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Photocatalytic water splitting offers a promising pathway for the generation of solar fuel, H2. Usually, water 

splitting photocatalysts are comprised of water-stable semiconductor materials (e.g., oxides, halides, sulphides, 

oxynitrides, etc.) that harvest incoming photons and convert them into electron-hole pairs. These charge 

carriers migrate to the surface and can drive the H2 and O2 evolution reactions under favorable thermodynamic 

conditions [1]. Often a co-catalyst (e.g., Ni/NiO, Pt, Au, etc.) is deposited onto the photon-harvesting 

semiconductor in order to enhance the reaction kinetics. The co-catalyst can offer preferential adsorption sites 

for the reactants and can efficiently separate the charge carriers, which prevents recombination. Structural 

changes during photocorrosion of a core-shell structure has been studied and suggests that Ni dissolves into 

solution and leaves the shell (NiO) intact thus creating a void [2]. Understanding the Ni dissolution reaction 

would provide an insight in charge transport across interface of co-catalyst and semiconductor substrate. 

In this work, we aim to investigate charge transport and light-induced structural changes at 

metal/semiconductor interfaces under conditions relevant to photocatalytic water splitting. We have chosen a 

model photocatalyst consisting of Ni/NiO core-shell co-catalyst loaded on a SrTiO3 (STO) light-harvesting 

semiconductor, since this type of core-shell structure loaded on semiconductor has previously shown overall 

water splitting [3]. Multifaceted STO cubes were synthesized using a solvothermal method reported by Wang 

et al. [4]. PANalyticalAeris powder X-ray Diffractometer was used for X-ray diffraction (XRD) measurements 

which showed peaks attributable to STO only, indicating phase purity. A 1 wt.% loading of Ni/NiO co-catalyst 

was deposited onto the STO substrate using dry impregnation and thermal processing methods as described by 

Zhang et al. in [4]. XRD did not reveal any additional peaks after impregnation. The as-synthesized and 

Ni/NiO-loaded STO were imaged using transmission electron microscopy (TEM) in an aberration-corrected 

FEI Titan TEM operated at 300 kV and equipped with a Gatan K3 direct electron detector for imaging. 

Photocatalytic water splitting over the Ni/NiO-loaded STO was performed with a liquid-phase photoreactor 

coupled to a gas chromatograph for compositional analysis of H2. A Xe arc lamp operated at 450 W was used 

as a light source. Methanol was used as hole scavenger; hence no oxygen was detected. 

 Figure 1a displays low magnification TEM images of the as-synthesized STO nanoparticles, which appear to 

have a truncated cubic shape and are roughly 100 – 300 nm in size. Figure 1b shows a high resolution TEM 

image of a typical STO-supported Ni/NiO nanoparticle observed after impregnation and processing. The 

HRTEM image reveals that the Ni/NiO co-catalyst consists of an oval-shaped Ni core approximately 1.8 nm 

in size, surrounded by a highly irregular NiO shell approximately 3 nm in width. The Ni/STO interface exhibits 

a high degree of coherence that can be seen by the well-aligned lattice fringes that meet at the interface. The 

encapsulating NiO shell is comprised of multiple domains. Figure 2 plots the H2 evolution rate (HER, μmol 

H2 hr-1 gcat
-1) of the Ni/NiO-loaded STO photocatalyst as a function of time during light illumination. H2 

evolution was detected after 8 minutes of light illumination. We will use the structural modification caused by 

the Ni metal core dissolution reaction to investigate the efficiency of electron transport across the STO 

interface. 

Although this material produces solar fuel, it is only active in the ultraviolet (UV) region of the spectrum. 

Since solar the spectrum constitutes ~3-5% UV as compared to the visible part which is ~42% it is important 

to access the visible part of the spectrum for higher efficiency. We are currently exploring the effect of Rh 

doping which changes the band structure and makes STO active in visible [5]. In situ electron microscopy 
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coupled with light illumination using the Thermo-Scientific Titan AC-ETEM microscope is being used to 

investigate the effect of light induced structural changes of the semiconductor. 

 
Figure 1. Figure 1: (a) Low magnification TEM image of as-synthesized STO nanoparticles. (b) HRTEM 

image of Ni/NiO-STO core-shell structure. In the inset Fourier transform, spots from Ni and NiO are visible. 
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Figure 2. Figure 2: Hydrogen evolution rate as a function of time during the photoreaction of 1wt.% Ni/NiO-

STO nanoparticles. Within 8 mins of light irradiation, significant hydrogen was detected as shown in the chart. 
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