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Abstract
We establish some properties of τ -exceptional sequences for finite-dimensional algebras. In an earlier paper,
we established a bijection between the set of ordered support τ -tilting modules and the set of complete signed
τ -exceptional sequences. We describe the action of the symmetric group on the latter induced by its natural action
on the former. Similarly, we describe the effect on a τ -exceptional sequence obtained by mutating the corresponding
ordered support τ -tilting module via a construction of Adachi-Iyama-Reiten.

1. Introduction

The usual notion of exceptional sequences in a module category over a finite-dimensional algebra
[8, 23] has some drawbacks. In particular, for some non-hereditary algebras, complete exceptional
sequences do not exist (see e.g. [6, Introduction]). In [6], we introduced the notion of τ -exceptional
sequences, motivated by τ -tilting theory [2]. Such sequences can be regarded as an alternative generali-
sation of exceptional sequences to the non-hereditary case with the property that complete τ -exceptional
sequences always exist. We also introduced signed τ -exceptional sequences, motivated by the concept
of signed exceptional sequences for hereditary algebras [17], and the link to picture groups [17, 18].

The aim of this paper is to establish further properties of (signed) τ -exceptional sequences, which
we now proceed to discuss in more detail. Recall that a subcategory of a module category is said to
be a wide subcategory if it is closed under kernels, cokernels and extensions (and therefore inherits
an abelian structure). Let � be the path algebra of an acyclic quiver with n vertices and mod� the
category of finite-dimensional left�-modules. A�-module X is said to be exceptional if Ext1(X, X) = 0.
If X is exceptional, then the subcategory X⊥0,1 consisting of modules Y such that Hom(X, Y) = 0 and
Ext1(X, Y) = 0 is known as the perpendicular category of X [14, §1]. By [14, Prop. 1.1], [24, Thm. 2.3],
X⊥0,1 is a wide subcategory of mod� equivalent to the module category of the path algebra of a quiver
with n − 1 vertices. An exceptional sequence is a sequence (X1, . . . , Xr) where Xr is an indecomposable
exceptional �-module and (X1, . . . , Xr−1) is an exceptional sequence in X

⊥0,1
r .

If r = n, then an exceptional sequence (X1, X2, . . . , Xr) is said to be complete. Note that a complete
exceptional sequence gives rise to a flag of wide subcategories
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0 = C0 ⊆ C1 ⊆ · · · ⊆ Cn = mod�

where, for 1 ≤ i< n, we define Ci = (Xi+1 � Xi+2 � · · · � Xn)⊥0,1 .
The article [17] introduced the notion of a signed exceptional sequence. Let Db(�) denote the

bounded derived category of mod�. Since� is hereditary, every indecomposable object in Db(�) is of
the form X[i], where [i] denotes the ith power of the shift and X is an indecomposable �-module. We
write |X[i]| = X.

A signed exceptional sequence in mod� is a sequence (X1, X2, . . . , Xr) of indecomposable objects in
Db(�) which are each of the form Y[j] for j = 0 or j = 1 for some�-module Y , where Xi = Y[1] is allowed
only if |Xi| is relatively projective in (|Xi+1| � |Xi+2| � · · · � |Xr|)⊥0,1 , and where (|X1|, |X2|, . . . , |Xr|) is
an exceptional sequence.

In [17], signed exceptional sequences were introduced in order to define the cluster morphism cat-
egory of �, whose objects are the wide subcategories of mod�. The morphisms are described by the
signed exceptional sequences. It is shown that the classifying space of the cluster morphism category is
a K(π , 1), where π is the picture group [18] of �.

Now let � be an arbitrary finite-dimensional algebra over a field. Suppose that � has n simple
modules. The linchpin of the definition of τ -exceptional sequence is the notion of a τ -perpendicular
category [19, §1], which plays the role of the Geigle-Lenzing perpendicular category in the general case.
A �-module X is said to be τ -rigid if Hom(X, τX) = 0. Then, the τ -perpendicular category of X is the
subcategory J(X) consisting of modules Y such that Hom(X, Y) = 0 and Hom(Y , τX) = 0. By [4, Cor.
3.22], [10, Thm. 4.12] J(X) is a wide subcategory of mod�. By [19, Thm. 3.8], J(X) is equivalent to
the module category of an algebra, which has n − 1 non-isomorphic simple modules if X is indecom-
posable. A τ -exceptional sequence in mod� is a sequence (X1, X2, . . . , Xr) of �-modules where Xr is
τ -rigid and (X1, . . . , Xr−1) is a τ -exceptional sequence in J(Xr) (regarded as a module category). Signed
τ -exceptional sequences are then defined in a similar way to signed exceptional sequences (see above,
or Section 2). A τ -exceptional sequence, or signed τ -exceptional sequence, is said to be complete if it
has n terms. Clearly, complete τ -exceptional sequences and signed τ -exceptional sequences exist for
any finite-dimensional algebra. In [22], an interesting interpretation in terms of standardly stratifying
systems was given.

Also, τ -exceptional sequences were used in [7] to define the morphisms in the τ -cluster morphism
category of the module category of a τ -tilting-finite algebra, whose objects are the wide subcategories
of the module category. This was extended to an arbitrary finite-dimensional algebra in [5]. In [15, Thm.
4.16], it was shown that, if � is a Nakayama algebra, the classifying space of the τ -cluster morphism
category is a K(π , 1) for the picture group [18] of �.

In this paper, we study some properties of τ -exceptional sequences. In Section 3, we prove our first
main result, Theorem 3.1, which is restricted to the case of τ -tilting finite algebras, i.e algebras with a
finite number of basic τ -tilting modules. Under this assumption, we show that if (X1, X2, . . . , Xi, . . . Xn)
and (X1, X2, . . . , X′

i , . . . , Xn) are complete τ -exceptional sequences, then X′
i
∼= Xi. We conjecture that this

result holds without this assumption.
Suppose now that � is an arbitrary finite-dimensional algebra. In [6, Thm. 5.4], it was shown that

there is a bijection between complete signed τ -exceptional sequences in mod� and ordered support
τ -tilting objects in mod�. Here a support τ -tilting object is a pair (P, M) where P is projective, M is
τ -rigid and Hom(P, M) = 0, and an ordered support τ -tilting object is an ordering of the indecomposable
summands of P and M (retaining the information as to whether each object is a summand of P or M).
Thus, the symmetric group acts naturally on the set of ordered support τ -tilting objects and hence, via
the bijection, on the set of complete signed τ -exceptional sequences. In Section 4, we give an explicit
description of the action of a simple transposition.

Support τ -tilting objects can be mutated (see [2, §2.3]) and thus so can be ordered τ -tilting objects.
In Section 5, we describe the effect on the corresponding complete τ -exceptional sequences, translated
via the bijection above. We also combine the action of the symmetric group and mutations to give an
action of the larger mutation group considered in [20].
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Since the braid group on n strands acts transitively on the set of exceptional sequences over a hered-
itary algebra [8, 23] with n simple modules up to isomorphism, a natural question is whether this braid
group acts transitively on the set of all signed τ -exceptional sequences. In Section 6, we show that,
for the Kronecker algebra, there is no transitive action of the braid group on 2 strands (i.e. the infinite
cyclic group) on the set of signed τ -exceptional sequences which factors through the action of the muta-
tion group referred to above on the set of such sequences (although the mutation group itself does act
transitively). We also give an example showing that the obvious generalisation of the definition of the
braid action on exceptional sequences to the (signed) τ -exceptional case does not work, at least without
substantial modification.

We remark that after this paper appeared on arxiv.org, a paper by Hanson and Thomas has appeared
[16], where the authors used the theory of stability conditions to prove Conjecture 3.7, that is they showed
that the uniqueness property in Theorem 3.1 holds for arbitrary finite-dimensional algebras. We thank
the referee for their helpful comments on an earlier version of this paper.

2. Background

Let� be a finite-dimensional basic algebra and denote by mod� the category of finite-dimensional left
�-modules. We let τ denote the Auslander-Reiten translate on mod�. We assume any subcategories
X to be full and closed under isomorphism; we define X ⊥ = {Y ∈ mod� | Hom(X , Y) = 0} and define
⊥X dually.

Consider C(mod�) = mod�� mod�[1] as a full subcategory of the bounded derived category
Db(mod�). For an indecomposable object U in C(mod�), we set |U| = U if U is in mod� and |U| =
U[−1] if U is in mod�[1]. If U in C(mod�) is basic, we denote by rk(U) the number of indecomposable
summands of U.

We recall some notions from [2, §0] (in some cases stated slightly differently, but equivalently).
A �-module M is called τ -rigid if Hom(M, τM) = 0. A (usually assumed basic) object M � P[1] in
C(mod�) is said to be a support τ -rigid object if M is a τ -rigid �-module and P is a projective
�-module with Hom�(P, M) = 0. An object U = M � P[1] is said to be a support τ -tilting object if
rk(U) = rk(�). If, in addition, P = 0, U is said to be a τ -tilting module.

Recall that a subcategory W of mod� is said to be wide if it is closed under kernels, cokernels
and extensions. If a wide subcategory W of mod� is equivalent to a module category mod�′, we set
rk W := rk�′.

Objects which are τ -rigid give rise to a particular class of wide subcategories.

Definition 2.1. ([19, Defn. 3.3]). For a support τ -rigid object U = M � P[1] in C(mod�) the category

J(U) = (M � P)⊥ ∩ ⊥(τM)

is called a τ -perpendicular subcategory.

In the following Theorem, (a) is from [10, Thm. 4.12], [4, Cor. 3.22] and (c) is from [19, Thm. 3.8].
For (b), see [11, Prop. 4.12] and [12, Lemma 4.7].

Theorem 2.2. A τ -perpendicular subcategory J(U) of mod� is:

(a) wide;
(b) functorially finite;
(c) equivalent to mod�U for some finite-dimensional algebra �U with rk(�) = rk(U) + rk(�U).

Let W be a τ -perpendicular subcategory of mod�. Since W is equivalent to a module category, we
can also consider the τ -tilting theory of W. Let C(W) = W � W[1], as a subcategory of Db(mod�).
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Note that since W is an exact subcategory of mod�, there is a canonical isomorphism

HomDb(W) (X, Y[1]) � HomDb(mod�) (X, Y[1]),

for modules X, Y in W, so we can also consider C(W) as a subcategory of Db(W).
Note that in general τWX �� τX for a module X in W, and hence in general, there exist modules which

are τ -rigid in W but not τ -rigid in mod� (see e.g. [6, §1] or the end of Section 6). But we do have the
following. For a support τ -rigid object V = N � Q[1] in C(W) ⊆ C(mod�), set

JW(V) = (N � Q)⊥ ∩ ⊥(τWN) ∩ W.

The following useful Lemma follows from [1, Prop. 5.8] (see also [2, Prop. 1.2]).

Lemma 2.3. Let W be a τ -perpendicular subcategory of mod� and assume X, Y lie in W. Then, the
following hold:

(a) Hom(Y , τWX) = 0 if and only if Ext1(X, W ∩ Gen Y) = 0.
(b) X is τ -rigid in W if and only if Ext1(X, W ∩ Gen X) = 0.

Lemma 2.4. Let W′ ⊆ W be τ -perpendicular subcategories of mod�, and let X be an object in W′. If
X is τ -rigid in W, then X is also τ -rigid in W′.

Proof. By Lemma 2.3, X is τ -rigid in W implies Ext1(X, W ∩ Gen X) = 0. Hence, also Ext1(X, W′ ∩
Gen X) = 0, and applying Lemma 2.3 again we obtain that X is τ -rigid in W′.

The following bijection is crucial. It was proved in [6] and can be seen as a refinement of
[19, Thm. 3.16].

Theorem 2.5 ([6, Prop. 5.6]). Let W be a τ -perpendicular subcategory of mod�, and let U be a support
τ -rigid object in C(W). Then, there is a bijection EW

U from

{X ∈ ind(C(W)) | X � U support τ -rigid in C(W)} \ ind U

to

{X ∈ ind(C(JW(U)) | X is support τ -rigid in C(JW(U))} .

We denote the inverse of EW
U by FW

U and, when W = mod�, we denote the map in Theorem 2.5 and
its inverse simply by EU and FU .

Using the bijection in Theorem 2.5, the following was proved in [7, Thms. 1.4, 1.7] for the τ -tilting
finite case. It was generalised in [5, Thms. 6.4, 6.12] to arbitrary finite-dimensional algebras.

Theorem 2.6 ([5, 7]). Let U � V be a τ -rigid object in C(mod�).

(a) We have JJ(U) (EU(V)) = J(U � V).
(b) We have EU�V = (E J(U)

EU (V)) EU:

We also recall the following.
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Lemma 2.7 ([7, Lemma 4.5]). Let V and W be wide subcategories of mod� with V ⊆ W. Then, V is a
wide subcategory of W.

3. Uniqueness

Let n be the number of simple �-modules. Recall that a complete τ -exceptional sequence in mod� is
a sequence (X1, X2, . . . , Xn) of indecomposable �-modules where Xn is τ -rigid and (X1, . . . , Xn−1) is a
τ -exceptional sequence in J(Xn). Moreover, a sequence (X1, X2, . . . , Xn) of indecomposable objects in
C(mod�) is a signed τ -exceptional sequence, if (i) Xn is either a τ -rigid module or of the form P[1] for
some projective �-module P and (ii) (X1, X2, . . . , Xn−1) is a signed τ -exceptional sequence in J( |Xn| ).
Note that this means that Xn−1 is either τ -rigid in J( |Xn| ) (i.e. τ -rigid in the equivalent module category),
or Xn−1 = P′[1], where P′ is (relative) projective in J( |Xn| ), and so on.

Recall that � is said to be τ -tilting finite if it only has a finite number of indecomposable τ -rigid
modules. In this section, we shall prove the following uniqueness result for τ -exceptional sequences
over such algebras:

Theorem 3.1. Let � be a τ -tilting finite algebra. Then, the following hold.

(a) Let (A1, A2, . . . , An) and (B1, B2, . . . , Bn) be complete τ -exceptional sequences in mod�. If, for
some t ∈ {1, . . . , n}, we have Ai = Bi for all i �= t, then also At = Bt.

(b) Let (A1, A2, . . . , An) and (B1, B2, . . . , Bn) be complete signed τ -exceptional sequences in
C(mod�). If, for some t ∈ {1, . . . , n}, we have |Ai| = |Bi| for all i �= t, then also |At| = |Bt|.

We first recall the following:

Theorem 3.2. Let � be a τ -tilting finite algebra. Then, the following hold for any wide subcategory W
of mod�.

(a) [10, Thm. 4.18] We have W = J(U) for some support τ -rigid object U in C(mod�).
(b) [19, Thm. 3.8, Thm. 3.16] The wide subcategory W is τ -tilting finite.

We next make the following observation, which holds for all finite-dimensional algebras:

Lemma 3.3. If (A1, A2, . . . , An) is a complete signed τ -exceptional sequence, then (|A1|, |A2|, . . . , |An|)
is a complete (unsigned) τ -exceptional sequence.

Proof. We first claim that (A1, A2, . . . , An−1, |An| ) is a signed τ -exceptional sequence. If |An| is
projective, then J( |An| [1]) = J( |An| ). Hence, the initial claim follows from the definition of signed
τ -exceptional sequences. The same argument gives that also (A1, A2, . . . , An−2, |An−1|, |An| ) is a signed
τ -exceptional sequence, and so on.

It is clear that Lemma 3.3 and Theorem 3.1 (a) imply Theorem 3.1 (b), so it is enough to prove
Theorem 3.1 (a).

In the remainder of this section, we will prove Theorem 3.1 (a). So, we assume for the remainder of
the section that � is τ -tilting finite.

We then have the following:

Lemma 3.4. Let W, W′ be wide subcategories of mod� with W′ ⊆ W. Then:

(a) We have rk W′ ≤ rk W;
(b) If rk W = rk W′ then W = W′.
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Proof. For (a), we note that, by Lemma 2.7, W′ is a wide subcategory of W. By Theorem 3.2, W′ is
of the form JW(U) for some τ -rigid object U in W. Hence, by Theorem 2.2, rk W′ = rk W − r ≤ rk W,
where r is the number of non-isomorphic indecomposable direct summands of U.

For (b) suppose, in addition, that rk W = rk W′. Then, r = 0 in the above, so U = 0, and we have
W = W′ as required.

We give an alternative proof of (a) at the end of this section.

Lemma 3.5. If (A1, A2, . . . , An−1, An) and
(
A1, A2, . . . , An−1, A′

n

)
are complete τ -exceptional sequences

in mod�, then An = A′
n.

Proof. The result is clear for n = 1, so we may assume that n ≥ 2. Let Wn = mod�, Wn−1 = JWn (An) =
J(An), Wn−2 = JWn−1 (An−1), . . ., W1 = JW2 (A2). By Proposition 2.2, we have rk Wi = i for 1 ≤ i ≤ n. For
0 ≤ i ≤ n − 1, let Xi = Wi+1 ∩ J(A′

n), so X0 ⊆X1 ⊆ · · ·Xn−1 = J(A′
n).

By Proposition 2.2, we have rk J(An) = rk J(A′
n) = n − 1. We have Xn−2 = J(An) ∩ J(A′

n). Assume,
for a contradiction, that rkXn−2 ≤ n − 2. Note that A1, . . . , An−1 ∈ J(A′

n). Fix 1 ≤ i ≤ n − 2. Since
Ai+1 ∈ Wi+1 = JWi+2 (Ai+2), we have Ai+1 ∈Xi = Wi+1 ∩ J(A′

n). However, Ai+1 �∈ Wi = JWi+1 (Ai+1), since
Hom(Ai+1, Ai+1) �= 0, so Ai+1 �∈Xi−1 = Wi ∩ J(A′

n). Since Wi ⊆ Wi+1 we see that Xi−1 ⊆Xi but Xi−1 �=Xi.
Hence, by Lemma 3.4, we have rkXi−1 < rkXi. Since rkXn−2 ≤ n − 2, it follows that rkXi ≤ i for
0 ≤ i ≤ n − 2.

In particular, this means that X0 = W1 ∩ J(A′
n) = JW2 (A2) ∩ J(A′

n) is zero. But this gives a contradic-
tion, since 0 �= A1 ∈X0. Hence, we must have rkXn−2 ≥ n − 1.

Since Xn−2 ⊆ J(An), it follows again from Lemma 3.4 that rkXn−2 ≤ rk J(An) = n − 1, so rkXn−2 =
n − 1. Since Xn−2 ⊆ J(An) and Xn−2 ⊆ J(A′

n), Lemma 3.4 implies that J(An) = J(An) ∩ J(A′
n) = J(A′

n), and
hence, An = A′

n by [7, Proposition 10.7].

We note the following:

Corollary 3.6. Let W and W′ be wide subcategories of mod� and assume that (A1, A2, . . . , Am) is a
complete τ -exceptional sequence in both W and W′. Then, we have W = W′.

Proof. This follows using the same argument as in the proof of Lemma 3.5, replacing J(An) with W,
J(A′

n) with W′ and replacing A1, A2, . . . An−1 with A1, A2, . . . , Am.

We can now complete the proof of Theorem 3.1 (a) and hence the main theorem of this section.

Proof of Theorem 3.1 (a). If t = n, this follows directly from Lemma 3.5. Assume t ∈ {1, . . . , n − 1}.
Let WA

n = J(An), and for j ∈ {t, . . . , n − 1} define recursively WA
j = JWA

j+1
(Aj). Define similarly WB

n =
J(Bn) and WB

j = JWB
j+1

(Bj). Then, WA
t+1 = WB

t+1 := W′, and W′ � mod�′ for a finite-dimensional algebra
�′, and we have that (A1, A2, . . . , At−1, At) and (B1, B2, . . . , Bt−1, Bt) = (A1, A2, . . . , At−1, Bt) are complete
exceptional sequences in W′. Hence, we obtain that At = Bt by Lemma 3.5.

We note that the uniqueness property of Theorem 3.1 also holds for arbitrary finite-dimensional
hereditary algebras, by [8, Lemma 2], and we conjecture that the assumption on τ -tilting finiteness
should not be necessary.

Conjecture 3.7. The statement of Theorem 3.1 holds for all finite-dimensional algebras.

An alternative proof of Lemma 3.4 (a) can be given using the theory of bricks. Recall that a�-module
M is called a brick if End(M) is a division algebra. A set of isoclasses of pairwise Hom-orthogonal
bricks is called a semibrick. Let C be a full subcategory of mod�. We denote by T(C) the smallest
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torsion class containing C, by Gen(C) the collection of modules obtained as quotients of finite direct
sums of modules in C, and by Filt(C) the category of modules with filtrations by modules in C. By the
argument in [21, Lemma 3.1], T(C) = Filt(Gen(C)). A semibrick S is called left finite [3, Definition 1.2]
if T(S) is functorially finite. Let n� denote the number of isomorphism classes of simple�modules. We
recall:

Proposition 3.8 ([3, 1.10]). If S is a left finite semibrick, then |S| ≤ n�.

Proposition 3.9 ([9, 1.2]). Let A be a τ -tilting finite algebra, and let T be a torsion class in mod A.
Then, T is functorially finite.

Proof of Lemma 3.4 (a). Note that, by [19, Thm. 3.8], W � mod�′ for some finite-dimensional
algebra �′. Let S be the set of isoclasses of simple objects in W′. Then S is a semibrick in W. By
[7, Prop. 4.2(b)], �′ is τ -tilting finite. Hence, by Proposition 3.9, S is left finite in W. By Proposition
3.8, rk(W′) = |S| ≤ rk(W).

4. Transposition

We now return to the general case, where � is an arbitrary finite-dimensional algebra. A sequence
(T1, T2, . . . , Tr) of indecomposable objects in C(mod�) is called an ordered τ -rigid object if �r

i=1Ti is
a τ -rigid object, and an ordered support τ -tilting object if r = n := rk�. The symmetric group acts on
the set of ordered support τ -tilting objects in a wide subcategory W of mod�, by reordering. We recall
the following theorem from [6].

Theorem 4.1 ([6, Thm. 5.4]). For each τ -perpendicular subcategory W of mod�, there are mutually
inverse bijections

{ordered support τ -tilting objects in W }

ψW ↓ ↑ φW

{complete signed τ -exceptional sequences in W}
In the case W = mod�, we write ψ for ψmod� and φ for φmod�. In this section, we will describe

the action of the symmetric group on complete signed τ -exceptional sequences in a τ -perpendicular
subcategory W of mod� induced by the bijections above.

Remark 4.2. If ψ(T1, T2, . . . , Tn) = (A1, . . . , An), define (as in the proof of Lemma 3.5):

Wn−1 = J(An),

Wn−2 = JWn−1 (An−1),

...

Wj = JWj+1 (Aj+1),

...

W1 = JW2 (A2).

Then, we have

An = Tn,

An−1 = EAn (Tn−1),
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An−2 = EWn−1
An−1

EAn (Tn−2),

...

An−j = EWn−j+1
An−j+1

. . . EWn−1
An−1

EAn (Tn−j),

...

A1 = EW2
A2
. . . EWn−1

An−1
EAn (T1).

Lemma 4.3. With notation as above, we have

Wn−i = J(Tn � Tn−1 � · · · � Tn−i+1),

for i = 1, . . . , n − 1.

Proof. This follows from repeated use of Theorem 2.6 (a).

Let � be an algebra of rank n, and let T �
o be the set of ordered basic support τ -tilting objects

in C(mod�). There is a natural action of the symmetric group Sn on T�
o , given by πi(T1, . . . , Tn) =

(T1, . . . , Ti−1, Ti+1, Ti, Ti+2, . . . , Tn), where πi denotes the simple transposition (i i + 1).

Theorem 4.4.

(a) If S = (A1, . . . , An) is a signed τ -exceptional sequence, then for i ∈ {1, . . . , n − 1} we have that

π̃i(S) := (
A1, . . . , Ai−1, E (i)(Ai+1), F (i)(Ai), Ai+2, . . . , An

)
is a signed τ -exceptional sequence, where

F (i) :=FWi+1
Ai+1

and

E (i) := EWi+1

F (i)(Ai)

for i ∈ {1, . . . , n − 2} and where F (n−1) :=FAn and E (n−1) := EF (n−1)(An−1).
(b) For each i ∈ {1, . . . , n − 1} we have π̃iψ =ψπi.

Lemma 4.5. Let (B, C) be an ordered τ -rigid object in C(mod�). Then, we have that E J(C)
EC (B)EC = E J(B)

EB(C)EB.

Proof. By applying Theorem 2.6 (b) twice, we obtain

E J(C)
EC (B)EC = EC�B = EB�C = E J(B)

EB(C)EB.

Proposition 4.6. Let (T1, . . . , Tn) be an ordered support τ -tilting object in C(mod�) and assume that
ψ(T1, . . . , Tn) = (A1, . . . , An). Then

ψ(πn−1(T1, . . . , Tn)) = (
A1, . . . An−2, EFAn (An−1)(An), FAn (An−1)

)
.

Proof. Let (B1, B2, . . . , Bn) =ψ(πn−1(T1, . . . , Tn)) =ψ(T1, . . . , Tn−2, Tn, Tn−1). We need to show that

(i) Bn =FAn (An−1),
(ii) Bn−1 = EFAn (An−1)(An), and
(iii) Bj = Aj, for 1 ≤ j ≤ n − 2.
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Note that, by Remark 4.2, we have that Bn = Tn−1, An = Tn and that An−1 = ETn (Tn−1). Hence, we
have FTn (An−1) =FTnETn (Tn−1) = Tn−1 = Bn, which proves claim (i). Moreover, it also follows from
Remark 4.2 that Bn−1 = ETn−1 (Tn) = EFTn (An−1)(An), which proves claim (ii).

It remains to prove that Bj = Aj for j ≤ n − 2. Apply Lemma 4.5, with B = Tn−1 and C = Tn to obtain
that

E J(Tn)
ETn (Tn−1)ETn = E J(Tn−1)

ETn−1 (Tn)ETn−1 .

It now follows directly, from Remark 4.2 and Lemma 4.3, that Bj = Aj for j ≤ n − 2.

Proof of Theorem 4.4. By Proposition 4.6, it follows that both (a) and (b) hold for i = n − 1. Assume
i< n − 1. Then, (A1, . . . , Ai−1) is a complete signed τ -exceptional sequence for the τ -perpendicular
subcategory Wi−1, as defined in Remark 4.2. Finally, Proposition 4.6 implies that both (a) and (b) hold
also in this case.

5. Mutation

For a fixed positive integer n, consider the group Gn = 〈μ1, . . . ,μn |μ2
i = e〉 (as in [20, §1]). Let� be a

fixed algebra of rank n.
Mutation of support τ -tilting objects (as in [2, Thm. 2.18]) induces a mutation on the set T �

o of
ordered basic support τ -tilting objects in C(mod�), which can be regarded as an action of Gn on T �

o

and hence, via the bijections in Theorem 4.1, an action on the set of complete signed τ -exceptional
sequences.

The following result follows from [2, Thm. 2.18].

Proposition 5.1 ([2, Thm. 2.18]). Let T = (T1, . . . , Tn) be an ordered support τ -tilting object in
C(mod�). Let i ∈ {1, . . . , n}. Then, there is a unique indecomposable object T∗

i in C(mod�) such that
T(i) = (T1, . . . , Ti−1, T∗

i , Ti+1, . . . , Tn) is an ordered support τ -tilting object with T∗
i �� Ti.

With T and T(i) as above, we set μi(T) = T(i). This defines a G-action on T �
o . We now describe the

corresponding action on the set of complete signed τ -exceptional sequences.
For a complete signed τ -exceptional sequence S = (A1, . . . , An), let

s1(S) = (Ã1, A2, . . . , An),

where

Ã1 =
{

A1[1] if A1 ∈ mod�;

A1[−1] if A1 ∈ mod�[1].

Moreover, for j> 1, let sj(S) = π̃j−1π̃j−2 . . . π̃1s1π̃1 . . . π̃j−2π̃j−1(S).
We make the following observation:

Lemma 5.2. Let� be an algebra with a unique simple module. Then, the projective cover of the simple
module is the unique indecomposable τ -rigid �-module.

Proof. Let S be the unique simple�-module, and suppose that X is a non-projective indecomposable
τ -rigid �-module. Then, Ext1(X, M) �= 0 for some �-module M. Since M must be constructed from
S by repeated extensions with S, it follows that Ext1(X, S) �= 0. Since X is also constructed from S by
repeated extensions with S, we have that S is a factor of X, so Ext1(X, Gen X) �= 0. By Lemma 2.3, X is
not τ -rigid.
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We now have:

Lemma 5.3. If S = (A1, A2, . . . , An) is a signed τ -exceptional sequence, then so is sj(S) for each j =
1, . . . , n. Moreover, S and s1(S) are the only signed τ -exceptional sequences of the form (X, A2, . . . , An)
for some object X in C(mod�).

Proof. Define WA
j , for j = 1, . . . , n, as in the proof of Theorem 3.1 (a). By repeated application of

Theorem 2.2, WA
j is equivalent to a module category over a finite-dimensional algebra of rank j − 1

for j = 1, . . . , n. Hence, WA
2 is equivalent to the module category of a finite-dimensional algebra with a

unique simple module. By Lemma 5.2, WA
2 , regarded as a module category, has a unique indecomposable

τ -rigid module, given by the unique indecomposable projective module. This proves that s1(S) is a
signed τ -exceptional sequence, and also that S and s1(S) are the only signed τ -exceptional sequences
of the form (X, A2, . . . , An), that is the claim for j = 1.

The claim for j> 1 follows by combining this with Theorem 4.4 (a).

Proposition 5.4. With notation as above siψ =ψμi holds for all i = 1, . . . , n.

Proof. Consider first the case i = 1, and assume that ψ(M1, M2, . . . , Mn) = (A1, A2, . . . , An).
We have μ1(M1, M2, . . . , Mn) = (M∗

1 , M2, . . . , Mn), where M∗
1 �� M1, and so ψμ1(M1, M2, . . . , Mn) =

ψ(M∗
1 , M2, . . . , Mn) = (X, A2, . . . , An), for some object X. The claim for i = 1 now follows from

Lemma 5.3.
For j> 1, we first note that μj = πj−1πj−2 . . . π1μ1π1 . . . πj−2πj−1.
Next we note that, by repeated applications of Theorem 4.4, we have that

π̃1 . . . π̃jψ =ψπ1 . . . πj.

Combining this with the above, we obtain

sjψ = (π̃j−1π̃j−2 . . . π̃1s1π̃1 . . . π̃j−2π̃j−1)ψ

= (π̃j−1π̃j−2 . . . π̃1s1)(π̃1 . . . π̃j−2π̃j−1ψ)

= (π̃j−1π̃j−2 . . . π̃1s1)(ψπ1 . . . πj−2πj−1)

= (π̃j−1π̃j−2 . . . π̃1)(s1ψ)(π1 . . . πj−2πj−1)

= (π̃j−1π̃j−2 . . . π̃1)(ψμ1)(π1 . . . πj−2πj−1)

= (π̃j−1π̃j−2 . . . π̃1ψ)(μ1π1 . . . πj−2πj−1)

= (ψπj−1πj−2 . . . π1)(μ1π1 . . . πj−2πj−1)

=ψ(πj−1πj−2 . . . π1μ1π1 . . . πj−2πj−1)

=ψμj.

King and Pressland [20, Defn. 1.2] consider the following group:

Definition 5.5 ([20]). Let Mn = Sn � Gn be the mutation group of degree n, where Sn acts on Gn via
σ (μi) =μσ (i).

They show that this group acts naturally on labelled (i.e. ordered) seeds in a cluster algebra [13]
via permutation and mutation. The mutation of support-τ -tilting objects in [2, §2.3] can be regarded
as a generalisation of cluster mutation, so it is natural to consider the action of the mutation group
in this context. Note that, for an ordered support τ -tilting object T , we have σ (μiT) =μσ (i)(σT) for a
permutation σ and mutation μi, so Mn acts on the set of all ordered support τ -tilting objects, T �

o .
We get an induced action of the mutation group on the set of signed τ -exceptional sequences.
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Theorem 5.6. Let S = (A1, A2, . . . , An) be a signed τ -exceptional sequence. The operations

π̃i(S) := (A1, . . . , Ai−1, E (i)(Ai+1), F (i)(Ai), Ai+2, . . . , An),

s1(S) = (Ã1, A2, . . . , An),

and, for j = 2 . . . , n,

sj(S) = π̃j−1π̃j−2 . . . π̃1s1π̃1 . . . π̃j−2π̃j−1(S),

define an action of the mutation group Mn on the set of signed τ -exceptional sequences.

Proof. As already noted, Mn acts on the set of ordered support τ -tilting objects, and the result hence
follows directly from combining Theorem 4.4 and Proposition 5.4 with the fact that ψ is a bijection
between the set of ordered support τ -tilting objects and the set of signed τ -exceptional sequences
(Theorem 4.1).

6. Examples relating to braid actions

Note that the braid group, Bn, on n strands, has the symmetric group Sn as a quotient. Since Sn is a
subgroup of the mutation group Mn = Sn � Gn, it follows that Bn acts naturally on the set of all ordered
support τ -tilting objects T �

o and thus on the set of all complete signed τ -exceptional sequences for �,
by Theorem 4.1. However, this action is highly non-transitive in general, since the braid group is only
permuting the possible orderings of each support τ -tilting object.

It is therefore natural to ask whether there is a transitive action. In the first part of this section, we
give an example to show that, at least via the mutation group, this is not possible: we give an algebra for
which there is no transitive action of B2 which factors through the action of M2 on T �

o .
Let Q be the Kronecker quiver , and let � be the corresponding path algebra. Let Pi

(respectively, Ii), for i = 1, 2 be the indecomposable projective (respectively, injective) �-modules cor-
responding to the vertices of Q. Then, the τ -tilting (equivalently, tilting) �-modules are the modules
τ−rP1 � τ−rP2, τ−rP1 � τ−(r+1)P2, τ rI1 � τ rI2 and τ r+1I1 � τ rI2, for r = 0, 1, 2, . . .. The support τ -tilting
(equivalently, support tilting) objects over � which are not τ -tilting are I1 � P2[1], P1[1] � P2 and
P1[1] � P2[1]. In particular, note that � is not τ -tilting finite.

The mutation group (see Definition 5.5) is M2 = S2 � G2, where S2 = {1, σ } is the symmetric group
of degree 2 and G2 = 〈μ1,μ2 : μ2

1 =μ2
2 = e〉. We have σμ1 =μ2σ and σμ2 =μ1σ . The action of M2 on

the set T �
o of ordered basic support τ -tilting objects is shown in Figure 1, from which it can be seen that

this action is transitive. However, we have the following.

Proposition 6.1. There is no transitive action of the braid group on two strands on T �
o which factors

through the action of M2 on T �
o .

Proof. Note that the braid group B2 on two strands is isomorphic to the infinite cyclic group. If there
was a transitive action of B2 on T �

o factoring through the action of M2 on T �
o , then there would be a

subgroup of M2 which is a quotient of B2 which acted transitively on T �
o . Such a subgroup would have

to be cyclic.
The elements of M2 are of the form

σ εμiμσ (i)μi · · ·μi

and

σ εμiμσ (i)μi · · ·μσ (i),
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Figure 1. The action of M2 on T�
o for the Kronecker algebra �.

where i ∈ {1, 2} and ε ∈ {0, 1}. It is easy to check from the description of the action of M2

(see Figure 1) that, for each of these elements, the (infinite) cyclic group it generates does not act
transitively on T �

o .

Corollary 6.2. There is no transitive action of the braid group on two strands on the set of all signed
τ -exceptional sequences which factors through the action of M2 on the set of all such sequences.

The transitive braid group action on the set of complete exceptional sequences for a hereditary algebra
arises in the following way [8, Lemma 9, Theorem], [23, §5, §7]. Write the braid group Bn on n strands
in the usual way as

Bn =
〈
σ1, . . . , σn−1 :

σiσj = σjσi, |i − j|> 1;
σiσjσi = σjσjσi, |i − j| = 1

〉
.

Given a complete exceptional sequence (X1, . . . , Xn) and 1 ≤ i ≤ n, there is a unique complete excep-
tional sequence of the form (X1, . . . , Xi−1, Xi+1, Y , Xi+2, . . . , Xn) for some exceptional indecomposable
module Y . The left version of the action of the braid group is given by:

σi(X1, . . . , Xn) = (X1, . . . , Xi−1, Xi+1, Y , Xi+2, . . . , Xn).

If n = 2, this means, in particular, that if (X1, X2) is a complete exceptional sequence then there is an
exceptional sequence of the form (X2, Y).

However, if (X1, X2) is a complete τ -exceptional sequence, it can be the case that there is no τ -
exceptional sequence of the form (X2, Y), that is it can happen that X2 �∈ J(Y) for all indecomposable
τ -rigid modules Y . We illustrate this point with the following example from [6, §6.2].
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Let 	 be the algebra given by the path algebra of the quiver , subject to the relation βα = 0.
The τ -exceptional sequences over 	 were given in [6, §6.2]. They are as follows:⎛⎝1,

2
1
2

⎞⎠ ,

(
2,

1
2

)
,

(
2
1
, 2

)
,

(
1
2

, 1

)
.

We make the following observation.

Lemma 6.3. For the algebra 	, which has complete τ -exceptional sequences of length 2, there is a
τ -rigid indecomposable module X such that there is no complete τ -exceptional sequence of the form
(X, Y) for some τ -rigid module Y .

Proof. This can be seen from the list of τ -exceptional sequences in mod 	 above, since the module
P2 = 2

1
2
, despite being τ -rigid, does not occur as the first term in any of the complete τ -exceptional

sequences in the list.

Note that it follows that P2 also does not occur as the first term in a complete signed τ -exceptional
sequence.

The phenomenon described above also occurs with the right version [8, 23] of the action of the
braid group. Given a complete exceptional sequence (X1, . . . , Xn) and 1 ≤ i ≤ n, there is a unique
complete exceptional sequence of the form (X1, . . . , Xi−1, Y , Xi+1, Xi+2, . . . , Xn) for some exceptional
indecomposable module Y . The right version of the action of the braid group is given by:

σi(X1, . . . , Xn) = (X1, . . . , Xi−1, Y , Xi+1, Xi+2, . . . , Xn).

If n = 2, this means, in particular, that if (X1, X2) is a complete exceptional sequence then there is an
exceptional sequence of the form (Y , X1).

We can see from the list above that, although ( 2
1 , 2) is a complete τ -exceptional sequence for 	, there

is no such sequence of the form (Y , 2
1 ). This is because, although 2

1 is τ -rigid in J(2), it is not a τ -rigid
	-module. In the hereditary case, where a module M is τ -rigid if and only if Ext1(M, M) = 0, a module
in J(Y) = Y⊥0,1 is τ -rigid in J(Y) if and only if it is τ -rigid in mod�, but, as we see here, this is not true
in general.
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