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Abstract
We consider a model of binary opinion dynamics where one opinion is inherently “superior” than the other, and
social agents exhibit a “bias” toward the superior alternative. Specifically, it is assumed that an agent updates its
choice to the superior alternative with probability U > 0 irrespective of its current opinion and opinions of other
agents. With probability 1 − U, it adopts majority opinion among two randomly sampled neighbors and itself.
We are interested in the time it takes for the network to converge to a consensus on the superior alternative. In a
complete graph of size n, we show that irrespective of the initial configuration of the network, the average time to
reach consensus scales as Θ(n log n) when the bias parameter U is sufficiently high, that is, U > Uc where Uc is a
threshold parameter that is uniquely characterized. When the bias is low, that is, when U ∈ (0,Uc], we show that
the same rate of convergence can only be achieved if the initial proportion of agents with the superior opinion is
above certain threshold pc (U). If this is not the case, then we show that the network takes Ω(exp(Θ(n))) time on
average to reach consensus.

1. Introduction

Opinion dynamical models are used extensively in statistical physics and computer science to study the
effects of different local interaction rules on the adoption of new technologies and products. One key
question in this context is how fast can a new/superior technology replace an old/outdated technology
in a network of connected of agents? Classical opinion dynamical models with two competing opinions
(or technologies) assume the opinions to be indistinguishable; indeed under both voter and majority rule
models, agents update their opinions purely based on the opinions of other agents in their neighborhoods
without exhibiting any preference for any opinion. However, to capture the inherent superiority of one
opinion over another, we need to incorporate some form of “bias” toward one of the two opinions.

Opinion dynamical models with bias have been studied recently in [1, 17, 19, 20]. A strong form of
bias is considered in [1, 17]; a bias parameter U ∈ (0, 1) is introduced; with probability U, an agent is
assumed to perform a biased update, in which it adopts the superior opinion independently of its current
opinion and opinions of all other agents; with probability 1 − U, the agent performs a regular update,
in which it adopts the majority opinion among all agents in its neighborhood. The later update rule is
often referred to as the majority rule in the literature. Clearly, in this model, any network will eventually
reach consensus on the superior opinion. It is shown in [1] that the expected time taken for the network
to reach consensus on the superior opinion is exponential in the minimum degree of the underlying
graph. Thus, in graphs where the neighborhood size of each agent is proportional to the network size,
the consensus time grows exponentially with the network size. This naturally prompts the question if
simpler rules exist under which consensus can be achieved faster.
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To address this question, we consider a simpler rule called the 2-choices rule [6] for regular updates.
Under the 2-choices rule, an agent samples two other agents from its neighborhood and updates to the
majority opinion among the sampled agents and the agent itself. For graphs where the neighborhood
sizes are large, this modified rule greatly reduces the communication overhead associated with comput-
ing the majority opinion since an agent no longer needs to know the opinions of all other agents in its
neighborhood; only knowing the opinions of the two sampled agents suffices. The 2-choices rule also
reduces the chance that an updating agent adopts the worse alternative when a majority of its neighbors
have chosen this alternative. Hence, this modification should not only reduce the communication over-
head but also “facilitate” consensus on the superior alternative. In this paper, we analytically characterize
the improvement to the speed of consensus brought about by this modified rule.

Specifically, we show that if the network is a complete graph and the bias parameter U is suffi-
ciently high (U > 1/9), then consensus is achieved on the superior opinion in Θ(n log n) time, where
n denotes the number of agents in the network. When bias is small (i.e., when U < 1/9), we show that
the consensus time depends on the initial configuration of the network. More specifically, when the bias
parameter U is small, fast consensus (i.e., Θ(n log n) time) is achieved only if the initial proportion p of
agents with the superior opinion is above a certain threshold value pc (U) (explicitly characterized). If
p < pc (U), we show that the network takes exponentially long time to reach consensus. Thus, the speed
with which the network reaches consensus on the superior opinion undergoes a sharp phase transition
depending on the values of U and p. Through simulations, we observe similar behavior on other classes
of graphs, for example, on random d-regular graphs both with d = Θ(log n) and Erdős–Rényi graphs
with edge probability Θ(log n/n). To establish our theoretical results, we use a novel characterization
of the expected number of visits of a random walk to a given state using a branching process. We expect
this technique to be useful in the analysis of other interacting particle systemmodels. Thus, in summary,
our contributions are the following:

• (Fast consensus) For complete graphs, we show the existence of a sharp threshold such that if the bias
parameter U is above the threshold, then consensus is achieved on the superior opinion starting from
any initial configuration inΘ(n log n) time on average. If the bias parameter U is below the threshold,
we show the existence of another sharp threshold such that if the initial proportion p of agents with
the superior opinion is above this threshold, then consensus can be achieved in Θ(n log n) time.

• (Slow consensus) We show that when both the bias parameter U and the initial proportion p of agents
with the superior opinion are below their corresponding thresholds, the average consensus time on
complete graphs is Ω(exp(Θ(n))), that is, grows exponentially with the network size.

• (Other classes of graphs) Through extensive simulations, we study consensus on other classes of
graphs. Specifically, we observe similar behavior on random d-regular graphs with d = Θ(log n) and
on Erdős–Rényi graphs with edge probability log n/n. For d-regular graphs with constant degrees
d = O(1), we do observe a phase transition, but the behavior below criticality is different from that
in complete graphs or other dense graphs studied in this paper.

1.1. Related Literature

The simplest model of opinion dynamics studied in the literature is the voter model, where an agent
simply copies the opinion of an agent sampled randomly from its neighborhood. Thus, in the voter
model, the probability that an agent adopts a specific opinion is equal to the proportion of agents having
the same opinion in its neighborhood. Due to the linearity of the resulting dynamics and its duality
with coalescing random walks, the voter model has been extensively studied in the literature. The dual-
ity between the voter model and coalescing random walks was first observed independently in [14]
and [4]. Using this duality, the model has been analyzed on different classes of graphs such as regu-
lar lattices [7], random d-regular graphs [5], and Erdős–Rényi (ER) graphs [21]. It is known that for
connected graphs, the probability of reaching consensus on the specific opinion is proportional to the
initial volume (sum of degrees) of nodes having that opinion. It is also known that the mean consensus
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time for the asynchronous version of the voter model (where in each round only one randomly sampled
agent updates its opinion) is Ω(n2) for most graphs.

Another important model of opinion dynamics is the majority rule model, wherein an agent adopts
the majority opinion among all agents in its neighborhood. It was shown in [18] that with high probabil-
ity for a family of expander graphs with sufficiently large spectral gap, the majority dynamics leads to
a consensus on the opinion having the initial majority, provided that the imbalance between the initial
majority opinion and the alternate opinion is sufficiently high. Bounds on the consensus time for the
majority rule model was obtained in [23] for expanders and ER random graphs. For expanders with suf-
ficiently large spectral gaps, it was shown that consensus can be achieved on the initial majority opinion
in O(log n) steps in the synchronous model where all agents update in each round. For ER graphs, it
was shown that if the edge probability is above the connectivity threshold of log n/n, then consensus
can be achieved on the initial majority opinion in constant number of rounds. The majority rule model
has also been studied for other classes of graphs such as finite lattices [22], random regular graphs [13],
and infinite trees [15].

Although the majority rule leads to faster consensus on many classes of graphs, it requires an agent to
know the states of all other agents in its neighborhood. This may be too computationally expensive when
neighborhood sizes are large. A simpler alternative is to consider the 2-choices rule where an agent only
samples two random neighburs and changes to the majority opinion among the sampled agents and the
agent itself. Rules similar to the 2-choices rule, where groups of agents are formed at each instant and
all agents in the group update to the majority opinion within the group, were analyzed in the physics
literature [3, 12, 16]. A generalization of 2-choices rule, where the updating agent samples m agents
from its neighborhood and only changes its opinion if d or more of the sampled agent differ from the
updating agent, was analyzed in the continuous time in [10]. The 2-choices rule that we consider in this
paper was first analyzed for random d-regular graphs and expanders in [6]. It was shown that consensus
can be achieved in O(log n) time with high probability on the initial majority opinion, provided that the
initial imbalance is sufficiently high.

Opinion dynamical models with bias have been considered in the recent literature. These models
are designed to capture the superiority of one alternative over another. Accordingly, in these models,
the agents exhibit some form of bias toward the superior opinion. In [19, 20], a weak form of bias is
considered. Here, agents with the superior opinion update with a lesser frequency than agents with
the alternative opinion. It has been shown in [20] that, under the voter rule and the 2-choices rule,
consensus is achieved in O(log n) time for complete graphs. For the voter model, the probability of
achieving consensus on the superior opinion approaches to one as the network size grows. For the 2-
choices rule, consensus is achieved on the superior opinion with high probability only when the initial
proportion of agents with the superior opinion is above a certain threshold.

The form bias studied in this paper is introduced recently in [1, 2]. These papers show that on dense
graphs, the speed of consensus can be slow (depending on the minimum degree of a node) if the agents
follow the majority rule during a regular update. The papers also analyze the voter rule under this form
bias and show that consensus with the voter rule can be achieved in O(n log n) time. Our model is
different from these models as we consider the 2-choices rule as the main update rule. Furthermore, we
study the dynamics under the 2-choices rule as a function of the bias parameter U as well as the initial
proportion p of agents with the superior opinion. This is unlike the previous papers [1, 2], where the
dynamics is studied as a function of U only with a fixed value of p (specifically, p= 0). We show that
phase transitions can occur with respect to both U and p. Similar phase transitions have been recently
reported in [8, 9, 11] for noisy versions of the k-majority dynamics. However, the focus of these papers
is a state of “near consensus” where both opinions coexist, but the proportion of agents with one of the
opinions is arbitrarily small. In contrast, our results focus on the state of full consensus in which the
inferior opinion is completely eliminated. Furthermore, we obtain bounds on the mean of the consensus
time that are stronger than high probability bounds obtained in previous papers. The technique used here
is also quite different from those used in the earlier works; while earlier works use concentration around
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the mean drift, we use suitably constructed branching processes to obtain bounds on the number of
visits to different states.

1.2. Organization

The rest of the paper is organized as follows. In Section 2, we introduce the model studied in this paper.
Next, in Section 3, we present the theoretical analysis of the model for complete graphs. Section 4
provides numerical results to support our theoretical findings and also demonstrates similar behavior
for other classes of graphs. Finally, we conclude the paper in Section 5.

2. Model

In this section, we describe the model studied in this paper. The model consists of a network of n agents
described by an undirected graph Gn = (Vn,En), where the nodes in Vn (with |Vn | = n) represent the
agents and the edges in En represent the connections between the agents. For each agent (node) u ∈ Vn,
we denote by Nu = {v : (u, v) ∈ En}, the set of neighbors of u.

Time is assumed to be discrete and at each discrete time instant t ∈ Z+, each agent is assumed to have
an opinion in the set {0, 1}. Without loss of generality, we assume that 1 is the superior opinion. Let
Xu(t) ∈ {0, 1} denote the opinion of agent u at time t. At t = 0, the opinions of the agents are initialized
such that |{u ∈ Vn : Xu(0) = 1}| = dpne for some p ∈ [0, 1). Hence, p fraction of agents initially have
the superior opinion 1.

At each instant t ≥ 0, an agent, sampled uniformly at random, updates its opinion: with probabil-
ity U, it performs a biased update in which it adopts the superior opinion irrespective of its current
opinion and the opinions of all other agents; with probability 1 − U, it performs a regular update fol-
lowing the 2-choices rule in which the updating agent samples two neighbors uniformly at random
(with replacement1) and adopts the majority opinion among the sampled agents and the agent itself.
Therefore, if U(t) denotes the randomly sampled agent at time t, then at time t + 1 the opinion of the
agent is given by

XU (t) (t + 1) =
1 w.p. U,

M (t) w.p. 1 − U,
(1)

where M (t) = 1
(
XU (t) (t) + XN1 (t) (t) + XN2 (t) (t) ≥ 2

)
denotes the majority opinion among two ran-

domly sampled neighbors N1(t) and N2(t) of U(t) and the agent U(t) itself. The parameter U ∈ (0, 1]
represents the bias toward the superior opinion and is referred to as the bias parameter of the model.

The state of the network at any time t ≥ 0 can be represented by the vector X(t) = (Xu(t), u ∈ Vn) of
opinions of all the agents. The process X(·) is Markov on the state space {0, 1}n with a single absorbing
state 1 where all agents have opinion 1. We refer to this absorbing state as the consensus state. Since it
is possible to reach the consensus state from any other state in a finite number of steps, with probability
one, the chain is absorbed in the consensus state in a finite time. We refer to this time as the consensus
time. The objective of the rest of the paper is to analyze the mean consensus time for different values of
the parameters n,U, p and for different classes of graphs.

3. Analysis for complete graphs

In this section, we assume that Gn is a complete graph on n nodes. For complete graphs, the process
X̄n = (X̄n(t) = |{u ∈ Vn : Xu(t) = 1}|, t ≥ 0) counting the number of agents with opinion 1 is a Markov

1Note that sampling with or without replacement does not make any difference when the neighborhood size is proportional to n since the
probability of choosing the same neighbor twice tends to zero as n → ∞.
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chain on Z+ with absorbing state n. For the chain X̄n, the transition probability p̃i,j from state i to j is
given by p̃i,j = pi,j + o(1/n), where

pi,j =



(
1 − i

n
) (

U + (1 − U)
( i

n
)2) , if j = i + 1,

i
n (1 − U)

(
1 − i

n
)2 , if j = i − 1,

1 − pi,i+1 − pi,i−1, if j = i,

0, otherwise.

(2)

Note that pi,j denotes the transition probability of a slightly modified chain Ȳn (with the same absorbing
state n), where an agent during a regular update can sample itself in addition to its neighbors. Further
we analyze this modified chain as it is simpler to do so and the asymptotic (in n) results we obtain for
this modified chain also hold for the original chain (see Remark 3.7 for more explanation).

Below we characterize the scaling law of T̄n(p) = Edpne [Tn], where Ex [·] denotes expectation con-
ditioned on Ȳn(0) = x and Tk = inf{t ≥ 0 : Ȳn(t) = k} denotes the first time the network reaches state
k. Our main result is described in Theorem 3.1.

Theorem 3.1 For complete graphs, we have the following

1. (Fast consensus) For each U ∈ (1/9, 1), we have T̄n (p) = Θ(n log n) for all p ∈ [0, 1).
2. (Fast consensus) For each U ∈ (0, 1/9), there exists pc (U) ∈ (0, 1) such that if p ∈ [pc (U), 1), then

T̄n (p) = Θ(n log n). Furthermore, the threshold pc (U) is the unique solution in the range (x̄U, 1) of
the equation

∫ pc (U)

x̄U
log(fU (x))dx = 0, (3)

where fU (x) = (1−U)x (1−x)
U+(1−U)x2 , x̄U = 1

4

(
1 −

√
1 − 8U

1−U

)
, and x̄U = 1

4

(
1 +

√
1 − 8U

1−U

)
.

3. (Slow consensus) For each U ∈ (0, 1/9) and p ∈ [0, pc (U)), we have T̄n(p) = Ω(exp(Θ(n))).

The above theorem implies that when the bias parameter is sufficiently high (U > 1/9), the network
quickly (in Θ(n log n) time) reaches consensus on the superior opinion irrespective of its initial state.
This is in sharp contrast to the result of [2], where the consensus time is exponential in n for all values
of the bias parameter U. The theorem further implies that even with low value of the bias parameter
U (for U < 1/9), fast consensus can be achieved as long as the initial proportion p of agents with the
superior opinion is above a threshold value denoted by pc (U). We explicitly characterize this threshold
pc (U) required to ensure fast consensus when the bias is low. If the bias parameter is low (U < 1/9) and
the initial proportion of agents with the superior opinion is below the threshold, that is, p < pc (U), then
the mean consensus time is exponential in n, which corresponds to slow speed of convergence. Thus,
our model exhibits rich behavior in terms of the parameters U and p.

We breakdown the proof of the above theorem into several simpler steps. The first step is to make the
following simple observation, which expresses the mean consensus time as a function of the number of
visits of the chain Ȳn to different states in its state-space {0, 1, . . . , n}.

Lemma 3.2 Let Zk denote the number of visits of the chain Ȳn to the state k ∈ {0, 1, . . . , n} before
absorption. Then, for any starting state x = X̄n(0) ∈ {0, 1, . . . , n}, the average consensus time is
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given by

Ex [Tn] =
n−1∑
k=0

Ex [Zk]
(1 − pk,k)

, (4)

where pk,k is the transition probability from state k to itself given by Eq. (2).

Proof. Observe that the consensus time Tn can be written as

Tn =

n−1∑
k=0

Zk∑
j=1

Mk,j, (5)

where Zk denotes the number of visits to state k before absorption and Mk,j denotes the time spent in
state k in the jth visit. Clearly, the random variables Zk and (Mk,j)j≥1 are independent of each other.
Furthermore, (Mk,j)j≥1 is a sequence of i.i.d. random variables with geometric distribution given by
Px (Mk,j = i) = pi−1

k,k (1 − pk,k) for all j. Hence, applying Wald’s identity to Eq. (5), we have

T̄n(p) = Ex [Tn]

=

n−1∑
k=0
Ex


Zk∑
j=1

Mk,j


=

n−1∑
k=0
Ex [Zk] Ex

[
Mk,j

]
=

n−1∑
k=0

Ex [Zk]
(1 − pk,k)

, (6)

where the last step follows from the fact that Ex [Mk,j] = 1/(1 − pk,k) for each j ∈ [Zk]. �

From the above lemma, it is evident that in order to obtain bounds on Ex [Tn], we need to obtain
bounds of the expected number of visits Ex [Zk] to different states and the transition probabilities pk,k .
Using this approach, we first obtain a lower bound on T̄n(p).

Lemma 3.3 For any U ∈ (0, 1) and p ∈ (0, 1), we have T̄n(p) = Ω(n log n).

Proof. From Eq. (2), we obtain

1 − pk,k =

(
1 − k

n

) (
U + (1 − U) k

n

)
≤ max (U, 1 − U)

(
1 − k

n

) (
1 + k

n

)
.rU
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Furthermore, we have Ex [Zk] ≥ 1(k ≥ x) since states k ≥ x are visited at least once. Hence, using the
above two inequalities in Eq. (4), we obtain

T̄n(p) ≥
n−1∑
k=0

1(k ≥ dnpe)

max (U, 1 − U)
(
1 − k

n

) (
1 + k

n

)
=

n
2max (U, 1 − U)

n−1∑
k=dnpe

(
1

n − k
+ 1

n + k

)
>

n
2max (U, 1 − U)

n−1∑
k=dnpe

(
1

n − k

)
≥ n

2max (U, 1 − U) log (n − dnpe + 1) ,

which completes the proof. �

To obtain an upper bound on the mean consensus time T̄n(p) similarly, we need an upper bound on
the expected number of visits Ex [Zk] to state k for each k ∈ {0, 1, 2, . . . , n}. We obtain such an upper
bound using a technique developed in [20], where the number of visits to each state is expressed as a
function of a branching process. Specifically, we define Z k to be the number of jumps from state k to
state k − 1 for any k ∈ {1, 2, . . . , n}. Clearly, Zn = 0, and if the starting state is x = Ȳn(0) ∈ [1, n), then
Z k satisfies the following recursion:

Zk =


∑Zk+1

l=0 bl,k , if k ∈ {x, x + 1, . . . , n − 1},∑Zk+1
l=1 bl,k , if k ∈ {0, 1, . . . , x − 1},

(7)

where bl,k denotes the number of jumps from state k to state k − 1 between the lth and (l + 1)th visit
to state k + 1. Note that the first sum in Eq. (7) (for k ≥ x) starts from l = 0, whereas the second sum
starts from l = 1. This is because for k ≥ x, jumps from k to k − 1 can occur even before the first jump
from k + 1 to k. This is not the case for states k < x. Furthermore, {bl,k}l≥0 is a sequence of i.i.d. random
variables independent of Zk+1. Hence, the sequence {bn−k}k defines a branching process. Moreover, the
number of visits to state k can be written as

Zk =

1 + Zk + Zk+1, if k ∈ {x, x + 1, . . . , n − 1},
Zk + Zk+1, if k ∈ {0, 1, . . . , x − 1},

(8)

where the additional one appears in the first case (for k ≥ x) because the states k ≥ x are visited at least
once before the chain is absorbed in state n. It is the above characterization of the Zk that we shall use to
obtain upper bounds on Ex [Zk]. Precisely, we obtain bounds on Ex [Zk] to bound Ex [Zk]. In the lemma
below, we express Ex [Zk] in terms of the transition probabilities of the chain Ȳn.

Lemma 3.4 For any k ∈ {1, 2, . . . , n}, let Z k denote the number of jumps of the chain Ȳn from state k
to state k − 1. We have Zn = 0 and

Ex [Zk] =

∑n−1

t=k
∏t

i=k
pi,i−1
pi,i+1

, for x ≤ k ≤ n − 1,(∏x−1
i=k

pi,i−1
pi,i+1

)
Ex [Zx] , for 0 ≤ k < x,

(9)

where for each i, j ∈ {0, 1, . . . , n}, pi,j denotes the transition probability of the Markov chain Ȳn from
state i to state j and is given by Eq. (2).
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Proof. We observe that Zk+1 and
{
bl,k

}
l≥0 are independent of each other and

{
bl,k

}
l≥0 is a sequence of

i.i.d. random variables with

Px
(
bl,k = i

)
=

(
pk,k−1
1 − pk,k

) i ( pk,k+1
1 − pk,k

)
for all i ∈ Z+ and all l ≥ 0. Hence, we have

Ex
[
bl,k

]
=

pk,k−1
pk,k+1

,

for all l ≥ 0. Applying Wald’s identity to Eq. (7), we obtain the following recursions

Ex [Zk] =

(1 + Ex [Zk+1]) pk,k−1

pk,k+1
, if k ≥ x,

Ex [Zk+1] pk,k−1
pk,k+1

, if k < x,
(10)

Upon solving the above recursions with boundary condition Zn = 0, we obtain desired result. �

From Eq. (9), we observe that the ratio pi,i−1/pi,i+1 plays a crucial role in the expression of Ex [Zk].
Hence, by characterizing this ratio, we can characterize Ex [Zk]. We note from Eq. (2) that

pi,i−1
pi,i+1

= fU (i/n), (11)

where fU : [0, 1] → R+, for each U ∈ (0, 1), is as defined in Theorem 3.1. In the lemma below, we
obtain a list of some important properties of the function f U.

Lemma 3.5 For U ∈ (0, 1), define fU : [0, 1] → R+

fU (x) ,
(1 − U)x(1 − x)
U + (1 − U)x2

. (12)

Then fU satisfies the following properties

1. For all U ∈ (0, 1), fU is strictly increasing in [0, xU), strictly decreasing in (xU, 1], and, in the
domain [0, 1], attains its maximum value at xU, where

xU ,
√( U

1 − U

)2
+ U

1 − U
− U

1 − U
∈ [0, 1). (13)

2. Let rU , fU (xU) = maxx∈[0,1] fU (x). Then, for U ∈ (1/9, 1), we have rU < 1, and for U ∈ (0, 1/9),
we have rU > 1.

3. For U ∈ (0, 1/9], we have fU (x) ≥ 1 iff x ∈ [x
U
, x̄U], where

x
U
=

1
4

(
1 −

√
1 − 8U

1 − U

)
, (14)

x̄U =
1
4

(
1 +

√
1 − 8U

1 − U

)
. (15)

Furthermore, fU (xU
) = fU (x̄U) = 1 and xU ∈ [x

U
, x̄U].
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4. For U ∈ (0, 1/9), define gU (x) ,
∫ x
xU

log( fU (x)) dx. Then gU has a unique root pc (U) ∈ (x̄U, 1).
Furthermore, gU (p) > 0 if p ∈ [x̄U, pc (U)) and gU (p) < 0 if p ∈ (pc (U), 1).

Proof. Taking the derivative of Eq. (12) with respect x, we obtain

f ′U (x) =
−(1 − U)2x2 − 2U(1 − U)x + U(1 − U)(

U + (1 − U)x2
)2 .

We note that the numerator of the above expression is zero when x = xU, positive when x ∈ [0, xU),
and negative when x ∈ (xU, 1], where xU is as defined in Eq. (13). This proves the first statement of the
lemma.

Next, we note from Eq. (12) that the condition fU (x) Q 1 is equivalent to 2x2 − x + U
1−U
R 0. Hence,

fU (x) < 1 for all x ∈ [0, 1] if and only if 1 − 8 U
1−U

< 0 or equivalently iff U > 1/9. Furthermore, for
U ∈ (0, 1/9], we have 2x2 − x + U

1−U
= (x − x

U
) (x − x̄U), where x

U
and x̄U are as defined in Eqs. (14)

and (15), respectively, and for U < 1/9, we have x
U
< x̄U and xU ∈ (x

U
, x̄U). Combining the above

facts, we have the second and the third statements of the lemma.
We now turn to the last statement of the lemma. Note that for U ∈ (0, 1/9), we have

gU (x̄U) =
∫ x̄U

xU
log(fU (x)) dx ≥ log(fU (xU)) = log(rU) > 0,

where the last inequality follows from the fact that rU = fU (xU) > 1 for U ∈ (0, 1/9) as established in
the previous paragraph. Using Eq. (12), we can compute gU in closed form. This is given as follows:

gU (x) = x log
(

(1 − U) x
U + (1 − U) x2

)
− (1 − x) log (1 − x) + log

(
1 − x

U

)
− 2

√
U

1 − U

(
arctan

(√
1 − U

U
x

)
− arctan

(√
1 − U

U
x
U

))
. (16)

From the above, it follows that limx→1− g(x) < 0, since x
U
< 1 and arctan(·) is an increasing function.

Furthermore, we have g′U (x) = log(fU (x)) < 0 for x ∈ (x̄U, 1). Hence, there must exist a unique root
pc (U) of gU in (x̄U, 1), and gU (p) must be strictly negative for p ∈ (pc (U), 1) and strictly positive for
p ∈ [x̄U, pc (U)). �

We are now in a position to complete the proof of Theorem 3.1.We use Lemma 3.4 and the properties
of f U proved in Lemma 3.5 to obtain upper bounds of Ex [Zk]. These upper bounds, in turn, provide
upper bounds on Ex [Zk] using Eq. (8). Finally, we use Lemma 3.2 and the upper bounds on Ex [Zk] to
obtain an upper bound on the mean consensus time T̄n(p). The complete proof is given below.

Proof of Theorem 3.1. From Lemma 3.2, it follows that

T̄n(p) =
n−1∑
k=0

Edpne [Zk]
(1 − pk,k)

=

n−1∑
k=0

Edpne [Zk](
1 − k

n

) (
U + (1 − U) k

n

)
= n

n−1∑
k=0
Edpne [Zk]

(
1

n − k
+ 1

U
1−U

n + k

)
. (17)
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Hence, to prove Tn(p) = O(n log n), it is sufficient to establish that Edpne [Zk] ≤ C for all k ∈
{0, 1, . . . , n}, where C > 0 is a constant independent of k. Indeed, if Edpne [Zk] ≤ C for each state
k ∈ {0, 1, . . . , n}, then for n ≥ 1−U

U
, we have

T̄n(p) ≤ nC
n−1∑
k=0

(
1

n − k
+ 1

k + 1

)
= 2nC

n−1∑
k=1

1
k

= O (n log n) . (18)

Hence, to prove the first two statements of the theorem, it is sufficient to show that, under the con-
ditions stated in these statements, Edpne [Zk] is uniformly bounded by some constant for all k ∈
{0, 1, . . . , n − 1}. This is what we prove next.

Using the first two properties of f U proved in Lemma 3.5 and Eq. (9), we see that for U ∈ (1/9, 1)
we have

Ex [Zk] ≤

∑n−1

t=k rt−k+1
U <

rU
1−rU , for x ≤ k ≤ n − 1,

Ex [Zx] < rU
1−rU , for k < x,

(19)

where rU < 1 is as defined in Lemma 3.5. Hence, from Eq. (8), we have that for all U ∈ (1/9, 1) and all
k ∈ {0, 1, . . . , n − 1},

Ex [Zk] ≤
1 + rU
1 − rU

.

This establishes the first statement of the theorem.
We now prove the second statement of the theorem. For U ∈ (0, 1/9), the third statement of

Lemma 3.5 implies pc (U) > x̄U. Furthermore, by the first and third statements of Lemma 3.5, it
follows that f U is strictly decreasing in the range [x̄U, 1). Hence, for p ≥ pc (U) > x̄U, we have
fU (p) < fU (x̄U) = 1. Furthermore, for all k ≥ x ≥ pn, we have

pk,k−1
pk,k+1

= fU (k/n) ≤ fU (p) < 1.

Let rp , fU (p) < 1. Then, from Eq. (9), we have that for k ≥ x

Ex [Zk] ≤
n−1∑
t=k

rt−k+1
p <

rp

1 − rp
.

Hence, from Eq. (8), we have that

Ex [Zk] ≤
1 + rp

1 − rp
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for k ≥ x. Moreover, for k < nx̄U ≤ x = dpne, we have

x−1∏
i=k

pi,i−1
pi,i+1

=

dpne−1∏
i=k

fU (i/n)

(a)
≤

dpne−1∏
i=dnxU e

f (i/n)

= exp ©«
dpne−1∑
i=dnxU e

log ( fU (i/n))
ª®¬

(b)
= exp

(
n

(∫ p

xU
log(fU (x)) dx + O(1/n)

))
(c)
= exp (ngU (p) + O(1))
(d)
= O(1),

where (a) follows from the facts that fU (i/n) ≤ 1 for i ≤ nx
U
and fU (i/n) ≥ 1 for nx

U
≤ i ≤ nx̄U;

(b) follows from the fact that the Riemannian sum (1/n)∑dpne−1
i=dnxU e

log (fU (i/n)) converges to the integral∫ p
xU

log(fU (x)) dx as n → ∞with an error of O(1/n); (c) follows from the definition of gU in Lemma 3.5;
(d) follows from the fact that for p ≥ pc (U) > x̄U, we have gU (p) ≤ 0 by the last statement of Lemma 3.5.
For x > k ≥ nx̄U, we have

x−1∏
i=k

pi,i−1
pi,i+1

=

dpne−1∏
i=k

f (i/n) ≤ 1,

because for i ≥ nx̄U, we have fU (i/n) ≤ 1. Hence, for all k < x, it follows from Eq. (9) that Ex [Zk] =

O(1)Ex [Zx] = O(1). Finally, from Eq. (8), we obtain that Ex [Zk] = O(1) for all k < x. This establishes
the second statement of the theorem.

We now turn to the third statement of the theorem. Note from Eq. (17) that to prove this statement, it
suffices to show that Edpne [Zk] = Ω(exp(Θ(n))) for k = dnx

U
e when U ∈ (0, 1/9) and p ∈ (0, pc (U)).

First, note that for U ∈ (0, 1/9), p ∈ (x
U
, pc (U)), and k = dnx

U
e, we have

x−1∏
i=dnxU e

pi,i−1
pi,i+1

=

dnpe−1∏
i=dnxU e

fU (i/n)

= exp

(
n
∫ p

xU
log(fU (x)) dx + O(1)

)
= Ω(exp(Θ(n))),

where the last line follows from the fact that
∫ p
xU

log(fU (x)) dx = gU (p) > 0 for p ∈ (x
U
, pc (U)). Hence,

Ex
[
ZdxUne

]
= Ω(exp(Θ(n)))Ex [Zx] = fU (p)Ω(exp(Θ(n))), since Ex [Zx] > fU (x/n) = fU (p) + o(1).
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Hence, Ex
[
ZdnxU e

]
= Ω(exp(Θ(n))). For p ∈ [0, x

U
], we have

Ex
[
ZdxUne

]
>

dnx̄U e−1∏
i=dnxU e

pi,i−1
pi,i+1

=

dnx̄U e−1∏
i=dnxU e

fU (i/n)

= exp

(
n
∫ x̄U

xU
log(fU (x)) dx + O(1)

)
= Ω(exp(Θ(n))).

This proves the third part of the theorem.

Remark 3.6. From the proof above, it is clear that the absorption time of the chain Ȳn crucially depends
on the ratio of the down-transition probability pi,i−1 to the up-transition probability pi,i+1 at any given
state i. If this ratio is smaller than one at a given state i, then the chain has a tendency to drift quickly
toward the absorbing state n. Similarly, if the ratio is larger than one, then the chain has a tendency to
move toward state 0, and hence it takes longer to reach the absorbing state n. Since the value of this
ratio depends on the bias parameter U as well as on the initial proportion p of agents with the superior
opinion, we observe phase transitions with respect to both the parameters.

Remark 3.7. Althoughwe have proved the theorem for themodified chain Ȳn, the proof can be extended
to the original chain X̄n. This is because the results of Lemma 3.2 and Lemma 3.4 are also applicable to
the original chain if the transition probabilities are replaced by those of the original chain. Furthermore,
the transition probabilities of the two chains satisfy the following relations:

1 − p̃k,k = 1 − pk,k + (1 − U) k
n

(
1 − k

n

) (
n2

(n − 1)2
− 1

)
≤ 1 − pk,k ,

and p̃k,k−1/p̃k,k+1 = pk,k−1/pk,k+1+o(1), where we recall that p̃k,k denotes the transition probability from
state k to itself for the original chain X̄n. We note that the same lower bound as in Lemma 3.3 can be
obtained for the chain X̄n since we have 1− p̃k,k ≤ (max(U, 1−U) + o(1)) (1− k/n) (1+ k/n). Similarly,
the upper and lower bounds on the expected number of visits to each state derived for the modified chain
also hold for the original chain for large enough n. Combining the above, we obtain the same asymptotic
bounds for the original chain X̄n as we have for the modified chain Ȳn.

4. Numerical Results

In this section, we present numerical results for the model presented in this paper.We first present results
to support our theoretical findings on complete graphs. We then present simulation results for other
classes of graphs. Error bars in the plots represent 95% confidence intervals. Also, to understand the
growth rates better, we overlay the plots obtained from simulations on theoretical growth rates obtained
by plotting appropriately scaled functions.

4.1. Complete graphs

For complete graphs, the mean consensus time T̄n(p) can be computed numerically using the first step
analysis of the Markov chain Ȳn. This method is more exact and computationally less expensive than
simulating the chain a large number of times to obtain the average absorption time. Hence, we adopt this
method for complete graphs. With a slight abuse of notation, let T̄n (k) denote the average absorption
time of the chain starting from state k ∈ {0, 1, . . . , n}. Then, from first step analysis, we have for each
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Figure 1. Mean consensus time per node T̄n(p)/n as a function of the network size for U = 0.1 < 1/9
for complete graphs. (a) U = 0.1 < 1/9, p = 0.4 < pc (U) = 0.431. (b) U = 0.1 < 1/9, p = 0.5 >

pc (U) = 0.431.

k ∈ {0, 1, . . . , n},

T̄n(k) = 1 + pk,k−1T̄n(k − 1) + pk,k+1T̄n(k + 1) + pk,kT̄n(k), (20)

where pi,j is as defined in Eq. (2). Simplifying the above and using the boundary condition T̄n(n) = 0,
we obtain

T̄n(p) := T̄n (dnpe) =
n−1∑

k=dnpe
Sn(k), (21)

where Sn(k) satisfies the following recursion:

Sn(k) =
1

pk,k+1
+ pk,k−1

pk,k+1
Sn(k − 1), (22)

with Sn(0) = 1/U. We find the expected consensus time numerically by solving the above recursion for
different values of n, U, and p. First, we choose U = 0.1 < 1/9. For this value of U, we can numerically
compute the value of pc (U) by solving Eq. (3). This value turns out to be 0.431 (accurate to the third dec-
imal place). In Figure 1(a) and (b), we plot the normalized (by the network size) average consensus time
as a function of the network size for p = 0.4 < pc (U) = 0.431 and p = 0.5 > pc (U) = 0.431, respec-
tively. As expected from Theorem 3.1, we observe that the mean consensus time grows exponentially
for p < pc (U) and as Θ(n log n) for p > pc (U).

Next, we choose U = 0.125 > 1/9. For this choice of U, we expect (from Theorem 3.1) the mean
consensus time to grow as Θ(n log n) for all values of p. This is verified in Figure 2(a) and (b), where
we choose p= 0 and p= 0.5, respectively. We observe that in both cases T̄n(p) = Θ(n log n).

4.2. Random d-regular graphs with d = Θ(log n)

We now present simulation results for random d-regular graphs where the degree d for each node is
chosen to be d = dlog ne. We use the networkx package to generate random d-regular graphs. For
each randomly generated graph, we run the protocol until the network reaches consensus. The above
procedure is repeated 500 times, and the mean consensus time is computed over these 500 runs. We
further repeat this for different values of n, U, and p. In Figure 3(a) and (b), we fix U to be 0.05 and
plot the normalized mean consensus time as a function of the network size for p= 0.05 and p= 0.8,
respectively. Similar to complete graphs, we observe that the mean consensus time grows exponentially
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240 A. Mukhopadhyay

Figure 2. Mean consensus time per node T̄n(p)/n as a function of the network size for U = 0.125 > 1/9
for complete graphs. (a)U = 0.125 > 1/9, p = 0. (b) U = 0.125 > 1/9, p = 0.5.

Figure 3. Mean consensus time per node T̄n(p)/n as a function of the network size for U = 0.05 for
random d-regular graphs with d = dlog ne. (a) U = 0.05, p = 0.05. (b) U = 0.05, p = 0.8.

Figure 4. Mean consensus time per node T̄n(p)/n as a function of the network size for U = 0.8 for
random d-regular graphs with d = dlog ne. (a) U = 0.8, p = 0.05. (b) U = 0.8, p = 0.8.

with n when both U and p are low. In contrast, when the initial proportion of agents having the superior
opinion is sufficiently large, the mean consensus time grows asΘ(n log n) even when the bias parameter
U is small.

In Figure 4(a) and (b), we choose U = 0.8 and plot the normalized mean consensus time as a function
of the network size for p= 0.005 and p= 0.8, respectively. We observe that in both cases, the mean
consensus time grows as Θ(n log n). This indicates that if the bias parameter U is sufficiently large,
then the network reaches consensus to the superior opinion in Θ(n log n) time irrespective of the initial
proportion of agents having the superior opinion.
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Figure 5. Mean consensus time per node T̄n(p)/n as a function of the network size for U = 0.05 for
random d-regular graphs with d= 5. (a) U = 0.05, p = 0.05. (b) U = 0.05, p = 0.8.

Figure 6. Mean consensus time per node T̄n(p)/n as a function of the network size for U = 0.8 for
random d-regular graphs with d= 5. (a) U = 0.8, p = 0.05. (b) U = 0.8, p = 0.8.

4.3. Random d-regular graphs with d = O(1)

We now investigate the biased opinion dynamics on random d-regular with constant degree, that is,
d = O(1). Specifically, we set d = 5 and simulate the network for different values of n, U, and p. As
before, we generate a random 5-regular graph using the networkx package and run the protocol on
this randomly generated instance until consensus is reached. The above procedure is repeated multiple
times (each with a newly generated random graph) to obtain the mean consensus time within the desired
confidence bounds. In Figure 5(a) and (b), we fix U = 0.05 and choose p= 0.05 and p= 0.8, respectively.
We observe that the normalized mean consensus time grows approximately linearly in n (i.e., T̄n(p) =
O(n2)) when both U and p are small. This is unlike the previous results for dense graphs, where, for
small values of U and p, the mean consensus time is exponential in n. This reduction in absorption
time can be intuitively explained by the fact that a smaller neighborhood size reduces the chance of an
agent updating to the worse opinion when a fixed proportion of all the agents has the worse opinion.
Based on this intuition, we conjecture that for small values of p and U, the mean consensus time grows
polynomially in n when the neighborhood size d is a constant higher than 2. The case of cycles (where
d = 2) has already been considered in [2]. But in the case of cycles, there is no phase transition; indeed,
it has been shown in [2] that for cycles, consensus is achieved on the superior opinion in O(n log n)
time for all values of U even when p= 0.

In Figure 6(a) and (b), we plot the mean consensus time as a function of the network size for p= 0.05
and p= 0.8, respectively, keeping U = 0.8. In both cases, we observe that the mean consensus time grows
asΘ(n log n). Thus, in these regimes, the behavior of random d-regular graphs with d = O(1) is similar
to that of random d-regular graphs with d = Θ(log n).
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Figure 7. Mean consensus time per node T̄n(p)/n as a function of the network size for U = 0.05 for
Erdős–Rényi graphs with edge probability log n/n. (a) U = 0.05, p = 0.05. (b) U = 0.05, p = 0.8.

Figure 8. Mean consensus time per node T̄n(p)/n as a function of the network size for U = 0.8 for
Erdős–Rényi graphs with edge probability log n/n. (a) U = 0.8, p = 0.05. (b) U = 0.8, p = 0.8.

4.4. Erdős–Rényi graphs with edge probability log n/n

Finally, we present results for Erdős–Rényi graphs where the edge probability is fixed at the connectivity
threshold log n/n. The experiments are designed in the sameway as described for other classes of graphs.
The normalized mean consensus time as a function of the network size n is plotted for different values
of U and p: in Figure 7(a) and (b) for U = 0.05 and in Figure 8(a) and (b) for U = 0.8. We observe similar
phase transitions as in the case of complete graphs, that is, the mean consensus time grows asΘ(n log n)
in all cases except when both U and p are low.

5. Conclusion and future work

In this paper, we have studied a model of binary opinion dynamics where the agents show a strong form
of bias toward one of the opinions, called the superior opinion. We showed that for complete graphs, the
model exhibits rich phase transitions based on the values of the bias parameter and the initial proportion
of agents with the superior opinion. Specifically, we proved that fast consensus can be achieved on the
superior opinion irrespective of the initial configuration of the network when bias is sufficiently high.
When bias is low, we show that fast consensus can only be achieved when the initial proportion of
agents with the superior opinion is above a certain threshold. If this is not the case, then we show that
consensus takes exponentially long time. Through simulations, we observed similar behavior for several
classes of dense graphs where the average degree scales at least logarithmically with the network size.
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For sparse graphs, where the average degree is constant, we observed that phase transitions do occur but
the behavior below criticality is different to that of dense graphs. Specifically, we observed that when
both bias and the initial proportion of agents with the superior opinion are low, the average consensus
time is still polynomial in the network size.

Several directions remain open for theoretical investigation. One immediate problem is to theoreti-
cally establish the observed phase transitions for dense graphs. Here, it will be interesting to find out
how “dense” a graph must be in order for it to exhibit the same phase transitions as in complete graphs.
Similar questions remain open for sparse graphs such as d-regular expanders with constant d. Here, it
will be of interest to find out how the threshold valued of the parameters depend on the average degree d
or the spectral properties of the expander. It is also worth analyzing the exact behavior below criticality.
The numerical experiments conducted in this paper suggests that the consensus time is still polynomial
below criticality (unlike in complete graphs where it is exponential), but it would be challenging to
obtain exact bounds in this case.
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