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A specific set of dimensionless plasma and turbulence parameters is introduced to
characterize the nature of turbulence and its dissipation in weakly collisional space and
astrophysical plasmas. Key considerations are discussed for the development of predictive
models of the turbulent plasma heating that characterize the partitioning of dissipated
turbulent energy between the ion and electron species and between the perpendicular and
parallel degrees of freedom for each species. Identifying the kinetic physical mechanisms
that govern the damping of the turbulent fluctuations is a critical first step in constructing
such turbulent heating models. A set of ten general plasma and turbulence parameters
are defined, and reasonable approximations along with the exploitation of existing scaling
theories for magnetohydrodynamic turbulence are used to reduce this general set of ten
parameters to just three parameters in the isotropic temperature case: the ion plasma beta,
the ion-to-electron temperature ratio and the isotropic driving wavenumber. A critical
step forward in this study is to identify the dependence of all of the proposed kinetic
mechanisms for turbulent damping in terms of the same set of fundamental plasma and
turbulence parameters. Analytical estimations of the scaling of each damping mechanism
on these fundamental parameters are presented. The power of this approach is illustrated
in the development of the first phase diagram for the turbulent damping mechanisms as a
function of the ion plasma beta and isotropic driving wavenumber for unity ion-to-electron
temperature ratio, showing the regions of this two-dimensional parameter space in which
ion Landau and transit-time damping, electron Landau and transit-time damping, ion
cyclotron damping, ion stochastic heating, collisionless magnetic reconnection and kinetic
‘viscous’ heating play a role in the damping of the turbulent fluctuations.

Key words: astrophysical plasmas, space plasma physics, plasma nonlinear phenomena

1. Introduction

Turbulence is a fundamental, yet incompletely understood, process in space and
astrophysical plasmas that mediates the transfer of the energy of chaotic plasma flows
and electromagnetic fields into the energy of the plasma particles, either as heat of the
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plasma species or as acceleration of a small population of particles (Howes 2017). The
2013 NRC Heliophysics Decadal Survey (National Research Council 2013) identifies
plasma turbulence as a ubiquitous phenomenon occurring both within the heliosphere and
throughout the Universe. Predicting the heating or acceleration of the different plasma
species by turbulence, based on the observable turbulence and plasma parameters at large
scales, constitutes one of the grand challenge problems in heliophysics and astrophysics.

Turbulent plasma heating plays a key role in governing the flow of energy in the
heliosphere, impacting the mesoscale and macroscale evolution of key heliospheric
environments comprising the coupled solar–terrestrial system and connecting the solar
corona, solar wind and Earth’s magnetosphere. The accuracy of ongoing efforts (Mikić
et al. 1999; Lionello, Linker & Mikić 2009; van der Holst et al. 2014; Adhikari et al.
2020) to model globally the flow of energy from the Sun through the interplanetary
medium to the Earth, to the other planets and on to the boundary of the heliosphere
with the surrounding interstellar medium (Opher et al. 2020) relies on the availability
of prescriptive models of the turbulent plasma heating (Howes 2010; Chandran et al. 2011;
Rowan, Sironi & Narayan 2017).

Such turbulent heating prescriptions are also critical for the interpretation of remote
astronomical observations of emissions from black hole accretion disks, such as the
ground-breaking observations by the Event Horizon Telescope of the supermassive black
holes at the centre of M87 (Event Horizon Telescope Collaboration et al. 2019) and at
Sagittarius A∗ in the Milky Way (Event Horizon Telescope Collaboration et al. 2022). In
these cases, alternative turbulent heating prescriptions (Howes 2010; Rowan et al. 2017)
have been shown to yield drastically different predictions for the emitted radiation (Chael,
Narayan & Johnson 2019).

1.1. How does turbulence mediate energy transport and plasma heating?
The transport of energy mediated by plasma turbulence is depicted in figure 1 for the
solar wind with ion plasma beta βi = 1, where (a) a plot of the turbulent magnetic-energy
wavenumber spectrum shows that Alfvénic energy injected into the turbulent cascade at
the outer scale (k0ρi = 10−4) is transferred nonlinearly without loss through the inertial
range to the transition into the dissipation range at ion scales (kρi ∼ 1), where ρ i is the ion
Larmor radius. At the ion scales and smaller (kρi � 1), poorly understood mechanisms
can remove energy from the turbulence, transferring energy to the ions (blue arrows) or
electrons (magenta arrows). In figure 1(b), modern plasma turbulence theory (Goldreich
& Sridhar (1995), hereafter GS95 or Boldyrev (2006), hereafter B06) predicts that the
turbulent cascade generates a scale-dependent anisotropy in wavevector space (blue shaded
region): isotropy at the driving scale (k⊥0ρi = k‖0ρi = 10−4) develops into a significant
anisotropy k⊥ � k‖ as the cascade transfers energy to smaller scales1 . In addition, kinetic
instabilities can generate unstable turbulent fluctuations with wavevectors kρi ∼ 1 (red
ovals in both panels), which can mediate the non-local transfer of energy from the
large-scale motions directly to the ion kinetic scales. I explicitly define ‘turbulence’ here
as the collection of physical mechanisms involved in the conversion of the energy of
large-scale plasma flows and magnetic fields into plasma heat or the energy of accelerated
particles, including the nonlinear scale-to-scale energy transfer of the turbulent cascade,
the mechanisms damping the turbulence at small scales and any possible instabilities that
may generate turbulent fluctuations or govern non-local energy transfer.

1Parallel and perpendicular here are defined relative to the local mean magnetic field direction.
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(a)

(b)

FIGURE 1. (a) Schematic diagram of the turbulent magnetic-energy spectrum in the solar wind
with ion plasma beta βi = 1, depicting the local transfer of Alfvénic energy from large scales
(small wavenumbers k) to small scales (large k) through a turbulent cascade (black arrows).
Instabilities may alter this energy flow by non-locally transporting energy directly to small,
kinetic scales (red arrow). (b) In wavevector space, the local transfer of the Alfvénic turbulent
cascade follows the anisotropic, critically balanced path, here plotted quantitatively for the case
of the GS95 scaling theory.
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1.2. What do we want to predict?
A long-term goal of the heliophysics community is to characterize the partitioning of
turbulent energy in terms of observable plasma and turbulence parameters, producing a
predictive heating model that can be used in numerical modelling of the global evolution of
the heliosphere, thereby advancing our capability for predictive modelling of the coupled
solar–terrestrial system. Understanding how the multiscale physics of plasma turbulence
couples the large-scale plasma conditions and evolution to the microphysical heating and
particle energization is essential to creating predictive heating models. Unfortunately,
current numerical codes cannot simulate the vast dynamic range of scales inherent to
the multiscale nature of heliospheric plasma turbulence while simultaneously capturing
the kinetic physics governing the conversion of turbulent energy to some form of particle
energy. Developing turbulent heating models that capture this coupling is one promising
avenue for formulating predictive models at a computationally feasible cost. To develop
such models, it is essential to establish a thorough understanding of the microphysical
kinetic processes that govern the energization of particles.

In a statistically steady-state turbulent cascade in a weakly collisional astrophysical
plasma, the energy injected into the turbulence at the outer scale is transferred locally
in scale down to increasingly smaller scales until reaching the kinetic length scales at
which damping mechanisms can collisionlessly remove energy from the turbulence and
energize the different particle species, as depicted in figure 1(a). This local cascade
of energy is mediated by nonlinear interactions among the turbulent fluctuations,
such as between counterpropagating Alfvén wave packets, often denoted ‘Alfvén wave
collisions’ (Kraichnan 1965; Sridhar & Goldreich 1994; Goldreich & Sridhar 1995; Ng &
Bhattacharjee 1996; Galtier et al. 2000; Howes et al. 2012b; Drake et al. 2013; Howes &
Nielson 2013; Howes et al. 2013; Nielson, Howes & Dorland 2013; Howes 2016; Verniero
& Howes 2018; Verniero, Howes & Klein 2018; Ripperda et al. 2021; TenBarge et al.
2021). Non-local energy transfer mechanisms – such as kinetic instabilities driven by
the large-scale dynamics that may cause the plasma conditions to deviate from local
thermodynamic equilibrium – can also directly generate turbulent fluctuations at the small
kinetic length scales, as illustrated in figure 1(b). Together, these mechanisms lead to a
turbulent energy density cascade rate ε from the large scales down to the small scales of the
turbulence. This nonlinear transfer of the turbulent energy density is ultimately damped
at small scales by kinetic plasma physics mechanisms, converting the energy density of
the small-scale turbulent plasma flows and magnetic fields into particle energy with a
statistically steady-state total plasma energy density heating rate Q ∼ ε.

For a single-ion-species plasma, such as a fully ionized hydrogenic plasma of protons
and electrons, the primary deliverable of a turbulent heating model is the determination
of the partitioning of the energy by the kinetic turbulent damping mechanisms between
the ions and electrons, Qi/Qe. Unlike in the case of strongly collisional plasmas, in which
the dissipated turbulent energy would be rapidly equilibrated between ion and electron
species by collisions, under the weakly collisional plasma conditions typical of space
and astrophysical plasmas, the differential heating of the plasma species can impact the
thermodynamic evolution of the plasma on mesoscales and macroscales.

Furthermore, energy transferred to a given plasma species may lead to energization of
the parallel degree of freedom or the perpendicular degrees of freedom relative to the
direction of the local magnetic field. Thus, secondary deliverables of a turbulent heating
model are measures of the anisotropic ion energy density heating rate Q⊥,i/Q‖,i and the
anisotropic electron energy density heating rate Q⊥,e/Q‖,e. In a strongly collisional plasma,
the anisotropic heating for each species would be rapidly isotropized by collisions, but
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Quantity Symbol Bounded

Turbulent energy density cascade rate ε

Plasma energy density heating rate Q

Ion-to-Electron heating ratio Qi/Qe Qi/Q
Anisotropic ion energy density heating ratio Q⊥,i/Q‖,i Q⊥,i/Qi
Anisotropic electron energy density heating ratio Q⊥,e/Q‖,e Q⊥,e/Qe

TABLE 1. The key input quantities (top section) and deliverables (bottom section) for predictive
turbulent heating models. Bounded quantities are normalized such that their values vary only
over the interval [0, 1].

weakly collisional plasmas allow the parallel and perpendicular2 degrees of freedom to be
energized independently (Kawazura, Barnes & Schekochihin 2019).

Different kinetic particle energization mechanisms may energize different degrees of
freedom – e.g. Landau damping energizes particles parallel to the magnetic field, but
cyclotron damping generally energizes particles perpendicular to the magnetic field – so
determining Q⊥,i/Q‖,i and Q⊥,e/Q‖,e first requires one to identify which kinetic physical
mechanisms govern the damping of the turbulent fluctuations as a function of the plasma
and turbulence parameters. Therefore, identifying the contributing turbulent damping
mechanisms as a function of the plasma and turbulence parameters is an additional
deliverable of a predictive turbulent heating model. Such information about the dominant
turbulent damping mechanisms, as a function of the key dimensionless parameters
describing the turbulent plasma, can be concisely presented in a phase diagram for the
dissipation of kinetic plasma turbulence, analogous to that developed for the behaviour of
magnetic reconnection in astrophysical plasmas (Ji & Daughton 2011). A first attempt at
a phase diagram for the turbulent damping mechanisms in weakly collisional space and
astrophysical plasmas is presented here in figure 12. The reader may wish to skip ahead
briefly to view figure 12 to appreciate a key goal of the analysis presented here.

The key input quantities for a turbulent heating model (ε, Q) and the deliverables
(Qi/Qe, Q⊥,i/Q‖,i, Q⊥,e/Q‖,e) for a turbulent heating model are summarized in table 1.
Note that, for ion cyclotron damping, which generally energizes only the perpendicular
degrees of freedom in the ion velocity distribution function3 , the anisotropic ion heating
ratio Q⊥,i/Q‖,i would be formally infinite. To avoid these inelegant infinities, we may
choose to use alternative bounded versions of the heating ratios in the right column of
Table 1 that vary only over the range [0, 1]. These bounded quantities are related to
the original quantities by Qi/Q = (Qi/Qe)/[1 + (Qi/Qe)] for the species partition and
Q⊥,s/Qs = (Q⊥,s/Q‖,s)/[1 + (Q⊥,s/Q‖,s)] for the anisotropic heating ratio for each species.

It is worthwhile noting that the determination of the partitioning of the turbulent energy
between ions and electrons Qi/Qe can be simplified by the properties of the turbulent
cascade that are evident in figure 1(a). The inertial range is defined as the range of
scales over which the turbulent energy density is transferred to smaller scales without
loss, leading to a constant energy density cascade rate ε throughout this range. However,
this standard definition of the inertial range from fluid turbulence theory neglects the

2Note that, under typical astrophysical plasma conditions in which the turbulent fluctuation frequencies are not much
faster than the species cyclotron frequencies, ω � Ωs, the two perpendicular degrees of freedom are rapidly equilibrated
by the gyromotion of the particles about the magnetic field, leading to gyrotropic plasma conditions with T⊥,1 ∼ T⊥,2.

3Note that, in quasilinear theory, ions are scattered along contours of constant energy in the cyclotron wave frame,
which in some cases can lead to parallel cooling (Hollweg & Isenberg 2002).
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possibility of a non-local transfer of energy that may arise in weakly collisional plasmas
and potential collisionless damping of compressible fluctuations at scales k⊥ρi � 1. In
the absence of these effects, the turbulent cascade rate ε at the onset of damping at ion
kinetic scales at kρi ∼ 1 is the same as that determined at the outer scale of the turbulence
at k0ρi � 1. Therefore, the collisionless wave–particle interactions that serve to remove
energy from the turbulent fluctuations and transfer that energy to the ions generally play
a significant role only within the range of length scales similar to the ion kinetic length
scales, kρi ∼ 1: (i) at larger scales kρi � 1, the collisionless damping rate with the ions
γi is typically negligible in comparison with the effective nonlinear frequency of the
turbulent energy transfer γi � ωnl; and (ii) at smaller scales kρi � 1, the gyromotion of
the ions averages out the effect of the small-scale electromagnetic fluctuations, so the
ions decouple from the turbulent fields and do not exchange significant energy. Whatever
turbulent energy manages to cascade beyond the ion scales to smaller scales at kρi � 1
will ultimately be deposited with the electrons. Thus, the task of determining Qi/Qe largely
boils down to determining what fraction of the turbulent energy is damped on the ions as
the cascade progresses through the ion kinetic scales at kρi ∼ 1.

Ultimately, the kinetic mechanisms that serve to damp the turbulent fluctuations at
kinetic length scales depend on the nature of the turbulent fluctuations at those scales.
Therefore, a viable strategy for developing a useful phase diagram for plasma turbulence
is to use turbulence scaling theories (e.g. GS95 or B06) to predict the properties of the
turbulent fluctuations upon reaching the ion and electron kinetic scales from the plasma
and turbulence parameters at large scales. The primary aim of this investigation is to
establish a theoretical framework upon which to base such predictions of the dominant
turbulent damping mechanisms as a function of the plasma and turbulence parameters.

1.3. What is the approach for developing a predictive turbulent heating model?
The Buckingham Pi theorem (Buckingham 1914) uses dimensional analysis (Barenblatt
1996) to determine the minimum number of dimensionless parameters upon which the
physical behaviour of a system depends. This approach is the key principle underlying the
development of predictive models of turbulent plasma heating in terms of the fundamental
dimensionless parameters of kinetic plasma turbulence. For sufficiently simple systems,
in which there are not multiple physical quantities of importance that have the same
dimensions, one can define a unique set of fundamental dimensionless parameters. But
for more complicated systems, in which there may be more than one relevant physical
quantity with the same dimensions, such as multiple characteristic length scales, the
determination of the fundamental dimensionless parameters is generally non-unique. The
case of kinetic turbulence in a weakly collisional plasma certainly falls into this more
complicated category. In that situation, it is essential to use physical insight into the
system’s properties and behaviour to define a particular set of dimensionless parameters
that is most useful in characterizing the behaviour of the system.

The goal of this paper is to define a particular set of fundamental dimensionless
parameters that can be used to characterize the properties of kinetic plasma turbulence and
its damping mechanisms. Modern scaling theories for anisotropic plasma turbulence can
then be expressed in terms of these fundamental parameters to determine the properties of
the turbulent fluctuations at the kinetic length scales at which kinetic physical mechanisms
can act to remove energy from the turbulent fluctuations and energize the plasma particles.
How those kinetic damping mechanisms depend on the plasma parameters and properties
of the turbulent fluctuations can then be used to predict the dominant mechanisms for the
damping of turbulence as a function of the dimensionless parameters, as summarized by
the phase diagram presented in figure 12. All of this information can then be synthesized
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to generate improved turbulent heating prescriptions for comparison with direct numerical
simulations of turbulent dissipation and for use in global modelling efforts for space and
astrophysical plasma systems, such as the heliosphere or supermassive black hole accretion
disks.

2. The fundamental dimensionless parameters of kinetic plasma turbulence

The first step in developing a predictive model for plasma turbulence in weakly
collisional space and astrophysical plasmas is to identify the key dimensionless parameters
upon which the turbulent energy cascade and its dissipation depend. In this paper, the focus
is to characterize kinetic plasma turbulence in the non-relativistic limit for sub-Alfvénic
turbulent motions, a case widely applicable to the turbulent plasmas found ubiquitously
in the heliosphere and throughout the universe. There are two categories of governing
parameters: plasma parameters and turbulence parameters. Modern scaling theories for
anisotropic plasma turbulence can be employed to reduce the number of parameters needed
to characterize the turbulence, as described in § 3.1. The reduced set of dimensionless
parameters can then be used to develop useful phase diagrams that identify the dominant
physical mechanisms of turbulent dissipation and highlight which of these key parameters
has the strongest impact on how particles are energized by the turbulence.

2.1. Plasma parameters
The plasma parameters play a critical role in determining the nature of the turbulent
fluctuations and their interaction with the underlying particle velocity distributions. For
simplicity of notation, we assume here a fully ionized, hydrogenic plasma of protons and
electrons with bi-Maxwellian equilibrium velocity distributions characterized by separate
parallel and perpendicular temperatures4 for each species, T‖,s and T⊥,s. In this idealized
case, the equilibrium ion and electron number densities are equal, ni = ne.

The first and most important plasma parameter is the parallel ion plasma beta, β‖,i =
8πniT‖i/B2, which characterizes the ratio of parallel thermal pressure to the magnetic
pressure in the plasma and dominantly controls the phase speeds of different linear wave
modes in a magnetized plasma. Note that with definitions for the parallel ion thermal
velocity v2

t‖,i = 2T‖,i/mi and the Alfvén velocity v2
A = B2/(4πnimi), the parallel ion plasma

beta can be alternatively expressed as β‖,i = v2
t‖,i/v

2
A. The definitions of all characteristic

plasma quantities and useful conversion formulas are collected in table 2. The second
parameter is the ion-to-electron parallel temperature ratio τ‖ = T‖,i/T‖,e. The third and
fourth parameters describe the ion and electron temperature anisotropies, Ai = T⊥,i/T‖,i
and Ae = T⊥,e/T‖,e. The fifth parameter characterizes the collisionality of the plasma
by comparing the mean free path scale for electron–electron collisions relative with the
parallel driving scale k‖0λmfp,e.

Although for a hydrogenic plasma of protons and electrons the ion-to-electron mass
ratio μ = mi/me has a fixed physical value of 1836, this ratio is included as an additional
independent parameter in the calculations below since a reduced mass ratio is often used
in numerical simulations of plasma turbulence for reasons of computational efficiency.
Note also that, once μ and τ‖ are specified5 , the single dimensionless parameter k‖0λmfp,e
is sufficient to specify all possible charged particle collision rates, since νee/(k‖0vt‖,e) =
1/(k‖0λmfp,e) and νei ∼ νee, νii ∼ μ−1/2τ

−3/2
‖ νee and νie ∼ μ−1τ

−3/2
‖ νee.

4Note that we absorb the Boltzmann constant into the temperature throughout this paper, giving temperature in units
of energy.

5For weakly collisional plasmas, the mean free path depends on the thermal velocity of particles parallel to the
magnetic field, and is therefore independent of the perpendicular temperature.
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Characteristic Plasma Quantities
Parameter Symbol and Definition

Parallel Species Thermal Velocity vt‖,s = √
2T‖,s/ms

Perpendicular Species Thermal Velocity vt⊥,s = √
2T⊥,s/ms

Alfvén Velocity vA = B0/
√

4πnimi
Ion Acoustic Velocity cs = √

T‖,e/mi
Species Cyclotron Frequency (Angular) Ωs = qsB0/msc
Species Plasma Frequency (Angular) ωps = √

4πnsq2
s /ms

Electron–electron Collision Frequency νee = 23/2πnee4 ln Λ/(m1/2
e T3/2

‖,e )

Ion Larmor Radius ρi = vt⊥,i/Ωi
Ion Sound Larmor Radius ρs = cs/Ωi
Electron Larmor Radius ρe = vt⊥,e/Ωe
Species Inertial Length ds = c/ωps

Species Debye Length λD,s = √
Ts/(4πnsq2

s )

Electron Mean Free Path λmfp,e = vt‖,e/νee
Ion Mean Free Path λmfp,i = vt‖,i/νii
Plasma Parameter Λ = neλ

3
D,e

Parallel Driving Scale L‖0
Perpendicular Driving Scale L⊥0
Parallel Driving Wavenumber k‖0 = 2π/L‖0
Perpendicular Driving Wavenumber k⊥0 = 2π/L⊥0
Linear Wave Frequency and Damping∗ Rate ω − iγ

Useful Conversion Formulas

di = c/ωpi = vA/Ωi = ρi/
√

β‖,iAi νei ∼ νee

de = vAμ1/2/Ωe = ρi/
√

β‖,iAiμ = ρe
√

τ‖μ/(β‖,iAe) νii ∼ μ−1/2τ
−3/2
‖ νee

ρs = ρi/
√

2τ‖Ai νie ∼ μ−1τ
−3/2
‖ νee

ρe = ρi/
√

τ‖Aeμ/Ai λmfp,i = λmfp,eτ
2
‖

β‖,i = v2
t‖,i/v

2
A β‖,e = β‖,i/τ‖

TABLE 2. Definitions of characteristic plasma quantities in cgs units and useful conversion
relations, where β‖,i, τ‖, Ai and μ are defined in table 3. ∗Note that the linear wave damping rate
is defined unconventionally here such that γ > 0 corresponds to wave damping, while γ < 0
corresponds to wave growth; this choice eliminates negative signs in the numerous formulas for
damping rates presented in this paper.

Therefore, (β‖,i, τ‖, Ai, Ae, k‖0λmfp,e) are five key dimensionless plasma parameters that
govern the properties of plasma turbulence, along with the fixed mass ratio μ. These
plasma parameters are summarized in table 3.

Note that, if the plasma contains multiple ion species, possibly each with multiple
charge states, the number of parameters increases dramatically, requiring a minimum
of five new dimensionless parameters for each new species s: (i) mass ratio ms/mi, (ii)
number density ratio ns/ne, (iii) charge ratio qs/qe, (iv) parallel temperature ratio T‖,s/T‖,i
and (v) temperature anisotropy T⊥,s/T‖,s. Partially ionized plasmas will similarly require
additional dimensionless parameters to be characterized. Since the intention here is not
to treat kinetic plasma turbulence in full generality, but rather to describe how one can
use the Pi theorem and turbulence scaling theories to minimize the number of relevant
dimensionless parameters, the remainder of this paper will focus on the case of a fully
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Plasma Parameters
Parameter Symbol and Definition

Parallel Ion Plasma Beta β‖,i = 8πniT‖,i/B2

Ion-to-Electron Parallel Temperature Ratio τ‖ = T‖,i/T‖,e
Ion Temperature Anisotropy Ai = T⊥,i/T‖,i
Electron Temperature Anisotropy Ae = T⊥,e/T‖,e
Plasma Collisionality k‖0λmfp,e
Ion-to-Electron Mass Ratio μ = mi/me

Turbulence Parameters
Parameter Symbol and Definition
Perpendicular Driving Scale k⊥0ρi
Driving-Scale Anisotropy k‖0/k⊥0
Nonlinear Parameter χ0 = k⊥0δB⊥0θ0/(k‖0B0)

Imbalance Parameter Z+
0 /Z−

0
Driving Compressibility Ecomp/Einc

TABLE 3. For the general case of homogeneous turbulence in a fully ionized, hydrogenic
plasma with bi-Maxwellian equilibrium velocity distributions, these are the fundamental
dimensionless parameters of kinetic plasma turbulence, including plasma parameters and
turbulence parameters. Note that the Boltzmann constant is absorbed to give temperature in units
of energy.

ionized, hydrogenic plasma of protons and electrons with bi-Maxwellian equilibrium
velocity distributions. Refinements of turbulent heating models to include minor ions, such
as the α particles that comprise a small fraction of ions in space and astrophysical plasmas,
can be constructed following the same principles presented here.

2.2. Turbulence parameters
The turbulence parameters characterize the scale, amplitude and properties of the turbulent
driving though five additional parameters. For simplicity, the focus here is restricted to
only the case of turbulence in a spatially homogeneous system in which the scale length of
gradients in the equilibrium quantities are much larger than the turbulent outer scale of the
system. Dimensionless ratios of length scales are notationally simplified by characterizing
the length scales of the turbulent fluctuations in terms of their perpendicular and parallel
wavenumbers. Below quantities at the outer scale of the turbulence, commonly denoted
the driving scale or energy injection scale, are denoted by the subscript ‘0’.

The driving of the turbulence can be characterized by three dimensionless parameters.
The first parameter is the perpendicular wavenumber of the driving-scale fluctuations
normalized by the ion Larmor radius, k⊥0ρi. The second parameter is the wavevector
anisotropy of the fluctuations at the driving scale, k‖0/k⊥0. The third parameter
is the nonlinearity parameter that characterizes the amplitude of the driving, χ0 =
(k⊥0δB⊥0θ0)/(k‖0B0), where δB⊥0 is the amplitude of the perpendicular magnetic field
fluctuations, B0 is the equilibrium magnetic field magnitude and θ0 is the angle of
dynamic alignment at the driving scale in radians (Boldyrev 2006). In the next section, we
demonstrate how modern scaling theories for anisotropic magnetohydrodynamic (MHD)
turbulence can be used to combine these three dimensionless parameters into a single
parameter, the isotropic driving wavenumber, k0ρi. Note also that, in principle, the
dynamic alignment angle θ0 at driving scale is an additional dimensionless parameter
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(measured in radians), but dynamic alignment is typically understood to be a phenomenon
that develops self-consistently due to the turbulence as it cascades to smaller scales, so we
neglect this parameter at the outer scale6 , generally taking θ0 ∼ 1 rad.

The nature of the turbulent fluctuations at the driving scale also plays an important role
in determining the ultimate fate of the turbulent energy. The fourth turbulence parameter
is the imbalance parameter, measuring the ratio of the amplitudes in upward-to-downward
Elsasser fields, Z+

0 /Z−
0 , where the Elsasser fields at the outer scale are defined by

Z±
0 = δU⊥,0 ± δB⊥,0/

√
4πnimi (Elsasser 1950), and where δU⊥,0 and δB⊥,0 are the

perpendicular perturbed plasma flow velocity and perpendicular perturbed magnetic
field of the turbulent fluctuations at the driving scale. Formally, δU⊥,0 and δB⊥,0 are
vectors in the plane perpendicular to the equilibrium magnetic field B0, but to calculate
the ratio Z+

0 /Z−
0 , we simply take the amplitudes of the Elsasser fields, Z±

0 = |Z±
0 |.

Physically, Alfvén wave packets propagating up the mean magnetic field have Z+ =
0 and Z− 	= 0, and those propagating down the field have Z+ 	= 0 and Z− = 0. The
Elsasser fields effectively characterize the wave energy flux in each direction along the
magnetic field7 of the typically dominant Alfvénic fluctuations in heliospheric plasma
turbulence (Tu & Marsch 1995; Schekochihin et al. 2009; Bruno & Carbone 2013). Since
the nonlinear interactions that mediate the turbulent cascade in Alfvénic turbulence at
MHD scales arise only between counterpropagating and perpendicularly polarized Alfvén
waves (Kraichnan 1965; Sridhar & Goldreich 1994; Goldreich & Sridhar 1995; Ng &
Bhattacharjee 1996; Galtier et al. 2000; Howes & Nielson 2013; Howes 2015a), the
imbalance plays an important role in characterizing the turbulence. The importance of
Z+

0 /Z−
0 under sufficiently imbalanced conditions, such as occurs in the inner heliosphere

where wave energy fluxes are dominantly anti-sunward, has been demonstrated clearly
with the recent discovery of a new phenomenon known as the helicity barrier in plasma
turbulence (Meyrand et al. 2021; Squire et al. 2022; Squire, Meyrand & Kunz 2023).

A fifth turbulence parameter is the ratio of the energy in compressible fluctuations
to that in incompressible fluctuations, Ecomp/Einc. Since a magnetized plasma supports
two distinct compressible wave modes, the fast and slow magnetosonic waves (differing
by whether the thermal and magnetic pressure perturbations associated with the wave
act in conjunction or in opposition), one could further characterize the compressible
component of the turbulent fluctuations by the additional ratio of the energy in the
fast magnetosonic fluctuations to the total energy of compressible fluctuations EF/Ecomp,
where the total compressible energy is the sum of the contributions from fast-mode and
slow-mode fluctuations, Ecomp = EF + Es. The ratio EF/Ecomp is not included here as
one of the fundamental parameters based on a study of the inertial range in solar wind
turbulence at 1 AU that showed negligible energy in fast-mode mode fluctuations, or
EF/Ecomp � 1 (Howes et al. 2012a). If significant energy exists in fast-mode fluctuations
in other turbulent astrophysical plasmas, EF/Ecomp may need to be included.

Therefore, (k⊥0ρi, k‖0/k⊥0, χ0, Z+
0 /Z−

0 , Ecomp/Einc) are five key dimensionless turbulence
parameters that govern the properties of plasma turbulence. These turbulence parameters
are summarized in table 3.

6Reflection-driven turbulence, as expected to occur in the inner heliosphere, is a likely exception to turbulent driving
with θ0 ∼ 1 rad, since sunward Alfvén waves born through reflection will be aligned with the anti-sunward Alfvén waves
from which they were generated (Perez & Chandran 2013; Chandran & Perez 2019).

7Note that the imbalance of counterpropagating wave energy fluxes in plasma turbulence has alternatively been
characterized in the literature using the cross-helicity (Dobrowolny, Mangeney & Veltri 1980; Matthaeus, Goldstein &
Smith 1982; Marsch & Tu 1990; Perez & Boldyrev 2009, 2010) or the normalized Poynting flux (Hnat, Chapman &
Rowlands 2003; Di Mare & Howes 2024).
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If the restriction to spatially homogeneous turbulent plasmas is relaxed, the large-scale
context of the turbulent plasma can also impact the nonlinear dynamics of the turbulence
and the evolution of the turbulent fluctuations. In the solar wind, the spherical expansion
of the solar wind governs the evolution of the plasma equilibrium temperatures with
heliocentric radius, possibly triggering kinetic temperature anisotropy instabilities that
can mediate non-local transfer of energy to small scales, as depicted in figure 1(b). In
rotating plasmas, such as found in the solar convection zone, the turbulence may be
driven with helical motions that can initiate the growth of magnetic field energy through
a dynamo effect (Parker 1955; Glatzmaier 1984, 1985; Parker 1993; Ossendrijver 2003).
Differential rotation in astrophysical accretion disks, which can trigger plasma turbulence
through the magnetorotational instability (Balbus & Hawley 1991; Hawley & Balbus 1991;
Balbus & Hawley 1998), has been recently shown to generate turbulence with a dominant
fraction of its energy in compressible fluctuations (Kawazura et al. 2022). The inclusion
of self-gravitational effects in the plasma, which play an important role in governing the
dynamics of the multi-phase interstellar medium in molecular clouds and star-forming
regions, adds significant additional complexity to the nature of the turbulent cascade.
Finally, kinetic instabilities arising in the foot and ramp regions of collisionless shocks
(Brown et al. 2023) can generate turbulent fluctuations that are swept into the downstream
region. In all of these astrophysically relevant cases, additional dimensionless turbulence
parameters will be required to characterize properly the turbulent fluctuations and their
evolution.

2.3. What happened to the Reynolds number?
Readers familiar with studies of MHD turbulence may find what appear to be two glaring
omissions in the proposed list of plasma and turbulence parameters in table 3 since it
does not include the Reynolds number, Re = LU0/ν, or the magnetic Reynolds number,
ReM = LU0/η. The Reynolds number is a dimensionless quantity that characterizes the
ratio of the amplitude of the convective term U · ∇U to that of the viscous diffusion term
ν∇2U in the MHD momentum equation; the magnetic Reynolds number characterizes the
ratio of the amplitude of the inductive term ∇ × (U × B) to that of the resistive diffusion
term η∇2B in the MHD induction equation.

The kinematic viscosity ν and resistivity η are transport coefficients that are rigorously
defined by an extension of the Chapman–Enskog procedure for magnetohydrodynamic
systems (Spitzer 1962; Grad 1963; Braginskii 1965) in the limit of small but finite
mean free path relative to the gradient scale, λmfp/L � 1. As illustrated by figure 11,
however, for many space and astrophysical plasma systems of interest, the scales at which
energy is removed from the turbulence (beginning at the small-scale end of the inertial
range) are weakly collisional, with λmfp/L � 1 or λmfp/L � 1. In these complementary
limits of moderate to large mean free path, relevant to space and astrophysical plasmas,
the procedure to calculate the viscosity and resistivity ceases to be valid. In fact, the
standard Laplacian viscosity and resistivity terms are likely to be poor approximations
to the physical mechanisms that are believed to remove energy from weakly collisional
plasma turbulence (see § 5.1 for a list of proposed damping mechanisms). Since it
is not possible to define clearly the viscosity or resistivity in a weakly collisional
system, it is also not possible to define the Reynolds number or magnetic Reynolds
number in weakly collisional, kinetic plasma turbulence. Thus, we are forced to choose
alternative dimensionless numbers that characterize the plasma and turbulence in weakly
collisional systems, so one of the primary aims of this paper is to propose the specific
set of fundamental dimensionless plasma and turbulence parameters that are suitable for
characterizing kinetic plasma turbulence, presented here in table 3.
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3. Scaling theories for anisotropic plasma turbulence

The key to predicting the evolution of the turbulent fluctuations as energy is cascaded
to ever smaller scales, and therefore also to developing a useful phase diagram for plasma
turbulence, is to use turbulence scaling theories to predict the properties of the turbulence
upon reaching the ion kinetic scales from the characteristics of the turbulence at large
scales. In particular, we will include the two prominent theories for the anisotropic cascade
of Alfvénic turbulence in MHD plasmas, the Goldreich–Sridhar 1995 (GS95) formulation
for weak and strong MHD turbulence (Sridhar & Goldreich 1994; Goldreich & Sridhar
1995), and the modification of this theory by Boldyrev 2006 (B06) that accounts for a
weakening of the nonlinearity by dynamic alignment (Boldyrev 2006). Note that, since
these are MHD theories of plasma turbulence – where strong collisionality is assumed
in the standard MHD approximation (Kulsrud 1983; Gurnett & Bhattacharjee 2017) – the
equilibrium species temperatures are assumed to be isotropic and equal, corresponding to
τ‖ = Ai = Ae = 1. For the case of weakly collisional plasma turbulence that is relevant to
most space and astrophysical plasma environments, these theories may need to be modified
appropriately, but such development of refined turbulence theories is beyond the scope of
the treatment here.

The particular scalings of the parallel wavenumber, intermediate wavenumber,
alignment angle, and magnetic field perturbation as a function of the perpendicular
wavenumber are given by

k‖∝k2/(3+α)

⊥ , (3.1)

ki ∝ k3/(3+α)

⊥ , (3.2)

θ ∝ k−α/(3+α)

⊥ , (3.3)

δB⊥∝k−1/(3+α)

⊥ , (3.4)

where α = 0 corresponds to the GS95 theory and α = 1 corresponds to the B06 theory.
Here the turbulent fluctuations as a function of scale are characterized by the three spatial
components of the wavevector relative to the local magnetic field direction: (i) the parallel
wavenumber k‖; and (ii) the intermediate wavenumber ki and (iii) the perpendicular
wavenumber k⊥, which together describe the anisotropy of the fluctuations in the plane
perpendicular to the local magnetic field, ki � k⊥, arising from the dynamic alignment of
the fluctuations (Boldyrev 2006; Mason, Cattaneo & Boldyrev 2006; Boldyrev, Mason &
Cattaneo 2009; Perez et al. 2012) and predicting the development of current sheets at small
scales. These scaling theories predict the scaling of k‖, ki, the angle of dynamic alignment
θ (in radians), and the amplitude of the perpendicular magnetic field fluctuations δB⊥ as a
function of the perpendicular wavenumber k⊥.

These theories yield specific predictions for the perpendicular magnetic-energy
spectrum of turbulence in the MHD regime, k⊥ρi � 1, and for the scale-dependent
anisotropy of the turbulence, a qualitative feature that is well established in MHD
turbulence (Cho & Vishniac 2000; Maron & Goldreich 2001; Cho, Lazarian & Vishniac
2002; Cho & Lazarian 2003; Mason et al. 2006; Boldyrev et al. 2009; Narita et al. 2010;
Sahraoui et al. 2010; Chen et al. 2011, 2012; Perez et al. 2012; Roberts, Li & Jeska 2015).
The perpendicular magnetic-energy spectrum for the two theories is given by

EB⊥(k⊥) ∝ (δB⊥)2

k⊥
∝ k−(5+α)/(3+α)

⊥ =
{

k−5/3
⊥ α = 0

k−3/2
⊥ α = 1

. (3.5)
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The parallel-to-perpendicular wavevector anisotropy is given by

k‖
k⊥

∝ k−(1+α)/(3+α)

⊥ =
{

k−1/3
⊥ α = 0

k−1/2
⊥ α = 1

, (3.6)

demonstrating that both theories predict that the turbulent fluctuations develop
a scale-dependent anisotropy, whereby the fluctuations become progressively more
elongated along the magnetic field as they cascade to smaller scale, eventually yielding
k‖/k⊥ � 1 at sufficiently small scales. This k‖/k⊥ anisotropy follows from the imposition
of the condition of critical balance between the linear and nonlinear time scales of the
turbulence (Goldreich & Sridhar 1995; Mallet, Schekochihin & Chandran 2015). The
intermediate-to-perpendicular wavevector anisotropy is given by

ki

k⊥
∝ k−α/(3+α)

⊥ =
{

k0
⊥ α = 0

k−1/4
⊥ α = 1

. (3.7)

Here, the GS95 theory predicts no development of anisotropy in the perpendicular plane,
at odds with the findings of current sheets at small perpendicular scales in numerical
simulations (Matthaeus & Montgomery 1980; Meneguzzi, Frisch & Pouquet 1981; Uritsky
et al. 2010; Zhdankin et al. 2012, 2013) and spacecraft observations (Borovsky 2008;
Osman et al. 2011). The B06 theory predicts the development of anisotropy in the
perpendicular plane, corresponding to the development of current sheets with ki/k⊥ � 1
at sufficiently small scales, potentially triggering tearing instabilities (Furth, Killeen &
Rosenbluth 1963; Zocco & Schekochihin 2011) that enable magnetic reconnection to
disrupt the turbulent cascade (Boldyrev & Loureiro 2017; Loureiro & Boldyrev 2017a, b;
Mallet, Schekochihin & Chandran 2017a, b; Walker, Boldyrev & Loureiro 2018).

It is worthwhile emphasizing that the idea of critical balance in the turbulent cascade
does not imply that all of the turbulent energy is concentrated at the parallel wavenumber
kcb

‖ determined by critical balance. Rather, kcb
‖ is the upper limit of parallel wavenumber,

and thus generally also implies an upper limit on the linear wave frequency (since ω ∝ k‖
for Alfvénic fluctuations with ω � Ωi). Rather, the turbulent fluctuation power extends
over the range 0 ≤ k‖ ≤ kcb

‖ (Goldreich & Sridhar 1995; Maron & Goldreich 2001).
Accounting for how the turbulent energy is distributed over this k‖ range would lead to
order-unity or less quantitative changes in the heating rates. Since the goal of predictive
turbulent heating models is generally to calculate the lowest-order, order-of-magnitude
quantities for species heating rates, any effects due to the distribution of turbulent energy
over 0 ≤ k‖ ≤ kcb

‖ are likely to yield only higher-order corrections to these predictions;
thus, the effect of this range of turbulent energy in k‖ is neglected in the first generation of
turbulent heating models addressed here.

In closing, note that these theories for MHD turbulence are largely focused on
the transport of energy in Alfvénic fluctuations, so if significant energy is driven or
transferred nonlinearly into other (non-Alfvénic) wave modes, this may significantly alter
the energy transport from the predictions shown here, with the potential for qualitatively
different predictions for the damping mechanisms of these non-Alfvénic turbulent
fluctuations.

3.1. Exploiting turbulent scaling theories to reduce the number of fundamental
dimensionless parameters

Given the large number of fundamental dimensionless parameters that characterize weakly
collisional plasma turbulence, shown in table 3, it is imperative to reduce the number
of important parameters to make progress in developing predictive models of turbulent
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heating. Adopting idealized approximations, such as maintaining isotropic equilibrium
velocity distributions for the plasma, enables one to eliminate some of the parameters in
table 3. Another approach is to exploit the MHD turbulent scaling theories described in § 3
to combine several parameters into a new single parameter, an approach presented here.

In general, the driving of the plasma turbulence depends on at least three independent
parameters: (i) the perpendicular wavenumber at which the turbulence is driven k⊥0ρi, (ii)
the anisotropy of the driven fluctuations with respect to the local magnetic field direction
k‖0/k⊥0 and (iii) the nonlinearity parameter which characterizes the strength of the driving,
χ0 ≡ k⊥0δB⊥0θ0/(k‖0B0). Recall that quantities evaluated at the driving scale are given the
subscript ‘0’. Fortunately, for turbulence driven at large scales (relative to the ion kinetic
scales), as is typical in most space or astrophysical plasma environments, MHD scaling
theory can be used to predict the properties of the turbulence upon reaching the kinetic
scales, where kinetic plasma processes act to dissipate the turbulence. In fact, as detailed
here, it is possible to combine these three dimensionless parameters into a new, single
dimensionless parameter: the isotropic driving wavenumber, k0ρi.

MHD turbulent scaling theories can be used, for a given set of driving parameters
(k⊥0ρi, k‖0/k⊥0, χ0), to predict the properties of the turbulent fluctuations (e.g. anisotropy,
amplitude) upon reaching the ion kinetic scales, here taken to be the perpendicular
wavenumber k⊥ρi = 1. The isotropic driving wavenumber k0ρi is the unique wavenumber
that produces the same conditions at k⊥ρi = 1 as if the turbulence were driven isotropically
at that wavenumber with k⊥0 = k‖0 ≡ k0 and in a condition of critical balance with χ0 = 1.

The key procedure for determining the isotropic driving wavenumber k0ρi is illustrated
in figure 2. Panel (a) shows the perpendicular wavenumber magnetic-energy spectrum
EB⊥(k⊥) driven weakly with χ0 = 0.1 at perpendicular wavenumber k⊥0ρi = 10−5, where
a weak turbulent cascade leads to a steep weak MHD turbulence spectrum with EB⊥ ∝ k−2

⊥
(Sridhar & Goldreich 1994; Galtier et al. 2000; Boldyrev & Perez 2009), followed
by a flatter strong MHD turbulence spectrum with EB⊥ ∝ k−(5+α)/(3+α)

⊥ (Goldreich &
Sridhar 1995; Boldyrev 2006). The cascade reaches the perpendicular ion kinetic scale
k⊥ρi = 1, and at higher wavenumbers the cascade continues as strong kinetic Alfvén wave
(KAW) turbulence with a significantly steeper magnetic-energy spectrum with EB⊥ ∝ k−2.8

⊥
(Alexandrova et al. 2009; Kiyani et al. 2009; Sahraoui et al. 2009; Chen et al. 2010;
Howes et al. 2011b; Sahraoui et al. 2013). When the collisionless damping of the KAW
turbulent cascade begins to diminish the rate of nonlinear energy cascade, the spectrum
begins to fall off exponentially in the weakly dissipating KAW turbulence (WDKT) regime
(Howes, Tenbarge & Dorland 2011a), ultimately terminating the turbulent cascade at
scales k⊥ρe � 1.

In figure 2(b) is presented the characteristic path of the anisotropic cascade of energy
through (k⊥, k‖) wavevector space for the different regimes of the turbulent cascade. There
is no parallel cascade in the weak MHD turbulence regime (Sridhar & Goldreich 1994;
Galtier et al. 2000), followed by a scale-dependent anisotropy given by k‖ ∝ k2/(3+α)

⊥
in the strong MHD turbulence regime (Goldreich & Sridhar 1995; Boldyrev 2006).
The turbulence transitions to the strong KAW regime at k⊥ρi ∼ 1, with the anisotropy
becoming stronger at k⊥ρi > 1, scaling as k‖ ∝ k1/3

⊥ (Cho & Lazarian 2004; Howes et al.
2008a, 2011a; TenBarge & Howes 2012; TenBarge, Howes & Dorland 2013). As the
turbulence weakens due to collisionless damping of turbulent fluctuations in the WDKT
regime, the parallel cascade is predicted to cease once again (Howes et al. 2011a).

The diagrams in figure 2 provide guidance to understand how MHD turbulence scaling
theories can be used to combine (k⊥0ρi, k‖0/k⊥0, χ0) into a single new parameter, the
isotropic driving wavenumber, k0ρi. If the turbulence is driven at critical balance (χ0 = 1)
and isotropically (k‖0/k⊥0 = 1), then the isotropic driving wavenumber is simply the same
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FIGURE 2. Diagram illustrating how to determine the isotropic driving wavenumber k0ρi in
terms of the perpendicular driving wavenumber k⊥0ρi, the driving anisotropy k‖0/k⊥0 and the
nonlinearity parameter of the driving, χ0 = k⊥0δB⊥θ0/(k‖0B0).

as the perpendicular driving wavenumber, k0ρi = k⊥0ρi. Therefore, it is necessary to use
MHD turbulence scaling theory to determine k0ρi only in the case that the turbulence is
driven weakly with χ0 < 1 or anisotropically with k‖0/k⊥0 	= 1.
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For weakly driven turbulence with χ0 < 1, MHD turbulence theory predicts that the
parallel cascade is inhibited and that the perpendicular wavenumber magnetic-energy
spectrum of the turbulence scales as EB⊥ ∝ (δB⊥)2/k⊥ ∝ k−2

⊥ . Therefore, in terms of the
driving amplitude δB⊥0 and perpendicular driving wavenumber k⊥0, the amplitude of the
turbulence as a function of k⊥ is given by δB⊥(k⊥) = δB⊥0(k⊥0/k⊥)1/2. Given the lack
of parallel cascade in weak MHD turbulence, we fix k‖ = k‖0, and obtain the following
scaling8 for the nonlinearity parameter as a function of k⊥:

χ(k⊥) = χ0

(
k⊥ρi

k⊥0ρi

)1/2

. (3.8)

Magnetohydrodynamic turbulence theory predicts that the nonlinearity parameter will
increase through the weak turbulent cascade until it reaches a value of unity, χ ∼ 1,
at which point the turbulence has reached a state of critical balance in the strong
turbulence regime. From that point, theory predicts that an anisotropic cascade will
ensue (transferring energy to smaller scales more rapidly in the perpendicular than the
parallel direction), with the parallel and perpendicular cascades balanced to maintain a
nonlinearity parameter of unity, χ ∼ 1. Therefore, the key point in the cascade is the
perpendicular wavenumber at which the turbulence first reaches χ = 1, given by

k⊥ρi|χ=1 = 1
χ 2

0
k⊥0ρi. (3.9)

An example of this weakly turbulent, strictly perpendicular cascade in (k⊥, k‖) space is
depicted in figure 2(b), where turbulence driven weakly with χ0 = 0.1, cascades to k⊥ρi =
100k⊥0ρi, at which point the turbulence becomes strong, with χ = 1.

To obtain the isotropic driving wavenumber k0ρi from this point in wavevector space
(k⊥ρi|χ=1, k‖0), we need to extend the cascade backward along the critical balance line
(red dashed lines) until it intersects with isotropy k‖ = k⊥ (dotted line). From the MHD
scaling theories in § 3, for a critically balanced, strong turbulent cascade that is driven
strongly and isotropically at k0ρi, the anisotropy as a function of k⊥ scales as

k‖
k⊥

=
(

k0ρi

k⊥ρi

)(1+α)/(3+α)

. (3.10)

The anisotropy at the point (k⊥ρi|χ=1, k‖0) is given by k‖/k⊥ = (k‖0/k⊥0)χ
2
0 . Substituting

this expression for k‖/k⊥ on the left-hand side of (3.10) and substituting (3.9) into the
denominator on the right-hand side of (3.10), we can solve for the isotropic driving
wavenumber k0ρi, obtaining the results

k0ρi = k⊥0ρi

(
k‖0

k⊥0

)(3+α)/(1+α)

χ
4/(1+α)

0 . (3.11)

In figure 2(b), the isotropic driving wavenumber k0ρi (red circle) is the shown where the
critical balance line (solid black and red dashed lines) intersects the isotropy line, k‖ = k⊥
(dotted line). Note that this reduction of the three driving parameters to k0ρi is valid only in
the limit that the turbulent cascade becomes strong before it reaches the ion kinetic scales
at k⊥ρi ∼ 1.

8Here we have assumed that the dynamic alignment angle θ0 also does not evolve as a function of k⊥ in weak MHD
turbulence, as there is no prediction in the literature for the scaling of dynamic alignment in weak turbulence.
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The relation (3.11) provides the means to combine the three turbulence driving
parameters (k⊥0ρi, k‖0/k⊥0, χ0) into the single new effective parameter, the isotropic
driving wavenumber k0ρi. The properties of the turbulent fluctuations at perpendicular
scales smaller than the point where the turbulent cascade becomes strong, or k⊥ρi >
k⊥ρi|χ=1, will be the same for the original case with driving parameterized by (k⊥0ρi,
k‖0/k⊥0, χ0) as for turbulence driven strongly and isotropically at k0ρi. In the development
of a turbulent heating model, it is the properties of the turbulent fluctuations at the
small, kinetic length scales that will determine the kinetic damping mechanism and the
resulting particle energization, so reducing three turbulence driving parameters to a single
parameter substantially reduces the dimensionality of the parameter space to be modelled.

It is worthwhile noting that the evolution of the dynamic alignment angle with
perpendicular wavenumber θ(k⊥) is not well modelled by k0ρi. The development of
current sheets at very small scales due to dynamic alignment, and the possibility for the
interruption of the turbulent cascade by magnetic reconnection (Boldyrev & Loureiro
2017; Loureiro & Boldyrev 2017a, b; Mallet et al. 2017a, b; Walker et al. 2018), will
depend on this scaling of θ(k⊥). But, from a practical point of view, this issue in modelling
θ(k⊥) while reducing (k⊥0ρi, k‖0/k⊥0, χ0) to k0ρi is likely to be a problem only in rare
cases, for the following reasons. First, the scaling of dynamic alignment angle θ ∝ k−1/4

⊥
in B06 is rather weak, scaling as the −1/4 power, so only when the MHD inertial range
spans many orders of magnitude in the perpendicular length scale will the development of
current sheets likely have a significant impact on the turbulent dynamics. Second, dynamic
alignment appears to arise only in strong MHD turbulence, so it seems reasonable to take
θ0 ∼ 1 rad (roughly equivalent to isotropy in the perpendicular plane) at the perpendicular
scale k⊥ρi|χ=1 where the turbulence becomes strong. One may then estimate the evolution
of that dynamic alignment angle θ(k⊥) from that point for the cases in which it impacts
the evolution. Finally, although the development of current sheets in plasma turbulence
is well established (Matthaeus & Montgomery 1980; Meneguzzi et al. 1981; Borovsky
2008; Uritsky et al. 2010; Osman et al. 2011; Zhdankin et al. 2012, 2013), it is not clear
that the scaling theory in B06 indeed properly describes this development; an alternative
explanation for the development of current sheets arising self-consistently from Alfvén
wave collisions exists (Howes 2015a, 2016; Verniero et al. 2018), although a specific
scaling for this alternative mechanism has not yet been proposed.

3.2. Efficiently modelling the small-scale end of the turbulent inertial range
The multiscale physics of astrophysical plasma turbulence presents a particular challenge
for numerical modelling that covers the entire dynamic range of the turbulent cascade
while simultaneously capturing the kinetic mechanisms that govern the damping of the
turbulence under weakly collisional plasma conditions, in particular since the physics of
plasma turbulence is inherently three-dimensional (Howes 2015b). For the development of
turbulent heating models, it is critical to investigate the physical mechanisms that remove
energy from the turbulence and energize the plasma particles. Fortunately, since the
inertial range of turbulence is defined as the range of scales over which the turbulent energy
cascades to smaller scales but the dissipation is negligible, as depicted in figure 1(a), it is
not strictly necessary to model the entire inertial range in order to capture the physics of
the turbulent dissipation9 .

9Exceptions to this simplification may occur when the turbulence involves compressible fluctuations that may
collisionlessly damp at scales within the inertial range or when kinetic instabilities at the driving or inertial range scales
lead to the non-local transfer of energy.
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One less computationally costly approach to capture numerically the mechanisms of
turbulent damping is to choose to model directly only the small-scale end of the inertial
range, preserving as much of the resolved dynamic range of the simulation as possible to
capture the dissipation mechanisms. To do so, one takes advantage of the scaling relations
for turbulence in the MHD regime k⊥ρi � 1, summarized in § 3, to ‘drive’ the turbulence
at the domain scale of the simulation with turbulent fluctuations that have the properties
dictated by the scaling theories.

As an example of how to set up simulations in this way, consider turbulence physically
driven strongly and isotropically at an isotropic driving wavenumber of k0ρi = 10−4,
as depicted in figure 3. For a hydrogenic plasma of protons and electrons with a
realistic mass ratio mi/me = 1836, the turbulent cascade extends at least down to the
perpendicular scales of the electron Larmor radius k⊥ρe ∼ 1 (Sahraoui et al. 2010; Howes
et al. 2011b; TenBarge et al. 2013; Kiyani, Osman & Chapman 2015). Thus, a dynamic
range of L0/ρe = k⊥max/k0 = [(k⊥maxρe)/(k0ρi)](ρi/ρe) ∝ (k0ρi)

−1(Ti/Te)
1/2(mi/me)

1/2 ∼
4.3 × 105 in each of the three spatial dimensions is necessary when Ti/Te ∼ 1, well
beyond the capabilities of any kinetic simulation code. If the simulation code can resolve
a dynamic range of 103 in each spatial dimension, we can choose a perpendicular
domain scale in the middle of the physical inertial range at k⊥Dρi = 10−2 and use a
reduced mass ratio mi/me = 100 so that k⊥ρe = 1 corresponds to k⊥ρi = 10 for Ti/Te = 1.
Thus, the resolved perpendicular length scales of the simulation span 10−2 ≤ k⊥ρi ≤ 10,
corresponding to 10−3 ≤ k⊥ρe ≤ 1 in terms of the electron Larmor radius ρe, as shown in
figure 3.

To drive the turbulence at the perpendicular simulation domain scale L⊥ = 2π/k⊥D
with k⊥Dρi = 10−2, corresponding to domain scale in the middle of the turbulent inertial
range, we use the scaling relations (3.1)–(3.4) to determine the appropriate turbulent
scale-dependent anisotropy and amplitude of the fluctuations at the numerical domain
scale for a physical inertial range driven strongly (χ0 = 1) and isotropically (k⊥0 = k‖0 =
ki0 ≡ k0 and θ0 = 1 rad) at k0ρi = 10−4. For this example, we will adopt the B06 scaling,
choosing α = 1. The wavevector anisotropy and amplitude of the fluctuations at the
domain scale can be expressed using scaling relations (3.1)–(3.4) to yield

k‖Dρi = k0ρi

(
k⊥Dρi

k0ρi

)1/2

(3.12)

kiDρi = k0ρi

(
k⊥Dρi

k0ρi

)3/4

(3.13)

θD = θ0

(
k⊥Dρi

k0ρi

)−1/4

(3.14)

δB⊥D

B0
=
(

k⊥Dρi

k0ρi

)−1/4

. (3.15)

The properties of the domain-scale fluctuations at k⊥Dρi = 10−2 determined by these
scaling relations are illustrated in figure 3 for a turbulent cascade parameterized by
dimensionless parameters k0ρi = 10−4 and θ0 = 1 rad. The normalized value of the
energy spectrum at k⊥Dρi = 10−2 is (k0/B0)

2EB⊥(k⊥) = 10−3, consistent with the solution
δB⊥D/B0 = 0.32 of (3.15) at the domain scale, given by the red circle in figure 3(a).
The three-dimensional anisotropy of the wavevector of the turbulent fluctuations at the
perpendicular domain scale k⊥Dρi = 10−2 is characterized by: (i) k‖Dρi = 10−3 from
(3.12), given by the blue circle in figure 3(b); and (ii) kiDρi = 3.2 × 10−3 from (3.13), given
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FIGURE 3. Modelling the small-scale end of the turbulent inertial range using MHD scaling
relations, choosing B06 scaling with α = 1, mi/me = 100, k0ρi = 10−4, k⊥Dρi = 10−2.

by the green circle in figure 3(b). The dynamic alignment of the velocity and magnetic
field fluctuations at the domain scale is given by θD = 0.32 rad from (3.14). Note that
for these parameters, the scalings lead to a constant nonlinearity parameter as a function
of perpendicular wavenumber χ(k⊥) = χ0 = 1 at all scales k⊥ρi < 1, as dictated by the
conjecture of critical balance in strong turbulence (Goldreich & Sridhar 1995; Mallet et al.
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2015). These scaling calculations determine the nature of the turbulent fluctuations at the
numerical domain scale, in the middle of the physical inertial range being modelled.

Since the largest perpendicular scale of the resolved dynamic range of the simulation at
k⊥Dρi is constantly being fed turbulent cascade energy mediated by nonlinear interactions
among turbulent fluctuations at scales slightly larger than the domain scale with k⊥ < k⊥D,
it is imperative that these turbulence simulations are driven, rather than simply simulating
the decay of the energy turbulent fluctuations initialized at the domain scale. The nonlinear
interactions among perpendicularly polarized, counterpropagating Alfvén waves drive the
cascade of energy in Alfvénic plasma turbulence (Kraichnan 1965; Sridhar & Goldreich
1994; Goldreich & Sridhar 1995; Ng & Bhattacharjee 1996; Galtier et al. 2000; Howes
et al. 2012b; Drake et al. 2013; Howes & Nielson 2013; Howes et al. 2013; Nielson
et al. 2013; Howes 2016; Verniero & Howes 2018; Verniero et al. 2018). Exploiting this
physical insight, driving counterpropagating Alfvén waves, polarized in both dimensions
perpendicular to the equilibrium magnetic field, has been shown to generate successfully
a steady-state plasma turbulent cascade (Howes et al. 2008b, 2011b; TenBarge et al. 2013;
Told et al. 2015; Verniero & Howes 2018; Verniero et al. 2018). A finite-time correlated
driving, such as an antenna driven by a Langevin equation (TenBarge et al. 2014), mimics
the unsteady nature of the turbulent cascade from larger scales expected of turbulent
driving at a chosen scale within the turbulent inertial range.

To set up the simulation to describe optimally the domain-scale fluctuations, it has
become common practice to utilize a numerical domain that is elongated along the
direction of the equilibrium magnetic field, consistent with the anisotropic scaling of
turbulent fluctuations at small scales, k‖/k⊥ � 1. For the example shown in figure 3,
individual Alfvénic fluctuations are predicted to have a perpendicular plane anisotropy
given by kiD/k⊥D = 0.32. But since these Alfvénic fluctuations can be polarized in
either of the directions in the perpendicular plane, it is necessary for both perpendicular
directions to be large enough to resolve the intermediate scale (the larger of the
two perpendicular scales since kiD/k⊥D < 1). Thus, the simulation domain should be
defined by L‖ × L2

i , where L‖ = 2πρi(k‖Dρi)
−1 and Li = 2πρi(kiDρi)

−1. Within this
domain, counterpropagating Alfvénic fluctuations should be driven, polarized in both
perpendicular directions, with wavevectors characterized by (k⊥D, kiD, k‖D), with dynamic
alignment characterized by θD, and with amplitudes δB⊥D. Note that setting up properly
dynamically aligned Alfvénic fluctuations at the domain scale is a challenging task
that will depend on the particular numerical implementation of the simulation code.
Nonetheless, by driving the simulation appropriately within the inertial range, this
approach enables the efficient simulation of the small-scale end of the inertial range
consistent with the scaling properties of MHD turbulence, enabling kinetic simulations
to focus on the physical mechanisms damping the turbulent fluctuations.

3.3. A reduced parameter space for kinetic plasma turbulence
Although the physics of plasma turbulence, its dissipation, and the resulting heating of
the plasma species formally depends on all ten of the general plasma and turbulence
parameters (β‖,i, τ‖, Ai, Ae, k‖0λmfp,e; k⊥0ρi, k‖0/k⊥0, χ0, Z+

0 /Z−
0 , Ecomp/Einc) listed in

table 3, focusing initially on the development of completely general turbulent heating
models on a ten-dimensional parameter space is unlikely to be successful. Instead, first
developing predictive turbulent heating models over a reduced parameter space is almost
certainly a better strategy. As an initial exploration of Alfvénic turbulence and its kinetic
damping mechanisms, we choose to focus on the simplified limit of isotropic temperatures,
modifying our approach as needed for cases that violate these conditions.
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For many of the calculations in this study, a reduced isotropic temperature case is
adopted, assuming that the equilibrium velocity distribution for each species remains well
described as an isotropic Maxwellian distribution. Note that kinetic temperature anisotropy
instabilities generally bound the species temperature anisotropies in the vicinity of isotropy
As ∼ 1 (Kasper, Lazarus & Gary 2002; Hellinger et al. 2006; Štverák et al. 2008; Bale
et al. 2009; Štverák et al. 2009; Verscharen et al. 2016), although if these instabilities are
triggered, particularly at βi � 1, they can impact both the linear wave physics at play in
the turbulent dynamics of critically balanced turbulence (Squire, Quataert & Schekochihin
2016; Squire et al. 2017a; Squire, Schekochihin & Quataert 2017b) and mediate the
non-local transfer of energy directly from the large driving scales to the kinetic length
scales (Arzamasskiy et al. 2023).

To define a reduced parameter space, we first restrict the temperature anisotropies
for ions and electrons to unity, Ai = 1 and Ae = 1, so that T⊥,i = T‖,i ≡ Ti and T⊥,e =
T‖,e ≡ Te. With this idealization, the ion plasma beta and ion-to-electron temperature ratio
are redefined in terms of these isotropic temperatures Ti and Te, yielding the isotropic
parameters βi = 8πniTi/B2 and τ = Ti/Te. In addition, for this reduced parameter space,
we will also assume that the turbulent inertial range is sufficiently large, or the driving is
sufficiently strong, that the dynamics at the perpendicular ion kinetic length scales k⊥ρi ∼
1 is in a state of strong plasma turbulence with a nonlinearity parameter χ ∼ 1. Under
these conditions, we can replace the three turbulent driving parameters (k⊥0ρi, k‖0/k⊥0, χ0)
by the single isotropic driving wavenumber k0ρi, as detailed in § 3.1.

We will also make two other simplifying assumptions for this reduced, isotropic
temperature case. We will assume that the turbulence is balanced, with approximately
equal wave energy fluxes up and down the local magnetic field Z+

0 /Z−
0 ∼ 1, which is a

necessary condition to apply the MHD turbulence scaling relations given by (3.1)–(3.4).
Additionally, based on direct spacecraft measurements of turbulence in the heliosphere
which find that incompressible Alfvénic fluctuations appear to dominate turbulent
dynamics in space plasmas (Belcher & Davis 1971; Tu & Marsch 1995; Alexandrova et al.
2008; Bruno & Carbone 2013), as well as theoretical considerations that suggest that the
dynamics of Alfvén waves dominates the turbulent cascade (Lithwick & Goldreich 2001;
Maron & Goldreich 2001; Cho & Lazarian 2003; Schekochihin et al. 2009; Howes 2015a),
we will also assume a negligible amount of energy in compressible turbulent fluctuations
at the driving scale, Ecomp/Einc � 1.

Therefore, we propose the isotropic temperature case, a reduced parameter space for
weakly collisional plasma turbulence in the limit of strong, balanced, Alfvénic turbulence,
with a governing set of three dimensionless parameters, (βi, τ ; k0ρi), as shown in table 4.
Although the isotropic temperature case eliminates a number of important physical effects
such as temperature anisotropy instabilities, imbalanced turbulent wave energy fluxes and
compressible fluctuations, it nonetheless represents an excellent starting point for the
development of refined turbulent heating models. Such models can produce theoretical
predictions that can be compared with kinetic numerical simulations and spacecraft
observations of weakly collisional plasma turbulence, exemplified by the phase diagram
for turbulent damping mechanisms shown in figure 12.

In terms of the fundamental parameters of the isotropic temperature case, the MHD
turbulent scaling relations (3.1)–(3.4) simplify to the following easy-to-use forms:

k‖ρi = (k0ρi)
(1+α)/(3+α)(k⊥ρi)

2/(3+α) (3.16)

kiρi = (k0ρi)
α/(3+α)(k⊥ρi)

3/(3+α) (3.17)
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Plasma Parameters
Parameter Symbol and Definition

Ion Plasma Beta βi = 8πniTi/B2

Ion-to-Electron Temperature Ratio τ = Ti/Te
Ion-to-Electron Mass Ratio μ = mi/me

Turbulence Parameters

Parameter Symbol and Definition
Isotropic Driving Wavenumber k0ρi

TABLE 4. Isotropic temperature case: reduced set of fundamental dimensionless parameters
for isotropic Maxwellian equilibrium velocity distributions with Ai = Ae = 1, collisionless
conditions k‖0λmfp,e � 1, strong turbulence assumed at the ion kinetic scales, balanced
turbulence Z+

0 /Z−
0 ∼ 1, and negligible energy in compressible fluctuations Ecomp/Einc � 1.

This results in a reduced set of plasma and turbulence parameters (βi, τ ; k0ρi).

θ = θ0

(
k0ρi

k⊥ρi

)α/(3+α)

(3.18)

δB⊥
B0

=
(

k0ρi

k⊥ρi

)1/(3+α)

. (3.19)

4. Review of previous turbulent heating models

Several previous studies have constructed turbulent heating models that attempt to
quantify how the energy removed from the turbulent cascade is partitioned between
protons and electrons and between parallel and perpendicular degrees of freedom. Here,
we briefly summarize these existing turbulent heating models, including the dissipation
mechanisms considered, the assumptions of how that energy is removed from the
turbulence and the stated limitations of each model.

One of the earliest efforts to estimate the proton and electron energization rates by
turbulence due to collisionless damping mechanisms was carried out by Quataert &
Gruzinov (1999) (hereafter QG99), following earlier results by each of these authors
to determine the collisionless damping rates under astrophysically relevant conditions
(Gruzinov 1998; Quataert 1998). This study adopted the GS95 scaling for dominantly
Alfvénic turbulence at perpendicular scales restricted to the MHD limit, k⊥ρi � 1. The
turbulent fluctuations upon reaching the end of the MHD limit at the perpendicular scale
of the ion Larmor radius k⊥ρi ∼ 1 are predicted to be significantly anisotropic with
k⊥ � k‖; since the MHD Alfvén wave frequency ω = k‖vA is proportional to k‖, this yields
turbulent fluctuations at this perpendicular ion scale with low frequencies relative to the
ion cyclotron frequency, ω � Ωi. Thus, all collisionless damping is provided by the n = 0
Landau resonance, specifically Landau damping and transit-time damping. In addition,
this model assumed that all turbulent energy at a given perpendicular wavenumber k⊥ρi
was concentrated at the parallel wavenumber given by the conjecture of critical balance
(Goldreich & Sridhar 1995; Quataert & Gruzinov 1999). They constructed a simple
cascade model that balanced the collisionless damping by ions and electrons given by
the Vlasov–Maxwell linear dispersion relation (Stix 1992) over the MHD range of scales,
k⊥ρi � 1. Beyond these scales at k⊥ρi � 1 in the kinetic regime, uncertainty about the
nature of the turbulence at these sub-ion length scales led them to assume simply that
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any energy reaching k⊥ρi � 1 ultimately heated the electrons. They calculated the fraction
of the turbulent energy that heats the electrons, Qe/Q, as function of total plasma beta
β = βi + βe = βi(1 + Ti/Te), yielding a numerical result for Qe/Q(β). Their resulting
energy partition depended strongly on a constant assumed in the model that characterized
the balance of the nonlinear turbulent cascade rate to the linear collisionless damping
rate; uncertainty in the value of this constant (by a factor from 1/4 to 4) led the resulting
prediction of Qe/Q(β) to vary by more than one order of magnitude over the range of
3 � β � 100.

The Howes 2010 (hereafter H10) turbulent heating model (Howes 2010) was based
on a turbulent cascade model (Howes et al. 2008a) that extended the GS95 turbulence
scaling from MHD scales at k⊥ρi � 1 into the kinetic regime at k⊥ρi � 1, generalizing
the conjecture of critical balance to account for the dispersive nature of kinetic Alfvén
waves at these sub-ion length scales (Biskmap et al. 1999; Cho & Lazarian 2004; Krishan
& Mahajan 2004; Shaikh & Zank 2005; Schekochihin et al. 2009). The H10 model
was based on three primary assumptions: (i) the Kolmogorov hypothesis that the energy
cascade is determined by local interactions (Kolmogorov 1941); (ii) the conjecture that
turbulence maintains a state of critical balance at all scales (Goldreich & Sridhar 1995);
and (iii) the speculation that linear collisionless damping rates are applicable even in the
presence of the strong nonlinear interactions that mediate the turbulent cascade to small
scales. The cascade model used by H10 balanced at each perpendicular wavenumber k⊥ρi
the nonlinear energy cascade rate given by the extended turbulent scaling theories with
the linear collisionless damping rates at that value of k⊥ρi (as illustrated in figure 4).
Similar to QG99, it assumed all turbulent energy at a given value of k⊥ρi resided at the
parallel wavenumber governed by the extended critical balance. The H10 model assumed
turbulence under non-relativistic conditions vte/c � 1 with isotropic ion and electron
temperatures, strictly Alfvénic turbulence with Ecomp/Einc = 0, balanced turbulence with
Z+

0 /Z−
0 = 1, and strongly and isotropically driven turbulence with χ0 = 1 and k‖0/k⊥0 = 1

(the driving was therefore characterized by the isotropic driving wavenumber, k0ρi).
Furthermore, adopting the same argument as the QG99 model, the model assumed that
the inertial range of the turbulence is sufficiently large that the anisotropic fluctuations
predicted by the turbulent scaling relations remain at a low enough frequency relative
to the ion cyclotron frequency, ω � Ωi, that the cyclotron resonance plays a negligible
role; the H10 model calculated an estimate of the maximum value of k0ρi as a function
of (βi, Ti/Te) for this assumption to be satisfied. Thus, the H10 turbulent heating model
predicted the damping of the turbulent cascade due to Landau damping and transit-time
damping over the full range of the turbulent cascade, including MHD scales at k⊥ρi � 1
and kinetic scales at k⊥ρi � 1. The H10 model predicted the partitioning of energy
between ions and electrons as a function of the ion plasma beta βi and the ion-to-electron
temperature ratio Ti/Te, providing a simple analytical fit to the numerically calculated
predictions, Qi/Qe(βi, Ti/Te). In short, the model found that Qi/Qe is a monotonically
increasing function of βi with weak dependence on Ti/Te, where the transition from
Qi/Qe < 1 to Qi/Qe > 1 happens at approximately βi ∼ 1.

The Chandran et al. (2011) (hereafter C11) turbulent heating model (Chandran et al.
2011) looked to incorporate the recently quantified damping rate due to nonlinear ion
stochastic heating (Chandran 2010; Chandran et al. 2010) into a model that also accounted
for ion and electron Landau damping and transit-time damping. Similar to QG99 and
H10, it assumed a sufficiently large inertial range that no significant cyclotron damping
would occur since the anisotropic cascade would lead to turbulent fluctuations with low
frequencies, ω � Ωi. Focusing also on Alfvénic turbulence that transitions from an MHD
Alfvén wave cascade at k⊥ρi � 1 and to a KAW cascade at k⊥ρi � 1, the C11 model
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FIGURE 4. Diagram of the balance of the energy transfer rates in a steady-state turbulent
cascade at a local wavenumber k∗, where the combination of three terms must balance to zero:
(i) the turbulent nonlinear energy transfer rate from lower wavenumbers ε(k−)(k

−<k∗); (ii) the
turbulent nonlinear energy transfer rate to higher wavenumbers ε(k∗)(k∗<k+); and (iii) the local
(in scale) kinetic damping rates of the turbulent energy, due to the sum of ion energization rate
Qi(k∗) (blue) and electron energization rate Qe(k∗) (magenta).

assumed that dissipation occurred dominantly in two distinct wavenumber ranges: (i)
at k⊥ρi ∼ 1, where collisionless damping via the Landau (n = 0) resonance can lead
to parallel energization of the ions and electrons and also where nonlinear stochastic
heating can lead to perpendicular energization of the ions; and (ii) at k⊥ρi � 1, where
all remaining energy in the turbulent cascade is ultimately deposited with the electrons.
The model used fitting forms for the Landau-resonant collisionless damping rates for the
ions and electrons at k⊥ρi = 1 over 10−3 < βi < 10 and 1 < Ti/Te < 5. It also included
an empirically derived formula for the ion stochastic heating rate at k⊥ρi = 1 (Chandran
et al. 2010). This empirical prescription for the ion stochastic heating depended on two
dimensionless constants: one governed the scaling of the stochastic heating rate relative
to the turbulent frequencies; and the other, which appeared as a factor in the argument
of the exponential function, effectively established a threshold amplitude below which
ion stochastic heating was negligible. Thus, the C11 model calculated how the turbulent
cascade rate at k⊥ρi = 1 is partitioned among ion Landau and transit-time damping,
electron Landau and transit-time damping, ion stochastic heating and nonlinear transfer
to smaller scales with k⊥ρi > 1. The model provided a partitioning of the total turbulent
heating rate into parallel ion heating by ion Landau and transit-time damping Q‖,i/Q,
perpendicular ion stochastic heating Q⊥,i/Q, and electron heating Qe/Q, each as a function
of ion plasma beta βi, the ion-to-electron temperature ratio Ti/Te, and the amplitude of the
turbulent fluctuations at the ion Larmor-radius scale determined using the B06 scaling for
the amplitude in terms of the driving scale, as given here by (3.19), indicating that the
amplitude dependence can be characterized by k0ρi.

Motivated by the desire to understand the partitioning of dissipated turbulent energy
between ions and electrons in hot collisionless accretion flows, the Rowan 2017 (hereafter
R17) heating model (Rowan et al. 2017) took a fundamentally different approach from
that adopted in the QG99, H10 and C11 turbulent heating models by focusing instead on
the heating arising from transrelativistic magnetic reconnection. In this case, the protons
are nonrelativistic, but the electrons can be ultrarelativistic. Utilizing a large suite of
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two-dimensional particle-in-cell simulations of anti-parallel reconnection, the R17 model
studied the irreversible particle energization over a range of ion plasma beta 10−4 � βi ≤ 2
and magnetization 0.1 ≤ σw ≤ 10, where σw is defined as the ratio of the magnetic-energy
density to the enthalpy density. Starting with a Harris current sheet (Harris 1962) of the
antiparallel magnetic field (given by a tanh profile) with width a ∼ 40de, they carefully
separated the irreversible heating associated with an increase in the entropy from the
reversible heating associated with adiabatic compression. From their synthesis of the
results of a large suite of simulations varying different parameters, they fit a formula to
their numerical results that provided to electron-to-total heating ratio Qe/Q as a function
of the ion plasma beta βi and magnetization σw.

The numerical study by Kawazura et al. (2019) (hereafter K19) used a large suite
of hybrid gyrokinetic simulations to determine directly the ion-to-electron heating
ratio Qi/Qe over a broad range of ion plasma beta 0.1 ≤ βi ≤ 100 and ion-to-electron
temperature ratio 0.05 ≤ Ti/Te ≤ 100. Using a hybrid code (Kawazura & Barnes 2018)
that evolves the ions gyrokinetically and the electrons as an isothermal fluid, this study
adopted many of the same assumptions as the H10 model: (i) the anisotropic (k⊥ � k‖)
Alfvénic turbulence was driven in a statistically balanced manner with Z+

0 /Z−
0 = 1; (ii)

the equilibrium ion and electron temperatures were assumed to be isotropic; (iii) the
gyrokinetic approximation eliminated the physics of the ion cyclotron resonances, leaving
the Landau resonances and collisionless magnetic reconnection in the large-guide-field
limit as potential damping mechanisms; and (iv) the strategy explained in § 3.2 was
exploited to model numerically only the small-scale end of the inertial range, where
the isotropic driving wavenumber k0ρi, characterizing the physical driving scale, was
assumed to be sufficiently small that the amplitudes of the turbulent fluctuations at
k⊥ρi ∼ 1 were small enough that ion stochastic heating was inhibited (Chandran et al.
2010, 2011). The K19 model provides a numerically validated prescription for Qi/Qe as
a function of βi and Ti/Te, presenting a simple analytical formula that fit the numerical
results well. The numerical results largely validated the qualitative predictions of the H10
turbulent heating model that Qi/Qe is a monotonic function of βi with little dependence on
Ti/Te, with a couple of minor quantitative differences: the K19 model found a ceiling of
Qi/Qe � 30 at βi � 1, cutting off at lower values than the H10 model; and the numerical
results did not find the drop in the heating rate Qi/Qe � 0.1 predicted by the H10
model at βi � 1.

The first of the two disagreements above between the H10 model and the K19 model –
where the numerical simulations found an effective ceiling at Qi/Qe � 30 at βi � 1 – was
recently addressed by Gorman & Klein (2024). They examined in detail the small range
of perpendicular wavenumber scales around k⊥ρi ∼ 1 where the linear dispersion relation
predicts that the Alfvén wave solution becomes non-propagating at βi � 1. For turbulent
cascade models assuming critical balance and strictly local (in scale space) interactions
mediating the turbulent cascade, this gap in the Alfvén wave propagation leads to the
turbulent cascade being terminated at the onset of the gap with the bulk of the turbulent
energy transferred to the ions, leading to the potential overestimation of Qi/Qe in the
βi � 1 limit. Gorman & Klein (2024) (hereafter GK24) tested the local cascade model
underlying the H10 model against a more refined cascade model, the weakened cascade
model (Howes et al. 2011a). The weakened cascade model is a non-local cascade model
that accounts both for the weakening of the local nonlinear interactions as damping taps
the turbulent energy and for nonlocal interactions by large-scale shearing and small-scale
diffusion. It was found that the inclusion of non-local interactions to the nonlinear
energy transfer prevents the termination of the cascade at the ion scales, leading to
predictions for Qi/Qe at βi � 1 (Gorman & Klein 2024) that agree much more closely
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with the results of the suite of simulations by Kawazura et al. (2019): the resulting
GK24 model produced by this study includes updated coefficients for the H10 formula for
Qi/Qe(βi, Ti/Te).

Relaxing the limitation of their simulations to driving by strictly Alfvénic turbulent
fluctuations, Kawazura et al. (2020) used the same hybrid gyrokinetic code (Kawazura
& Barnes 2018) to explore the effect of compressible driving Ecomp/Einc > 0 on the
ion-to-electron heating ratio Qi/Qe (hereafter K20). The turbulence was driven at MHD
scales k⊥ρi � 1 with an adjustable mixture of incompressible Alfvénic fluctuations and
compressible slow magnetosonic fluctuations (fast magnetosonic wave modes are ordered
out of gyrokinetic simulations by the perpendicular pressure balance that is maintained
under the gyrokinetic approximation, as explained in Howes et al. 2006). At βi � 1,
they found that Qi/Qe = Ecomp/Einc, confirming a previous theoretical prediction that
compressive energy strictly heats ions at low ion plasma beta βi � 1 (Schekochihin,
Kawazura & Barnes 2019). Surprisingly, the K20 model also found that Qi/Qe =
Ecomp/Einc when the compressible driving dominates, Ecomp/Einc � 1. A simple fitting
formula was constructed that simply added the term Ecomp/Einc to the previous prescription
for Qi/Qe due to Alfvénic turbulence in the K19 model. Thus, the K20 model provided a
simple analytical formula for Qi/Qe(βi, Ti/Te, Ecomp/Einc).

The application of the K20 model to understand the ion-to-electron heating ratio
in accretion disks where the magnetorotational instability (MRI) (Balbus & Hawley
1991; Hawley & Balbus 1991; Balbus & Hawley 1998) drives the turbulence requires
a determination of the ratio of the compressible-to-incompressible driving Ecomp/Einc.
The application of a rotating reduced MHD model to simulate the collisional MRI
turbulence threaded by a nearly azimuthal magnetic field in a three-dimensional
pseudo-spectral, shearing reduced MHD code (Kawazura 2022) found a ratio of
compressible-to-incompressible turbulent energy of 2 � Ecomp/Einc � 2.5 (Kawazura
et al. 2022), providing a solid foundation for the application of the K20 model to
astrophysical accretion disks.

5. Dependence of dissipation mechanisms on fundamental parameters

The development of turbulent heating models for weakly collisional space and
astrophysical plasmas requires two fundamental steps: (i) identifying the mechanisms
that play a role in the damping of the turbulence; and (ii) determining upon which of
the fundamental dimensionless parameters of turbulence each mechanism depends and
approximating a functional form for those dependencies.

It is worthwhile first noting an important subtlety regarding irreversible plasma heating
in the thermodynamic picture of turbulent dissipation in weakly collisional plasmas
(Howes 2017). In the strongly collisional limit of fluid plasma turbulence, the dissipation
of turbulence is fundamentally collisional on a microscopic level. For example, in an
MHD plasma, the physical mechanisms of viscosity and resistivity arise in the limit of
a non-negligible collisional mean free path of the plasma particles. These two dissipative
mechanisms may be derived rigorously beginning with kinetic theory through a hierarchy
of moment equations derived in the limit of small mean free path by the Chapman–Enskog
procedure (Chapman & Cowling 1970) for neutral gases, or an analogous procedure
for plasma systems (Spitzer 1962; Grad 1963; Braginskii 1965). Because viscosity and
resistivity are ultimately collisional in nature, the resulting energy transfer from the
turbulent fluctuations to the particles is irreversible, leading to an increase in the entropy
of the system.

Under the weakly collisional conditions typical of many space and astrophysical
plasmas, the collisionless removal of energy from the turbulent fluctuations and the
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ultimate conversion of that removed energy into plasma heat is a two-step process (Howes
et al. 2006; Howes 2008; Schekochihin et al. 2009; Navarro et al. 2016; Howes 2017;
Howes, McCubbin & Klein 2018). First, collisionless damping mechanisms remove energy
from the turbulent fluctuations, transferring that energy into non-thermal internal energy
contained in non-Maxwellian fluctuations of the particle velocity distributions, an energy
transfer that is reversible in principle. That free energy in the fluctuations of the velocity
distribution about the equilibrium may be transferred to smaller scales in velocity space –
e.g. via linear phase mixing by the ballistic term of the Boltzmann equation (Landau 1946;
Hammett, Dorland & Perkins 1992; Snyder, Hammett & Dorland 1997; Schekochihin et al.
2009) or via nonlinear phase mixing, a process often denoted the entropy cascade (Dorland
& Hammett 1993; Schekochihin et al. 2009; Tatsuno et al. 2009; Plunk et al. 2010;
Plunk & Tatsuno 2011; Kawamori 2013) – until it reaches sufficiently small velocity-space
scales that an arbitrarily weak collisionality is sufficient to smooth out those fluctuations,
providing an irreversible conversion of that energy to plasma heat and thereby increasing
the entropy of the system (Howes et al. 2006; Howes 2008; Schekochihin et al. 2009).

The subtleties of energy conversion and plasma heating in weakly collisional plasmas
that are not in a state of local thermodynamic equilibrium remains a topic of vigorous
investigation, with many recent developments that will not be reviewed in detail here
(Parker et al. 2016; Schekochihin et al. 2016; Yang et al. 2016, 2017a, b; Howes et al.
2018; Kawazura et al. 2019; Meyrand et al. 2019, 2021; Barbhuiya & Cassak 2022; Cassak
& Barbhuiya 2022; Cassak, Barbhuiya & Weldon 2022; Squire et al. 2022; Cassak et al.
2023). In this paper, we use the term turbulent dissipation to mean the entire process
of removing energy from the turbulent fluctuations and subsequently thermalizing that
energy via collisions to realize irreversible heating of the plasma and an increase in the
entropy of the system. When we refer to only the first step of the process, the collisionless
removal of energy from the turbulent fluctuations, we denote those specific processes as
turbulent damping mechanisms.

A primary aim of this study is to provide a unified framework for characterizing the
dependence of the turbulence and its dissipation on a common set of dimensionless
parameters. The first step pursued here is to identify the fundamental dimensionless
parameters upon which each proposed turbulent damping mechanism primarily depends,
where the set of dimensionless parameters for the general case is presented in table 3 and
for the isotropic temperature case in table 4. The key parameter dependencies for each
proposed damping mechanism found here are summarized in table 5. Although, for any
single particular mechanism, different choices of dimensionless parameters may be more
natural (e.g. taking βe instead of βi/τ in the case of magnetic reconnection), the particular
sets of dimensionless parameters in tables 3 and 4 are proposed here as a useful framework
for describing all of the proposed turbulent damping mechanisms, thereby simplifying the
task of determining how different mechanisms compete with each other throughout the
full parameter space.

5.1. Proposed damping mechanisms for kinetic turbulence
In weakly collisional space and astrophysical plasmas, the proposed kinetic damping
mechanisms that remove energy from the turbulent fluctuations and transfer it to the
particle species fall into three broad categories: (i) resonant wave-particle interactions,
(ii) non-resonant wave–particle interactions and (iii) damping occurring in coherent
structures.

Resonant mechanisms for the damping of the turbulent fluctuations in a magnetized
plasma transfer energy to particles in regions of the velocity distribution that satisfy the
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Category Abbrev Mechanism Key Parameters

Resonant iLD Ion Landau Damping βi
eLD Electron Landau Damping βi, Ti/Te, (μ)
iTTD Ion Transit-Time Damping βi
eTTD Electron Transit-Time Damping βi, Ti/Te, (μ)
iCD Ion Cyclotron Damping k0ρi, βi

Non- iSH Ion Stochastic Heating k0ρi, βi
Resonant iMP Ion Magnetic Pumping Ecomp/Einc, βi, Ti/Te, k‖0λmfp,e,

k‖0/k⊥0, χ0
eMP Electron Magnetic Pumping βi, Ti/Te, k‖0λmfp,e, k‖0/k⊥0, χ0,

Ecomp/Einc, (μ)
iVH Ion Kinetic Viscous Heating βi, k⊥0/k‖0, χ0

Coherent iRXN Ion Magnetic Reconnection k0ρi, βi, Ti/Te, (μ)

Structures eRXN Electron Magnetic Reconnection k0ρi, βi, Ti/Te, (μ)

TABLE 5. Proposed turbulent damping mechanisms and their key dimensionless parameter
dependencies for the case of a fully ionized hydrogenic plasma. The ion-to-electron mass ratio
μ is listed in parentheses since it is not a physically variable parameter, but it is often adjusted in
numerical studies for computational efficiency.

resonance condition

ω − k‖v‖−nΩs = 0, (5.1)

where Ωs is the cyclotron frequency for species s and |n| > 1 indicates the harmonics
of the cyclotron frequency. The n = 0 resonance is often denoted the Landau resonance
and includes two damping mechanisms: (i) Landau damping is mediated by the parallel
component of the electric field E‖ doing work on the charged particles (Landau 1946;
Leamon et al. 1998a, b; Quataert 1998; Leamon et al. 1999; Quataert & Gruzinov 1999;
Leamon et al. 2000; Howes et al. 2008a; Schekochihin et al. 2009; TenBarge & Howes
2013; Howes 2015a; Li et al. 2016; Chen, Klein & Howes 2019; Afshari et al. 2021; Zhou,
Liu & Loureiro 2023); and (ii) transit-time damping, also known as Barnes damping,
is mediated by the magnetic mirror force associated with magnetic field magnitude
fluctuations doing work on the magnetic moment of the charged particle gyromotion
(Barnes 1966; Quataert 1998; Quataert & Gruzinov 1999; Howes et al. 2008a; Howes,
Huang & Felix 2024). Both of these Landau-resonant collisionless damping mechanisms
energize particles in the degree of freedom parallel to the local magnetic field. The
n 	= 0 resonances yield cyclotron damping of the turbulent fluctuations by E⊥, generally
energizing particles in the two perpendicular degrees of freedom (Coleman 1968; Denskat,
Beinroth & Neubauer 1983; Isenberg & Hollweg 1983; Goldstein, Roberts & Fitch 1994;
Leamon et al. 1998a; Gary 1999; Isenberg, Lee & Hollweg 2001; Hollweg & Isenberg
2002; Isenberg & Vasquez 2019; Afshari et al. 2024).

Non-resonant damping mechanisms can remove energy from turbulent fluctuations
through wave–particle interactions that do not require satisfying a particular resonance
condition. Stochastic heating can arise when sufficiently large-amplitude turbulent
electromagnetic fluctuations can effectively scatter the otherwise organized gyromotion
of particles, leading to a heating of the particles in the perpendicular degrees of freedom
(McChesney, Stern & Bellan 1987; Chen, Lin & White 2001; Johnson & Cheng 2001;
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White, Chen & Lin 2002; Voitenko & Goossens 2004; Bourouaine, Marsch & Vocks 2008;
Chandran 2010; Chandran et al. 2010, 2011; Bourouaine & Chandran 2013; Chandran et al.
2013; Klein & Chandran 2016; Arzamasskiy et al. 2019; Martinović et al. 2020; Cerri,
Arzamasskiy & Kunz 2021). Magnetic pumping energizes particles through a combination
of two effects: (i) particles undergo the reversible, double-adiabatic evolution of their
perpendicular and parallel velocities in a magnetic field with a time varying magnitude;
and (ii) those particles are scattered by collisions during this evolution, introducing
irreversibility and leading to a small net transfer of energy to the particles over a full
oscillation cycle (Spitzer & Witten 1953; Berger et al. 1958; Lichko et al. 2017; Lichko
& Egedal 2020; Montag & Howes 2022). One final proposed non-resonant damping
mechanism is the recently identified kinetic ‘viscous’ heating mediated by the effective
collisionality associated with temperature anisotropy instabilities driven by large-scale
fluctuations of the magnetic field magnitude in high beta plasmas (Arzamasskiy et al.
2023).

The final category involves the removal of turbulent fluctuation energy in coherent
structures, such as particle energization arising from collisionless magnetic reconnection
in current sheets that are found to arise naturally in plasma turbulence (Ambrosiano et al.
1988; Dmitruk, Matthaeus & Seenu 2004; Markovskii & Vasquez 2011; Matthaeus &
Velli 2011; Osman et al. 2011; Servidio et al. 2011; Osman et al. 2012a, b; Wan et al.
2012; Karimabadi et al. 2013; Zhdankin et al. 2013; Dalena et al. 2014; Osman et al.
2014a, b; Zhdankin, Uzdensky & Boldyrev 2015a, b; Loureiro & Boldyrev 2017b; Mallet
et al. 2017a, b). It has also been argued that stochastic heating can also play a role in
energizing particles in intermittent turbulence at the location of coherent structures where
the fluctuation amplitudes are unusually large (Chandran et al. 2010; Xia et al. 2013; Mallet
et al. 2019).

Each of the kinetic damping mechanisms in these three categories (with helpful
abbreviations) are summarized in table 5. Also included in table 5 are the primary
dimensionless parameters upon which each damping mechanism depends, as explored in
more detail in the following subsections.

5.2. A competition between turbulent cascade rates and damping rates
One of the most challenging aspects of modelling the damping of plasma turbulence
is that the net energy transfer to each species arises from the competition between the
turbulent cascade rate and the kinetic damping rates as a function of scale, as depicted by
the arrows in figure 1(a). Nonlinear interactions among turbulent fluctuations – denoted
Alfvén wave collisions (Howes & Nielson 2013) in the case of Alfvénic turbulence –
mediate the transfer of energy from large to small scales that is dominantly local in scale
space (Howes et al. 2011a; Told et al. 2015), where energy is transferred locally from
a wavenumber k to a wavenumber 2k, then on to 4k and so on. This is indicated by
the black curved arrows in the figure. Because the physics of the cascade is dominantly
local in nature (Howes et al. 2011a; Told et al. 2015), scaling theory implies that the
energy transfer rate at a given wavenumber k is determined solely by the conditions at
that scale. Note that, when analysed in Fourier space, the energy transfer to small scales
in the turbulent cascade is the sum of the nonlinear interactions among many triads of
plane-wave modes, with a wide spread of energy transfer rates about zero; the net energy
transfer given by this sum at a given scale is much smaller in amplitude than the spread of
all of the individual three-wave interaction rates, and the sum typically indicates a forward
cascade of energy to small scales for turbulence in three spatial dimensions (Coburn et al.
2014, 2015). The turbulent cascade rate ε used here specifically refers to this net energy
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transfer rate obtained by integrating over all contributing nonlinear interactions involving
that scale10 .

Competing with the turbulent cascade rate at each scale is the damping rate due to
collisionless interactions between the electromagnetic fields and the plasma particles, as
shown by the blue arrows for the transfer of energy to ions and the magenta arrows for the
transfer of energy to electrons in figure 1(a). The net damping rate of the entire turbulent
cascade, resulting from the sum of the energization rates for each particle species s, can be
computed by integration over all scales of the turbulent cascade. In a steady state, at each
wavenumber k∗, the combination of three terms representing energy transfer into and out
of wavenumber k∗ must balance to zero, as illustrated in figure 4: (i) the energy transfer
from lower wavenumbers k− < k∗ (larger scales), denoted by ε(k−)(k−<k∗); (ii) the energy
transfer to higher wavenumbers k+ > k∗ (smaller scales), denoted by ε(k∗)(k∗<k+); and (iii)
the kinetic damping of the fluctuations at wavenumber k∗, given by Q(k∗), which is the
sum of the local (in scale) ion energization rate Qi(k∗) (blue) and electron energization rate
Qe(k∗) (magenta). Complicating the determination of the partitioning of damped turbulent
energy between ions and electrons Qi/Qe is the fact that the kinetic damping rates due to
ions and electrons may overlap as a function of scale (Howes et al. 2011b, a; Told et al.
2015).

Determining this balance of cascade and damping rates as a function of scale, and
ultimately using the terms in that balance to determine the partitioning of turbulent
energy among species and degrees of freedom – parameterized by Qi/Qe, Q⊥,i/Qi
and Q⊥,e/Qe – has been attempted in empirical turbulent cascade models (Pao 1965;
Howes et al. 2008a; Podesta, Borovsky & Gary 2010; Howes et al. 2011a; Zhao, Wu
& Lu 2013; Schreiner & Saur 2017). An example of the modelling of the turbulent
energy cascade and its kinetic dissipation is presented in figure 5 from the results of
the weakened cascade model by Howes et al. (2011a). In addition to balancing the
physics of the local cascade rate ε(k⊥) with the kinetic damping rates due to ions Qi(k⊥)
and electrons Qe(k⊥) via the Landau resonance, this cascade model also includes the
contributions to the local cascade rate from non-local interactions by large-scale shearing
and small-scale diffusion. The model results shown here in figure 5 are from the same
calculation as presented in figure 8 of Howes et al. (2011a), where we reproduce (a) the
one-dimensional perpendicular magnetic-energy spectrum EB⊥(k⊥) and (b) the anisotropic
cascade through wavevector space characterized by the characteristic parallel wavenumber
as a function of the perpendicular wavenumber, k‖(k⊥). This model for a plasma with
βi = 1 and isotropic equilibrium Maxwellian velocity distributions with Ti/Te = 9 is
driven weakly with χ(k⊥0) = 0.1 at k⊥0ρi = k‖ρi = 10−5, taking the model Kolmogorov
constants to be C1 = 1.4 and C2 = 1.0. Note that an important avenue of research is to use
kinetic numerical simulations or spacecraft observations to constrain the values of these
Kolmogorov constants, as recently done by Shankarappa, Klein & Martinović (2023) using
observations in the inner heliosphere by the Parker Solar Probe (Fox et al. 2016).

In figure 5(c) is plotted the rate of energy density transfer to the ions Qi(k⊥) (blue) and
to the electrons Qe(k⊥) (magenta) as a function of k⊥ρi, both normalized by the turbulent
energy cascade rate at the driving scale ε0. This shows that the ion kinetic damping occurs
at the ion kinetic scales k⊥ρi ∼ 1, whereas the electron damping rises monotonically from
the ion scales, peaking around k⊥ρi ∼ 30 for this case. To obtain the net partitioning of
energy between ions and electrons Qi/Qe, it is necessary to integrate these energy damping

10Because the net energy transfer rate at a given scale fundamentally involves the integration over all possible
nonlinear triads, it can in principle include a non-negligible contribution from non-local interactions, such as those
incorporated in the weakened cascade model of the turbulent cascade (Howes et al. 2011a).
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(a)

(b)

(c)

(d)

FIGURE 5. Weakened cascade model results for a turbulent cascade driven weakly at
k⊥0ρi = k‖0ρi = 10−5 with nonlinearity parameter χ(k⊥0) = 0.1 in a plasma with isotropic
equilibrium Maxwellian velocity distributions with Ti/Te = 9 and βi = 1. (a) One-dimensional
perpendicular magnetic-energy spectrum EB⊥(k⊥), (b) anisotropic cascade through wavevector
space given by k‖(k⊥), (c) energy transfer rates to the ions Qi(k⊥) (blue) and electrons Qe(k⊥)

(magenta) and (d) integrated energy damping rates by ions
∫ k⊥

0 dk′
⊥Qi(k′

⊥) (blue) and by
electrons

∫ k⊥
0 dk′

⊥Qe(k′
⊥) (magenta), all plotted as a function of the perpendicular wavenumber

k⊥ρi. The ranges of k⊥ρi of the full turbulent cascade include weak MHD turbulence (blue), the
transition from weakto strong MHD turbulence (green), strong MHD turbulence (red), strong
KAW turbulence (magenta) and WDKT (cyan) (Howes et al. 2011a).

rates over the entire cascade, as shown in figure 5(d): the turbulent energy cascade rate
ε(k⊥) (black) is ultimately terminated at k⊥ρi � 1 by the integrated energy damping rates
by ions

∫ k⊥
0 dk′

⊥Qi(k′
⊥) (blue) and by electrons

∫ k⊥
0 dk′

⊥Qe(k′
⊥) (magenta).

The energy density transfer rates Qi(k⊥) and Qe(k⊥) that remove energy from the
turbulent fluctuations and transfer it to the plasma particles in turbulent cascade models
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require as input the kinetic damping rates due to ions γi(k⊥) and electrons γe(k⊥). In
the case of the weakened cascade model shown in figure 5 (Howes et al. 2011a), the
damping rates used are collisionless damping rates via the Landau (n = 0) resonance
for the Alfvén wave mode (and its extension as a KAW at scales k⊥ρi � 1) from the
Vlasov–Maxwell linear dispersion relation (Stix 1992). Previous studies have called
into question whether resonant collisionless wave–particle interactions, such as Landau
damping, can effectively damp turbulent fluctuations in the presence of the strong
nonlinear interactions that mediate the turbulent cascade (Plunk 2013; Schekochihin et al.
2016). Using the field-particle correlation technique (Klein & Howes 2016; Howes, Klein
& Li 2017; Klein, Howes & TenBarge 2017), several recent analyses of kinetic simulations
(Klein et al. 2017; Howes et al. 2018; Klein et al. 2020) and spacecraft observations (Chen
et al. 2019; Afshari et al. 2021) of plasma turbulence find clear velocity-space signatures of
Landau damping. These findings indicate indeed that resonant wave–particle interactions
do play a role, and possibly a dominant role (Afshari et al. 2021), in the damping of space
and astrophysical plasma turbulence, settling the question of whether Landau damping can
effectively damp strong plasma turbulence11 .

In quantifying how a particular damping mechanism competes with the nonlinear
turbulent cascade, the key dimensionless quantity to evaluate is the ratio of linear
damping rate due to nonlinear cascade rate γ /ωnl (Howes et al. 2008a, 2011a). Adopting
the conjecture of critical balance between linear and nonlinear time scales in strong
plasma turbulence ω ∼ ωnl (Goldreich & Sridhar 1995; Howes et al. 2008a, 2011a;
Mallet et al. 2015), the key dimensionless measure of the importance of any particular
mechanism is the ratio γ /ω, which can be estimated using the linear theory for each of the
different damping mechanisms. Nonlinear kinetic simulations and spacecraft observations
of weakly collisional plasma turbulence present opportunities to test whether the linear
collisionless damping rates provide a quantitatively accurate, lowest-order estimate of the
turbulent damping rates as a function of wavenumber. It is clear from the numerical and
observational evidence, however, that Landau damping (Klein et al. 2017; Howes et al.
2018; Chen et al. 2019; Klein et al. 2020; Afshari et al. 2021; Zhou et al. 2023) and
cyclotron damping (Afshari et al. 2024) can play a significant role in the damping of
astrophysical plasma turbulence.

5.3. The relevance of linear physics to strong plasma turbulence
The concept of critical balance in plasma turbulence (Goldreich & Sridhar 1995; Howes
et al. 2008a, 2011a; Mallet et al. 2015) – which suggests that the nonlinear time scales of
the turbulent cascade remain in approximate balance with the time scales of the linear wave
physics, ωnl ∼ ω – implies that the physics of the linear plasma response remains valid
even in strong plasma turbulence. But, perhaps in analogy with the case of incompressible
hydrodynamic turbulence in which no linear response exists (Howes 2015a), the validity
of linear physics has been called into question in the presence of strong plasma
turbulence (Matthaeus et al. 2014). Although there exist numerous counterexamples
in which linear physics properties have been shown to be relevant to strong plasma
turbulence (Maron & Goldreich 2001; Cho & Lazarian 2003; Alexandrova et al. 2008;
Howes et al. 2008a, b; Svidzinski et al. 2009; Sahraoui et al. 2010; Howes et al. 2011b;
Hunana et al. 2011; TenBarge et al. 2012; Chen et al. 2013), the question has persisted.
A more recent careful study of kinetic numerical simulations and spacecraft observations

11Note that recent work found that an anti-phase-mixing process can inhibit the process of the linear phase mixing
that transfers non-thermal internal energy to small parallel velocity-space scales, thereby shutting down the effect
of Landau damping of compressible turbulent fluctuations within the inertial range under sufficiently collisionless
conditions (Parker et al. 2016; Schekochihin et al. 2016; Meyrand et al. 2019).
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has shown clearly that both small-amplitude and large-amplitude fluctuations, including
variations interpreted to be coherent structures, preserve the linear properties of Alfvénic
fluctuations (Grošelj et al. 2019), hopefully providing sufficient evidence to establish
definitively the relevance of linear physics to strong plasma turbulence.

The key to predicting qualitatively which kinetic damping mechanisms are likely to
dominate for a given instance of turbulence is to determine how the various collisionless
damping mechanisms in § 5.1 depend on the fundamental dimensionless plasma and
turbulence parameters. For a fully ionized proton and electron plasma with anisotropic
(bi-Maxwellian) equilibrium velocity distribution functions (Stix 1992; Quataert 1998;
Quataert & Gruzinov 1999; Swanson 2003; Klein & Howes 2015), the complex
eigenfrequencies determined by the linear Vlasov–Maxwell dispersion relation depend
on the dimensionless parameters that characterize the nature of the turbulent fluctuations
through the typical wavevector components in a plane-wave decomposition of the turbulent
fluctuations, k⊥ρi and k‖ρi, and on the plasma parameters through the parallel ion plasma
beta β‖,i, the parallel ion-to-electron temperature ratio τ‖ = T‖,i/T‖,e, the temperature
anisotropies of each species Ai = T⊥,i/T‖,i and Ae = T⊥,e/T‖,e, and the ratio vt‖,i/c. Thus,
these dependencies can be expressed through the general relation

ω = ωaniso
VM (k⊥ρi, k‖ρi, β‖,i, τ‖, Ai, Ae, vt‖,i/c). (5.2)

In the limit of isotropic equilibrium velocity distributions for the ions and electrons –
leading to the simplifications Ai = 1, Ae = 1 and τ‖ = τ ≡ Ti/Te – this set of dependencies
is reduced to

ω = ωVM(k⊥ρi, k‖ρi, βi, τ, vti/c). (5.3)

For both the isotropic and anisotropic equilibrium temperatures, in the non-relativistic
limit vti/c � 1 typical of many space and astrophysical plasmas of interest, the linear
Vlasov–Maxwell dispersion relation is practically independent of vti/c, so this parameter
may effectively be dropped for the case of non-relativistic plasma turbulence.

In the limit of a sufficiently large inertial range of turbulence, the MHD turbulence
scaling parameters given by (3.1)–(3.4) predict that turbulent fluctuations at the
small-scale end of the inertial range – where most of the kinetic damping mechanisms
are believed to become significant – will be anisotropic with k‖ � k⊥ and small
amplitude relative to the equilibrium magnetic field |δB| � B0 (Howes et al. 2006, 2008a;
Schekochihin et al. 2009). In this limit, the turbulent frequencies of the incompressible
Alfvénic fluctuations directly observed to dominate turbulence in space plasmas (Belcher
& Davis 1971; Tu & Marsch 1995; Alexandrova et al. 2008; Howes et al. 2012a; Bruno &
Carbone 2013) have frequencies much smaller than the ion cyclotron frequency, ω/Ωi =
k‖di � 1, where di = vA/Ωi = ρi/

√
βi is the ion inertial length. In this limit, the turbulent

fluctuations at the small-scale end of the inertial range satisfy the conditions for the
applicability of gyrokinetic theory (Rutherford & Frieman 1968; Taylor & Hastie 1968;
Catto 1978; Antonsen & Lane 1980; Catto, Tang & Baldwin 1981; Frieman & Chen 1982;
Dubin et al. 1983; Hahm, Lee & Brizard 1988; Brizard 1992; Howes et al. 2006; Brizard &
Hahm 2007; Schekochihin et al. 2009). Gyrokinetic theory can be rigorously derived from
plasma kinetic theory under the limits of low frequency (ω/Ωi � 1) and anisotropic (k‖ �
k⊥) fluctuations in the non-relativistic limit (vti/c � 1). In the gyrokinetic approximation,
the physics of the the cyclotron resonances and of the fast magnetosonic fluctuations –
and their kinetic extension to whistler fluctuations (Howes, Klein & TenBarge 2014) – are
ordered out of the system. Gyrokinetics retains the physics of the E × B nonlinearity that
mediates the turbulent cascade to small scales, full finite-Larmor-radius effects, and the
collisionless damping associated with the n = 0 Landau resonance. In this reduced limit,
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the complex eigenfrequencies of the linear gyrokinetic dispersion relation for isotropic
equilibrium velocity distributions are linearly dependent on the parallel wavenumber, and
have the significantly reduced dimensionless parameter dependency given by (Howes et al.
2006)

ω̄ ≡ ω

k‖vA
= ω̄GK(k⊥ρi, βi, τ ). (5.4)

Although the ion-to-electron mass ratio μ = mi/me is not a parameter that varies in
the physical world, many numerical studies of plasma turbulence choose to employ a
reduced mass ratio for computational efficiency. Therefore, we choose to include the
μ dependence of different proposed turbulent damping mechanisms in our calculations
below to determine how the use of a reduced mass ratio may impact the partitioning of
turbulent energy removed by different damping mechanisms. Note also that it is important
to employ a sufficiently large mass ratio to achieve a separation between the ion and
electron scales, with a previous study suggesting mi/me ≥ 32 is necessary to model
with qualitative fidelity the distinct ion and electron responses to the electromagnetic
fluctuations due to this scale separation (Howes et al. 2018).

5.4. Landau damping and transit-time damping
To explore the two Landau-resonant collisionless damping mechanisms – Landau damping
and transit-time damping – we take n = 0 in the resonance condition in (5.1), obtaining
the condition that particles with parallel velocities equal to the parallel phase velocity of
the waves, v‖ = ω/k‖, may resonantly exchange energy with the electromagnetic waves.

For simplicity in this analysis, we will assume the isotropic temperature case for
a proton–electron plasma with linear wave properties given by the isotropic linear
Vlasov–Maxwell dispersion relation (5.3); extending these calculations to allow for
anisotropic temperatures can be done simply following the same logical procedure and
using the linear Vlasov–Maxwell dispersion relation for anisotropic temperatures given by
(5.2). Furthermore, justified by observations in solar wind turbulence that incompressible
Alfvénic fluctuations energetically dominate the turbulence (Belcher & Davis 1971; Tu &
Marsch 1995; Alexandrova et al. 2008; Bruno & Carbone 2013), we will focus on the linear
collisionless damping rates of the Alfvénic fluctuations, including both Alfvén waves in
the MHD limit at k⊥ρi � 1, and KAWs at k⊥ρi � 1. Consideration of the damping of
compressible turbulent fluctuations, specifically fast and slow magnetosonic fluctuations
at k⊥ρi � 1 (Howes et al. 2012a), is easily performed using the same procedure with the
linear dispersion relations for these alternative wave modes12 .

Normalizing the resonant parallel velocity by the thermal velocity for both species
in turn and converting the result into our dimensionless parameters for the isotropic
temperature case, we obtain the key relations

v‖
vti

= ω

k‖vti
= ω̄β

−1/2
i ,

v‖
vte

= ω

k‖vte
= ω̄

(
τ

βiμ

)1/2

, (5.5a, b)

where we define the dimensionless wave frequency normalized by the Alfvén wave
frequency in the MHD limit

ω̄ ≡ ω

k‖vA
. (5.6)

12Although, it is important to keep in mind that the recently identified nonlinear effect of anti-phase mixing in
turbulent plasmas can suppress the collisionless damping predicted by linear kinetic theory for the compressible wave
modes in the inertial range of scales at k⊥ρi � 1 (Parker et al. 2016; Schekochihin et al. 2016; Meyrand et al. 2019).
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For Alfvén waves, this normalized frequency ω̄ is well approximated by (Howes et al.
2014)

ω̄(k⊥ρi, βi, τ ) =
√

1 + (k⊥ρi)2

βi + 2/(1 + 1/τ)
, (5.7)

an expression that is valid in the limits that the ion plasma beta is not very low βi � μ−1

and that the wave frequency remains smaller than the ion cyclotron frequency ω/Ωi � 1,
equivalent to the condition k‖di � 1, or k‖ρi � β

1/2
i .

Whether damping by the Landau-resonant mechanisms is weak or strong primarily
depends on where the parallel wave phase velocity falls within the equilibrium particle
velocity distribution, as quantified by the expressions in (5.5a,b). The application of
the weak-growth-rate approximation to the kinetic theory for Landau damping (Krall &
Trivelpiece 1973) indicates that the linear damping rate is proportional to the slope of the
distribution function at the resonant velocity, as depicted in figure 6. For phase velocities
that fall deep in the core of the velocity distribution ω/k‖ � vts (blue dotted) where
the slope of fs(v‖) is relatively flat, the damping is weak because nearly equal numbers
of particles with v‖ < ω/k‖ are accelerated by the wave as particles with v‖ > ω/k‖
are decelerated by the wave, leading to little net energy exchange. Similarly, for phase
velocities far out in the tail of the velocity distribution ω/k‖ � vts (black dashed), there
are few particles to resonate with the waves and the slope of fs(v‖) is also quite flat, so
the damping is weak. Only if the parallel phase velocity falls in the steep region of the
velocity distribution at ω/k‖ ∼ vts (red solid) is there a significant net energy transfer
to the particles: more particles with v‖ < ω/k‖ are accelerated by the wave than those
particles with v‖ > ω/k‖ are decelerated by the wave, so that particles gain net energy
at the expense of the wave. Note that this qualitative picture of collisionless damping by
the Landau resonance being controlled by where the parallel wave phase velocity falls
within the distribution function is independent of the form of the equilibrium velocity
distribution; thus, one can apply the same reasoning to estimate the strength of the
Landau-resonant damping for other non-Maxwellian forms of the equilibrium velocity
distribution, such as the kappa distributions often applied to model in situ measurements
in space plasmas (Vasyliunas 1968; Abraham-Shrauner & Feldman 1977; Gosling et al.
1981; Lui & Krimigis 1981; Armstrong et al. 1983; Summers & Thorne 1991; Thorne &
Summers 1991; Summers, Xue & Thorne 1994; Livadiotis & McComas 2013; Livadiotis,
Desai & Wilson 2018).

The ultimate goal is to characterize the turbulent plasma heating – specifically Qi/Qe,
Q⊥,i/Qi and Q⊥,e/Qe – due to Landau damping and transit-time damping as a function
of the fundamental dimensionless parameters of turbulence. To accomplish this goal, it
is necessary to integrate the damping rates over the full range of the turbulent cascade,
as discussed in § 5.2 and illustrated in figures 4 and 5. This integration over all scales
effectively eliminates the dependence of the damping mechanisms on the components of
the wavevector k⊥ρi and k‖ρi, leaving only the desired dependence on the plasma and
turbulence parameters enumerated in tables 3 and 4.

With the scale dependence on k⊥ρi eliminated, the ion Landau damping (iLD) and
ion transit-time damping (iTTD) rates depend primarily on βi, and the electron Landau
damping (eLD) and electron transit-time damping (eTTD) rates depend on βi, τ and μ,
as shown by (5.5a,b). Note that the dependence of eLD and eTTD on τ and μ primarily
arises from those two parameters controlling the scale separation of the ion and electron
Larmor-radius scales, ρi/ρe = (τμ)1/2.
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FIGURE 6. Diagram demonstrating how Landau-resonant damping qualitatively depends on
where the parallel phase velocity ω/k‖ of the wave falls within the velocity distribution of particle
species s, with weak damping for ω/k‖ � vts or ω/k‖ � vts, and strong damping for ω/k‖ ∼ vts.

It is worthwhile pointing out that the physics of collisionless damping via the Landau
resonance is fully captured in the gyrokinetic approximation, with the linear wave
frequencies and damping rates both linearly proportional to k‖, as shown in (5.4). Thus,
the ratio of the damping-to-cascade rate13 , γ /ωnl � γ /ω, is effectively independent of
k‖, leaving the expected parameter dependence on the plasma parameters βi and τ , along
with the mass ratio μ, once the cascade is integrated over the perpendicular scales of the
cascade.

In addition to the fact that the dependence of the linear gyrokinetic dispersion
relation on (k⊥ρi, βi, τ ) in (5.4) is consistent with the results of our analysis of
the parameter dependence of the Landau-resonant damping mechanisms, the linear
gyrokinetic dispersion relation also determines the amplitudes and phases of the key
electromagnetic fields E‖ and δB‖ that mediate the particle energization by Landau
damping and transit-time damping. As done in the H10 turbulent heating model (see
§ 4), the linear dispersion relation can simply be used to calculate directly the linear
collisionless damping rates as a function of (k⊥ρi, βi, τ ). It is possible, of course, that
these linear damping rates may be modified under strongly turbulent plasma conditions,
but modest quantitative changes to the effective damping rates are typically absorbed into
the adjustable constant typically used in cascade models to specify the balance between
the nonlinear cascade rate and collisionless damping rate (Howes et al. 2008a, 2011a).
However, field-particle correlation analyses of numerical simulations (Klein et al. 2017,
2020; Horvath, Howes & McCubbin 2020; Conley, Howes & McCubbin 2023; Huang,
Howes & McCubbin 2024) and spacecraft observations (Chen et al. 2019; Afshari et al.
2021) of plasma turbulence have clearly shown that Landau damping and transit-time
damping do indeed play a role in the damping of strong plasma turbulence.

13Here, we have adopted the condition of critical balance for strong plasma turbulence ωnl � ω (Goldreich & Sridhar
1995; Mallet et al. 2015).
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One final step is to estimate how the ion-to-electron heating ratio Qi/Qe depends on
the remaining key parameters βi, τ and μ. As illustrated in figure 5(c) and 7, the ion
damping rate γi peaks at scales k⊥ρi ∼ 1, and numerical solutions of the Vlasov–Maxwell
dispersion relation (not presented here) show that this Landau-resonant damping onto
the ions is essentially independent of the ion-to-electron temperature ratio. The electron
damping rate γe, on the other hand, increases monotonically as the perpendicular
wavevector increases to the electron Larmor-radius scale k⊥ρe → 1, eventually yielding a
normalized collisionless damping rate that is believed to be sufficiently strong to terminate
the turbulent cascade with γe/ω → 1, as shown in figure 7. Thus, it is expected that any
energy in the turbulent cascade that passes beyond the ion kinetic scales at k⊥ρi ∼ 1 will
ultimately be transferred to the electrons. Since the ion damping rate depends dominantly
on βi with very weak dependence on τ , yielding Qi(βi) to lowest order, this means that
the ratio Qi/Qe is effectively determined by the ion plasma beta alone. This simplification
arises because the total turbulent damping rate must eventually balance the total cascade
rate, Q = Qi + Qe ∼ ε0, so it can be shown that Qe/Qi = ε0/Qi(βi) − 1. This dominant
dependence of the Landau-resonant collisionless damping mechanisms on βi is consistent
with existing turbulent heating models (Howes 2010) and kinetic numerical simulations
(Kawazura et al. 2019) of Alfvénic turbulence.

One final unexpected physical behaviour of Landau damping and transit-time damping
is also illustrated in figure 7. For isotropic Maxwellian velocity distributions of the
ions and electrons, the imaginary component of the complex frequency, ωc ≡ ω − iγ ,
determined by the linear dispersion relation is always negative (solid black curve),
corresponding to a damping of the wave with damping rate γ > 0. However, for the
particular plasma parameter choices in figure 7 of βi = 3, Ti/Te = 1, and mi/me = 1836,
the individual energy transfer rates to the ions through Landau damping14 mediated by
E‖ are actually negative over the range k⊥ρi � 2 (red dotted), indicating a net transfer of
energy from the ions to the wave fields when averaged over the full period (or, alternatively,
over 2π in phase) of the Alfvén wave. But the contribution from transit-time damping
mediated by E⊥ (Howes et al. 2024) is positive and much larger (green long dashed),
leading to a net damping of the wave (γi > 0, thin blue) by the sum of the Landau-resonant
(n = 0) interactions of ions with the Alfvén wave. Whether the wave-period-averaged
energy transfer to ions is positive or negative depends on the relative phases of E‖ and
E⊥ to the self-consistently determined components of the ion current density ji. For the
case of βi = 3 pictured in figure 7, at scales k⊥ρi � 2 (red dotted), this relative phase
δφ between E‖ and j‖,i must fall in the range π/2 ≤ δφ ≤ 3π/2 (corresponding to wave
growth at the expense of ion energy), while the relative phase between E⊥ and j⊥,i must
fall in the range −π/2 ≤ δφ ≤ π/2 (corresponding to wave damping and ion energy gain).
Because each individual mechanism can possibly lead to negative energy transfer while
the sum always leads to damping for an isotropic Maxwellian distribution, it suggests that
perhaps a separation of the particle energization rates by Landau damping and transit-time
damping is not particularly important in unravelling the turbulent heating of the plasma
(especially since both of these mechanisms ultimately lead to energization of the parallel
degree of freedom of the particles), so that only the summed effect of the Landau-resonant
collisionless damping rates is important.

Summarizing our results for Landau-resonant collisionless damping of the turbulent
cascade, the resulting ion-to-electron heating is predicted to be dominantly a function
of the ion plasma beta, Qi/Qe(βi), with a weak dependence on the ion-to-electron

14The separation of the contributions of Landau damping and transit-time to the total collisionless damping rate for
the Vlasov–Maxwell dispersion relation is detailed in Huang et al. (2024).
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FIGURE 7. Plot of the normalized damping rate γ /ω (black dashed) for the Alfvén wave and
KAW over the perpendicular wavenumber range 10−2 ≤ k⊥ρi ≤ 102 for a plasma with βi = 3,
Ti/Te = 1, and mi/me = 1836, where the complex eigenfrequency is given by ωc = ω − iγ , so
that γ > 0 corresponds to wave damping and γ < 0 to wave growth. The contributions from the
ion damping rate γi (thin blue) and electron damping rate γe (thin magenta) are separately plotted,
with the decomposition by species failing at strong damping rates with γ /ω � 0.5, occurring
for k⊥ρi � 40. Ion damping due to Landau damping γi,LD > 0 (red dashed) and transit-time
damping γi,TTD > 0 (green long dashed) are separated, showing a region of net energy transfer
from ions to the wave by the Landau resonance with the ions yielding γi,LD < 0 (red dotted) at
k⊥ρi ≤ 2.

temperature ratio τ and mass ratio μ. Both Landau damping, mediated by the
parallel component of the electric field E‖, and transit-time damping, mediated by the
perpendicular component of the electric field E⊥, lead to energization of the degrees of
freedom parallel to the magnetic field, so Q⊥,i/Qi = 0 and Q⊥,e/Qe = 0.

5.5. Cyclotron damping
For the fundamental (n = 1) cyclotron resonance, the resonance condition in (5.1)
simplifies to (ω − k‖v‖)/Ωs = 1. The numerator involves the fluctuation frequency
modified by the Doppler shift of the particle’s motion parallel to the magnetic field. When
that Doppler-shifted frequency matches the ion cyclotron frequency, the perpendicular
component of the electric field E⊥ can resonantly interact with the particles to energize
the particles in the directions perpendicular to the magnetic field, yielding Q⊥,s/Qs = 1.
To estimate the conditions required for cyclotron resonant damping, it is often sufficient
to require the condition ω/Ωs → 1.
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In typical space and astrophysical plasmas, the turbulent cascade can reach the ion
cyclotron frequency ω/Ωi → 1 under the conditions derived below, but since the electron
cyclotron frequency is higher by the mass ratio, Ωe/Ωi = mi/me, there is typically
little energy remaining in the cascade at the very high frequencies needed to transfer a
significant amount of energy to the electrons through their cyclotron resonance. Thus,
here, we consider only the physics of the ion cyclotron resonance as a possible physical
mechanism for the dissipation of plasma turbulence.

Evaluating the conditions needed to obtain ω/Ωi → 1 in terms of the dimensionless
parameters of turbulence in the isotropic temperature case, we find

ω

Ωi
= ω̄k‖di = ω̄

k‖ρi

β
1/2
i

, (5.8)

where ω̄ is defined by (5.6). Note that the middle expression indicates that the most natural
unit to normalize the length scale parallel to the magnetic field is the ion inertial length
di = c/ωpi = vA/Ωi, but to maintain consistency with the length normalizations in tables 3
and 4, we substitute di = ρi/β

1/2
i . Utilizing the general scaling of the parallel wavenumber

in terms of the isotropic driving wavenumber

k‖ρi = (k0ρi)
(1+α)/(3+α)(k⊥ρi)

2/(3+α), (5.9)

to determine the frequency achieved when the cascade reaches k⊥ρi = 1, we obtain the
condition

ω

Ωi
= ω̄

β
1/2
i

(k0ρi)
(1+α)/(3+α). (5.10)

This indicates clearly that ion cyclotron damping is more likely to occur for small ion
plasma beta βi � 1 or a smaller turbulent inertial range (meaning a value of k0ρi that is
not too small). Note that, for anisotropic driving with k‖0/k⊥0 < 1, such as may occur in
the solar corona at low values of βi, the effective isotropic driving wavenumber k0ρi, given
by (3.11), will actually be smaller than the perpendicular driving scale k⊥0ρi, leading to
yet smaller values of ω/Ωi. For the GS95 scaling with α = 0, we obtain a condition for
the onset of ion cyclotron damping of k0ρi = β

3/2
i /ω̄3; for the B06 scaling with α = 1, we

obtain k0ρi = βi/ω̄
2. For simplicity, note that at the small-scale end of the inertial range

with k⊥ρi � 1, the normalized wave frequency ω̄ for Alfvén waves can be approximated
in the limit k‖di → 1 by the expression (Di Mare & Howes 2024)

ω̄ � 1√
1 + (k‖di)2

. (5.11)

In summary, ion cyclotron damping is predicted to play a role in the damping of plasma
turbulence for conditions with a smaller inertial range and low plasma beta values βi � 1.
The nature of the resulting plasma heating is strictly ion energization Qi/Q = 1 in the
perpendicular degrees of freedom15 Q⊥,i/Qi = 1.

Note that recent theoretical and numerical studies of turbulence with a sufficiently large
amount of imbalance Z+

0 /Z−
0 � 1, such as may be encountered in the inner heliosphere,

has uncovered a new phenomenon denoted the helicity barrier, which can lead to the

15Note, however, that the quasilinear evolution of ions undergoing pitch-angle scattering in the cyclotron wave frame
leads to ion motion primarily to higher perpendicular velocity but also to slightly lower parallel velocity, effectively
yielding a small amount of parallel cooling (Isenberg 2001; Isenberg et al. 2001).
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generation of sufficiently high-frequency fluctuations, specifically ion cyclotron waves,
that may cause energization of the ions by the cyclotron resonance (Meyrand et al. 2021;
Squire et al. 2022, 2023).

5.6. Stochastic heating
The stochastic heating of ions has long been proposed as a means to energize ions in
turbulent plasmas (McChesney et al. 1987; Chen et al. 2001; Johnson & Cheng 2001;
White et al. 2002; Voitenko & Goossens 2004; Bourouaine et al. 2008), with more recent
work providing significant theoretical and numerical evidence for ion stochastic heating
as a significant mechanism for turbulent damping in space and astrophysical plasmas
(Chandran 2010; Chandran et al. 2010, 2011; Bourouaine & Chandran 2013; Chandran
et al. 2013; Klein & Chandran 2016; Vech, Klein & Kasper 2017; Arzamasskiy et al. 2019;
Martinović et al. 2020; Cerri et al. 2021).

Chandran et al. (2010) used test particle simulations of randomly phased Alfvén and
kinetic Alfvén waves to develop an empirical formula for the rate of ion stochastic heating
by turbulent fluctuations with frequencies much lower than the ion cyclotron frequency
ω/Ωi � 1. Following this, Chandran et al. (2011) developed a refined implementation to
predict the partitioning of turbulent energy among parallel ion heating, perpendicular ion
heating, and electron heating (the C11 model in § 4), with a formula for the damping rate
by ion stochastic heating given by

γSH = c1

(
δv

(ρi)

⊥
vti

)
Ωi exp(−c2vti/δv

(ρi)

⊥ ), (5.12)

where δv
(ρi)

⊥ is the root-mean-square amplitude of the perpendicular velocity fluctuations
at the perpendicular scale of the ion Larmor radius, k⊥ρi = 1. Here, c1 and c2 are
fitting constants with suggested values c1 = 0.18 and 0.15 � c2 � 0.34 (Chandran 2010;
Chandran et al. 2011; Bourouaine & Chandran 2013; Xia et al. 2013). The key
dimensionless parameter controlling the onset of stochastic heating in this formulation
is the ratio of the perpendicular velocity fluctuation to the thermal velocity, ε ≡
δv

(ρi)

⊥ /vti; these studies found a critical threshold εcrit � 0.19 that determines the minimum
fluctuation amplitude required for the onset of stochastic heating (Chandran et al. 2010).

Using the relation for Alfvén waves to connect the perpendicular fluid velocity
fluctuations to the perpendicular magnetic field fluctuations δv⊥/vA = ±ω̄δB⊥/B0 (Howes
et al. 2008a) and the MHD scaling of the turbulent perpendicular magnetic field
fluctuation amplitude given by (3.4) with the B06 scaling with α = 1, we obtain the
expression

δv⊥
vti

= ω̄β
−1/2
i

(
k0ρi

k⊥ρi

)1/4

. (5.13)

At k⊥ρi ∼ 1, we obtain the normalized frequency ω̄ ∼ 1 and find the key relation for the
amplitude in terms of our fundamental turbulence parameters

ε ≡ δv
(ρi)

⊥
vti

= β
−1/2
i (k0ρi)

1/4. (5.14)

To estimate the importance of damping by ion stochastic heating relative to the turbulent
cascade rate, we can calculate γSH/ωnl ∼ γSH/ω to obtain the final result

γSH

ω
= c1(k0ρi)

−1/4 exp(−c2β
1/2
i (k0ρi)

−1/4), (5.15)
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where we have used the substitution Ωi/ω = β
1/2
i /k‖ρi.

In summary, the proposed turbulent damping mechanism of ion stochastic heating
depends primarily on the fundamental parameters βi and k0ρi, where lower ion plasma
beta and larger isotropic driving wavenumber (which corresponds to a smaller inertial
range) both conspire to yield larger turbulent amplitude at the ion Larmor-radius scale
k⊥ρi ∼ 1, enhancing stochastic heating of the ions. The exponential effectively provides
a threshold turbulent amplitude at the ion scales below which stochastic ion heating is
ineffective. Note that the exponential dependence on the constant c2 makes its accurate
determination critical to assess the importance of ion stochastic heating in any particular
case; its value is likely to depend on the detailed nature of the turbulent fluctuations at
the perpendicular scale of the ion Larmor radius (Chandran et al. 2011). This heating
mechanism is predicted to lead to strictly ion energization Qi/Q = 1 in the perpendicular
degrees of freedom Q⊥,i/Qi = 1.

Note that, because the amplitude of the turbulent fluctuations is typically found to
decrease monotonically as the turbulent cascade progresses to smaller scales, it is unlikely
that electrons will experience significant stochastic heating, so we do not explore electron
stochastic heating here. Further research will be necessary to evaluate thoroughly the
potential for electron stochastic heating to damp turbulence at the perpendicular scale of
the electron Larmor radius, k⊥ρe ∼ 1. Furthermore, a consideration of the intermittency –
which can enhance the amplitude of individual fluctuations – of the turbulent fluctuations
at the ion Larmor radius scale suggests that the rate of ion stochastic heating may be
dramatically increased in the presence of significant intermittency (Mallet et al. 2019).

5.7. Magnetic pumping
Magnetic pumping (Spitzer & Witten 1953; Berger et al. 1958; Lichko et al. 2017; Lichko
& Egedal 2020; Montag & Howes 2022) is a particle energization mechanism in which
variations of magnetic field magnitude at low frequency ω lead to an oscillating transfer
of energy from parallel to perpendicular degrees of freedom and back, obeying the
double-adiabatic (Chew–Goldberger–Low, CGL) equations of state (Chew, Goldberger
& Low 1956). In the absence of any collisions, the net change of particle energy over a
full oscillation is zero. But, in the presence small but finite collisionality16 , there can be
a non-zero transfer of energy from the oscillating electromagnetic fields to the particles
over the course of a full oscillation.

As a proposed mechanism for the damping of turbulence, magnetic pumping necessarily
requires turbulent fluctuations that involve changes of the magnetic field magnitude from
the equilibrium field strength B0, or δB ≡ |B| − B0 	= 0. For Alfvénic turbulence, which
is dominantly incompressible17 in the MHD regime at k⊥ρi � 1, significant fluctuations
of the magnetic field magnitude arise only within the KAW regime at k⊥ρi � 1 under
conditions of ion plasma beta βi > 1. Alternatively, if the turbulence has a significant
component of compressible magnetosonic fluctuations with Ecomp/Einc > 0, because the
turbulent amplitudes typically decrease monotonically with decreasing scale lengths, the
largest-amplitude compressible fluctuations occur at the driving scale and may lead to
magnetic pumping, directly energizing particles from these large-scale fluctuations.

16Note that the collisionality can be due to Coulomb collisions or to an effective collisionality due to pitch-angle
scattering through collisionless wave–particle interactions with small-scale electromagnetic fluctuations, such as those
driven by kinetic temperature anisotropy instabilities (Kunz et al. 2018; Arzamasskiy et al. 2023).

17Note, however, that the magnetic field magnitude variations arising from strong turbulent driving at the outer
scale with |δB| ∼ B0 can lead to the ‘interruption’ of linearly polarized Alfvén waves by kinetic temperature anisotropy
instabilities at sufficient high βi � 1 (Squire et al. 2016, 2017a, b).
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We determine first the parameters controlling magnetic pumping in Alfvénic turbulence,
following a similar procedure subsequently to analyse the magnetic pumping arising from
compressible turbulence with Ecomp/Einc > 0. The foundation of magnetic pumping is the
double-adiabatic evolution of the weakly collisional plasma which conserves the particle
magnetic moment μm ≡ mv2

⊥/2B and the action integral of the parallel bounce motion
J‖ ≡ ∮

v‖dl (Lichko et al. 2017; Montag 2018). Conservation of these adiabatic invariants
requires a scale separation of the perpendicular wavenumber relative to the particle species
Larmor radius k⊥ρs � 1 and of the wave parallel phase velocity relative to the particle
thermal velocity ω/k‖vts � 1.

Kinetic Alfvén waves give rise to non-negligible magnetic field magnitude variations
over the perpendicular wavenumber range 1 � k⊥ρi � (τμ)1/2 for values of βi � 1. This
range of δB fluctuations is incompatible with the necessary condition k⊥ρi � 1 for the
ions, so we expect that magnetic pumping by KAWs cannot energize the ions. For
the electrons, on the other hand, the requisite condition k⊥ρe � 1 can be rewritten as
k⊥ρi � (τμ)1/2, so we expect that KAWs may be able to damp turbulent fluctuations
and energize the electrons under ion plasma beta conditions with βi � 1. The phase
velocity condition for electrons can be expressed as ω̄ � (βiμ/τ)1/2. Under the ion plasma
beta condition βi � 1, the equation for the dimensionless frequency of kinetic Alfvén
waves given by (5.7) can be approximated by ω̄ � k⊥ρi/β

1/2
i , so this requirement can be

converted to a condition on the perpendicular wavenumber given by k⊥ρi � βi(μ/τ)1/2,
which can certainly be satisfied for the perpendicular wavenumber range of KAWs with
significant magnetic field magnitude fluctuations. Therefore, the necessary conditions for
the magnetic pumping of electrons to play a role in the dissipation of Alfvénic plasma
turbulence with βi � 1 appear to be satisfied.

Previous studies have shown that the ratio of the damping rate due to magnetic pumping
γMP to the pump wave frequency ω is given by (Lichko et al. 2017; Montag & Howes 2022)

γMP

ω
= χc,s

1 + χ 2
c,s

(
δB
B0

)2

, (5.16)

where χc,s ≡ 6νs/ω is a dimensionless measure of the collision frequency νs for species s
and δB is the amplitude of the magnetic field magnitude fluctuations.

To determine the dependence of the magnetic pumping of electrons on the plasma and
turbulence parameters in tables 3 and 4, we assume isotropic driving k‖0/k⊥0 = 1 for
simplicity, write the electron–electron collision frequency as νe = vte/λmfp,e, and use the
general parallel wavenumber scaling for arbitrary α given by (3.1) to obtain

χc,e = 6
ω̄(k‖0λmfp,e)

(
βiμ

τ

)1/2 ( k0ρi

k⊥ρi

)2/(3+α)

. (5.17)

For a sufficiently large turbulent inertial range with k0ρi � 1, KAWs over the
perpendicular wavenumber range 1 � k⊥ρi � (τμ)1/2 will have relatively small turbulent
amplitudes δB⊥/B0 � 1, so the magnetic field magnitude fluctuations can be expressed
to lowest order as variations of the parallel component of the perturbed magnetic field
δB � δB‖ (Huang et al. 2024). The turbulent magnetic field magnitude variations may
then be expressed as

δB
B0

=
(

δB‖
δB⊥

)(
k0ρi

k⊥ρi

)1/(3+α)

, (5.18)

where the ratio δB‖/δB⊥ for KAWs over the relevant range from the linear dispersion
relation is strictly a function of βi, or δB‖/δB⊥ = f (βi). Therefore, electron magnetic
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pumping by Alfvénic turbulent fluctuations at scales k⊥ρi � 1 depends on the parameters
βi, τ , μ, k0ρi and k‖0λmfp,e.

Next we consider that case that the turbulence is driven compressibly with Ecomp/Einc >
0. In this situation, the magnetic field magnitude fluctuations at the driving scale, which
typically have the largest amplitude of δB/B0, may contribute to magnetic pumping of
both the ions and electrons. In this case of turbulent damping at the driving scale, it is
necessary to use the three driving parameters (k⊥0ρi, k‖0/k⊥0, χ0) in table 3, rather than the
simplified parameterization through the isotropic driving wavenumber k0ρi, to determine
the parameter dependence of the turbulent damping via magnetic pumping.

First, the normalized fast and slow magnetosonic wave phase velocities can be expressed
by the linear dispersion relation (Klein et al. 2012)

ω̃4 − ω̃2(1 + β) + β cos2 Θ = 0, (5.19)

which has four solutions given by

ω̃2 = 1
2 [1 + β ±

√
(1 + β)2 − 4β cos2 Θ], (5.20)

where the plus (minus) sign corresponds to the two fast (slow) magnetosonic wave modes.
Here, we define the normalized wave frequency ω̃ ≡ ω/kvA, the total (MHD) plasma beta
β = βi(1 + 1/τ), and the wavevector components (k‖, k⊥) are alternatively parameterized
by (k,Θ), where k‖ = k cos Θ , k⊥ = k sin Θ , k = (k2

‖ + k2
⊥)1/2 and Θ = tan−1(k⊥/k‖).

The dimensionless form of the solutions in (5.20) makes clear that the fast and slow
magnetosonic wave phase velocities depend only on two dimensionless parameters,
ω̃(β,Θ).

We may determine the parameter dependence of the normalized ion collision frequency
by using the relation for the ion–ion collision rate in terms of the electron-electron collision
rate νi = μ−1/2τ−3/2νe and writing the pumping wave frequency at the driving scale as
ω = ω̃0k0vA to obtain

χc,i = 6
ω̃0(k‖0λmfp,e)τ 2

β
1/2
i cos Θ0. (5.21)

Note that the ion collisional mean free path can be expressed in terms of the electron
collisional mean free path by the relation λmfp,i = λmfp,eτ

2, so the denominator is actually
independent of the ion-to-electron temperature ratio τ , depending rather only on the
normalized ion mean free path, k‖0λmfp,i.

To evaluate the turbulent magnetic field magnitude variations for ion magnetic pumping
by compressible fluctuations at the driving scale, we first note that the phenomenon
of dynamic alignment, parameterized by the alignment angle θ0, will not play a role:
dynamic alignment develops through the nonlinear interactions as the turbulence cascades
to smaller scales, but does not come into play at the driving scale, so we set θ0 = 1,
thus reducing the nonlinearity parameter at the driving scale to χ0 = k⊥0δB⊥0/(k‖0B0).
If the magnetic perturbations at the driving scale have |δB|/B0 ∼ 1, the linear theory for
waves breaks down, and the nonlinearity must be taken into account in the lowest-order
description of the wave dynamics; in this case, one may directly take the measured
magnetic field magnitude fluctuations δB/B0 as the parameter to estimate the damping
rate by magnetic pumping in (5.16). However, if the magnetic perturbations at the driving
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scale have ε ≡ |δB|/B0 < 1, the binomial expansion may be used to obtain the expression

δB/B0 � δB‖/B0 + (δB‖/B0)
2/2 + (δB⊥/B0)

2/2, (5.22)

where the first term is of order ε and the next two terms are of order ε2. Thus, to lowest
order, we may estimate δB � δB‖, where the error in this estimation scales as ε2/2,
yielding a fractional error of 25 % for |δB|/B0 = 1/2 and of 6 % for |δB|/B0 = 1/4.

Using this approximation, we can derive an expression for the normalized fluctuations
of the magnetic field magnitude by δB/B0 � δB‖/B0 = (δB⊥/B0)(δB‖/δB⊥). If we
estimate δB‖/δB⊥ ∼ (Ecomp/Einc)

1/2, we can then obtain the expression for the normalized
amplitude of the magnetic field magnitude fluctuations

δB
B0

= k‖0

k⊥0
χ0

(
Ecomp

Einc

)1/2

. (5.23)

Combining the dependencies of χc,i in (5.21) and of δB/B0 in (5.23), ion magnetic
pumping by compressible turbulent fluctuations at the driving scale depends on the
parameters βi, k‖0λmfp,i = (k‖0λmfp,e)τ

2, k‖0/k⊥0, χ0 and Ecomp/Einc.
For magnetic pumping of electrons by compressible turbulent fluctuations at the driving

scale, we can follow an analogous procedure to obtain the normalized electron collision
frequency

χc,e = 6
ω̃0(k‖0λmfp,e)

(
βiμ

τ

)1/2

cos Θ0, (5.24)

and the same expression in (5.23) for the normalized fluctuations of the magnetic field
magnitude by δB/B0, which is independent of the species properties. Thus, electron
magnetic pumping by compressible turbulent fluctuations at the driving scale depends
on the parameters βi, τ , μ, k‖0λmfp,e, k‖0/k⊥0, χ0 and Ecomp/Einc.

In summary, magnetic pumping by Alfvénic turbulent fluctuations can damp turbulence
and energize electrons through turbulent fluctuations at perpendicular scales 1 � k⊥ρi �
(τμ)1/2 for plasma conditions with βi � 1, but ions are not expected to be energized by
Alfvénic fluctuations. The resulting magnetic pumping of electrons by Alfvénic turbulent
fluctuations depends on the parameters βi, τ , μ, k0ρi, and k‖0λmfp,e. If the turbulence is
driven compressibly with Ecomp/Einc > 0, we expect that the turbulent fluctuations at the
driving scales, which have the largest amplitude of δB/B0, may lead to damping of the
turbulence through the magnetic pumping of both the ions and electrons. The resulting
magnetic pumping of ions by compressible turbulence at the driving scales depends on
the parameters βi, k‖0λmfp,i = (k‖0λmfp,e)τ

2, k‖0/k⊥0, χ0, and Ecomp/Einc. Analogously, the
magnetic pumping of electrons by compressible turbulence depends on the parameters βi,
τ , μ, k‖0λmfp,e, k‖0/k⊥0, χ0, and Ecomp/Einc. These parameter dependencies for magnetic
pumping of ions and electrons are summarized in table 5. Note that magnetic pumping
energizes particles in energy over all pitch angles (Montag & Howes 2022), so that both
the parallel and perpendicular degrees of freedom gain energy, yielding for either ion or
electron species Q⊥,s/Q‖,s ∼ 1.

5.8. Kinetic viscous heating
As discussed above for the case of magnetic pumping, low-frequency turbulent
fluctuations that generate variations in the magnetic field magnitude will lead to a
double-adiabatic (CGL) (Chew et al. 1956) evolution of weakly collisional plasmas that
preserves to lowest order the particle magnetic moment μm and the action integral of the

https://doi.org/10.1017/S0022377824001090 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001090


Fundamental parameters of turbulence 45

parallel bounce motion J‖ (Lichko et al. 2017; Montag 2018; Arzamasskiy et al. 2023).
This dynamics leads to the development of anisotropies in the velocity distribution of
the plasma particles, yielding temperature and pressure anisotropies with p‖ 	= p⊥. These
deviations from local thermodynamic equilibrium can trigger rapidly growing kinetic
instabilities that can disrupt the linear wave dynamics (Squire et al. 2016, 2017a, b) and
mediate the non-local transfer of turbulent energy directly from the large driving scales to
kinetic length scales (Kunz et al. 2018; Arzamasskiy et al. 2023), as illustrated by the red
arrow in figure 1(b). The effect of these kinetic instabilities on the turbulent dynamics has
recently been modelled as an effective ‘viscosity’ (Arzamasskiy et al. 2023).

Here we use the term ‘kinetic viscous heating’ to describe the transfer of energy by
this effective viscosity mediated by temperature anisotropy instabilities (Arzamasskiy
et al. 2023) to avoid confusion with the usual viscous heating arising from microscopic
Coulomb collisions. We note that, although this effect can be grossly modelled as an
effective viscosity that leads to diffusion of the bulk fluid velocity field, its properties are
entirely distinct from the standard viscosity in fluid dynamics mediated by microscopic
collisions between neutral particles (Chapman & Cowling 1970) or by microscopic
Coulomb collisions between charged particles in a plasma under strongly collisional
conditions (Spitzer 1962; Grad 1963; Braginskii 1965). Standard viscosity is a linear
mechanism that may be modelled mathematically by a Laplacian differential operator
in the fluid momentum equation, and thus its effect increases monotonically with k2 in
Fourier space; this kinetic viscosity is a nonlinear mechanism operating only under weakly
collisional conditions that strongly depends on the value of the ion plasma beta βi, and its
effect diminishes at higher wavenumber k with the monotonically decreasing amplitudes
of the turbulent fluctuations. Determining how this kinetic viscosity may tap some fraction
of the energy from the turbulent fluctuations at the large, driving scales and non-locally
transfer that energy directly to fluctuations at the small, ion kinetic length scales remains
an open line of investigation.

To properly describe the kinetic physics of turbulence in temperature anisotropic
plasmas, it is necessary to employ the full set of plasma and turbulence parameters
in table 3. The relevant kinetic instabilities driven by anisotropies in the ion velocity
distribution are the four ion temperature anisotropy instabilities: (i) the parallel (or
whistler) firehose instability (Kennel 1966; Gary et al. 1976) and (ii) the Alfvén (or
oblique) firehose instability (Hellinger & Matsumoto 2000), which are both relevant to
plasmas with an ion temperature anisotropy sufficiently less than unity Ai = T⊥,i/T‖,i < 1
and with a parallel ion plasma beta β‖,i > 1; and (iii) the mirror instability (Vedenov
& Sagdeev 1958; Tajiri 1967; Southwood & Kivelson 1993) and (iv) the ion cyclotron
instability (Gary et al. 1976), which are both relevant to plasmas with an ion temperature
anisotropy sufficiently greater than unity Ai = T⊥,i/T‖,i > 1 for any value of the parallel
ion plasma beta β‖,i. When the plasma exceeds a threshold value of the ion temperature
anisotropy (Boris & Manheimer 1977; Matteini et al. 2006; Hellinger & Trávníček 2008;
Klein & Howes 2015), these instabilities can tap the free energy associated with the
anisotropic ion temperature, driving electromagnetic fluctuations and ultimately reducing
the temperature anisotropy, thereby moving the plasma back toward a state of marginal
stability.

Hellinger et al. (2006) has compiled values for the marginal stability boundaries for
these four ion temperature anisotropy instabilities over the (β‖,i, T⊥,i/T‖,i) plane. Using
a linear Vlasov-Maxwell dispersion relation solver with bi-Maxwellian equilibrium ion
velocity distributions in a fully ionized, hydrogenic (proton and electron) plasma, the
marginal stability boundary is determined by calculating the complex eigenfrequency
ω(k) for a fixed β‖,i over all possible wavevectors k. The ion temperature anisotropy
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Instability a b β0

Ion Cyclotron 0.43 0.42 −0.0004
Parallel Firehose −0.47 0.53 0.59
Alfvén Firehose −1.4 1.0 −0.11
Mirror 0.77 0.76 −0.016

TABLE 6. Instability threshold parameters for a maximum growth rate |γ |/Ωi = 10−3 from
Hellinger et al. (2006).

T⊥,i/T‖,i is then varied until the most unstable wavevector has a growth rate of
|γ |/Ωi = 10−3, thus establishing the instability criterion. For the four ion temperature
anisotropy instabilities, the corresponding instability criteria on the (β‖,i, T⊥,i/T‖,i) plane
are generally well fit by an expression of the form

T⊥,i

T‖,i
= 1 + a

(β‖,i − β0)b
, (5.25)

where a, b, and β0 are unique values for each of the four instabilities, computed by
Hellinger et al. (2006) and found here in table 6. These instability thresholds are plotted
in figure 8, and observational studies of measured intervals in the solar wind generally
show that the measurements are more or less constrained by these threshold limits on
the (β‖,i, T⊥,i/T‖,i) plane (Hellinger et al. 2006; Bale et al. 2009; Maruca, Kasper & Bale
2011).

Recent theoretical and numerical studies have highlighted the fact that, at sufficiently
high parallel ion plasma beta β‖,i � 1, the marginal stability boundary for these kinetic ion
temperature anisotropy instabilities asymptotes towards isotropy, as shown in figure 8, so
the double-adiabatic evolution of turbulent fluctuations can easily exceed these boundaries
and trigger these rapidly growing instabilities. Large-scale Alfvén waves in the MHD
limit at k⊥ρi � 1 yield only perpendicular magnetic field perturbations δB⊥ 	= 0 with
δB‖ = 0, so the variation in the magnetic field magnitude δB is negligible in the limit of
small-amplitude waves δB⊥/B0 � 1. However, at sufficiently large amplitudes δB⊥/B0 →
1, these fluctuations can lead to significant variation in the magnetic field magnitude, as
made clear by (5.22). Thus, at sufficiently high values of parallel ion plasma beta β‖,i � 1,
the physics of linearly polarized18 Alfvén waves can be ‘interrupted’ by these kinetic ion
temperature anisotropy instabilities (Squire et al. 2016, 2017a, b).

Further examination of the effect of kinetic instabilities on the turbulent cascade under
conditions of high parallel ion plasma beta, β‖,i � 1, has found that these instabilities can
non-locally transfer energy directly to kinetic length scales (Arzamasskiy et al. 2023), as
illustrated by the red arrow in figure 1(b). This new channel of energy transfer can compete
with the traditional local transfer of energy to smaller scales of the turbulent cascade that
is mediated by nonlinear interactions, as illustrated by the black arrows in figure 1(a).
The effect of these kinetic instabilities on the large-scale turbulent dynamics has been
quantified as an effective viscosity by Arzamasskiy et al. (2023). Here, we denote this
kinetic-instability-mediated viscosity as the kinetic viscosity19 to distinguish it from the

18Note that circularly polarized Alfvénic fluctuations, which have no magnetic field magnitude variation, do not
suffer this kinetic-instability-driven interruption (Squire et al. 2016).

19This kinetic viscosity terminology for kinetic-instability-mediated viscosity should not be confused with the
kinematic viscosity defined in hydrodynamic fluids.
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FIGURE 8. Marginal linear stability thresholds for the four ion temperature anisotropy
instabilities using (5.25) and the parameters in table 6.

usual definition of viscosity that arises through Coulomb collisions among the charged
plasma particles.

These ion kinetic instabilities act to limit the ion pressure anisotropy in the plasma to
values corresponding to marginal stability, given by �pi/pi � 1/β‖,i, where �pi ≡ p⊥i −
p‖i and pi ≡ (2p⊥i + p‖i)/3 (Kunz, Schekochihin & Stone 2014; Melville, Schekochihin &
Kunz 2016; Arzamasskiy et al. 2023). Using this marginal stability scaling with β‖,i, one
can estimate an effective collision frequency (Arzamasskiy et al. 2023)

νeff ∼ β‖,iω(δB⊥/B0)
2, (5.26)

where ω is the linear wave frequency at the scale where the dynamics generates the
largest pressure anisotropy, thus leading to the maximum instability growth rate. Since the
turbulent fluctuation amplitudes generally decrease monotonically with scale, the kinetic
temperature anisotropy instabilities will be driven most strongly by turbulent fluctuations
at the driving scale. As with the case for magnetic pumping by compressible fluctuations
that is dominated by the driving-scale dynamics, here, we must use the three driving
parameters (k⊥0ρi, k‖0/k⊥0, χ0) in table 3, rather than k0ρi, to estimate the turbulent
damping rate by the kinetic viscosity.

Using the effective collision frequency νeff above as an estimate of the damping rate by
this kinetic viscous heating γVH, we can calculate the ratio of the damping rate arising
from kinetic viscous heating to the wave frequency at the driving scale, obtaining

γVH

ω
∼ β‖,i

(
χ0

k‖0

k⊥0

)2

, (5.27)
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where the definition of the nonlinearity parameter χ0 = (k⊥0/k‖0)(δB⊥0/B0)θ0 with θ0 = 1
at the driving scale is used to replace the amplitude of the driving-scale turbulent
fluctuations δB⊥0/B0.

In summary, the kinetic viscous heating due to ion temperature anisotropy instabilities
arising from the non-thermal velocity distributions driven by the large-scale turbulent
motions occurs in weakly collisional turbulent plasmas with parallel ion plasma beta
β‖,i � 1. The kinetic viscous damping rate depends on the parallel ion plasma beta β‖,i,
the nonlinearity parameter χ0, and the anisotropy of the turbulent driving k⊥0/k‖0. It is
important to keep in mind that the scaling used to derive the form of the effective collision
frequency νeff depends on the scaling of the marginal stability boundaries that are generally
calculated in quiescent plasmas in the absence of turbulence. The scaling of the marginal
stability boundaries – such as those quantified by (5.25) and the coefficients in table 6 –
may differ in the presence of strong plasma turbulence, although evidence from spacecraft
observations (Hellinger et al. 2006; Bale et al. 2009; Maruca et al. 2011) and from hybrid
kinetic ion and fluid electron simulations of temperature anisotropic plasma turbulence
(Kunz et al. 2014; Bott et al. 2021; Arzamasskiy et al. 2023) appear to suggest that
any modifications of these boundaries due to the presence of turbulence are relatively
small.

5.9. Collisionless magnetic reconnection
Numerical simulations of plasma turbulence demonstrate the ubiquitous development
of current sheets at small scales (Matthaeus & Montgomery 1980; Meneguzzi et al.
1981; Biskamp & Welter 1989; Spangler 1998, 1999; Biskamp & Müller 2000; Maron
& Goldreich 2001; Merrifield et al. 2005; Greco et al. 2008), and it has been found that
the dissipation of the turbulence is largely concentrated in the vicinity of these current
sheets (Uritsky et al. 2010; Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes
2013; Wu et al. 2013; Zhdankin et al. 2013), giving rise to the proposal that magnetic
reconnection may play a role in the damping of plasma turbulence. Motivated by these
findings, statistical analyses of observations of turbulence in the solar wind have sought
evidence for such spatially localized heating (Borovsky & Denton 2011; Osman et al.
2011, 2012a, b; Perri et al. 2012; Wang et al. 2013; Wu et al. 2013; Osman et al. 2014b).
Yet the physical mechanisms that lead to the development of these current sheets in plasma
turbulence is yet to be fully understood.

Under the B06 theory for the scaling of MHD turbulence, the phenomenon of dynamic
alignment (Boldyrev 2006) is predicted to lead to the development of current sheets with a
width w ∼ 1/ki to thickness a ∼ 1/k⊥ ratio in the plane perpendicular to the magnetic
field given by w/a = k⊥/ki = [(k⊥ρi)/(k0ρi)]1/4, according to the scaling in (3.2) for
α = 1. The geometry of the current sheets expected to develop in plasma turbulence
is illustrated in figure 9, where for sufficiently small perpendicular scales relative to
the driving scale, k⊥ρi � k0ρi, the current sheets have a parallel extent along the mean
magnetic field B0, given by l ∼ 1/k‖, and a scale separation of thickness to width to
length obeying a � w � l; the corresponding three components of the wavevector have
the complementary scaling k‖ � ki � k⊥. In figure 9, the wavelength of a mode that is
unstable to the collisionless tearing instability is illustrated by λ ∼ 1/k (red). Note that
the minimum value of this tearing unstable wavenumber k is equal to the intermediate
wavenumber ki corresponding to the width of the current sheet, w ∼ 1/ki. The maximum
value of k assumed in calculations of the linear collisionless tearing instability (Loureiro
& Boldyrev 2017a; Mallet et al. 2017b) must be much smaller than the perpendicular
wavenumber k⊥ characterizing the current sheet thickness (a ∼ 1/k⊥), thereby yielding
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FIGURE 9. Diagram of the current sheet geometry generated self-consistently in plasma
turbulence in the MHD regime at k⊥ρi � 1, with the scalings of (k⊥, ki, k‖) given by the B06
scaling. The current sheet has thickness a ∼ 1/k⊥ and width w ∼ 1/ki in the perpendicular
plane and length l ∼ 1/k‖ along the equilibrium magnetic field B0. The wavelength of the mode
unstable to the collisionless tearing instability is given by λ ∼ 1/k (red), and must fall within the
bounds determined by the current sheet scaling, yielding an ordering ki � k � k⊥.

k/k⊥ = ka � 1. Thus, the range of the unstable wavenumbers k is given by

kiρi = (k0ρi)
1/4(k⊥ρi)

3/4 � kρi � k⊥ρi � 1, (5.28)

where the final constraint k⊥ρi � 1 is needed for the tearing instability to arise for a current
sheet thickness within the MHD regime, otherwise different scalings for electron-only
reconnection (Phan et al. 2018) in the regime k⊥ρi � 1 would need to be incorporated.

Note that, in turbulence obeying the B06 scaling, the self-consistent generation of
current sheets arises only at sufficiently small perpendicular scales relative to the driving
scale, k⊥ρi � k0ρi. Therefore, the ratio of the perpendicular magnetic field perturbation to
the mean magnetic field will be small, δB⊥/B0 = (k0ρi/k⊥ρi)

1/4 � 1, so the reconnection
that arises in plasma turbulence necessarily falls in the limit of strong-guide-field magnetic
reconnection, as illustrated in figure 9 (green). An implication of this fact is that, if
numerical simulations are employed to assess the importance of magnetic reconnection
in turbulence, it is critical that those simulations be modelled in three spatial dimensions.
Previous studies of two-dimensional vs. three-dimensional plasma turbulence have shown
that three-dimensional simulations exhibit a significantly faster turbulent cascade rate
(Li et al. 2016), so enabling full three-dimensional evolution is likely to be essential to
determine the competition between the turbulent cascade and magnetic reconnection.

The tearing instability growth rate typically increases with an increasing perpendicular
aspect ratio w/a ratio of the current sheets. If this ratio reaches a sufficiently large value,
it was recently recognized that the growth rate of the tearing instability could exceed the
turbulent cascade rate at that scale, γ /ωnl � 1, triggering a reconnection flow that would
disrupt the turbulent dynamics, deviating from the scaling relations summarized in § 3.
Such changes in the scaling of the turbulent fluctuations may potentially lead to differences
in which physical mechanisms dominate the damping of the turbulent cascade at small
scales (Boldyrev & Loureiro 2017; Loureiro & Boldyrev 2017a, b; Mallet et al. 2017a, b;
Walker et al. 2018).

It is worth noting here that an alternative explanation for the development of current
sheets in plasma turbulence due to the nonlinear interactions between counterpropagating
Alfvén waves – a phenomenon often denoted Alfvén wave collisions (Howes & Nielson
2013) – was proposed by Howes (2016), but no scaling for the resulting aspect ratio of the
current sheets was provided. If the scaling of this alternative mechanism differs from that
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of the B06 theory, than the scaling predictions for the onset of reconnection would also
change.

Here, we adopt the B06 scaling for the development of current sheets, with the goal to
determine the dependence of magnetic reconnection as a turbulent damping mechanism
on the fundamental plasma and turbulence parameters for the isotropic temperature case
in table 4. This calculation follows previous investigations that assess the conditions under
which collisionless magnetic reconnection may disrupt the turbulent cascade and thereby
impact how the turbulent energy is channelled into particle energy (Loureiro & Boldyrev
2017a; Mallet et al. 2017b).

The growth rate of the collisionless tearing instability, which is the instability that
initiates the process of magnetic reconnection under the weakly collisional conditions
typical of space and astrophysical plasmas, has been derived in the limit of very low
electron plasma beta βe ∼ μ−1 (Zocco & Schekochihin 2011), where we convert βe =
βi/τ . The physics of the collisionless tearing instability depends on three length scales: (i)
the thickness of the current sheet a ∼ 1/k⊥, assumed here to occur on MHD scales with
k⊥ρi � 1; (ii) the ion sound Larmor radius ρs ≡ ρi/(2τ)1/2 where two fluid effects begin
to lead to differences between the ion and electron dynamics; and (iii) the inner boundary
layer scale δin where the magnetic flux can be unfrozen from the electron fluid flow. We will
restrict our analysis to βe � μ−1, such that the flux unfreezing arises from electron inertia
(Zocco & Schekochihin 2011; Loureiro & Boldyrev 2017a; Mallet et al. 2017b), occurring
approximately at the electron inertial length scale de ≡ c/ωpe = ρi/(βiμ)1/2. These scales
are ordered by δin ∼ de � ρs � a. Together, these restrictions limit us to moderately small
plasma beta

μ−1 � βi/τ � 1. (5.29)

The tearing instability depends on the tearing mode instability parameter Δ′, determined
by the outer-region solution (at MHD scales k⊥ρi � 1) (Zocco & Schekochihin 2011).
This parameter can be expressed over two limiting regimes in a dimensionless form
(Loureiro & Boldyrev 2017a) as

�′a = (ka)−n for 1 < n ≤ 2, (5.30)

where k is the unstable wavenumber along the width of the current layer governing the
reconnection flow, as illustrated in figure 9 by the red sinusoidal curve. Here n = 1
corresponds to a Harris current sheet (a hyperbolic tangent profile of the reconnecting
magnetic field across the current sheet thickness, Harris 1962), while n = 2 corresponds
to a sinusoidal variation of the reconnection magnetic field (Loureiro & Boldyrev 2017a),
which may be the more likely case for the onset of reconnection at current sheets that
self-consistently arise in a turbulent plasma. The tearing instability growth rates are solved
in two limits of Δ′ (Zocco & Schekochihin 2011; Loureiro & Boldyrev 2017a; Mallet et al.
2017b): (i) �′δin � 1

γ ∼ kvA⊥
deρsΔ

′

a
with δin ∼ deρ

1/2
s Δ′1/2, (5.31)

and (ii) �′δin � 1

γ ∼ kvA⊥
d1/3

e ρ2/3
s

a
with δin ∼ d2/3

e ρ1/3
s , (5.32)
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where vA⊥ ≡ δB⊥/(4πnimi)
1/2 is the Alfvén speed based on the magnitude of only the

reconnecting component of the magnetic field δB⊥. Since the growth rates above are
calculated in the limit k⊥ρi � 1, we will focus our assessment on whether magnetic
reconnection will disrupt the turbulent cascade at MHD scales k⊥ρi � 1, which is the
same approach as taken in previous studies (Loureiro & Boldyrev 2017a; Mallet et al.
2017b).

Using (5.30) and either (5.31) or (5.32) for δin, the normalized tearing mode instability
parameter �′δin can be expressed in terms of the dimensionless quantities in table 4 by

�′δin = k⊥ρi

(2τβ2
i μ

2)1/6

(
k⊥ρi

kρi

)n

. (5.33)

This equation shows that �′δin increases as the perpendicular wavenumber k⊥ρi increases,
corresponding to a thinner current sheet, or as the unstable wavenumber kρi decreases,
requiring to a wider current sheet. Since the width w ∼ 1/ki of the current sheets in
B06 scaling theory governed by (3.2) bounds the unstable wavenumber k from below
by the intermediate wavenumber, k > ki, the maximum value of instability parameter
�′δin increases with the perpendicular aspect ratio of the current sheets w/a = k⊥/ki � 1.
Note also that �′δin ∝ β

−1/3
i , so that lower values of ion plasma beta also lead to a larger

instability parameter.
Note that the value of the unstable wavenumber kρi at the transition between the limiting

regimes of the tearing mode instability parameter, where �′δin = 1, is given by

kρi = ktρi ≡ (k⊥ρi)
(n+1)/n

(2τβ2
i μ

2)1/6n
, (5.34)

which provides a bound on the value of kρi for the validity of the tearing growth rate
formulas in (5.31) and (5.32).

To assess whether the collisionless tearing instability grows fast enough to enable the
onset of magnetic reconnection to disrupt the turbulent cascade, we will assess γRXN/ωnl ∼
γRXN/ω, assuming critical balance of linear and nonlinear time scales ωnl ∼ ω (Goldreich
& Sridhar 1995; Mallet et al. 2015). Taking the linear wave frequency for MHD Alfvén
waves ω = k‖vA = (k‖ρi)

1/2(k⊥ρi)
1/2vA/ρi using (3.1) with α = 1 for the B06 scaling of

k‖, and substituting vA⊥ = vA(δB⊥/B0) = vA[(k0ρi)/(k⊥ρi)]1/4 using (3.4), we find that the
growth rate in the �′δin � 1 limit, which corresponds to the large unstable wavenumber k
limit by inspection of (5.33), can be expressed as

γRXN

ω
∼ (k⊥ρi)

(5+4n)/4

(kρi)n−1(k0ρi)1/4(2τβiμ)1/2
, (5.35)

where this expression is formally valid in the MHD limit with k⊥ρi � 1. Combining
the limitations on the possible unstable wavenumber from (5.28) and the requirement
�′δin � 1 using (5.34), the formula in (5.35) is valid over the range of normalized unstable
wavenumbers

max
[
(k0ρi)

1/4(k⊥ρi)
3/4,

(k⊥ρi)
(n+1)/n

(2τβ2
i μ

2)1/6n

]
� kρi � k⊥ρi � 1. (5.36)

Note that this valid unstable wavenumber range can be used to show that no range with
�′δin � 1 exists if βi � (2τμ2)−1/2. For typical values of τ ∼ 1, however, the very low
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values of βi required to violate this condition would already have violated the assumed
moderate beta limit given by (5.29), so this limitation is of no practical concern.

The tearing growth rate in (5.35) demonstrates that, in the large k limit, the normalized
growth rate is independent of k with γRXN/ω ∝ k0 for Harris-type current sheets with n =
1, and is inversely proportional to k with γRXN/ω ∝ k−1 for the n = 2 case of sinusoidal
variations of the perpendicular magnetic field component that may be expected to occur
in plasma turbulence.

The maximum growth rate γRXN/ω from (5.35) increases with k⊥ρi, but also requires the
limit k⊥ρi � 1 for the validity of this linear tearing growth-rate calculation. Therefore, to
estimate quantitatively the maximum normalized tearing growth rate, we take k⊥ρi → F ,
where F � 1 is the maximum value of the normalized perpendicular wavenumber for
which (5.35) remains valid; numerical simulations of collisionless magnetic reconnection
will be invaluable to provide estimates of the maximum value of F . The maximum growth
rate γRXN/ω also occurs for the minimum unstable wavenumber kρi allowed by the range
in (5.36). Thus, taking these two limits and requiring a collisionless tearing instability
growth rate sufficient to disrupt the turbulent cascade, γRXN/ω � 1, yields the constraint

k0ρi � F (4+5n)/n

(2τ)(4n+2)/3n(βiμ)(2n+4)/3n
, (5.37)

if the minimum kρi is constrained by the condition �′δin � 1. Alternatively, if the
minimum kρi is constrained by the width of the current sheet given by (5.28), then the
condition γRXN/ω � 1 yields the constraint

k0ρi � F (5+4n)/n

(2τβiμ)2/n
. (5.38)

The normalized growth rates in the �′δin � 1 limit vs. normalized unstable wavenumber
kρi are illustrated in figure 10(a) for n = 1 (thin blue) and n = 2 (thick blue) for
turbulent parameters βi = 0.01, τ = 1, μ = 1836 and k0ρi = 10−4 and for three values
of the maximum of k⊥ρi given by F = 1.0 (solid), 0.3 (dashed) and 0.1 (dotted). The
corresponding values of �′δin vs. kρi are presented in figure 10(b) for each of the n and
k⊥ρi cases. For the turbulence parameters specified in this example, we find γRXN/ω � 1
only for the F = k⊥ρi = 1.0 case over the unstable wavenumber range 0.3 � kρi � 1 for
the n = 1 case (thin solid blue) and over 0.6 � kρi � 1 for the n = 2 case (thick solid
blue).

Next, we assess the initiation of collisionless tearing in the �′δin � 1 limit with the
growth rate given by (5.32). Using similar substitutions for ω and vA⊥ (as detailed above
for the �′δin � 1 limit), we find that the growth rate in the �′δin � 1 limit, which is the
small unstable wavenumber k limit as shown by (5.33), can be expressed as

γRXN

ω
∼ (kρi)(k⊥ρi)

1/4

(k0ρi)1/4(4τ 2βiμ)1/6
, (5.39)

where this expression is formally valid in the MHD limit with k⊥ρi � 1. Combining
the limitations on the possible unstable wavenumber from (5.28) and the requirement
�′δin � 1 using (5.34), the formula in (5.39) is valid over the range of normalized unstable

https://doi.org/10.1017/S0022377824001090 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001090


Fundamental parameters of turbulence 53

(a)

(b)

FIGURE 10. (a) Scaling the normalized collisionless tearing instability growth rate γRXN/ω
for a turbulent plasma with βi = 0.01, τ = 1, μ = 1836 and k0ρi = 10−4 as a function of
the normalized unstable wavenumber kρi. Colours indicate the solutions in the low k limit
(corresponding to �′δin � 1) (red) and in the high k limit (corresponding to �′δin � 1) (blue).
Line thickness indicates the either a sinusoidal current profile with n = 2 (thick) or a Harris-like
hyperbolic tangent current profile with n = 1 (thin). Line styles indicate different values of
maximum perpendicular wavenumber F = 1.0 (solid), 0.3 (dashed) and 0.1 (dotted). (b) The
corresponding normalized tearing mode instability parameter �′δin vs. kρi for each case.

wavenumbers

(k0ρi)
1/4(k⊥ρi)

3/4 � kρi � max
[

k⊥ρi,
(k⊥ρi)

(n+1)/n

(2τβ2
i μ

2)1/6n

]
� 1. (5.40)

This valid unstable wavenumber range can be used to show that no range with �′δin � 1
exists if

k⊥ρi � (k0ρi)
n/(n+4)(2τβ2

i μ
2)2/3(n+4). (5.41)

This finding is consistent with the fact that the value of �′δin decreases with decreasing
k⊥ρi in (5.33), so by decreasing k⊥ρi enough, one will always reach a point where there is
no range of kρi with �′δin � 1.

The tearing growth rate in (5.39) shows that, in the small k limit, the normalized growth
rate increases linearly with the unstable wavenumber k and increases weakly with the
perpendicular wavenumber k⊥ρi, independent of whether the turbulently generated current
sheets are Harris-like or sinusoidal (thus, independent of n).

Once again the maximum growth rate γRXN/ω from (5.39) increases with k⊥ρi (although
weakly with the 1/4 power), so once again we take the limit k⊥ρi → F , where F � 1
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is the maximum value of the normalized perpendicular wavenumber for which (5.39)
remains valid. The maximum growth rate will also occur for the maximum unstable
wavenumber kρi given by (5.40). Thus, taking these two limits and requiring a collisionless
tearing instability growth rate sufficient to disrupt the turbulent cascade, γRXN/ω � 1,
yields the constraint

k0ρi � F (4+5n)/n

(2τ)(4n+2)/3n(βiμ)(2n+4)/3n
, (5.42)

if the maximum kρi is constrained by the condition �′δin � 1. Note that this condition
is the same as (5.37), as it must be since this maximum growth rate occurs at �′δin = 1,
where the growth rates for the �′δin � 1 and �′δin � 1 limits cross. Alternatively, if the
maximum kρi is constrained by the maximum k⊥ρi → F , then the condition γRXN/ω � 1
yields the constraint

k0ρi � F (5+4n)/n

(4τ 2βiμ)2/3
. (5.43)

The normalized growth rates in the �′δin � 1 limit vs. normalized unstable wavenumber
kρi are illustrated in figure 10(a) (thick red) for turbulent parameters βi = 0.01, τ = 1,
μ = 1836 and k0ρi = 10−4 and for three values of the maximum of k⊥ρi given by F = 1.0
(solid), 0.3 (dashed) and 0.1 (dotted). The corresponding values of �′δin vs. kρi are
presented in figure 10(b) for each of the n and k⊥ρi cases. For the turbulence parameters
specified in this example, we find γRXN/ω � 1 only for the k⊥ρi = 1.0 case over the
unstable wavenumber range 0.2 � kρi � 0.3 for the n = 1 case (thick solid red) and over
0.2 � kρi � 0.6 for the n = 2 case (thick solid red).

It is necessary to highlight here a few important caveats in using the linear collisionless
tearing mode growth rates and MHD turbulence scaling theory to predict when magnetic
reconnection may disrupt the dynamics of the turbulent cascade. First, the linear tearing
mode growth rates used here are rigorously derived in asymptotic limits, but we employ
these same rates up to the extreme boundary of those limits. For example, the linear
growth rates formally require k⊥ρi � 1, but we take k⊥ρi → 1 to estimate the maximum
growth rate; also, the �′δin � 1 limit is used to estimate the tearing mode growth rates as
�′δin → 1. Such rates derived in asymptotic limits, however, may not remain quantitatively
accurate as we extend beyond their formal regime of validity. We adopt the viewpoint that
the growth rates calculated in these limits are at least reasonable lowest-order estimates of
the rates even beyond their formally limited range. Furthermore, the growth rates for the
collisionless tearing mode are determined under smooth conditions, whereas to determine
whether reconnection arises in the current sheets that naturally arise in plasma turbulence,
one needs to determine the collisionless tearing growth rates in the presence of turbulence;
once again, the estimated tearing mode growth rates used here are taken simply as the
lowest-order estimation. Computing the tearing mode growth rates in a turbulent plasma
and determining the competition of the tearing mode with the nonlinear cascade of energy
due to turbulence are both necessary for more accurate calculations, which likely will
require detailed kinetic numerical simulations. Finally, alternative proposed mechanisms
for the development of current sheets in plasma turbulence – such as the nonlinear
interaction of counterpropagating Alfvén wave collisions (Howes 2016), as opposed to
dynamic alignment (Boldyrev 2006) – may yield a different scaling for the width and
thickness of current sheets; the resulting predictions for the onset of magnetic reconnection
in a turbulent plasma would thereby also likely change.

In summary, we have followed previous investigations (Loureiro & Boldyrev 2017a;
Mallet et al. 2017b) to estimate how the collisionless tearing mode may arise in the
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current sheets that develop self-consistently in plasma turbulence, potentially disrupting
the nonlinear cascade of turbulent energy to small scales. We restrict ourselves to the
moderately low electron plasma beta limit μ−1 � βe � 1, which can be expressed in
terms of the plasma and turbulence parameters in table 4 as the limit 1 � βiμ/τ � μ. In
this limit, magnetic flux conservation is broken due to electron inertia at electron inertial
length scales de (Zocco & Schekochihin 2011; Loureiro & Boldyrev 2017a; Mallet et al.
2017b). We consider only the case when collisionless magnetic reconnection arises in
current sheets with thicknesses a ∼ 1/k⊥ in the MHD regime k⊥ρi � 1. We find that the
growth rate of reconnection relative to the turbulent fluctuation frequencies γRXN/ω is a
function of the isotropic driving wavenumber k0ρi, ion plasma beta βi, and ion-to-electron
temperature ratio τ , as well as the ion-to-electron mass ratio μ.

In general, the normalized collisionless tearing instability growth rates γRXN/ω – given
by (5.35) in the �′δin � 1 limit and by (5.39) in the �′δin � 1 limit – increase as both k0ρi
and βi decrease. For specified values of the plasma parameters βi and τ , we obtain different
conditions on how small k0ρi must be for reconnection to arise, given by (5.37) and (5.38)
in the �′δin � 1 limit and by (5.42) and (5.43) in the �′δin � 1 limit. These scalings
mean that reconnection is more likely to arise in turbulence with a very large driving scale
relative to the ion Larmor-radius scale – meaning a smaller value of k0ρi � 1 – and for
low ion plasma beta conditions βi � 1.

It is worthwhile emphasizing that these estimates on the importance of magnetic
reconnection in plasma turbulence are calculated only for current sheets with a thickness
a ∼ 1/k⊥ in the MHD regime k⊥ρi � 1 so that the MHD scaling predictions in § 3 apply.
It is also possible that electron-only magnetic reconnection (Phan et al. 2018) could occur
within the range of scales in the kinetic dissipation range k⊥ρi � 1, but to estimate whether
this will occur would require the use of modified turbulence scalings appropriate for the
dissipation range (Howes et al. 2008a, 2011a).

Finally, how the incorporation of magnetic reconnection into the turbulent cascade
impacts the damping of the turbulence and the resulting energization of the plasma
remains an open question. Collisionless magnetic reconnection effectively converts
magnetic energy into other forms, specifically the kinetic energy of the bulk plasma
outflows and possibly internal energy in the particle velocity distribution functions (Drake
et al. 2005; Egedal et al. 2008; Drake & Swisdak 2012; Egedal, Daughton & Le 2012;
Loureiro, Schekochihin & Zocco 2013; Jiansen et al. 2018; Muñoz & Büchner 2018; Pucci
et al. 2018; Dahlin 2020; McCubbin, Howes & TenBarge 2022). But such conversion
between magnetic energy and the bulk kinetic energy of turbulent plasma motions already
occurs ubiquitously in plasma turbulence: the linear terms in the equations of evolution
for the turbulent plasma mediate the ongoing oscillation of energy from magnetic energy
to the kinetic energy of the turbulent bulk plasma motions and back (Howes 2015a). For
example, the physics of undamped Alfvén waves involve the transformation of the bulk
kinetic energy of the perpendicular wave motions to magnetic energy as the frozen-in
magnetic field is stretched; magnetic tension serves as the restoring force for the wave,
decelerating the perpendicular wave motions and ultimately re-accelerating them back
towards the state where the magnetic field is not bent, thereby converting magnetic energy
back to kinetic energy. Thus, collisionless magnetic reconnection does not necessarily lead
directly to damping of the turbulent motions (unless a significant fraction of the released
magnetic energy is converted into internal energy of the particle velocity distributions),
but rather is simply a channel, in addition to magnetic tension, for converting magnetic
to kinetic energy. The triggering of magnetic reconnection, however, will impact the
scaling of the characteristic three-dimensional wavevector of the turbulent motions that
result from the reconnection flow (Boldyrev & Loureiro 2017; Loureiro & Boldyrev
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2017a, b; Mallet et al. 2017a, b; Walker et al. 2018), and these different scalings may
channel energy through different kinetic physical mechanisms that ultimately transfer
turbulent energy to internal particle energy. Furthermore, the onset of reconnection in
the turbulent cascade will alter the spectral index of the turbulent energy spectrum as a
function of wavenumber, and will also reduce intermittency since the largest-amplitude
current sheets will preferentially succumb to the tearing instability. Thus, the partitioning
of turbulent energy between ions and electrons, Qi/Qe, and between degrees of freedom
for both species, Q⊥,i/Q‖,i and Q⊥,e/Q‖,e, remains to be ascertained in situations where
collisionless magnetic reconnection is triggered in plasma turbulence.

6. Phase diagrams for plasmas turbulence

The scalings of the different proposed kinetic dissipation mechanisms listed in § 5.1
enable us to map the importance of the different mechanisms for the damping of turbulence
as a function of the fundamental plasma parameters by creating phase diagrams for
plasma turbulence, analogous to a similar effort to create a phase diagram for magnetic
reconnection (Ji & Daughton 2011). Here, we present two such phase diagrams based
on the plasma and turbulence parameters estimated for different space and astrophysical
plasmas.

6.1. Collisionality of the dissipation range of plasma turbulence
We first create a phase diagram indicating that, for many plasmas of interest, even if
the turbulence is driven at fluid scales with k‖,0λmfp,e � 1, the end of the inertial range
generally occurs at scales that are weakly collisional. Therefore, the kinetic damping
mechanisms analysed here are responsible for removing energy from the turbulent cascade,
rather than viscosity and resistivity, which are based on microscopic Coulomb collisions
between particles in the limit of strong collisionality (Braginskii 1965; Chapman &
Cowling 1970). Since the mean free path must be compared with the parallel length
scales of the turbulent fluctuations characterized by k‖, we must first determine the parallel
length scales associated with the small-scale end of the inertial range at the transition to
the dissipation range, corresponding to a perpendicular scale k⊥ρi ∼ 1. Specifying the
GS95 scaling with α = 0 for this example, the parallel wavenumber at the transition to
the dissipation range k‖T , determined by (3.1), is given by k‖Tρi = (k0ρi)

1/3(k⊥ρi)
2/3 =

(k0ρi)
1/3, here taking k⊥ρi ∼ 1 as the end of the inertial range. For simplicity, we assume

here that the turbulence is driven strongly and isotropically with χ0 = 1 and k‖0/k⊥0 = 1.
Normalizing this parallel scale in terms of the electron collisional mean free path λmfp,e,
we obtain k‖Tλmfp,e = (k0ρi)

1/3(λmfp,e/ρi).
The range of plasma and turbulence parameters for a number of plasma systems of

interest are denoted by the coloured boxes in figure 11. Plotted on the horizontal axis of
figure 11 is the range of parallel scales bounding the turbulent inertial range normalized
to the electron collisional mean free path λmfp,e: (i) the normalized parallel driving scale
k‖0λmfp,e of the turbulence is represented by the left end of each box; (ii) the turbulent
energy cascades to smaller scales to the right within each box (wavy red arrow below
plot); and (iii) the parallel scale corresponding to the small-scale end of the inertial range
at k‖Tλmfp,e is represented by the right end of each box. The vertical extent of the coloured
boxes indicates the range of ion plasma beta βi for each of the chosen systems. The fluid
regime (yellow region) indicates conditions under which the dynamics of the turbulent
fluctuations occurs on parallel scales that are strongly collisional with k‖0λmfp,e � 1;
the kinetic regime (light blue region) indicates conditions under which the dynamics
of the turbulent fluctuations occurs on parallel scales that are weakly collisional with
k‖0λmfp,e � 1.
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FIGURE 11. Phase diagram of the extent of the turbulent inertial range from driving scales at
k‖0λmfp,e to the transition to the dissipation range at k‖Tλmfp,e vs. the ion plasma beta βi. The
plot indicates that, at the small-scale end of the inertial range where damping mechanisms can
remove energy from the turbulence, for many plasma systems of interest the governing dynamics
is weakly collisional with k‖Tλmfp,e � 1, so kinetic plasma theory is necessary to capture the
physics of turbulent dissipation.

In figure 11 are shown these parameter ranges for a variety of plasma systems: the
near Earth solar wind (red); the Earth’s magnetosheath and the solar corona (green); the
inner heliosphere at heliocentric radii R � 1 AU and the outer heliosphere at R � 1 AU
(blue); the warm ionized interstellar medium, the Galactic centre and the intracluster
medium (black); and terrestrial laboratory experiments including the Large Plasma Device
(LAPD) at UCLA (Gekelman et al. 1991, 2016) and the Joint European Torus (JET) Fusion
experiment (JET Team 1992). The main message of figure 11 is that, for most turbulent
plasma systems of interest, the parallel length scales associated with the end of the inertial
range correspond to weakly collisional plasma conditions with k‖Tλmfp,e � 1. Therefore,
to explore the physical damping mechanisms responsible for removing energy from the
turbulent fluctuations and consequently energizing the plasma particles, plasma kinetic
theory is essential.

6.2. Turbulent damping mechanisms on the (βi, k0ρi) plane
A single phase diagram that demonstrates the power of using the dimensionless plasma
and turbulence parameters for the isotropic temperature case presented in table 4 is a plot
of the predicted regions on the (βi, k0ρi) plane where different kinetic mechanisms are
expected to play a role in the damping of weakly collisional plasma turbulence, presented
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FIGURE 12. Phase diagram for the kinetic damping mechanisms of weakly collisional plasma
turbulence as a function of isotropic driving wavenumber k0ρi and ion plasma beta βi, showing
regions of this parameter space where different mechanisms are likely to contribute to the heating
of the plasma species: iLD and iTTD (blue); eLD and eTTD (blue); ion cyclotron damping
(iCD) (black); ion stochastic heating (iSH) (green); ion kinetic viscous heating (iVH) (magenta);
and collisionless magnetic reconnection (RXN) (red) for intermittent current sheets (n = 1, red
dashed) and sinusoidal current sheets (n = 2, red solid). The extent of the turbulent near-Earth
solar wind on the (βi, k0ρi) plane is indicated (grey shading).

here in figure 12. This phase diagram of the turbulent damping mechanisms is the key
result of this study.

For this phase diagram, we specify the ion-to-electron temperature ratio τ = 1 and
the ion-to-electron mass ratio μ = 1836. For the isotropic temperature case, the species
temperature anisotropies are Ai = Ae = 1, and we take the turbulence to be driven strongly
(χ0 = 1) and isotropically (k‖0/k⊥0 = 1) so that the turbulent driving can be characterized
by the isotropic driving wavenumber k0ρi. Furthermore, we assume the turbulence
driving to be balanced (Z+

0 /Z−
0 = 1) and incompressible (Ecomp/Einc = 0). In addition, the

turbulence is assumed to be weakly collisional with k‖0λmfp,e � 1, eliminating magnetic
pumping as a potential turbulent damping mechanism. Finally, we specifically choose to
use the B06 scaling for MHD turbulence with α = 1 to assess the contributions of the
different proposed damping mechanisms.
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We use the dependencies discussed in § 5 of the proposed turbulent damping
mechanisms on the dimensionless parameters in table 4 to assess the regions of the
two-dimensional (βi, k0ρi) parameter space over which each mechanism is expected to
contribute.

For the Landau-resonant (n = 0) collisionless damping mechanisms – Landau
damping (LD) and transit-time damping (TTD) – the primary parameter dependencies
summarized in § 5.4 are βi for iLD and iTTD and (βi, τ, μ) for eLD and eTTD. Since the
sum of LD and TTD for each species always leads to damping in the case of isotropic
equilibrium temperatures, but separately the net energy transfer by either mechanism to
that species over a full wave period can be positive or negative – as discussed in § 5.4
and illustrated in figure 7 – we do not separate the contributions of LD and TTD for
a single species. Furthermore, since any turbulent cascade energy not deposited onto
the ions by iLD and iTTD at the ion scales k⊥ρi ∼ 1 will cascade to k⊥ρi � 1 and
ultimately be transferred to the electrons, the partitioning of energy between ions and
electrons by these Landau-resonant mechanisms is simply a function of βi. Solutions of
the linear Vlasov–Maxwell dispersion relation for the normalized ion damping rate by iLD
and iTTD, (γiLD + γiTTD)/ω indicate that ion damping is non-negligible for βi � 0.5, so
iLD and iTTD will contribute in this region (blue line with right arrow), independent of
the driving scale k0ρi. For βi � 0.5, eLD and eTTD will dominate the Landau-resonant
damping (blue line with left arrow), but eLD and eTTD will still contribute to terminate
the remaining turbulent cascade energy not removed by ions at βi � 0.5 (blue right arrow).

As discussed in § 5.5, ion cyclotron damping (iCD) will contribute to the damping of
turbulence if the turbulent frequencies approach the ion cyclotron frequency ω/Ωi → 1,
with the scaling of this ratio given by (5.10). We can solve this equation for k0ρi in terms
of βi with α = 1 for the B06 scaling, yielding

k0ρi =
(

ω

Ωi

1
ω̄

)2

βi. (6.1)

Taking the factor (ω/Ωi)/ω̄ = 1 gives an estimate for when ω/Ωi = 1 (black dotted line),
but iCD often becomes significant at lower values of the frequency, ω/Ωi � 1. Thus,
we estimate the onset of iCD by taking (ω/Ωi)/ω̄ = 1/2π (black solid line and upward
arrow).

The impact of ion stochastic heating (iSH) on turbulent fluctuations for the B06 scaling
is given by (5.15) in § 5.6. The exponential dependence in this equation for γSH/ω yields a
strong inhibition of iSH unless c2β

1/2
i (k0ρi)

−1/4 � 1. Thus, we obtain a condition for k0ρi
in terms of βi for the onset of iSH, given by

k0ρi � c4
2β

2
i . (6.2)

Note that the dependence of this condition on c4
2 means that an accurate determination of

this constant is critical to assess the role of iSH on the damping of plasma turbulence.
Taking the value of c2 = 0.34 from Chandran et al. (2010), we plot (6.2) for the onset of
ion stochastic heating (green line and upward arrow) on figure 12.

Kinetic viscous heating of ions mediated by temperature anisotropy instabilities20 at
high values of ion plasma beta βi � 1 depends on the βi and the amplitude of the turbulent
fluctuations at the driving scale, as shown by (5.27) in § 5.8. Because this mechanism
only contributes when βi is sufficiently high that the temperature anisotropy can exceed

20Recall that this mechanism is not the standard viscous heating mediated by microscopic Coulomb collisions
between charged plasma particles, as emphasized in § 5.8.
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the threshold values for the proton temperature anisotropy instabilities given by table 6
and shown in figure 8, we take the threshold for this kinetic damping mechanism to be
dependent only on the value of the ion plasma beta, with an estimated onset at βi � 10
(magenta line and right arrow).

Finally, if the isotropic driving wavenumber k0ρi � 1 and the ion plasma beta βi � 1
of the turbulence are sufficiently low, current sheets with a large width-to-thickness ratio
in the plane perpendicular to the equilibrium magnetic field can be unstable to a rapid
collisionless tearing instability in the large-guide-field limit, as detailed in § 5.9. If growth
rate of the tearing instability is faster than the rate of the nonlinear cascade of energy
to small scales in the turbulence γRXN/ωnl � 1, collisionless magnetic reconnection can
disrupt the turbulent cascade. The condition that the normalized collisionless tearing
instability growth rate satisfies γRXN/ω � 1 (for the unstable wavenumber with the
maximum growth rate) is given by either (5.37) or (5.42) (both expressions yield the
same maximum value at the transitional value of �′δin = 1). In these expressions,
n = 1 corresponds to a Harris-like current sheet with a hyperbolic tangent profile, and
n = 2 corresponds to a sinusoidal variation of the reconnecting magnetic field. The
determination of the tearing growth rate demands k⊥ρi � 1 for the validity of this linear
tearing growth-rate calculation, so we take k⊥ρi → F , where F � 1 is the maximum
value of the normalized perpendicular wavenumber for which the growth-rate derivations
remain valid. Here, we specify a value F = 0.3 for our estimation of the onset of
collisionless magnetic reconnection, plotting the threshold boundaries for reconnection
of intermittent current sheets (n = 1) (dashed red line and downward arrow) and for
reconnection of sinusoidal current sheets (n = 2) (solid red line and downward arrow).
Note that the dependence of k0ρi on F in both (5.37) and (5.42) is very strong, scaling as
F 9 for n = 1 and as F 7 for n = 2, so the determination of the maximal value of k⊥ρi ≡ F
for the tearing instability growth has a strong influence on whether reconnection will
arise. Also, as discussed in the last paragraph of § 5.9, the onset of collisionless magnetic
reconnection may not directly lead to damping of the turbulent fluctuations, but rather is
expected to change the nature of turbulent fluctuations, such as the wavevector anisotropy,
the scaling of the energy spectrum and the degree of intermittency. Thus, below the red
lines in figure 12, the onset of reconnection may not directly damp turbulent fluctuations
but instead may alter the scalings of the other turbulent damping mechanisms.

The phase diagram for the turbulent damping mechanisms on the (βi, k0ρi) plane in
figure 12 can be used in the following manner to predict which damping mechanisms
will contribute to the dissipation of turbulence in a specific space or astrophysical plasma
system. In the near-Earth solar wind, the observed ion plasma beta values span the range
0.05 � βi � 10 (Wilson et al. 2018), taking a 5 % and 95 % limit on the distribution of
βi values. Furthermore, the isotropic driving wavenumber in the near-Earth solar wind
spans the typical values 10−4 � k0ρi � 10−3 (Tu & Marsch 1990, 1995; Matthaeus et al.
2005; Howes et al. 2008a; Kiyani et al. 2015). This range of parameters for the solar
wind at 1 AU is plotted as the grey shaded region on figure 12. Reading the phase
diagram, the prediction for the damping mechanisms in the near-Earth solar wind is that
Landau-resonant damping for ions (iLD and iTTD) and electrons (eLD and eTTD) will
contribute to the damping over the full range of solar wind turbulence parameters. At lower
values of βi � 0.3 and higher values of k0ρi, stochastic heating is predicted to play a role.
Indeed, in the Earth’s magnetosheath (which has a similar footprint on the (βi, k0ρi) plane
as the near-Earth solar wind), there is direct evidence from Magnetospheric MultiScale
spacecraft observations of eLD playing a significant role in the damping of the turbulent
fluctuations (Chen et al. 2019; Afshari et al. 2021). In addition, for the solar wind in
the inner heliosphere, where the values of βi tend to be lower than in the near-Earth
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solar wind, analysis of observations from the Ulysses spacecraft (Bourouaine & Chandran
2013), the Helios spacecraft (Martinović, Klein & Bourouaine 2019) and the Parker Solar
Probe spacecraft (Martinović et al. 2020) find evidence for iSH in the turbulent plasma.
Thus, phase diagrams like figure 12 can play a valuable role in predicting the mechanisms
that will contribute to the damping of weakly collisional plasma turbulence in space and
astrophysical plasmas.

7. Conclusions

Turbulence is a ubiquitous phenomenon that arises in space and astrophysical plasmas
and mediates the transfer of the energy of large-scale plasma flows and electromagnetic
fields to sufficiently small scales that dissipation mechanisms can convert that energy into
the microscopic energy of the plasma particles. A grand challenge problem in heliophysics
and astrophysics is to predict the heating or acceleration of the different plasma species
by the turbulence in terms of the dimensionless parameters that characterize the plasma
and the nature of the turbulence. In particular, a long-term goal is to develop predictive
models of the turbulent plasma heating that determine the partitioning of energy between
the ion and electron species, Qi/Qe, and between the perpendicular and parallel degrees of
freedom for each species, Q⊥,i/Q‖,i and Q⊥,e/Q‖,e. An essential step in the development of
such predictive turbulent heating models is to identify the microphysical kinetic processes
that govern the transfer of the turbulent energy to the particles as a function of the
dimensionless parameters, information that can be summarized in a phase diagram for
the dissipation of plasma turbulence, as shown in figure 12.

The first step in this long term effort is to specify a set of the key dimensionless
parameters upon which the turbulent energy cascade and its dissipation depend. In this
paper, we propose a specific set of ten dimensionless parameters that characterize the state
of the plasma and the nature of the turbulence

(β‖,i, τ‖, Ai, Ae, k‖0λmfp,e; k⊥0ρi, k‖0/k⊥0, χ0, Z+
0 /Z−

0 , Ecomp/Einc), (7.1)

summarized in table 3. Although this set of ten parameters is sufficient to characterize a
wide variety of turbulent space and astrophysical plasmas, the development of completely
general turbulent heating models on a ten-dimensional parameter space is unlikely to
be successful. Fortunately, we can capture many of the dominant dependencies of the
turbulence and its damping mechanisms by adopting of reduced set of parameters in
the limits that (i) the equilibrium velocity distribution for each species is an isotropic
Maxwellian and (ii) the turbulence is driven at sufficiently large scale or sufficiently
strongly that the turbulent fluctuations at the small-scale end of the inertial range k⊥ρi ∼ 1
satisfy a state of strong turbulence, with a nonlinearity parameter at those small scales
of χ ∼ 1. With these idealizations we arrive at the isotropic temperature case, where just
three dimensionless parameters remain

(βi, τ ; k0ρi), (7.2)

summarized in table 4.
A number of kinetic mechanisms have been proposed to govern the damping of

weakly collisional plasma turbulence, as enumerated in § 5.1. The critical advance
presented in this paper is to express the dependence of each of these mechanisms
on the same set of fundamental plasma and turbulence parameters. The result of this
analysis of the dependencies for each of the turbulent damping mechanisms is summarized
in table 5.
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Finally, the scalings of each of the turbulent damping mechanisms with the isotropic
driving wavenumber k0ρi and the ion plasma beta βi can be synthesized to generate the first
phase diagram for turbulent damping mechanisms as a function of (βi, k0ρi), presented in
figure 12. For a chosen space or astrophysical plasma system, such as the near-Earth solar
wind, the range of dimensionless plasma and turbulence parameters can be plotted on the
phase diagram, as illustrated by the grey shaded region in the figure. One may then read
off which mechanisms are predicted to contribute to the damping of the turbulence in that
system. Kinetic numerical simulations and spacecraft observations of weakly collisional
turbulence in space or astrophysical plasmas can be used to update and refine this phase
diagram, or to extend its applicability as additional dimensionless parameters are varied,
such as the ion-to-electron temperature ratio τ = Ti/Te. It is worthwhile emphasizing
that, if kinetic simulations are used to identify the turbulent damping mechanisms and
to quantify the associated energy density transfer rates with each plasma species, it
is essential that those simulations be performed in the full three spatial dimensions.
Utilizing reduced dimensionality for such simulations may unphysically restrict the
available channels of energy transfer from the turbulent fluctuations to the particles,
potentially changing which physical turbulent damping mechanisms are dominant and
thereby artificially altering the resulting partitioning of energy among particle species and
degrees of freedom.

Ultimately, the goal is to produce more accurate and complete predictive turbulent
heating models than those reviewed in § 4, facilitating improved global modelling
of important turbulent space and astrophysical plasmas, such as the mesoscale and
macroscale energy transport through the heliosphere or the interpretation of Event Horizon
Telescope observations of accretion disks around supermassive black holes.
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MARTINOVIĆ, M.M., KLEIN, K.G., KASPER, J.C., CASE, A.W., KORRECK, K.E., LARSON, D.,
Livi, R., Stevens, M., Whittlesey, P., Chandran, B.D.G., et al. 2020 The enhancement of proton
stochastic heating in the near-sun solar wind. Astrophys. J. Suppl. 246 (2), 30.

MARUCA, B.A., KASPER, J.C. & BALE, S.D. 2011 What are the relative roles of heating and cooling in
generating solar wind temperature anisotropies? Phys. Rev. Lett. 107 (20), 201101.

MASON, J., CATTANEO, F. & BOLDYREV, S. 2006 Dynamic alignment in driven magnetohydrodynamic
turbulence. Phys. Rev. Lett. 97 (25), 255002.

MATTEINI, L., LANDI, S., HELLINGER, P. & VELLI, M. 2006 Parallel proton fire hose instability in the
expanding solar wind: hybrid simulations. J. Geophys. Res. 111 (A10), 10101.

MATTHAEUS, W.H., DASSO, S., WEYGAND, J.M., MILANO, L.J., SMITH, C.W. & KIVELSON, M.G.
2005 Spatial correlation of solar-wind turbulence from two-point measurements. Phys. Rev. Lett.
95 (23), 231101.

https://doi.org/10.1017/S0022377824001090 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001090


Fundamental parameters of turbulence 71

MATTHAEUS, W.H., GOLDSTEIN, M.L. & SMITH, C. 1982 Evaluation of magnetic helicity in
homogeneous turbulence. Phys. Rev. Lett. 48 (18), 1256–1259.

MATTHAEUS, W.H. & MONTGOMERY, D. 1980 Selective decay hypothesis at high mechanical and
magnetic Reynolds numbers. Ann. N. Y. Acad. Sci. 357, 203–222.

MATTHAEUS, W.H., OUGHTON, S., OSMAN, K.T., SERVIDIO, S., WAN, M., GARY, S.P.,
Shay, M.A., Valentini, F., Roytershteyn, V., Karimabadi, H., et al. 2014 Nonlinear and linear
timescales near kinetic scales in solar wind turbulence. Astrophys. J. 790 (2), 155.

MATTHAEUS, W.H. & VELLI, M. 2011 Who needs turbulence? A review of turbulence effects in the
heliosphere and on the fundamental process of reconnection. Space Sci. Rev. 160, 145–168.

MCCHESNEY, J.M., STERN, R.A. & BELLAN, P.M. 1987 Observation of fast stochastic ion heating by
drift waves. Phys. Rev. Lett. 59 (13), 1436–1439.

MCCUBBIN, A.J., HOWES, G.G. & TENBARGE, J.M. 2022 Characterizing velocity-space signatures of
electron energization in large-guide-field collisionless magnetic reconnection. Phys. Plasmas 29 (5),
052105.

MELVILLE, S., SCHEKOCHIHIN, A.A. & KUNZ, M.W. 2016 Pressure-anisotropy-driven microturbulence
and magnetic-field evolution in shearing, collisionless plasma. Mon. Not. R. Astron. Soc.
459, 2701–2720.

MENEGUZZI, M., FRISCH, U. & POUQUET, A. 1981 Helical and nonhelical turbulent dynamos. Phys.
Rev. Lett. 47, 1060–1064.

MERRIFIELD, J.A., MÜLLER, W. -C., CHAPMAN, S.C. & DENDY, R.O. 2005 The scaling properties of
dissipation in incompressible isotropic three-dimensional magnetohydrodynamic turbulence. Phys.
Plasmas 12 (2), 022301.

MEYRAND, R., KANEKAR, A., DORLAND, W. & SCHEKOCHIHIN, A.A. 2019 Fluidization of
collisionless plasma turbulence. Proc. Natl Acad. Sci. USA 116, 1185–1194.

MEYRAND, R., SQUIRE, J., SCHEKOCHIHIN, A.A. & DORLAND, W. 2021 On the violation of the zeroth
law of turbulence in space plasmas. J. Plasma Phys. 87 (3), 535870301.
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