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ON JOINS WITH GROUP CONGRUENCES

by P. M. EDWARDS

(Received 29th November 1994)

Let & be an arbitrary semigroup. A congruence y on % is a group congruence if &/y is a group. The set
of group congruences on .% is non-empty since & x & is a group congruence. The lattice of congruences on
a semigroup & will be denoted by €(&) and the set of group congruences on & will be denoted by ¥4(%).
If ¥4(%) is a lattice then it is modular and y vV p =70 p = poy for all y, p € ¥¢(S). The main result is that
yvp=yopoy for any y € 94(¥) and p € (&) (whence every element of the set ¥€(&) is dually right
modular in ¥(%)). This result has appeared, for particular classes of semigroups, many times in the literature.
Also yvp=yopoy=poyop for all y, p € ¥9¢(¥) which is similar to the well known result for the join
of congruences on a group. Furthermore, if yNp € ¥4(¥) thenyvp=y0op=poy.

1991 Mathematics subject classification: 20 M 10

1. Introduction and summary

Unless stated otherwise % will always be an arbitrary semigroup. A congruence y
on & is a group congruence if &/y is a group. The set of group congruences on & is
non-empty since & x & is a group congruence. The lattice of congruences on a
semigroup & will be denoted by 4(%) and the set of group congruences on % will be
denoted by 9¥4(¥). If 4¢(¥) is a lattice then it is modular (Corollary 4). If & has a
minimum group congruence it will be denoted by ¢. The existence of a minimum group
congruence is equivalent to having a maximum homomorphic group image. If &% has
a minimum group congruence then ¥4(%) is a complete modular lattice.

The main result [Theorem 1] is that yvp=yopoy for any y € ¥4(¥) and
p € (%) whence every element of the set ¥4(%) is dually right modular in €(¥). Also
yvp=vyo0poy=poyop for all y,pe 9€(¥) which is similar to the well known
result for the join of congruences on a group. Theorem 1 is proved to apply to all
semigroups and has appeared, for particular classes of semigroups, many times in the
literature. That ovp=copoos for & inverse is [3, Theorem 3.9] and that
yvp=yopoyforall y=¥9%4(¥) for & regular is [6, Theorem 6]. Other usage appears
in {5, Section 3], [6, Section 2], [7, Section 6], [8, Lemma II1.5.4] and the regular case
was generalised in [2, Theorem 5].

Results concerning joins of congruences and group congruences for specific classes
of semigroups can be found in [3, 7, 8] for inverse semigroups, [S, 6] for regular
semigroups, [5, 6] for orthodox semigroups, and [2] for eventually regular semigroups.

63

https://doi.org/10.1017/50013091500023439 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500023439

64 P. M. EDWARDS

2. Congruences on groups

Obviously when &% is a group, G say, ¥4(G) = 4(G). It is well known that for
G = G, there is a one to one correspondence between the normal subgroups of G and
the congruences on G. Explicitly, if N is a normal subgroup of G then
pn =1{(a,b) € G x G :ab™' € N} is a congruence on G and N = ep,. Conversely if p is a
congruence on G then N = ep is a normal subgroup of G. Furthermore if M and N
are normal subgroups of G then pyNp, =pyy and pyopy =pyy- Thus
PNOPy =Py =Pun =Pyopy and so %% (G) is a modular lattice and
yvp=vyop=poyforally, pe 4¥4(G).

In the next section joins of congruences on an arbitrary semigroup will be
considered. Results will be given for the case when one (or both) of the congruences is
a group congruence.

3. Joins with group congruences

In general the join of two congruences on a semigroup &% may be quite complicated.
In fact for p,Beb(¥),pv B is the transitive closure of pUB and so
pVB=(poB)” =L, (pop)". Example | below demonstrates a semigroup & and
p, B € €(&) for which this union must be infinite. Theorem 1 below shows that we can
do much better if one of the congruences is a group congruence. The previous section
mentioned how the first term of the union suffices when & is a group.

Theorem 1. Let y be a group congruence on an arbitrary semigroup & and let p be
a congruenceon . Thenyv p=yopoy.

Proof. It suffices to show that yopoy is transitive. Let iy denote the identity
element of the group &/y. Take any (x,y),(y,z) e yopoy. It will be shown that
(x,2) € yo poy. Then there exist a, b, ¢, d € & such that (x,a) €y, (a,b) € p, (b,y) €y,
(y,c)ey, (c,d)ep and (d,z) € y. Clearly (b,c) €y and so there exists sy in &/y
such that syby =iy and cysy =iy. Since (a,b) € p and (c,d) € p,(csa, csb) € p and
(csb,dsb) € p whence (csa,dsb) € p. Therefore xyaycsapdsbydyz whence
(x,z2)€eyopoy. O

In [5] a modularity relation M was defined on a lattice L by aMb if
(xvayab=xv(anab) for all x < b; with its dual denoted M*. An element d is right
[left] modular if a Md [dMa] for all a e L. If L is right and left modular then it is
modular. Proposition 2.3 of [5] states that if a, 5, € (%) and a v f = a0 foa then
BM*a whence (i) if a v & =ao0oafor all x € ¥(¥) then £ is (dually) left modular and
() ifavE=~¢oao for all a € () then ¢ is dually right modular.

Corollary 2. For any semigroup &, every group congruence on & is a dually right
modular element of the lattice of congruences on &.
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Corollary 3. Let y and p be a group congruences on an arbitrary semigroup &. Then
yvp=yopoy=poyop. FurthermoreifyNpe $€¢(¥)thenyvp=yop=poy.

Proof. The first assertion follows from Theorem 1. Suppose B =yNp € ¥6(¥)
and put L=[f,% x &]. Then L = %(&/B) which is a modular lattice of commuting
congruences since &/f is a group. Thus y and p commute. O

Corollary 4. If 9€(¥) is a sublattice of () then $4(¥) is a modular lattice and
yvp=yop=poyforally,pec 9GE(L).

The kernel of p € €(¥) is defined by, ker(p) ={a e & :ap € E(¥/p)}. It is well
known that if two group congruences have the same kernel then they are equal. For a
subset H of &, define Hw = {x € & : hx € H for some h € H}, define wH dually and
put H = wH U Hw. If H is a subsemigroup then H € Hw and H C wH. The subset H
is called closed if H = H'. It is straightforward to show that H = ker(y) is always a
closed subsemigroup for y € ¥4(<¥).

After proving the following preliminary result some applications of Theorem 1 will
be given.

Theorem 5. Let y be a group congruence on an arbitrary semigroup with H = ker(y).
Then the following are equivalent:

(1) ayb,

(2) xa = by for some x,y € H,

(3) ax = yb for some x,y € H,

(4) HaHN HbH # 0.

Proof. Suppose ayb. Let z be the group inverse of ay = by in &/y and put x = bz,
y=1za,s =zb and t = az. Then xa = bza = by and as = azb = tb and x, y, s, t € ker(y)
whence (1) implies (2) and (3). It also follows that for any h € H, hbzah = (hbz)ah =
hb(zah) € HaH N HbH so (1) implies (4). That (2), (3) and (4) each imply (1) is trivial,
whence the four statements are equivalent. O

Theorem 6. For any congruence p and any group congruence y on an arbitrary
semigroup, a(y v p)b if and only if xa p by for some x, y € ker(y).

Proof. The following proof is a slight modification of the proof of Theorem 7 of
LaTorre [6]). Put H = ker(y). Suppose (a,b) € yv p. By Theorem 1 there exist ¢,d € &
such that ayc,cpd and dyb. Since ayc, by Theorem 5 there exist h, k € H such that
ha = ck and similarly there exist p, g € H such that pd = bg. Put x = ph and y = gk so
x,y € H. Then xa = pha = p(ha) = p(ck) p p(dk) = (pd)k = (bq)k = by so xapby with
x,y € H. Conversely, if xapby with x,y € H then since xaya and byya,ayxapbyyb
so(a,b)eyvop. O
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Theorem 7. For any congruence p and any group congruence y on an arbitrary
semigroup, ker(y v p) = ((ker(y))p)w.

Proof. Take x € ker(y v p). For any ec E,(x,e) € y v p so from Theorem 6 there
exist p,q € ker(y) such that xppge. Now gqe € ker(y) so xp e (ker(y))p. Since
p € ker(y) € (ker(y))p, we have that x € ((ker(y))p)w. Conversely, if x e ((ker(y))p)w,
then hx € (ker(y))p for some h e (ker(y))p so (hx,y)e€p for some y e ker(y) and
(h,z) e p for some ze€ ker(y). Since (y,e) ey, it follows that (hx,e)eyvyp so
hx € ker(y v p). Similarly, h € ker(y v p) whence x € ker(y v p) since ker(y v p) is closed.
Therefore ker(y v p) = ((ker(y))p)w.

Theorems 1, 6 and 7 above generalise the corresponding results for regular
semigroups given in [6].

Example 1. Let & =Z' with left zero multiplication and let p and B be con-
gruences on & given respectively by the partitions {{1}, {2,3}, {4,5}, {6,7},...} and
{{1,2}, {3,4}, {5.6},...}. Then pv B =% x & and clearly pVv  # |J._ (pop) for any
finite m.

Example 2. A congruence y on & is a cancellative congruence if &/y is a
cancellative semigroup. Any semigroup has a minimum cancellative congruence,
namely the intersection of all the cancellative congruences. Denote the set of
idempotent elements in & by E = E(&). A semigroup & is E-inversive if for all x € &,
there exists y € & such that xy € E. A semigroup is eventually regular [group-bound]
if every element has some power that is regular [in a subgroup]. The class of
E-inversive semigroups includes eventually regular semigroups, regular semigroups,
group-bound semigroups, finite semigroups and semigroups with a zero element. If &
is an E-inversive semigroup then the group congruences coincide with the cancellative
congruences, whence & has a minimum group congruence ¢ equal to the intersection
of all cancellative congruences on &, [1]. Let & be any semigroup that possesses a
minimum group congruence o. Then %¥(&) =[o, ¥ x &) is a complete modular
lattice. The mapping ¢ : €(&¥) - 9¥(¥) defined by ¢(p) =0 Vv p is a surjection of
¥(¥) onto ¥6(S) and the elements of ¥¥(¥) are invariant under ¢. If & is orthodox
then the mapping ¢ is a homomorphism, [6, Theorem 11].

Example 3. Let & = (a) be an infinite monogenic semigroup. Then the relation
p, ={(@, a") : p =q(modn)} is a group congruence on & and every group congruence
on & is of this form [4, p. 185, Exercise 26]. If p, and p,, are two group congruences
on & then p, N p, = p, where k is the lowest common multiple of # and m. It follows
that the intersection of any finite set of group congruences on & is a group congruence
and that & does not possess a minimum group congruence. In fact the intersection of
all group congruences on & equals 1, which is of course not a group congruence.
Therefore 9€(&) is a lattice but is not a complete lattice. It follows from Corollary 4
that ¥¢ (%) is a modular lattice.
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Example 4. This example was suggested by T. E. Hall. Put A = (a) and B = (b)
both infinite cyclic groups and in A x B let & be the subsemigroup generated by
(a, b), (a, b inverse) and (a inverse, b). Note that if (¢°, b%) € & then p+q is even and
p+ g > 0. In particular, the semigroup & is not a group since (a, b) does not have an
inverse in &. Let p, and p, be the kernels of the projections of & onto 4 and B
respectively. Then p, and p, are group congruences on & but their intersection is
trivial and so is not a group congruence. Since (a*, b™%) p, (a*, b°) p, (a°, b®) we have that
(@®,b7%) is p, o p, related to (a°, b°). Because @, b ¢ &, (", b?) is not p, o p, related
to (a°, b°). Thus p, 0 p, # py o p, [cf. Corollary 3].
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