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UNIFORMLY LIPSCHITZIAN FAMILIES OF 
TRANSFORMATIONS IN BANACH SPACES 

K. GOEBEL, W. A. KIRK, AND R. L. THELE 

1. I n t r o d u c t i o n . T h e observations of this paper evolved from the concept 
of ' asymptot ic nonexpansiveness' introduced by two of the writers in a previous 
paper [10]. Let X be a Banach space and Z Ç I . A mapping T : K —•> K is called 
asymptotically nonexpansive if for each x, y £ K 

\\T\x) -T\y)\\ ZktWx-yW, i = 1, 2, . . . , 

where {kt} is a fixed sequence of real numbers such t ha t ki—•> 1 as i —> oo . I t 
is proved in [10] t h a t if K is a bounded closed and convex subset of a uni­
formly convex space X then every asymptotically nonexpansive mapping 
T : K —> K has a fixed point. This theorem generalizes the fixed point theorem 
of Browder-Gôhde-Kirk [2 ; 12 ; 16] for nonexpansive mappings (mappings T 
for which \\T(x) — T(y)\\ ^ ||x — y\\, x, y G K) in a uniformly convex space. 
(A generalization along similar lines also has been obtained by Edelstein [4].) 

T h e theorem for asymptotical ly nonexpansive mappings was subsequently 
generalized by Goebel and Kirk in [11] in which a fixed point theorem is 
obtained in uniformly convex spaces for continuous mappings T : K —» K (K as 
above) which have the property t ha t there exists an integer N ^ 1 such t h a t 
117^(;y) — T\y)\\ S y\\x — 3>||, i ^ N, where 7 > 1 is a fixed constant 
sufficiently near 1 (see the example, Section 4). The argument for this theorem 
provides the general technique for our proof of the main theorem of Section 2. 
This lat ter theorem is for a left reversible semigroup S~ of transformations of a 
given convex set K into itself, and it is shown tha t under appropria te assump­
tions on the space, weaker than uniform convexity, a point x0 Ç K exists with 
the proper ty t h a t x0 = T(x0) for all T in some right ideal / . T h e principal 
assumption on the semigroup is t ha t it possess a right ideal each of whose 
mappings has Lipschitz constant sufficiently near 1, and this assumption is 
strong enough to ensure t ha t x0 is fixed under all continuous mappings in the 
semigroup. 

Section 3 contains a few observations about semigroups of asymptotical ly 
nonexpansive mappings, among them a generalization of a theorem of 
R. DeMar r [3]. 

W e now give some definitions. In wha t follows we consider a semigroup J^~ of 
t ransformations of U —» U where U is a subset of the Banach space X, and we 

Received April 19, 1973 and in revised forms, April 8, 1974 and June 25, 1974. This research 
was supported by NSF Grant GP-18045. 

1245 

https://doi.org/10.4153/CJM-1974-119-9 Published online by Cambridge University Press

file:////T/x
https://doi.org/10.4153/CJM-1974-119-9


1246 K. GOEBEL, W. A. KIRK, AND R. L. THELE 

assume that $~ is left reversible, that is, every two right ideals in ^~ have non­
empty intersection. For T Ç 3?~, let | |r| |£, denote the Lipschitz norm of T 
relative to U: 

\\T\\L = sup{||r(x) - T(y)\\/\\x -y\\ :x,y G U,x ^y}. 

The modulus of convexity of X is the function 5 : [0, 2] —» [0, 1] defined by 

«(€) = inffl - mx + y)\\:x,yeX,\\x\\ g l , | |y | | ^ l,\\x-y\\ ^ «J. 

Let €0 = e0(X) = sup{e : 5(e) = 0}. The number e0 is called the characteristic 
of convexity of X and it is known (see Goebel [8]) that e0 = 0 if and only if X is 
uniformly convex, while if e0 < 2 then X is uniformly non-square [15] and 
isomorphic to a uniformly convex space [6] (hence reflexive). 

It is also known [14 ; 20] that the function 5 is strictly increasing on [e0, 2] and 
continuous on [0, 2), and moreover (cf. [22 ; 23]) : 

(*) ||*|| g d, \\y\\£d, \\x-y\\ ^ e = H | K * + y)ll ^ C1 -S(e/d))d. 

We now list some properties derived from the modulus of convexity of X 
which will be used later. 

For e £ [0, 2] we define 

/(e) = sup{||* + y | | : ||*|| £ 1 , I M I ^ l , \\x-y\\^e}. 

Then/(e) = 2(1 - 5(e)) so 
(1) / i s continuous on [0, 2), and 
(2) / is strictly decreasing on [e0, 2]. 

It is easily seen t h a t / o / ( e ) = p(e) ^ e. Moreover, for ||x|| S 1, |M| ^ 1 we 
have/( | |x + y\\) ^ ||x — y\| and so if e > e0 it follows that/2(e) ^ e, yielding 

(3) /«(e) = e if « G («ô, 2]. 

Obviously, 

(4) /2(e) = /(2) if e G [0, e0]. 

Nowife0 < 1, then continuity of /implies the existence of r (E (e0, 1) such that 
f(r) = 2r. Thus if 1 ^ k < 1/r, then since 1/k > r > e0 we have by (2) 

fiX/k) <f(r) =2r <2/k. 

Using (2) and (3), 2/k > e0 implies f(2/k) < f\l/k) = 1/k, so 

(5) kf(2/k) < 1, k e [1, 1/r). 

We also note that since lime_>2- 5(e) = 1 — e0/2 it follows that 

(6) lim /(e) = e0. 

Finally, we remark that we use the symbol S(x; p), x £ X, p > 0, to denote 
the closed spherical ball {y £ X : \\x — y\\ ^ p}. 
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Acknowledgment. We are indebted to Teck-Cheong Lim for a communicat ion 
which prompted our reasoning in the final paragraph of the proof of Theorem 2.1, 
and thereby substantial ly strengthened the conclusion in our original version of 
t h a t theorem. 

2. A s y m p t o t i c a l l y l i p s c h i t z i a n s e m i g r o u p s . The following results are 
formulated for Banach spaces X for which e0(X) < 1. T h u s these results hold 
for a class of spaces which includes all uniformly convex spaces. 

Our principal result is Theorem 2.1. Condition (ii) in this theorem also offers 
slightly greater generality over the usual assumption t ha t the transformations 
map K into K. This weaker formulation results in no complication. 

T H E O R E M 2.1. Let K be a nonempty bounded closed convex subset of a Banach 
space X for which e0 = e0(X) < 1. Then there exists a constant y > 1 (depending 
on X) such that if ^~ = {Ta : a G A} is a left reversible semigroup of trans­
formations of U into U,K C JJ, satisfying : 

(i) II^IU = k < y for all T in some right ideal J\ Çz^~, 
(ii) for each e > 0, d is t (T(x) , K) ^ e for all T in some right ideal J2 Ç^^', 

then there exists a point x0 G K such that for some right ideal J Ç jF~, x0 = T(x0) 
for all T £ J. Further, if all the mappings of &~ are continuous, then T(x0) = x0 

for all r ç f . 

We should remark t h a t if^7" consists of a single mapping, then as an immediate 
consequence of Theorem 2.1, Theorem 1 of [11] is generalized from the context 
of uniformly convex spaces to the wider class of spaces considered here. T h e 
referee points ou t t h a t such a generalization is also immediate from a recent 
result of Per Enflo. Enflo has shown [6] t ha t a space X for which e0(X) < 2 may 
be renormed so as to be uniformly convex and so t h a t the func t ion / is altered by 
an arbitrari ly small amount . This fact may be used to reduce the problem 
quickly to the uniformly convex setting. Although such a reduction would also 
suffice for the proof of Theorem 2.1, we give a direct proof below in the €0(X) < 1 
sett ing. 

As noted in [11], if there is a metric s on K such t ha t 

(**) a\\x — y\\ ^ s(x, y) S P\\x — y\\, x,y 6 K 

and if T : K —> K is nonexpansive with respect to 5 then 

| | r ( * ) - rOOH ^ (l/a)s(T%x), T\y)) S (l/a)s(x,y) =S 08/a) | |x - y\\. 

This observation and Theorem 2.1 yield : 

COROLLARY 2.2. Let X be a Banach space for which e0(X) < 1 and suppose 
K C X is nonempty, bounded, closed, and convex. Then there exists a constant 
7 > 1 such that if ^~ is a left reversible semigroup of transformations of K into K 
and if each mapping T G &~ is nonexpansive with respect to a metric s(x,y) on K 
satisfying (**) where ft/a < y, then $~ has a common fixed point in K. 
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Proof of Theorem 2.1. Choose y = 1/r in (5). For a £ A, y £ K let 

^ a = {TaoT:Te<r}, <ra(y) = { r a or (y ) : re^ | . 
Fix y £ K and let 

#„ = {P > 0 : ̂ « (y ) C S(x;P) for some « U , i U | . 

Let po = Po(j) = inf Ry. (Ry ^ 0 because Rv contains the diameter of K.) 
Now for e > 0 let 

C c = U ( O 5(r(y);po + e)). 

Then Cc is nonempty for each e > 0, and since left reversibility of ^~ implies 
that the family 

1 H S(T(y)]P0 + e) :a £ Aï 

is directed by set inclusion, Ce is convex. Since X is reflexive the sets Ce com­
prise a family of weakly compact sets with the finite intersection property, 
so there exists a point z = z(y) £ K such that 

z e c= n (CenK). 
€>0 

Note that if p0 = 0 then the conclusion of the theorem follows, for if e > 0 then 
a G A may be chosen so that &~a is uniformly lipschitzian with Lipschitz 
constant k, and so that 

\\z - T(y)\\ * *. re/",,; 
whence for any T Ç <^~a, 

||s-roo11 ss I k - r ^ l l + l ir2^)- rw|| 
£ € + ft||r(y) - s | | 

^ 6(1 + *). 

Thus we may assume p0 > 0, or d{z) = 0 where for each point w £ K, 

d(w) = inf {sup||w - T(w)\\ : T €^a}. 

Since the case d(w) = 0 is treated in the final paragraph, assume d(z) > 0 
and let e > 0 satisfy e < d(z). Choose a £ A so that 

(7) \\z- Ta{z)\\ ^d(z) - e, dist(Ta(z),K) < 6, and | |r t t |U ^ *. 

(Note that the last two choices are true for all T in some right ideal / , and since 
for each a £ A, ^a(z) £ 5(s; d(z) — €) there exists some Ta £ J for which 
the first choice holds.) 
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By definition of p0 there exists /? G A such that for T Ç J7^, 

I k - r(y)|| ^ P O + 6. 

Since TaoTp = T8 for some ô G ̂ 4, by left reversibility of &~ there exists JUÇ i 
such that r . G ^ n ^ V If r ^ , then there exists f G / ' such that 
T = Ts o Z\ and thus 

(8) | |ra(s) - r (y) | | = \\Ta(z) -TaoT,o T(y)\\ 

^k\\z-T0oT(y)\\ 

è HPO + e). 

Also, since T (E .5% implies T £ J ^ , we have 

(9) | | s - T(y)\\ g p o + a. 

Letting m = (z + r a(z))/2 we have by (7), (8), (9), and property (*) of the 
modulus of convexity, 

(10) I \m - T(y) 11 ^ \k (po + e)f ( f ^ r f y ) • T € ^ 

Moreover, since z £ K and dist(2"a(s), X) < e, there exists in ^ K such that 
||m — w|| < e. Therefore 

(11) ||m - T(y)\\ Ï ik(Po + e)f (^0+')) + «. ^ 6 .5%. 

Thus ^~n(y) is contained in a spherical ball centered at m with radius 

and thus 

Letting e —• 0 we have 

* (d(z) \ 

where 

\kpQ J e_V \k(po + e)/ 

This implies that f(d(z)/kp0 — ) ^ 2/k. Now d(z)/kp0 < 2, for otherwise by (6) 
€0 = l im^ 2 - / (? ) ^ 2/k, contradicting 1/k > e0. Thus / is continuous at 
d(z)/kp0 and we have 
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There are now two cases to consider: 
(a) If d(z)/kp0 > eo, then, by (3), 

kpo J \kpoJ =J \kj 

and this implies 

(12) d(z) ^ kf(2/k)p0. 

(b) If d(z)/kp0 ^ €0, then 

(13) d(z) S [^60]po. 

Let rj = max{&e0, kf(2/k)}. Then by (5) (and the fact that 1/k > e0) we have 
7] < 1. Thus (12) and (13) yield for fixed rj < 1, 

d(z) S vd(y). 

Also by (9) we have ||z - T(y)\\ g P o + e, T £ 3T^ so for T G ^ , 

| | * -y | | g | | a - r ( y ) | | + | | r (y) -y | | , 

yielding 

H s - y l l Spo(y) +d(y) £2d(y). 

Thus we have established that for each y Ç K the corresponding z = z(y) 
satisfies, for 77 < 1, 

(14) d(z) Sy}d{y)y \\z-y\\ £ 2d{y). 

Now fix Xo 6 i£ and define the sequence {xw} by xn+i = z(#n), w = 0, 1, . . . . 
As previously noted, if p(xn) = 0 or d(xn) = 0 for some ny then the theorem 
will follow. Otherwise, using (14), 

\\xn+1 - xn\\ = \\z(Xn) - xn\\ ^ 2d{xn) S 2rjnd(x0), 

and this implies {xn} is a Cauchy sequence. So there exists w G K such that 
xn —> w as n —» 00 . Let aw G 4̂ and ew —» 0 be chosen so that 

II*. - T(xn)\\ s d(xn) + en, r e ^ « n , 
l i r i u ^ * , r e f a , 

Thus for T 6 jT a n , 

||w - 2 » | | ^ ||w - *w|| + \\xn - T(xn)\\ + \\T(xn) - T(w)\\ 

^ ||W - Xn|| + d(xn) + €n + k\\xn - W\\. 

Since d(xn) —» 0 as n —» 00, the above can be made arbitrarily small, proving 
d(w) = 0. 

Thus in any case d(xo) = 0 for some Xo G K. Because of left reversibility of 
J^~, the sets {^~a : a £ ^4} are directed by set inclusion (and this induces a 
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partial order on A). If xa G«^~a(#o), a £ A, then d(x0) = 0 implies that the 
net {*« : a G A} converges to x0. If T G 3F is continuous then {Txa : a £ A} 
converges to Tx0. But {Tjr

a(x0) : a £ A} is a subnet of {^«(#0) : a (z A} and 
r* a G T<!?~a(xo), a f i . Thus the net {Txa : a £ A} also converges to *0, and 
Txo = x0. This with (i) proves existence of the ideal / of the theorem, and if all 
the mappings of $~ are continuous then &~ has a common fixed point in K. 

Remark 2.1. Let &~ be a left reversible semigroup of transformations of U—> U, 
K C U Q X, satisfying (i) and (ii) of Theorem 2.1. Define <py: K —>Rby 

<py(x) = inf \ sup ||* - T(y)\\\ 

where &~a = {Ta o T : T G ^ " } . Then <py is nonexpansive and convex on K, and 
therefore attains its minimum on K if K is weakly compact. 

Proof. Let y G K. With $"a as defined above there exists a G A such that 
dist(r(;y), K) ^ 1 for all T G ^ a . For such T there exists * r G i£ such that 
| | r (^) — xT\\ = 1. Therefore 

\\T(y) -x\\ ^ \\T(y) - xT\\ + \\xT - x\\ 

^ 1 + diam(X). 

Thus supre^a \\x ~~ T(y)\\ < 00 and <pv(x) is defined. 
To see that <py is nonexpansive let T G ^~m x,x' G K. Then 

so 

| * - T(y)\\ ^ \\x - x'\\ + \\x' - T(y)\\, 

sup \\x — r(y)|| ^ sup ||*' — r(y)|| + ||* — *'||, 

inf { sup I|* — T(y)\\( ^ inf ) sup |\xf — T(y)\\ ( 
a£A \TÇLF„ J a£A \ T ^ „ J a£A \Te$~a J a£A \T^a 

yielding <py(x) S <PV(X') + \\x — *'||-
We now show that <pv is convex. Let *, x1 G K, 13 G (0, 1), T G ̂ ~a. Then 

110* + (i _ #* / - T(y)\\ S fi\\x - T(y)\\ + (1 - /3)||*' - r (y) | | ; 

sup 110* + (1 - /?)*' - T(y)\\ ^ 0 sup ||* - T(y)\\ 
TdPa T£3Ta 

+ ( 1 - / 3 ) sup | | * ' - T(y) | | . 

Now let e > 0 and choose a, a' G A so that 

sup H* - T(y)\\ S <PV(X) + e; 

sup ||*' - r ( y ) | | ^ *>„(*') + €. 
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T h e n if a" Ç A is chosen so t h a t ^~a" £ ^ " a n i 7 " ^ , we have 

<pv(0x + (1 - 0)* ' ) ^ sup \\0x + (1 - 0 ) * ' - r ( y ) | | 

^ /3 sup ||x — r ( y ) | | 

+ (1 - 0) sup | | x ' - r ( y ) | | 

rg 0 («,,(*) + e) + (1 - 0 ) M * ' ) + € ) . 
Therefore 

<Py(fiX + (1 - P)X*) S foy(x) + (1 - P)<Py{x'). 

I t follows from the foregoing t h a t ^ is lower semi-continuous in the weak 
topology on K and thus a t ta ins its minimum on K. 

W e note t h a t the above remark yields an a l ternat ive approach to the proof 
of Theorem 2.1. Specifically, with po(y) = inf^^ <py(x) one immediately 
obtains existence of a point z = z(y) such t h a t <pv(z) = po(y), i.e., z G C. 

We conclude this section with one final comment . As noted earlier, the above 
results hold for the class of Banach spaces X for which e0(X) < 1. This is a 
class of spaces which lies between the uniformly convex spaces and reflexive 
spaces which possess 'normal s t ruc ture ' . (See [8].) I t is in this la t ter class t h a t 
the fixed point theorem of Kirk [16] is formulated. However, we do not know 
whether the results of this section (or even those of [10 ; 11]) hold in this more 
general class of spaces. 

3. Semigroups of asymptotically nonexpansive mappings. It was 
shown in [10] t h a t if K is a closed and convex subset of a uniformly convex 
space and if T : K —» K is asymptot ical ly nonexpansive then the fixed point set 
of T in K is closed and convex. If ^~ is a commuta t ive semigroup of asymp­
totically nonexpansive mappings with J i , T2 G ^ " h a v i n g fixed point sets Fi, F2 

respectively, then T2 ". F± —» F\ and thus FiC\ F2 5e 0. As in the nonexpansive 
case, it follows t h a t the fixed point sets of the mappings of ^T have the finite 
intersection proper ty and since they are each weakly compact they have 
nonempty intersection, thus yielding a common fixed point for 3T (as a special 
case of Theorem 2.1). 

We remark t h a t if two asymptot ical ly nonexpansive mappings T\, T2 

commute then it is easy to see t h a t their composition T\ o T2 is also asymp­
totically nonexpansive. T h u s there is no loss in generality in assuming t h a t $~ 
in the following theorem is a semigroup as opposed to a commuta t ive family. 
This theorem generalizes a theorem R. D e M a r r [3] proved for nonexpansive 
mappings. (Also see T . Mitchell [21].) In this sett ing the fixed point sets may 
not be convex. 

T H E O R E M 3.1. Let K be a nonempty compact convex subset of a Banach space X 
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and let &~ be a commutative semigroup of asymptotically nonexpansive mappings 
of K into K. Then there exists a point x G K such that T(x) = xfor each T G $~. 

Proof. Use Zorn's lemma to obtain a set K\ Ç K which is minimal with 
respect to being nonempty, closed, convex, and satisfying: 

(*) For each x £ Ki and T G 3T~, every subsequential limit of the sequence 
\Tn(x)} lies in Xi. 

Next let M be a subset of Ki minimal with respect to being nonempty, 
closed, and satisfying: 

(**) For each x G M and T G J?7", every subsequential limit of the sequence 
{7*0x0} lies in M. 

Note that if x G M and lim^^ Tni(x) = w for some T G $~ then 
l i m ^ 7^+1O0 = T{w) G M by (**). Therefore 

HT = MC\ T(M) 9* 0. 

Now let x G if r and U G ^ , and suppose Unj(x) —» 3 as j —» oo. Then since 
x É If, (**) implies 2 ^ 1 . Also x G T(ikf) implies x = T(y) for some y Ç I f 
so by commutativity of ^ , 

Uni(x) = Uni(T(y)) = T(Un>(y))->z a s j - ^ o o . 

On the other hand because i£ is compact {£/w/(30} n a s a convergent sub­
sequence { Umj(y)} which, by (**), converges to some point v G M. Since T is 
continuous, 

T( Umi(y)) -> 7 » as j -> oo 

and it follows that z = 7 » , i.e., z G T(Af). 
Therefore z £ HT and by minimality of M, HT = M. Thus T(M) D if, and 

since T G ^~ was arbitrary, 

MC H r ( M ) . 

Now assume 5 = diam(ilf) > 0. As shown by DeMarr [3] there exists r < 8 
such that for some x G K\, 

sup{ | \x — z\ I : z G ilf} ^ r. 

Let 

C = ( x G X i : J f Ç 5 ( * ; r ) ) . 

Then C is a nonempty closed and convex subset of Ki (see [1]) and since 8 > 0, 
C is a proper subset of i£i. Let 2 ^ C and suppose l im^^ Tni(z) = w for some 
r G JT\ To see that w G C let e > 0 and 3; G M. Choose i so that 

\\w - Tn<(z)\\ ^ e 

and so that TUi has Lipschitz constant less than 1 + e. Choose £ G M so that 
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T»i(t) = y. Then 

\\w - y\\ g \\w - r»'-(s)|| + H^1 '^) - rn,'(OII 

^ € + (1 + € ) | | S - / | | 

^ e + (1 + e)r. 

Since e is arbitrary we conclude \\w — y|| ^ r which, since w G i£i by (*), 
implies w £ C. This contradicts the minimality of i£i so 8 = 0 and the proof is 
complete. 

We close this section with one final observation. Freudenthal and Hurewicz 
[7] proved that if T : M —> M is nonexpansive and if M = T(M) then T is 
necessarily an isometry. One can draw the same conclusion if T is merely 
assumed to be asymptotically nonexpansive. To see this, assume M is a compact 
metric space and let T be an asymptotically nonexpansive mapping of M onto 
M. Thus d{Tl(x), Tl{y)) ^ ktd(x, y), x, y G M, where kt —> 1 as i —» oo. Fix 
Xo, y0 6 M" and define {xw}, {;yw} by T(xn+1) = x„, r(yn+1) = yn, n = 0, 1, 2 , . . . . 
Let e > 0. Because M is compact there exist m, n, m > w, such that 
d(xmf xn) < e, d(;yw> yn) < e, where m — n = N may be assumed to be arbi­
trarily large. Then 

CL[Xmi Xn) = &m tt^i (̂ XT Ĵ , 1 \Xn)) 

= km~H{x0, TN(x0)). 

Similarly 

d(ym, yn) è km-'d(y0, TN(y0)). 

Therefore 

d(T(xo), T(y0)) ^ kN^-'d(TN(x0)} TN(y0)) 

^ kv-rWxotyo) - d(x0, TN(xo)) - d(y0, TN(y0))] 

^ kN-Trx[d{x^ 3>o) — 2e]. 

Letting N —> oo , d(T(x0), T(y0)) ^ d(x0, 3>o) — 2e, and since e is arbitrary this 
implies T is an expansive mapping of M into itself, hence an isometry by 
another result of Freudenthal and Hurewicz [7]. 

THEOREM 3.2. If M is a compact metric space and if T is an asymptotically 
nonexpansive mapping of M onto itself, then T is an isometry. 

4. An example. The constant 7 of Theorem 2.1 is obtained by setting 
7 = 1/r in (5). It is easy to show that this implies 7 = (5/4)1/2 if X is the 
Hilbert space I2. (We note that Theorem 2.1 is essentially the same as Theorem 1 
of [11] when X = P and $~ consists of a single mapping.) It is reasonable to ask 
whether this is the largest constant for which the result holds, and we do not 
know the answer. The following example, however, shows that there is a least 
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upper bound 70 of the numbers 7 for which Theorem 2.1 holds in I2; indeed, 
70 <E [(5/4)1 '2, 2]. 

Let 

Kt = {x 6 /2 : ||*|| ^ 1} ; JSTi+ = {* 6 JKTi : ** ^ 0, i = 1, 2, . . .} ; 

Si = {x G /2 : ||*|| = 1} ; 5i+ = 5i H i£i+. 

Let « = (1, 0, 0, . . .) and define A : Kx+ -> #1+ by 

4(*) = (1 - ||x||)e + P(x) 

where P is the shift operator in I2. Then 

1 è |M(x)| |2 = l - 2 | | * | | + 2 | W | * è l / 2 
and 

\\A{x) - A(y)\\ = Hdbll - IMI) + [P(x) - P(y)]\\ ^ V2\\x - y\\, 

*, y e K^. 

Now define R:K^^ 5i+ by 

2?(*) = A(x)/\\A(x)\\, * e Kt+. 

It can be shown that \\R(x) — R(y)\\ ^ 2||* — y\\, and that the mapping 
T = P oR maps i£i+ —> Si+. Moreover, T(x) 9^ x for all * £ i£i+. Also, since 

\\T*(x) - 7*6011 é 2 | | * - y | | f * = 1 , 2 , . . . , 

and it follows that Theorem 2.1 is false if X = I2 and 7 ^ 2. 
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