightarrow{\beta_3} \Sigma/\sigma_4.$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\Sigma' \qquad \qquad \Sigma_1 \qquad \qquad \Sigma_2 \qquad \qquad M_3$$

From the construction of the σ_1 -action, we see that $\beta_1(F((ab)))$ is a disk, and $(\Sigma_1, \beta_1(F(x)) \cup \beta_1(F((ab))))$ has B as its Seifert matrix [6, p. 52]. Since α_1 (respectively α_2) is a branched covering map with a trivial knot F(x) (respectively $\alpha_1(F(y) \cup F(z))$) as its branched point set, and x reverses the orientation of F((ab)), we conclude that the knot $(\Sigma, F((ab)))$ has $C = \begin{pmatrix} B & O \\ O & B \end{pmatrix}$ as its Seifert matrix.

As in [7] or [8] we have the following corollary.

COROLLARY. For each $\gamma = 0, I, ..., V$; and $n \ge 3$, there exist infinitely many σ_4 -actions on (2n + 1)-homotopy spheres (having the same orbit space) of type (r).

3. Let I=[0, 1] denote the unit interval. We call two σ_4 -actions γ_1, γ_2 on a homotopy sphere Σ^{2n+1} cobordant if there exists a σ_4 -action γ on $\Sigma \times I$ such that

$$\gamma | \Sigma \times 0 = \gamma_1$$
 and $\gamma | \Sigma \times 1 = \gamma_2$.

The cobordance is an equivalence relation. Thus we have the notion of cobordism classes.

Theorem 3. For $k \ge 2$, the cobordism classes of σ_4 -actions on (4k + 1)-homotopy spheres contains infinitely many copies of \mathbb{Z} for each type (r), $r = 0, 1, \ldots, V$.

Proof. A σ_4 -action of type (0) is an involution, hence this case of the theorem follows from that in [7, (4.3)].

For an action of type (I) or (II), which is just a σ_3 -action, we restrict the action to $\mathbb{Z}_2 \subseteq \sigma_3$. The theorem follows from Theorem 1 above and [7, (4.3)].

For actions of type (III), (IV), (V), we cannot use the above proof directly since the Seifert matrices $C = \begin{pmatrix} B & O \\ O - B \end{pmatrix}$ are null-cobordant. Instead, we consider the involution induced by the σ_3 -action on Σ^{2n+1}/H .

Let $\mathbf{Z}_{(2)}$ denote the ring of 2-adic integers. It follows from [1, pp. 122-124] that both F((ab)) and the orbit space $\Sigma/\{x\}$ are $\mathbf{Z}_{(2)}$ -spheres, and so therefore is $\Sigma/\{x\}/\{y\} = \Sigma/H$. Let $\beta \colon \Sigma \to \Sigma/H$ denote the orbit map. By restricting to $\mathbf{Z}_2 \subseteq \sigma_3$, generated by (ab), we have an involution T on Σ/H with fixed point set

$$F(T) = \beta(F(x)) \cup \beta(F((ab))).$$

With the notion of Seifert manifolds and Seifert matrices for the $\mathbf{Z}_{(2)}$ -knot $(\Sigma/H, F(T))$ [7, Section 4], we may use the arguments in [4], [10, (6.6)] and [7, (4.2)] to show that the $\mathbf{Z}_{(2)}$ -knot cobordism classes can be mapped surjectively to $C_{\epsilon}(\mathbf{Z}_{(2)})$ (see [7, (4.2)]). We note that for the action constructed in Theorem 2 above, the corresponding knot $(\Sigma/H, F(T))$ has B as its Seifert matrix, and the $\mathbf{Z}_{(2)}$ -knot $(\Sigma/H/T, F(T))$ has A as its Seifert matrix [6]. If two σ_4 -actions γ_1, γ_2 are cobordant, then the corresponding $\mathbf{Z}_{(2)}$ -knots $(\Sigma/H/T_1, F(T_1))$, $(\Sigma/H/T_2, F(T_2))$ are also cobordant. Levine [4, p. 243] constructed an infinite sequence of linearly independent elements of $C_{+1}(\mathbf{Z}_{(2)})$:

$$A_k = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & k & 0 \\ 0 & -k & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} k = 1, 2, \dots,$$

that is, for each k, the set of direct sums $\bigoplus_{n} A_k$ (n copies of A_k) generates a copy of \mathbb{Z} in $C_{+1}(\mathbb{Z}_{(2)})$. Since

$$|\det (A_k + \epsilon A_k')| = 1 = |\det (A_k - \epsilon A_k')|,$$

we may use $\bigoplus_n A_k$ as A in Theorem 2 to construct a σ_4 -action. The corresponding $\mathbf{Z}_{(2)}$ -knot $(\Sigma/H/T, F(T))$ has $\bigoplus_n A_k$ as its Seifert matrix.

The author wishes to thank the referee for helpful suggestions.

References

- G. E. Bredon, Introduction to compact transformation groups (Academic Press, New York, 1972).
- A. Durfee and L. Kauffman, Periodicity of branched cyclic covers, Math. Ann. 218 (1975), 157-174.
- 3. M. A. Kervaire, Les noeuds de dimensions superieures, Bull. Soc. Math. France 93 (1965), 225-271.
- J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244.
- An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185-198.

- C. C. Liang, Knots fixed by Z_p-actions, and periodic links, Math. Ann. 233 (1978), 49-54.
- 7. Z₍₂₎-knot cobordism in codimension two, and involutions on homotopy spheres, Trans. Amer. Math. Soc. 256 (1979), 89-97.
- 8. ——— Some exotic dihedral group actions on homotopy spheres, Indiana Univ. Math. Jour. 28 (1979), 127-130.
- 9. J.-P. Serre, Linear presentations of finite groups (Springer-Verlag, New York-Heidelberg-Berlin, 1977).
- N. W. Stoltzfus, Unraveling the integral knot concordance group, Mem. Amer. Math. Soc. 192 (1977).
- B. L. Van der Waerden, Group theory and quantum mechanics, Die Grund. der Math. 214 (Springer-Verlag, New York-Heidelberg-Berlin, 1974).

University of Kansas, Lawrence, Kansas