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WEIGHTED COMPOSITION OPERATORS WITH CLOSED RANGE

N. PALMBERG

We study the closed range property of weighted composition operators on weighted
Bergman spaces of infinite order (including the Hardy space of infinite order). We
give some necessary and sufficient conditions and find a complete characterisation
for weighted composition operators associated with conformal mappings. We also
give the corresponding results for composition operators on the Bloch-type spaces.
Therefore, the results obtained in this paper also improve and generalise the results
of Ghatage, Yan, Zheng and Zorboska.

1. INTRODUCTION

We denote by H(B) the space of holomorphic functions on the unit disk D. Through-
out the paper <p £ H(3) will denote a non-constant function satisfying < (̂D) C P,
while ip € H(B) will be any function not identically equal to zero. The weighted com-
position operator Wv^, induced by <p and ip, is the linear map on H(D) denned by
Wy^f = ip • ( / o (p). Thus, the results obtained in this paper also hold for the classical
composition operator Cv and the multiplication operator M^, which we get by choosing
ip = 1 and <p(z) = z, respectively. In fact, WVi$ = M$CV. Various properties of compo-
sition operators, multiplication operators and weighted composition operators have been
intensively studied in many papers (see for example [2, 3 , 4, 5, 8 ,17 , 20, 2 1 , 23, 25]). A
good general reference on composition operators is the book by Cowen and MacCluer [9].
In this paper we study the closed range property, which has been the main object of in-
vestigation in several papers recently (see for example [7, 13, 14] as well as the related
references therein).

The Banach spaces that we shall consider are the weighted Bergman spaces of infinite
order,

H? := If € H(B) : ||/||o = sup|/(z)|«(z) < co},
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where v : D —• R+ is a radial continuous function such that H%° contains a non-zero
function (see Section 2 for more details). We endow them with the norm || • 11v. These
spaces occur in various settings in for example [3, 4, 5, 7, 8, 10, 19]. See also the
survey of operators between these spaces by Bonet [2] as well as the references therein.
We shall give our results with as few restrictions on the weights as possible (except for
some general assumptions). On many occasions, the weights given by

vq(z) := ( l - \z\2)q, where 0 < q < oo,

will come in handy while proving results for more general weights (see [16] for a thorough
treatment of the if~-spaces). In Section 3 we concentrate on the if£°-spaces, where some
of the results are directly applicable to H°° (that is, the classical Hardy space of infinite
order endowed with the usual supremum norm || • ||oo). In Section 4 we study weighted
composition operators associated with conformal mappings, obtained by choosing (p uni-
valent and rp = ((p1)11, with /z > 0. In this case we give a complete characterisation of the
closed range property. These operators have recently been studied in for example [24]. In
Section 5 we take a more concrete look at our results by giving some enlightening exam-
ples. Finally, in Section 6 we apply our results from the preceding sections to composition
operators on the Bloch-type spaces,

B« := if e H(B) : ||/||8, = sup|/'(*)|(l - |*|2)9 < ex},

where 0 < q < oo. These become Banach spaces when we identify functions differing by
a constant and endow them with the norm || • ||g« (see [8, 20] for more on these spaces).
Note that for q = 1 we get the classical Bloch space B and for 0 < q < 1, we have
the analytic Lipschitz spaces of order 1 — q (see [9, Theorem 4.1]). The main results
in [13, 14] become a direct consequence of the results in Section 6.

2. PRELIMINARIES AND NOTATIONS

Throughout the paper we shall say that A w B if there are strictly positive constants
Ci and C2, such that ciA ^ B ^ C2A, where the constants don't depend on properties of
A and B. Furthermore, dH> will denote the boundary of the unit disk, while the constants
\x and q (as well as qi and #2) will always be strictly positive constants. Finally, £#<»
will denote the closed unit ball of H%°, while dA will denote the Lebesgue area measure
on the plane normalised so that A(E)) = 1.

T H E METRICS. For the results in this subsection, [12] serves as a general reference (see

also [28, Section 4.3]). The pseudo-hyperbolic metric is given by

p(z,a) := \<ra{z)\, where aa{z) := -^—za — z
az
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is the automorphism of D that changes 0 and a. One of the most important properties

of the pseudo-hyperbolic metric is that it is Mobius invariant, or more precisely, that

p(a(z),a(a)) = p(z,a) for all automorphisms a of ED. Furthermore, we shall frequently

use the following equalities which are both easy to check:

For any a € D and r e (0,1], D(a,r) denotes the pseudo-hyperbolic disc with centre a
and radius r (normalised so that |D(0,1)| = 1). That is,

£>(a,r):={ze©: \aa{z)\ < r}.

D(a,r) is an Euclidean disk with centre CE(O.,r) and radius rE(a,r) given by

. . (1 - |a|2)r
r { a r ) =

The pseudo-hyperbolic metric is a true metric. In fact, it even satisfies a stronger version
of the triangle inequality, stating that for any z,a,b € D, we have that

p(z,b) + p(b,a)
>a)^l+p(zb)p(baY

The standard Euclidean metric is given by dist(z, o) := |z -a | , while the Bergman metric
(also called the hyperbolic or the Poincare metric) is given by

2 1 - p(z, a)

If ds is the Euclidean element of length, then the length element in the Bergman metric
is given by (l - \z\2)~ ds. Naturally, the Bergman metric is also Mobius invariant.

THE WEIGHTS. A weight is a continuous and strictly positive function on D, which is
radial (that is, v(z) = v(\z\)). Recall that a real-valued function / is said to be almost
decreasing if there exists a strictly positive constant c such that f(x) ^ cf(y) whenever
x ^ y. We shall say that the weight v is typical if it is almost decreasing and lim v(z) = 0.

|z|-»l

It is worth mentioning that when v is a bounded weight with lim v(z) > 0, then H™ is
isometrically isomorphic to H°°. When dealing with weighted spaces of analytic functions
one often stumbles across the so-called associated weights. These weights are given by

sup

It is well known that H™ is isometrically isomorphic to H%°. Since v(z) is always less
than or equal to v(z), we get that v «s v if there is a positive constant c such that
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v(z) ^ cv(z). In this case we say that the weight v is essential. All these definitions and

facts on associated weights can be found in [1] (see also [5]).

A moderate weight v is a function in C2(1D), satisfying

- A log v(z) as _ near 5D>, where A := - (dfz{ + |-^dw

is the standard Laplacian divided by a constant of 4. See [10] and the related references
therein for a background on moderate weights. Lusky studied in [19] weights satisfying
the conditions L\ and L2 (renamed here after the author) given by

U inf - ^ — r — p > 0
neti v(l - 2-")

v(l - 2~n~j)
Li lim sup -±j-— . < 1 for some j e N.

n€N U(l - 2 n )

Such weights are called normal by [26] (see also [27]). An almost decreasing weight v
satisfies condition L\ if and only if there exists a (large enough) constant qi such that
vqi /v is almost decreasing. Similarly, it satisfies condition L2 if and only if there exists
a (small enough) constant q% such that v/vm is almost decreasing (see Lemma 1 and the
proof thereof in [10]). In other words, condition L\ is another way of saying that the
weight v shouldn't tend to zero too fast. Condition L2 on the other hand says that it
shouldn't tend to zero too slowly either. Actually, every moderate weight is normal and
for every almost decreasing normal weight, we can find an equivalent weight which is
moderate (see [10, Lemma 1 and Theorem 10] as well as [4, p. 185]). Let

Vm '•= {v : v is a moderate weight},

which on account of what was just said, incorporates in some sense the normal weights.
Concrete examples of weights satisfying condition L\, L2 or both can be found in [4, 7,
10, 19] (see also [26, 27]).

Finally, we make the useful observation that v is always non-increasing due to the
Hadamard three circle theorem (see [28, Theorem 2.2.2]). This on the other hand implies
that all essential weights are almost decreasing. Also notice that all moderate weights
are typical (and essential) and that the weight vq is a moderate weight which actually
satisfies vq = vq.

T H E OPERATORS. We shall only concern ourselves with bounded operators, so naturally

we need to know when a weighted composition operator is bounded on H%>. By [8,

Proposition 3.1] we have that

W0 * is bounded on H? if and only if sup „,,[*' < oo.
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Moreover, by [8, Theorem 3.4] we know that WVt$ is bounded on H%° for all almost
decreasing weights if and only if ip G H°° and there is r0 > 0 such that \<p{z)\ < \z\ for
\z\ ^ r0. In [8] they assume the weights to be non-increasing, but in Proposition 3.1 it
is not needed and in Theorem 3.4 it can be replaced by almost decreasing. We shall use
both these results without any further reference.

It is worth pointing out that since ip is non-constant, the open mapping theorem
for analytic functions ensures that Cv is one-to-one. Similarly, since ip is not identically
equal to zero, M^ is also one-to-one. Thus, Wv<1/, is one-to-one. Moreover, it has closed
range if and only if it is bounded below. That is, if there exists e > 0 such that

for all / G u°°
'«

THE SET CONDITIONS. We say that the set K C D satisfies the reverse Carleson con-
dition (see [18, 14]) if there are constants r £ (0,1) and c 6 (0,1) such that

\D(a,r)nK\^c\D(a,r)\ for all a G D.

We shall use the following notations throughout the paper. For e > 0,

where r^(z) := | ^

(compare this to the characterisation of boundedness above). We will always assume that
e is chosen so that the set ' £2^ is non-empty. In the special cases when v = 1 or when
tp(z) — z and v is essential, we simply write £Q ,̂. Finally,

3. WEIGHTED BERGMAN SPACES OF INFINITE ORDER

Multiplication operators with closed range has the following characterisation (see [4,
Theorem 3.6 and Lemma 3.7]). M$ has closed range on H%° (where v G Vm and ip e H°°)

if and only if for all r e (0,1) there exists e > 0 such that

eQ^, n D(a, T)±$ for all a G D.

There are also other characterisations in [4] in terms of Gelfand transforms and Shilov
boundaries, but in this paper we shall only present function theoretical results. The aim
of this section is to give similar conditions for weighted composition operators. Some of
the techniques we use are inspired by the ones used in [13, 14]. Before we state the main
theorem of this section, we shall prove an easy, but important lemma, which will simplify
many things. We state it formally for completeness.
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LEMMA 3 . 1 . Let <j> — 0^(0) ° f aa^ assume that the weight v satisfies condition
Lx. Then W^ : H™ -> H™ has closed range if and only ifWM : H? -> H? has closed
range. In other words, under this condition we may assume that <p(0) = 0.

PROOF: By [5, Theorem 2.3], v satisfies condition L\ if and only if for all a G V>,
the operator Caa is bounded on H%°. In [5] v is assumed to be typical, but the same
proof works without this assumption. Since C~* = CCa, a straightforward computation
finishes the proof. D

THEOREM 3 . 2 . (Moderate weights) Let v €Vm and tp € H°°.

(a) (Necessity) IfW^^ has closed range on H%°, then for every w € Vm there
exists e > 0 such that

<p(eft£)V,) n D{a, 1 - e) ^ 0 for aiJ a € P .

(b) (Sufficiency) Let Rq be the constant given by

where q > l imsup(l- |z|2)2(-Alogu(z)). If for any w 6 Vm there are

r e (0, R'1) and £ > 0 such that

p(€£l™f#) n D(a, r) 7̂  0 for all a € D>,

then W,^ has closed range on #£°.

REMARK 3.3. Since # , € (1 + \/5,oo) is strictly (and rapidly) increasing as q is in-
creasing we want to choose q as small as possible.

In order to prove Theorem 3.2 we shall need three lemmas and Theorem 3.7. The
first lemma is a generalisation of [4, Lemma 3.1], the second one shows an useful fact
about the sets efij^, while the third one is needed for the proof of Theorem 3.7.

LEMMA 3 . 4 . Assume that <p(0) = 0 and that the weights v and w are such that
u := v/w is equivalent to an essential weight. Then Wv^ : H™ —> H™ has closed range
whenever Wvj, : H%° -> ff~ has closed range.

PROOF: Assume that Wv^, is not bounded below on H™. Then there exists a
sequence {/„} C H™ (with ||/n|U = 1) such that HW^/nllti; < 1/n. Therefore, we can
find a sequence {zn} C fl> such that |/n(2n)|u;(2:n) ^ 1/2. Furthermore, using the fact
that the norm topology of H%° is finer than the compact-open topology, we know that
for all zn € D there exists gn € BH<» such that |<7n(zn)| = "(-Zn)"1- Hence, using the
essentiality of u, we get that |5n(zn)|u(2n) ^ c > 0. Consider now the sequence {fngn}-
One can easily check that it belongs to BH«, and that ||/n5n||u ^ c/2. Since u is essential
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it is also almost decreasing. Thus, using Schwarz' lemma, there exists Cu > 0 such that

Mz) ^ Cuu(<p(z)). Hence,

Slip /n(</>(z))| \ip{z)\w(z)Cu gn(<p(z))\u(<f(z))

n

Clearly Wv<$ cannot be bounded below on H%°. D

LEMMA 3 . 5 . Assume that <p(0) = 0 and that ip e H°°. If for some v £ Vm there

exists s>0 such that p ( £ f i ^ ) f~l D(a, 1 - e) # 0 for alia e D, then for all w € Vm there
exists 6>0 such that p{sV%^) 0 D{a, 1-6) # 0 for all a e D.

PROOF: Assume that v G Vm and that there exists e > 0 such that the intersection
of ip{eWv^) and D(a, 1 - e) is non-empty for all aED. Take roe Vm. We claim that we
can find qi such that w\ :— vqi/w is an essential weight. Indeed,

for a suitably chosen qi. This also implies that w\ is almost decreasing. Using [3, Lemma
5] (see also [3, Proposition 7] and [10, Proposition 2 (a)]) we get that w\ is an essential
weight. Similarly, since v 6 Vm, we can find q2 such that iu2 := v/vqi is an essential
weight. We now claim that ef2£^ C *J2™̂  and that 1 - e ^ 1 - 6 for some 5 > 0.

Fix z € efi£,,|,- Then, using the essentiality of w (that is, w ^ cm), followed by
Schwarz' lemma applied on w\ (that is, Wi(tp(z)) ^ ci Wi(z)), we get that

> ci \ip{z)\vqi(z)
c vqi(tp(z))

If 91 < ?2 we immediately get that

On the other hand, if ^ > g2 we let n be the integer part of q\lqi and proceed by noticing
that
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As above, by using the fact that w2 is almost decreasing combined with Schwarz'
lemma (that is, w2(y(.z)) ^ C2iv2(z)), we get that

!#*)!««(*) Mz)\v(z)w2(<p(z))

c2-

In other words, by choosing

we get that £fi£^ C *J2£0 and that 1 - e ^ 1 - <5. D

We shall now prove a Lipschitz condition for a function / e H%°. A similar lemma
can be found in [16] (Lemma 5.1), but since we obtain a better constant, we shall give a
short proof for completeness.

LEMMA 3 . 6 . For f € H™,

f(z) (1 - \z\2)" - / ( a ) (1 - | a | 2 )* | < Rq\\f\\Vqp(z, a) for all z,a e D,

where Rq is the constant given by

Rq-^[2q +
1<

PROOF: First we shall find an upper estimation for the total derivative of the func-
tion hq(z) := f(z)(l — \z\2)q. A straightforward calculation gives that

\h'q(z)\
dz - \z\2)9.

The Cauchy integral formula gives that for any t > 1,

where Fj is the circle given by |f - z\ =
l-\z\

. Thus,
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which is minimised when we choose t = q + 1. Hence, we conclude t ha t

Next we shall find the desired estimate. Let F2 be the geodesic in the hyperbolic geometry
which connects the points z € D and a € B. Then

\hq(z)-hq(a)\^ [ \h'q{t)\\dt\
Jr2

= Kq\\f\\v,j3(z,a)

where the last inequality follows from the following calculation (using Taylor series ex-
pansion):

2 l o g I ^ f = I + y + y + - - - ^ x ( 1 + x2 + x4 + • • • ) = Y ^ 2 ( - ! < * < ! ) •

Let s > 1. If p(z, a) < s"1, then 1 — p(z,a)2 ^ 1 — s~2 and using the estimation above
we get that

\hq(z) - hq(a)\ < -^—Kq\\f\\Vqp(z,a).

On the other hand, if p(z,a) ^ s~l we immediately get that

Solving the equation s2/(s2 - l)Kq = 2s for s yields the desired constant. D

THEOREM 3 . 7 .

(a) IfWVii, : H™ -¥ H™ has closed range, then there exists e > 0 such that¥ H

f(cQl\) n D(a, 1 - e) ± 0 for all o 6 D.

(b) Let i?, be tie constant in Lemma 3.6. If there are r € (0, R'1) and e > 0
suci that

<p(%<J n 5 ( ^ 7 ) / 0 for all a 6 D,

then Wv^ : H™ -+ H™ has closed range.

PROOF: (a) Assume that there exists 5 > 0 such that H W ^ / H B , ^ <J||/||i;, for all
/ € H%°. Let a € © and consider the function
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We have that {&a)i € # ~ and that I K O ' L , = 1- Indeed,

\\K)<\\ = sup|a;W|'(l - \z\y = sup(l - \aa(z)\2)" = 1.

Thus, for any fixed e' < 6 we can choose za € B> such that

and therefore

Hence, za € e'ft£%, and clearly

( l - \aa(ip(za))\ j ^ -^- gives <ro(v?(zo)) ^ f 1 - (^^-

By choosing e < e' small enough, the calculations above implies that za 6 £fi^% and that
yj(za) € D(a, 1 - e ) .

(b) We begin by observing that the assumption that y ( e f i ^ ) n D(a, r) ^ 0 for all
a € ID is equivalent to the assumption that for all a e ID there exists za € £ f i ^ such
that p(ip(za),a) ^ r. Take / € //£°. Without loss of generality, we may assume that
\\f\\Vq = 1. Thus, we can choose a € D depending only on / and r such that

Using Lemma 3.6 and the assumptions we get that

f(a)(l - \a\y - f(<p(za)) ( l - \<p(za)\
2)"\

Therefore we conclude that

PROOF OF THEOREM 3.2.

First we notice that we may assume that <p(0) = 0 by Lemma 3.1 and that WVt^ is
bounded on H%°.

https://doi.org/10.1017/S0004972700039277 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039277


[11] Weighted composition operators 341

(a) As in the proof of Lemma 3.5, we can find q such that v/vq is an essential weight.
By Lemma 3.4 we know that Wv^ has closed range on H™. Using Theorem 3.7 (a) we
know that there exists e > 0 such that (p(efl^)nD(a, 1 - e) ^ 0 for all a G D. Lemma 3.5
finishes the proof.

(b) Clearly, with q > l imsup(l - |z|2) (—A log v{z)), we get that
|*|-n

" A l o g V ~ M = ( i - \ z ? y ~ ( " A l o g w <*» > ° near a]D)-
That is, Vg/v is an essential weight (see the proof of Lemma 3.5). Assume that for some

w G Vm there are r € (0, R~l) and e > 0 such that v(£fi£iV,) n 5(o7r) ^ 0 for all a 6 D.
Then Lemma 3.5 gives that there exists S > 0 such that ip(sQ^) n D(a,r) ^ 0 for all
a G D. Theorem 3.7 (b) and Lemma 3.4 finish the proof. D

COROLLARY 3 . 8 . Letv eVm and \j> e H°°. Then Wvj has closed range H™ if

and only if M$ and C^, have closed range on H%°.

PROOF: By Lemma 3.1 we may assume that <p(0) = 0. Clearly, if M$ and Cv have
closed range on H%°, then so does WVtt/,. Conversely, assume that there exists e > 0 such
that IIW^/H, ^ e||/||0 for all / e H?. Take / G H?. Then

That is, Cv has closed range on Hff. On the other hand, by using Theorem 3.2 (a), we
know that there exists e > 0 such that

<p('nv
v\t) n D{a, 1 - e) # 0 for all o e D.

Using Schwarz' lemma twice shows us that (p('Qv^) C e f t ^ C e n^ . Thus,

£fi0 D £>(a, 1 - e) ^ 0 for all a e D,

which by [4, Lemma 3.7] mentioned earlier, implies that M^ has closed range on H™. D

COROLLARY 3 . 9 . (Non-moderate weights) Let ip(0) = 0 and ip € H°°.

(a) (Necessity for rapidly decaying weights) Let v 6 C2(D) be a weight wiici
satisfies (l — |z|2) (—Alogv(z)) —• cx> as |z| —• 1. i f l V ^ i a s closed range

on H%°, then for every w eVm there exists e > 0 suci that

¥>(en",«) n D(o, 1 - e) ^ 0 for aii a G D.

(b) (Sufficiency for slowly decaying weights) Let Rq be as in Lemma 3.6. Let

v G C2(B>) be a weight which satisGes (l - |z | 2 )2(-Alogu(z)) -> 0 as
\z\ ->• 1. If for any ^ there are r G (0, fl"1) and e > 0 such that

then W ,̂,̂  has closed range on H%°.
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PROOF: First we notice that W^j, is bounded on H%° for all almost decreasing
weights.

(a) Notice that for any q we have that v/vq is an essential weight. Indeed, for
any q there exists r0 close enough to 1 such that

Using Lemma 3.4 followed by Theorem 3.2 (a) finishes the proof,

(b) By a similar argumentation as above, we get that vq/v is an essential weight

for any q. Hence, by using Theorem 3.7 (b) followed by Lemma 3.4 we get

that WVtj, has closed range on H%°. D

REMARK 3.10. In Corollary 3.9 (a) we are dealing with weights tending to zero very

rapidly (usually weights satisfying condition L2 but not L\, like v(z) = e"^1"^2'"7, with

7 > 0). In Corollary 3.9 (b), on the other hand, we are dealing with weights either

tending to zero very slowly or not at all (usually essential weights satisfying condition L2

but not Li, like v(z) = (l - log(l - \z\)\ , with 7 > 0 or v(z) = 1).

EXAMPLE 3.11. Assume that v € Vm (or that v satisfies the conditions in Corol-
lary 3.9 (b)). Let <p{z) = zm (m e N) and let tp(z) = zn (n € N U {0}). Then
WVi^ has closed range on H%°.

PROOF: Clearly the operator is bounded. We notice that for any q, we have that
| T ^ , ( Z ) | = 0 if and only if z = 0. Moreover, lim | T ^ ( Z ) | = m~q. In other words, by

choosing e < min{m~', Rq~ }, we can make y( £ f i^ ) cover the whole unit disk except
for a disk with the origin as centre and radius less than R~l. Using Theorem 3.2 (b) (or
Corollary 3.9 (b)) finishes the proof. D

For the case when v = 1 we have that C^ has closed range on H°° if and only if
<p(B) 3 dB (see [23, Theorem 3]). Similarly, M^ : H°° -> H°° has closed range if and
only if essinf26eD|V'*(z)| > 0. where ip' denotes the radial limit of tp (see [4, Proposition
3.2]). Note that Cv is always bounded on H°°, while M$ (and hence W^) is bounded
on i/00 if and only if ip € H°°. A complete characterisation of when W^^ has closed
range on H°° in terms of Gelfand transforms and Shilov boundaries can be found in [21,
Theorem 2.2].

Next we shall show that tp(B) 3 dB is a necessary condition in a much more general
setting than for the special case v = 1 mentioned above.

COROLLARY 3 . 1 2 . (Weights of moderate or rapid decay) Let ip 6 H°°. As-

sume that v £ Vm (or that ip(0) = 0 and that v satisfies the conditions in Corol-

lary 3.9 (b)). If W .̂vi has closed range on H%°, then for every w 6 Vm there exists

e > 0 such that
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PROOF: Suppose that for some w 6 Vm, there exists a point 77 € dB such that
V i v ( £ f i ^ ) for any e > 0. Then for all e > 0 there exists a sequence {an} C
such that an —> 77 as n —¥ 00. Therefore,

fa,))I = j ^ g i = 1 for all
Theorem 3.2 (a) (or Corollary 3.9 (b)) indicates that W^^, cannot have closed range on
H?. D
REMARK 3.13. If v = vq in Corollary 3.12, we could replace the assumption that
ip € H°° with the assumption that WVi$ is bounded on H~ and still get that there exists
e > 0 such that y>(eD^) D dB>. (see Theorem 3.7 (a)).

REMARK 3.14. Corollary 3.12 also reflects the intuitively evident fact that if Wv^ is
compact on H%° then it cannot have closed range on H%°. Indeed, there exists e > 0 such
that ¥>(£f2£̂ ) 2 dB if and only if there exists e > 0 such that

for all 77 € 5D : limsup|r^^(z)| ^ e.

Thus, using [8, Corollary 4.3], W^ cannot be compact if it has closed range. This can
of course be seen in many other ways as well.

4. ASSOCIATION WITH CONFORMAL MAPPINGS

When restricted to the special case where <p is univalent (that is, ip'(z) ^ 0 for all
z e D ) and ip = (ip'Y, we get a complete characterisation of when W^^y has closed
range on H%° for q ^ fi (the Schwarz-Pick lemma guarantees that W^^y is bounded).
Under the additional hypothesis that ip' € H°°, we obtain a more general characterisation.
Some of the techniques we use are inspired by the ones used in [14].

THEOREM 4 . 1 . Let ip be univalent and Bx //. Assume that q > /x. Tien
has closed range on H™ if and only if there exists e > 0 suci t iat

D D(a, l-e) ^ 0 for alia e HJ.

To be able to prove Theorem 4.1 we need the following three lemmas.

LEMMA 4 . 2 . Forp>l,

ll/lk «sup( f\f(z)\2/q(l - \aa{z)\2)PdA{z))'"2.

PROOF: Assume that p > 1. Then

/ f (\ — | r | p — 2

k (^(i-iaiT^iLJiL
<v ll/lk,
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where the last inequality follows from the integral formula (see [28, Lemma 4.2.2]), which
states that for o g D, c e R and t > - 1 ,

{bounded in a for c < 0

log(l - \a\2) for c = 0 .

( l - | a | 2 )~ c f o r o O

Conversely, by a change of z i-4 aa{z) we obtain

sup(/|/(z)|2/«(l-|aa(z)|2)P^(z)Y

sup(l - |a|2)'(2 f 1
agO \ Jo i nal

2r(l -

9/2

\?/2
-r2)prdr)

where the last inequality follows from the subharmonicity of \f o aa\
2lq. D

REMARK 4.3. We have that H™ = Np for p > 1. That is, the Np-spaces, of which Â x

was introduced in [17] and where

:= j / € H(D) : sup^|/W|2(l - |aa(2)|2)W)y < oo}.
LEMMA 4 . 4 . If tiere exists e > 0 such that the set vCStf^y) satisfies the

reverse Carleson condition, then W^^y has closed range on H%°.

PROOF: Luecking [18] proved that a set K C B> satisfies the reverse Carleson con-
dition if and only if there exists k > 1 such that

f\f(z)\p{l - \z\2)"dA(z) ^ k f \f(z)\p(l - \z\2)qdA(z) for all / € A>,
Jo JK

where 0 < p < oo and where Ap
q is the weighted Bergman space (with norm || • H ĵ) given

by

A> := {/ € H(B) : \\f\\,, = (^ | /W|P(l " \z\2)qdA{z)j'P < oo}.
See Main Theorem on p. 2, condition (2") on p. 5 and the remarks on p. 10 in [18] for
more details (note that due to a typing error the p's are missing in the remarks on p. 10).
Take / € H™. Then, using Lemma 4.2 (with p = 2) we get that

O rM
D
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Thus, f{z)(a'a)i € A%9 and we can use the reverse Carleson condition to get that

- \aa{z)\2)2,, *S y ' k sup f / | / ( ) | 2 / ' ( l \ { ) \ 2 ) 2 ) '

sup

sup

where the second inequality follows from the integral formula which we also used in the
proof of Lemma 4.2. D

LEMMA 4 . 5 . Tie function T^^y is Lipschitz, or more precisely,

K I ^a) f0T *" z>a e D'
where Rq^ := (29 + 3// + ((2g + 3A*)2 + 4) 1 / 2 ) /2 .

PROOF: AS in Lemma 3.6, we begin by finding an upper estimate for the total

derivative of the function T^^y Straightforward calculations give that

dz

and

~zq

-zq
dz (i-\f(z)\2)" \i-\z\* i-\<p(z)\*r

The Schwarz-Pick lemma and a consequence of the verification of the Bieberbach conjec-
ture for the second coefficient (see [22, Proposition 1.2]) give that

1 -M*)P - 1 -
respectively. Thus,

Continuing as in Lemma 3.6, we get that for s > 1,

2<?2

Solving the equation s2/(s2 — l)(2q + Zfi) = 2s for s finishes the proof. D
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PROOF OF THEOREM 4.1.

Since the "only i f direction is an immediate consequence of Theorem 3.7 (a) it
suffices to show the "if direction. Hence, we assume that there exists 6 > 0 such that

i D D(a, 1 — 6) ^ 0 for all a e D. We shall show that this implies that there
exists e € (0,6) such that the set f^^^y) satisfies the reverse Carleson condition. By
Lemma 4.4 we then know that W^^y has closed range on H%°. We shall divide the
proof into two parts and show that there are constants t € (0,1) and c € (0,1) such that
for all a e D there exists za € D and s e (0,1) such that

$ c\D(a,t)\.

For our convenience we shall denote 1 — 6 by ro throughout the rest of the proof.
(i) For any a 6 D we can choose za 6 6^i^y s u c^ t n a t p{a> v(2o)) ^ r0. Let Rq<li

be the constant in Lemma 4.5 and fix e e (0,6). Then put

5-e
s = ——7^r.

and let A € D(za, s), so that p{za, A) < s. By using Lemma 4.5 we get that

Thus, \T^"^,y(X)\ > £, which implies that tp(\) € <p(£n^(^)(i). Hence, we get that

On the other hand,

where the last inequality follows from the fact that for every x ^ r0 and y < s we have
that (x + y)/(l + xy) < (ro + s)/(l + ros). Let * = (ro + s)/(l + ros). Then ^(A) e D(a,i),
which in other words implies that ip(D(za,s)) C D(a,t). Clearly, the above calculations
prove the given inequality.

(ii) According to Lemma 3.1 we may assume that tp(O) = 0. Using the univalence
of <p we get that

UD(za,s))\ = [ \<p'(X)\2dA(\)
1 ' JD(za,>)
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where we have used Schwarz' lemma and the proof of (i) in the inequality. A straightfor-
ward calculation gives that for A e D(za,s),

and by the Schwarz-Pick lemma we get that tp(\) € D(<p(za), s). Therefore,

D(za,s)

^ ( £ j 4096 ( l - | * . l 2 )

where we have used the fact that p(a, <p(za)) ^ r0 in the last inequality. Furthermore,
one can easily check that

S
2(l - W2)2 ^ \D(za,s)\ < ^ J J ( 1 - |zo|

2)2-

Hence,

£ )

COROLLARY 4 . 6 . Let (p be univalent and assume that <p' € #°° . Then

has closed range on H™ (for any fi and any q) if and only if there exists e > 0 such that

V ( £ ^ ) n D(a'1 ~ £) ^ 0 for all a eB.

PROOF: By Lemma 3.1 we may assume that ip(0) = 0 and since <p' € H°°, we have
that W^^y is bounded on H%°. Assume that W^^y has closed range on H%°. Using
Theorem 3.2 (a) we know that there exists 5 > 0 such that (p{s^^)v) HD{a, 1 - 6) # 0

for all a 6 D. By letting e := min{<5, J1/"}, it is easy to see that ^ ( e n^ )n i ? ( a , 1 - e) # 0
for all a £ D.

Conversely, assume that there exists e > 0 such that v(£fi^)V/) n D(a, 1 - e) ^ 0 for
all o e D. We shall show that if there exists e > 0 such that the set i p ^ f i ^ ) satisfies
the reverse Carleson condition, then W^^y has closed range on H™ (compare this to
Lemma 4.4). We can then apply the corresponding part of the proof of Theorem 4.1
(with q = (i = 1) to finish the proof. The only change in the proof of Lemma 4.4 that we
have to make (except for the obvious ones) is in the last inequality. If q ^ /i we get

(i - MW
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while if q < n we get (using Schwarz' lemma)

H\ - \z\*)» g
COROLLARY 4 . 7 . (Moderate weights) Assume that <p is univalent and that

<p' e H°°. Then WvJ^y has closed range on H™ (for any n and any v e Vm) if and

only if there exists e > 0 such that

V ( £ ^ ) n D(a, 1 - e) ^ 0 for all a € D.

P R O O F : AS in the proof of Corollary 3.8 we begin by noticing that we may assume
that ip(0) = 0 and that W^^y is bounded on H.£°. Assume that Wv^y has closed range
on H%°. By choosing q2 < l imsup(l — \z\2) (—Alogu(z)) we easily see that v/vq2 is an

essential weight (see the proof of Lemma 3.5). Using Lemma 3.4 followed by Corollary 4.6

we get the desired condition.

Conversely, assume that there exists e > 0 such that v(£n"1
v/) l~l D(a, 1 - e) ^ 0 for

alia 6 D. Choosey > limsup(l — |z|2) (—A log v(z)), so that vqjv becomes an essential
|z|-H

weight. Using Corollary 4.6 we get that W^^y has closed range on H™ . Lemma 3.4

finishes the proof. D

REMARK 4.8. The assumption that ip' e H°° is kind of restrictive and makes Corol-
lary 4.6 and Corollary 4.7 loose some of their significance. Nevertheless, they can be
applied to for example automorphisms of the unit disk (see Example 4.9).

EXAMPLE 4.9. Fix a € ©, 7 € R and let v{z) = (l - |z|2)*(l - l o g ( l - | z | 2 ) ) 7 . Then
Wffa.W n a s closed range on H™ for any ft.

PROOF: Straightforward calculations give that v € Vm and that a'a £ H°°. Since
\TI[t<{z)\ = 1 for all z € D, we get that cWa\K = D for any 0 < e < 1. Corollary 4.7
finishes the proof. D

5. EXAMPLES

In this section we take a more concrete look at the closed range property by giving
some enlightening examples. That is, examples where y?(D) D 9D, but y(B>) / D or
tp(3) 7̂  B>. Producing such analytic functions in an explicit form is very difficult, even
numerically, except in some simple cases (like when the omitted region produced by <p

is a disk as in Example 5.1). The original Schwarz-Christoffel mapping cannot be used
since it only provides mappings from the unit disk to the interior of a polygon. However,
by letting the sides in the polygon be circular arcs, such functions could be found in
theory. Two attempts to implement this numerically have been made (see [6, 15]) but
the techniques are still quite experimental (see [11] for more on this topic).
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The next example will show that if the omitted region produced by <p is a disk which

is tangent to the boundary of the unit disk, then Wvj, cannot have closed range on H%°

(v G Vm and ip e H°°). Nevertheless, it might have closed range on H°°.

EXAMPLE 5.1. Let v € Vm and tp e H°°. Assume that

W H * ) ) t 2arctanh(z)
- z)) \ 7r

Then Wv^ has closed range on H°°, but not on # ~ (see Figure 1).

and <p(z) =
2arctanh(z)

Figure 1: A density plot of ip in Example 5.1.

PROOF: Clearly Wv^ is bounded on both H°° and H%°. By the results in [23, 4],
mentioned before Corollary 3.12, we know that Wv^ has closed range on H°°. On
the other hand, we notice that for any given radius r, we have that lim|D(o,r)\ = 0.
Therefore it is easy to see that for all e > 0 we can always choose o real and close enough
to 1, so that (p(tynD(a,l - e) = %. Theorem 3.2 (a) gives that WVt^ cannot have closed
range on H%°. [)

Example 5.1 might lead one to believe that ip(B) = D is a necessary condition for the
closed range property. However, as the two next examples will show, tp(B) = W is neither
a necessary nor a sufficient condition (generally speaking) for a weighted composition
operator to have closed range on H™. Not even when tp is univalent. The first example
is an improved version of [14, Example 2], while the second one uses an idea of [25,
Example 6.5].

EXAMPLE 5.2. Fix g and r0 € (0, fl"1), where Rq is the constant given in Lemma 3.6.
Let G = D \ {D(0, r0) U (r0,1)} and let <p be the univalent mapping that maps D onto
G. Then WVi^y, has closed range on H™ even though <p(H) ^ D (see Figure 2).

PROOF: First we notice that WVtiv>y, is bounded on # ~ due to the Schwarz-Pick
lemma. In order to use Theorem 3.7 (b), we need to study the behaviour of the function
r¥>V)«" Using Koebe's one-quarter theorem (see [22, Corollary 1.4]), it follows that

dist(v(z),9D)

https://doi.org/10.1017/S0004972700039277 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039277


350 N. Palmberg [20]

dist(<p(z),dG) i
So, let us define

Then on account of what was just said, we get that

ASC

This means that we can work with the sets As instead of £^"', .>, which gives us the
great advantage of working with the image of ip directly (see Figure 2 (a) for a sketch of

Figure 2: In this figure, referring to Example 5.2, we have chosen q = 1/10 and r0 = 1/10
for visibility (see Remark 3.3). In (a) the set tp(Ai/7) is shown. That is, the ratio between
x and y is 1 to 7. In (b) a pseudo-hyperbolic neighbourhood with radius R~l of the
interval [0,1) is shown (R~l = 0.2405). As one can clearly see, v{A\p) n £>(a,0.24) ^ 0
for all a € [0,1).

For any r G (0,1) and any 6 e D, with Re(6) ^ 0 and Im(6) > 0, we can find
a e [0,1) such that Re(c£;(6,r)) = Re(c£(o,r)). A straightforward calculation shows
that

lm(cB{b,r))+rE{b,r) > rE(a,r).

Hence, due to the symmetry of (p(As) (see Figure 2 (a)) and the preceding discussion, it
suffices to show that there exists 6 > 0 and r € (0, R~l) such that <p(As) n D(a, r) / 0
for all a € [0,1).

Consider now the function

f(a,r):= -, where a £ [0,1).

A straightforward calculation shows that for any fixed r, we have that

{ r 2 T
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In figure 2 (b) one can see the pseudo-hyperbolic neighbourhood with radius R'1 of the
interval [0,1), or more precisely, the set

Br~ (J D(a,r), with r = R~\

The ratio between the numerator and the denominator of / ((1/2), .ft"1) (denoted by x
and y, respectively) can also be seen.

Thus, by fixing r e (r0, R'1) and choosing 6 < -yr we get that <p(Af) D D(a, r) ^ 0
for all a € [0,1). •

EXAMPLE 5.3. Let Go = B>. For n e N, we consider the following recursive construction
method. Construct Gn by deleting finitely many radial slits of length 2~n (with one
endpoint on dB) from Gn_i so that dist(a, dGn) ^ 3~n for every o € Gn with lal ^ 1-2"".

oo

Let G = H Gn and let y> be the univalent mapping that maps D onto G. Then Wv i^\<,
n=0 '

does not have closed range on H™ even though ip(V) = fi> (see Figure 3).

Figure 3: G3 in Example 5.3. When the slits are evenly spaced as above it suffices to
delete 13 slits from Go, 13 • 3 slits from Gu 13 • 3 • 3 slits from G2 and finally 13 • 3 • 3 • 2n~2

slits from every Gn with n ^ 3.

P R O O F : From the construction of G it is easy to see that for any n € N,

dist(ip(z),dG) 3"" ,KrK " L < whenpvpr 1 — 2~ n < <oCr1 < 1 o-»-i
dist(^(2),aD) ^ 2-""1 w n e n e v e r 1 l ^ | V W | $ l - 2

Again, as in Example 5.2, we shall use Koebe's one-quarter theorem, to get that

i ,

Corollary 3.12 finishes the proof (see also Remark 3.13 and Remark 3.14).
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6. THE BLOCH-TYPE SPACES

In this section we shall show that Theorem 3.7, Corollary 3.12, Theorem 4.1 and
Corollary 3.8 are also true for the composition operator Cv on the Bloch-type space Bq

with some minor modifications (see Corollary 6.2).
We begin by noticing that for any a € D we have that CCa is bounded on Bq. Hence,

we may always assume that <̂ (0) = 0. Next we shall prove an intuitively evident, but
important lemma, which we state formally for completeness.

LEMMA 6 . 1 . Cv is bounded on Bq if and only ifWVtV> is bounded on H™. Sim-
ilarly, Cv has closed range on Bq if and only ifW^rf has closed range on H™.

PROOF: Consider the mapping Sq : Bq —• H%°, given by 5 , / = / ' . One can easily
verify that 5, is an onto isometry and since Cv = S"1 o WVtVi o Sq, we are finished. D

COROLLARY 6 . 2 . (Summary for the Bloch-type spaces)

(a) If C,p : Bq -> Bq has closed range, then there exists e > 0 such that

¥>(E^V) n D(a, 1 - e) for all a £ l .

(b) Let Rq be the constant in Lemma 3.6. If there are r e (0, R'1) and e > 0
such that

^ ) for all a en,

then Cv:B
q^ B" has closed range.

(c) IfCf, : Bq ->• Bq has closed range, then there exists e > 0 such that

(d) Let ip be univalent and assume that q ^ 1. Then Cv has closed range on
B9 if and only if there exists e > 0 such that

¥>(eft£V) nZ?(a, 1 - e) for aJIaeD.

(e) Let <p be univalent and assume that ip' € H°°. Then C^ has closed range
on Bq (for any q) if and only if there exists e > 0 such that

^ ( £ n ^ ) n D ( o , l - £ ) ^ 0 for all a € D.

PROOF: A direct consequence of Lemma 6.1 as well as Theorem 3.7 (a), Theo-
rem 3.7 (b), Corollary 3.12 (see also Remark 3.13), Theorem 4.1 and Corollary 4.6,
respectively. U

REMARK 6.3. By choosing q = 1 in Corollary 6.2 we get the corresponding results for
the Bloch space obtained in [13, 14]. Note that the constant Rg in Lemma 3.6 becomes
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18.22 which is expectedly somewhat greater than 3.31 calculated specifically for the Bloch
space (see [13, Theorem 1 and Theorem 2]). Actually, by a slight modification of their
proof, the constant 3.31 can be reduced to 1.93 (by applying the same ending as in the
proof of Lemma 3.6).

EXAMPLE 6.4. ip(B) — D is neither necessary nor sufficient for Cv to have closed range
on B.

P R O O F : Follows directly from Lemma 6.1 and by choosing q = 1 in Example 5.2
and Example 5.3. U
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