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Abstract. Fixed point and random fixed point theorems are presented for weakly
inward maps. Also a continuation theorem for weakly inward maps is presented.

t. Introduction. This paper presents some new results for weakly inward mappings
defined on a Banach space £. The paper will be divided into two main sections. In Section 2
we first establish a continuation theorem for weakly inward multivalued maps. This result
together with a result of Deimling [2,3] will yield a variety of fixed point results for weakly
inward maps in shells of Banach spaces. The results we present would arise naturally if a
theory of fixed point index was available in a Banach space setting. However this is not
known for general Banach spaces even when the maps are compact; see [7,15] for recent
results. The fixed point theory we derive will be useful in studying the existence of non-
negative solutions to positone and non-positone problems; see [10,16] for applications in the
single valued case. The case when £ is a locally convex Hausdorff linear topological space
will also be discussed in Section 2. In Section 3 we present some random fixed point theorems
for weakly inward maps. Our paper was motivated by work of Deimling [2,3], Precup [12],
Reich [13] and Webb [18].

For the remainder of this section we gather together some definitions and known facts.
Let £ be a Banach space (or more generally a locally convex Hausdorff linear topological
space) and let C be a closed convex subset of E. The set

/c(x) = [x + X{y - x): X > 0, y e Q for x e C

is called the inward set at x. A mapping F: C -*• 2E (here 2E denotes the family of all non-
empty subsets of E) is said to be weakly inward with respect to C if

F(x)nlc(x)^0 on C. (1.1)

REMARK. It is worth noting that some authors define weakly inward w.r.t. C to be the
more restrictive condition F(x) c Ic(x) on C.

Recall [3] if C is a closed convex subset of a Banach space then

IC(X) = IC(X) = x

Let X and Y be topological spaces. A mapping F: X -» 2¥ is upper semicontinuous (u.s.c).
if the set F~'(fi) = [x € X: F(x) n .8 ̂  0} is closed for any closed set B in Y. F is lower
semicontinuous (l.s.c.) if F~X(B) is open for any open set B in Y. If Fis u.s.c. and l.s.c. then
we say F is continuous. Now let £ be a Banach space and &E the bounded subsets of £. The
Kuratowski measure of noncompactness is the map a : £2f ->• [0, oo] defined by

n

a(A) = inf (e > 0 : A c | J Xt and diam (Xj) < e}; here A e ttE-
i=\
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Let Z be a nonempty subset of E and F: Z -> 2£. F is called a &-set contraction (fc > 0 a
constant) if a{F{W)) < ka{W) for all bounded sets W oiZ. We call Fa condensing map if Fis
a 1-set concentration and a ^ ^ F ) < a(W) for all bounded sets W Q Z with a(^F) ^ 0 (of
course F being a 1-set contraction can be removed from the definition of condensing if we wish).

Next we state a result of Deimling [3] which will be used in Section 2.

THEOREM 1.1. Let E be a (real) Banach space and C a closed, bonded, convex subset of E.
Suppose F: C ->• 2E is a u.s.c. condensing map with closed convex values. If F(x) n Ic(x) ^ 0
on C then F has a fixed point in C.

Let (ft, A) denote a measurable space. For a metric space (X,d) we denote by CD{X) all
nonempty closed subsets of X. Suppose Z is a nonempty subset of X and F: Z ->• 2X. Now F
is called hemicompact if each sequence {(*n)}^i m Z has a convergent subsequence whenever
d(xn, F(xn)) -*• 0 as n -> oo; recall if Y is a nonempty subset of Z then d(x, Y) =
infyey d(x, y). A mapping F : ft -» 2* is measurable (respectively weakly measurable) if for
every closed (respectively open) subset D of X, F~'(7J>) = ( w e f i : F(w) n £) ^ 0} € A. A
mapping F : ft x Z —*• 2X is called a random operator if for every x e Z the map /"(., x) : S2 —> X
is measurable. A random operator F : ft x Z -> 2X is called continuous (hemicompact etc.)
if for each w e f t , F(w,.) is continuous (hemicompact etc.). The single valued map <p '• ft -*• X
is said to be (i) a deterministic fixed point of F if <p(w) € F{w, <p(w)) for all w e f t ; (ii) a ran-
dom fixed point of F if 0 is a measurable map such that <j>(w) e F(w, <t>(w)) for all w e f t .

We now state a very recent result due to Tan and Yuan [17].

THEOREM 1.2. Let (ft, A) be a measurable space and Z a nonempty separable complete
subset of a metric space (X, d). Suppose the map F: ft x Z ->• CD(X) is a random continuous
hemicompact map. Then F has a deterministic fixed point iff F has a random fixed point.

2. Fixed point theory. In this section we establish a continuation type result for weakly
inward maps. First we assume £ is a Banach space and C c E is a closed convex subset of E.
Let Uo be a bounded open subset of E and U = UQC\C. For notational purposes let CK(E)
denote the family of all nonempty, convex, compact subsets of E. Suppose L : U -> E is a
continuous operator (single valued). By IKSU(U, E; L) we mean the set of all u.s.c. conden-
sing, weakly inward w.r.t. C (i.e. F(x)DIc(x) ^ 0 on 17), maps F:U-± CK(E) such that
L - F is zero free on dU (i.e. Lx£Fx for all x e dlf); here dU denotes the boundary of U in
C. A mapping F e IKW(U, E; L) is L-essential in IKdU(V, E; L) if for every G e IKW(U, E; L)
with F\au = G\dU we have that L — G has a zero in £/. Otherwise F is L-inessential in
IKau(U, E; L) i.e. there exists G e IKw(U, E\ L) with F|8t, = G|3y and L - G is zero free on t/.
Two maps F, G e IKdU(U, E; L) are homotopic in IKW(U, E; L) written F ^ G in IKSU(U, E; L)
if there is a u.s.c. condensing [9,11] map N : V x [0,1] ->• CK(F) such that N,(M) = 7V(w, 0 :
17 -» CK(E) belongs to 7 ^ ( 1 7 , F; L) for each r e [0,1] and No =F,N{= G.

THEOREM 2.1. Let E, C, Uo, U, L be as above and F e IKW(U, E; L). Then the following
are equivalent:

(i) F is L-inessential in IKsu(U, E; L);
J i i ) there is a map G e IKau(U, E; L) with F^G in IKau(U, E; L) and L-G is zero free

on U.
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Proof. We first show (i) implies (ii). Let G e IKau(U, E; L) with G\au = F\au and L - G is
zero free on U. Define H : V x [0, 1] -»• CK(£) by

H(x, t) = tG{x) + (1 - 0^00 for (x, 0 € V x [0, 1].

A standard argument (see [5,9,11] shows His u.s.c. and condensing. Also for each t e [0, 1], H, e
IKau{U, E; L). To see this first notice L - H, is zero free on dU for each / e [0, 1] (since L-G
is zero free on dU and F\dU = G\gu). In addition for x e 17 we have F(x) n /c(x) / 0 and
G(A-) n 7c(xj ^ 0 and so, since H,(x) = tG(x) + (1 - 0^(*), we have

lc(x) ^ 0

since Ic(x) is a convex subset of E. Thus F = G in IKgu(U, E; L).
We next show (ii) implies (i). Let N: U x [0,1] ->• CK(E) be an u.s.c. condensing map

with N, e IKau(U, E; L) for each / € [0, 1] and A^ = G, N\ = F. Let

B={xe~U:LxeN(x,t) for some re [0,1]}.

If B = 0 then in particular L — F= L — N\ has no zeros so F is L-inessential in
IKsu(U, E; L). It remains to consider the case when B ^ 0. A standard argument (see
[5,9,11]) shows B is closed. In addition since dUDB = 0 there is a continuous function
ix : V -y [0, 1] with fi(dU) = 1 and fi(B) = 0. Define

J: 17 - • Ctf(£) by /(x) = AT(x, /*(*)).

Now 7 is u.s.c. and condensing. We claim y|3(/ = F\au, L — / i s zero free on £/ and / i s weakly
inward w.r.t. C If this is true then / e IKau(U, E; L) with L — J zero free on U and
/ | a ( / = F\au. Consequently F is L-inessential in IK3u(U, E; L) and we are finished.

It remains to prove the claim. L — J is zero free since 0 e L(x) — J(x) means L(x) e
N(x, fj.(x)) which means x e B and so /x(x) = 0 (i.e. £(x) e N(x, 0)), a contradiction since
L — G is zero free. If x e 9t/ then /n(x) = 1 and so

J(x) = N(x, LL{X)) = N(x, 1) = F(x).

Finally to show that / is weakly inward w.r.t. C notice that for fixed s € [0, 1] Ns is
weakly inward w.r.t. C i.e. Ns(x) D Ic(x) / 0 for x e U. For fixed x e U let [i(x) = s so that
/(x) = A^(x) and

We can do this argument for all x e U and so / is weakly inward w.r.t. C. •

Theorem 2.1. immediately yields a topological transversality theorem for weakly inward
maps.

THEOREM 2.2. Let E, C, Uo, U, L be as above. Suppose F and G are two maps in
IK3U(U, E; L) such that F^Gin IKdU(U, E\ L). Then Fis L-essential in IK3U(V, E; L) iff G is
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L-essential in IKau(U, E; L).
Proof. Suppose Fis L-inessential in IKsu(U, E; L). Then Theorem 2.1 guarantees a map

T e IKdU(U, E; L) with F ^ T in IKW(U, E; L) and L - T is zero free on V. Thus G ^ T \n
IKSL/(U, E\ L) so G is L-inessential in IKdu(U, E; L) by Theorem 2.1. Symmetry will now
imply F is L-inessential in IKsu(U, E; L) iff G is L-inessential in IK3U(U, E; L). •

For the remainder of this section let L = / (the identity operator).

THEOREM 2.3. Let E, C, Uo, U be as above, UQ e U = UQ n C. Then the constant map
F:U-> {u0} is I-essential in IK3U(U, E; I).

Proof: Let G : U :-» CK(E) be any u.s.c. condensing, weakly inward w.r.t. C, map with
G\3y = F\su = {uo). We must show G has a fixed point in U. Since C/o is a bounded subset of
E we may choose R > 0 so that

U0C{xeE: \\x\\ < R] and G(I7) c {* 6 E: \\x\\ < R}.

Let
D = CH{xeE: \\x\\ <R+\}

and define
f G(x), x e V
I {M0}, JC € D/U.

Now y : D -+ CK(E) is a u.s.c. condensing map. We claim J is weakly inward w.r.t. D. If this
is true then Theorem 1.1 implies that / has a fixed point, say y, in D (i.e. y e J(y)). It is
immediate that ye U so y e G(j).

It remains to prove the claim. If x e D/U then ./(*) = {«o} e Ij,{x) since »o e t/o fl C (so
MO € D). Now let x e U and take y e /(x) = G{x) with j ; e /c(X)- Now there exists {/1,,},,Ŝ ,
with Xn > 1 for n e N and {z,iJn6M c C with

| | j - [x + ln{zxn - x)]|| ->• 0 as n ->• oo.

Let

Then vxn -> j ; as « -»• oo and so

for « e Py sufficiently large. Let /A« = y-. Then

so z\n s ( , r e £ : ||x|| < R+ 1} for « sufficiently large. In addition since [zxn}nsNcc w e n a v e

i\n € D for n sufficiently large, and | | j — (x + Xn(zin — x)|| -> 0 as « ->• oo. Thus j € Ijj(x). •

Theorems 2.2. and 2.3 will now be used to present a variety of fixed point results.
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THEOREM 2.4. Let E be a Banach space and C a closed convex subset of E. Let Uo be a
bounded open subset of E and UQ e CD Uo = U. In addition assume

h : U x [0, 1] —> CK{E) is a u.s.c. condensing map such that h{x, 0) = {UQ}

for all x e V and such that for each t e [0, 1], h,(.) = h(., t): V -> CK(E) (2.1)

is weakly inward w.r.t C and xfi h,(x)for x e 8U

holds. Then /)(., 1) has a fixed point x e U.

Proof. The result follows immediately from Theorem 2.2. and Theorem 2.3. Q

THEOREM 2.5. Let E be a Banach space and C a closed convex subset of E. Let Uo be a
bounded open subset of E, U = Uo n C and 0 e U. Suppose F': U —> CK(E) is a u.s.c. J-set
contractive, weakly inward w.r.t. C, map and x£XF(x) for A e [0, 1] and x 6 3C/. In addition
assume

if{xn) ^ V with yn e F{xn)for all n and xn - yn -> 0

as n —*• oo, then there exists x e U with x e F(x)

holds. Then F has a fixed point.

REMARK. If U is weakly compact and I — F: U -*• CK{E) is demiclosed on U then it is
easy to see that (2.2) holds. Recall the operator S : D{S) c E -»• CK{E) is said to be demiclosed
on D(S) if for xn e D(S) with yn e S(xn) for all n, the condition xn -*• x and yn -^ y as n -*• oo
imply that x € 0(5) and y e S(x); here —̂  denotes weak convergence.

Proof. For each n e [2, 3,...} define

Fn = (l-?JF:U->CK(E).

Clearly Fn is u.s.c. (l — ^)-set contractive map. In addition for x e U we have F(x) n Ic(x)
0 and 0 e /c(.v) since 0 e t/ c C. Consequently, since Fn(x) = (1 - ^ ( A : ) + ^0, we have

since /<;(•*) is a convex subset of E. Thus f,, is weakly inward w.r.t. C. Let

h(x, t) = ^n(A-) for (JC, 0 € 17 x [0, 1].

It is easy to check that h satisfies (2.1) with uo = 0. Theorem 2.4 implies that Fn has a fixed
point xn e U. Choose yn e F(xn) with xn = (1 - tyyn. Notice

xn-yn = —y,,^- 0

since F(U) is bounded. Now apply (2.2). We are of course guaranteed the existence of x e U
with x e F(x). D

https://doi.org/10.1017/S0017089500032663 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032663


316 DONAL O'REGAN

Next we establish some fixed point results in shells of Banach spaces.

THEOREM 2.6. Let E be a Banach space and C a closed, convex subset of E. Let W and V
be open bounded subsets of E and let U\ = WC\C and U2 — VC\ C. Assume U\ c U2 (proper)
and F: U2 —> CK(E) is a u.s.c. condensing, weakly inward w.r.t. C, map. In addition suppose

x<£F(x) for xedUiUdU2, (2.3)

F-.TTi^- CK(E) is I-inessential in IKaU] (V~i, E; I) {i.e. F | ^ is I-inessential) (2.4)

F:Th^ CK{E) is I-essential in IKW2(Th, E; I) (2.5)

hold. Then F has at least one fixed point in U2/U\.

Proof. Suppose F has no fixed points in U2/U\. Now (2.4) implies that there exists a
u.s.c. condensing, weakly inward w.r.t. C, map 9 : U\ -> CK(E) with 9\Wl = F\dUl and x£ 9{x)
for x e TT\. Define $ : TT2 -> CK(E) by

Now <t> is a u.s.c. condensing, weakly inward w.r.t. C, map. Also <t> has no fixed points on Ui
(since 9 has no fixed points on U\ and Fhas no fixed points on UilU\). This of course con-
tradicts (2.5). •

Our next theorem was motivated by results of Precup[12].

THEOREM 2.7. Let E be a Banach space and C a closed, convex subset of E. Let W and V
be open bounded subsets of E and let U\ = WC\ C, Ui = V C\C and U\ C Ui (proper) with
0 € U\. In addition assume

N: Ui x [0, 1] - • CK{E) is a u.s.c. condensing map such that for each t e [0, 1],

N,(.) = N(., t):Th^ CK(E) is weakly inward w.r.t. C, with N(x, 0) = {0}
(2.6)

for all x e Ui and for each t e [0, 1] we have x£N,(x)
for all x e dU2;

H : U\ x [0, 1] -> CK(E) is a u.s.c. condensing map such that for each t e [0, 1],

//,(.) = //(., / ) : fA - • CK(E) is weakly inward w.r.t. C, and for each (2.7)

/ 6 [0, 1] we have x£ H,{x)for allxedUi;

H(x, 1) = N(x, \)for allxeWx (2.8)

and

x<£H(x,0)forallxeU\. (2.9)

Then N(., 1) has a fixed point in Ui/U\.

Proof. From Theorem 2.3 we know that the zero map is /-essential in IKw2(Ui, E\ I).

Then (2.6) together with Theorem 2.2 implies
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N(.,\):Th^ CK(E) is /-essential in IKdU2(Th, E; I). (2.10)

Now (2.9) (and also (2.7)) implies that H(x, 0) is /-inessential in IKdUl (Th, E; I) (this is
immediate from the definition of/-inessential in IKSUi(U\, E; I). This together with (2.7),
(2.8) and Theorem 2.2 yields

N(., 1) = //(., 1) : V\ -* CK(E) is /-inessential in IKW{(U~X, E; I). (2.11)

Now (2.10), (2.11) (see also (2.6), (2.7) and (2.8)) imply that (2.3), (2.4) and (2.5) hold. The
result now follows from Theorem 2.6. •

THEOREM 2.8. Let E be a Banach space and C a closed, convex subset of E. Let W and V
be open bounded subsets of E and let U\ = Wn C, Ui = Vf)C and U\ C U2 (proper). Sup-
pose 0 e U\ and F: U2 —*• CK(E) is a u.s.c. condensing, weakly inward w.r.t.C, map. In addi-
tion assume

x£XF(x) for A €[0,1] and x e dU2, (2.12)

there exists ave C/{0] with x £ F(x) + SvforS>0 and x e dU\ ( 2 . 1 3 )
and

F{.) + ^ v : T T \ - » • CK(E) is weakly inward w . r . t . C for all f x > 0 (2.14)

hold. Then F has a fixed point in U2/U\.

REMARK. If F is single valued and C is a cone then (2.14) holds. To see this recall [15]
that F': U\ -*• CK{E) weakly inward w.r.t. C (in this setting) means

x € 3 £ Cn £/,, x* e C*, x*(x) = 0 implies x*(F(x)) > 0;

here C* = {x* e E* : x*(y) > 0 for all y e C). Now if x e dEC n (7,, x* e C, x*(x) = 0 then

x*(F(x) + tiv) = x*(F(x)) + !MX*(V) > 0,

since u € Cand x* e C*. Thus (2.14) holds in this case. In fact it is also easy to see that (2.14)
is true even if F is multivalued and C is a cone. In this case Ic(x) is a wedge.

Proof. Now x£F(x) for x e 8U2 U dU{ (see (2.12) with X=\ and (2.13) with S = 0).
Choose M > 0 such that ||{^ : y e F(x)}\\ < M for all x e U\ and choose <50 > 0 such that

sup{||jc|| : JceTTTJ. (2.15)

Now let

N(., t) = tF(.) and //(., t) = F(.) + (1 - t)Sov.

Clearly (2.12), (2.13) (with S = (1 - t)S0), and (2.14) imply that (2.6) and (2.7) inTheorem 2.7
are satisfied. In addition (2.8) is true since N(x, 1) = F(x) = H(x, 1) for x e U\ and finally
(2.15) implies (2.9) is satisfied. The result now follows from Theorem 2.7. •

REMARK. Let WIK(U, E) denote the family of all u.s.c. condensing maps F: U ->• 2E

with nonempty, compact, Rs (or more generally acyclic [4,5]) values and with F(x) c Ic(x) for
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x 6 U. In the usual way we can define WIKau(U, E; L) and L-essential in WIKW{U, E; L).
Exactly the same reasoning as in this section establishes an analogue of Theorem 2.2 and
Theorem 2.6 (for maps in WIKau(U, E; L)). We also obtain the analogue of Theorems 2.3-
2.5, 2.7-2.8 once we produce the analogue of Therorem 1.1 in this setting. This result (with
extra conditions) can be found in Fitzpatrick and Petryshyn [4, Corollary 1 and Theorem 4].

The results in this section could be extended also to the situation when E, d is a locally
convex metrizable linear topological space. For convenience we take L = I (for the more
general case follow the ideas below and the ideas in [9]). Let J f b e a subset of E. A multi-
valued bounded map F: X -» CK(E) is said to be a P-concentrative mapping [8] if for each
p e P (P is a defining system of seminorms on E) and each bounded non-/?-precompact sub-
set M of X (i.e. M is not precompact in the pseudonormed space (E,p)) we have

ap(F(M)) < ap(M),

where ap(.) denotes the measure of noncompactness [8] in the pseudonormed space (E,p).
Let C be a complete convex subset of E, Uo a ^-bounded open subset of £ and U = UQ D C.

PIKsu(U, E; I) denotes the set of all u.s.c. /"-concentrative, weakly inward w.r.t. C, maps
F: U -*• CK(E) which are fixed point free on dU. A mapping F e PIKau(U, E; I) is /-essential
in PIK3U(U, E; I) if every G e PIK3U(U, E; I) with F\w = G\au has a fixed point in U.
Otherwise F is /-inessential in PIK3o(U, E; I). Two maps F,Ge PlK3u{U, E; I) are homo-
topic in PIKau(U, E; I) written F= G in PIKsu(U, E; I) if there is a u.s.c. P-concentrative
map N: V x [0, 1] -> CK(E) such that N,(u) = N(u, t): V -+ CK(E) belongs to
PIKau(U, E; I) for each t e [0, 1] and No = F, # , = G.

The ideas used to prove Theorem 2.1 and Theorem 2.2 together with those in [11]
immediately yields the following analogue of Theorem 2.2.

THEOREM 2.9. Let E, C, Uo, U be as above. Suppose F and G are two maps in
PIKBU(U, E; I) such that_F^Gin PIK3U(D, E; I). Then Fis I-essential in PIKau(U, E;I)iffG
is I-essential in PIKau(U, E; I).

This immediately produces an analogue of Theorem 2.6.

THEOREM 2.10. Let E be a locally convex metrizable linear topological space and C a
complete, convex subset of E. Let W and V be open d-bounded subsets of E and let U\ — WC\C
and U2 = VnC. Assume U\ c Ui (proper) and F: U2 ->• CK(E) is a u.s.c. P-concentrative,
weakly inward w.r.t. C, map. In addition suppose

x£F(x) for x e dUi U 3U2, (2.16)

F:Th^ CK{E) is I-inessential in PIKW] (U, E; I) (2.17)

and

F:TT2^ CK(E) is I-essential in PIKdU2(U~2~, E; I) (2.18)

hold. Then F has at least one fixed point in Ui/U\.

We can also obtain analogues of Theorems 2.3-2.5, 2.7-2.8 once we produce an ana-
logue of Theorem 1.1. An analogue of Theorem 1.1. in the locally convex Hausdorff linear
topological space setting (with some extra conditions) may be found in Reich [13,14].
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We conclude this section by discussing briefly 1-set contractive weakly inward maps. Is
the property of having a fixed point invariant by homotopy for 1-set contractive maps? It is
well known that the answer in general is no. The following discussion indicates (in my opinion)
where the difficulties lie. In this setting let E,C,U, Uo be as in the beginning of Section 2. We
will consider maps F: U -» CK(E) which satisfy some property, which we will call property
(P). MK3U(U, E; I) denotes the set of all u.s.c. 1-set contractive, weakly inward w.r.t. C, maps
F: U -> CK(E) such that F is fixed point free on dU and F satisfied property (P). A mapping
F e MKBU(D, E; I) is /-essential in MKW(O, E; I) if every G e MKW, (77, E; I) with
F\w = G\gu has a fixed point in U. Two maps F,G e MKSU(U,E; I) are homotopic in
MKgu(U, E; I) written F=G in MKau(U,E; 7) if there is a u.s.c. 1-set contractive map
N : 77 x [0, 1] -» CK(E) such that N,(u) = N(u, t): 77 -* CK(E) belongs to MKau(U, E; I) for
each t e [0, 1] and No = F, N\ = G.

To prove a topological transversality theorem in this setting we need to assume property
(P) satisfies the following assumptions:

if F: 77 -*• CK{E), G : 77 ->• CK{E) are two maps which satisfy property (P),

then aF+ (1 - a)G : 77 -> CA"(£) must satisfy property (P); (2.19)

here 0 < a < 1 is a constant

and

if /ti : U -*• [0, 1] is a continuous map and N: (/ x [0, 1] -> CK(E)

is a u.s.c. 1-set contractive map with N, e MKau(U, E; 1) for each

/ 6 [0, 1], then the map J:U-> CK(E) given by

J{x) = N(x, n(x)) must satisfy property (P).

REMARK. Suppose property (P) means the map is condensing, then clearly (2.19) and
(2.20) hold.

Essentially the same reasoning as in Theorem 2.1 and Theorem 2.2 yields the following
result.

THEOREM 2.11. Let E, C, Uo, U be as in the beginning of Section 2. Suppose F and G are
two maps in MKdU(U, E; I) such that F^ G in MKau(U, E\ I). Also assume (2.19) and (2.20)
hold. Then F is I-essential in MKw{U, E; I) iff G is I-essential in MKSU(U, E; I).

Next we establish an analogue of Theorem 2.3.

THEOREM 2.12. Let E,C,U0,U be as in the beginning of Section 2 and w0 e U = Uo D C.
Let MKdu(U, E; I) be as described above and assume (2.19) and (2.20) hold. In addition suppose

for any G e MK3y(U, E\ 1) with G\au = {«o} and any {xn} c U

( \\ 1 - (2.21)
with xn e l l — }G(x,,) + - {«o}> then there exists x € U with x e G(x)

\ nj n

is satisfied. Then the constant map F:U—> {MQ} is I-essential in MKsu(U, E; I).
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Proof Let G : U -*• CK(E) be any u.s.c. 1-set contractive, weakly inward w.r.t. C, map
with G\3U = F\au = {MO} and suppose G satisfies property (P). We must show G has a fixed
point in U. Let D and J be as in Theorem 2.3. For each n e {2, 3 ...} consider

CK{E).

Clearly Jn is a u.s.c. (l - ^)-set contractive, weakly inward w.r.t. D (see the ideas in Theorem
2.3 and Theorem 2.5), map. Now Theorem 1.1 implies Jn has a fixed point xn e D for each
n € [2, 3 , . . .} . In fact xn e V so J(xn) = G(x,,) i.e.

1

n

Now (2.21) implies there exists x e U with x e G(x). It is immediate that x e U. •

Analogues (with extra assumptions) of Theorems 2.4, 2.6-2.8 could also be obtained in
this setting.

3. Random fixed point theory. We can use a recent result of Tan and Yuan (see Theorem
1.2) to establish random analogues of the results in Section 2. For completeness we state and
prove the random analogue of Theorem 2.8 (this extends results in [1]).

THEOREM 3.1 Let ((£2, A) be a measurable space and E a separable Banach space. Let C
be a closed convex subset of E, W and V are open bounded subsets of E with U\ — WC\C,
U2 = V n C, TT\ C U2 (proper) and 0 e U\. Suppose F: ft x Th -+ CK{E) is a random con-
tinuous, condensing, weakly inward w.r.t. C (for each w e f t , F(w,.): U2 ->• CK(E) is weakly
inward w.r.t. C), map and in addition

for each w e f t , x£XF{w, x)for X e [0, 1] and x e dU2 (3.1)

there exists a v e C/{01 such that for each w e f t
(3.2)

x£F(w, x) + Sv for S > 0 and x e dU\

and
for each w e ft, F(w,.) + fiv : U\ ->• CK(E) is weakly

inward w.r.t. Cfor all ^ > 0

hold. Then F has a random fixed point xo with xo(w) e U2/U\ with XQ(W) e U2/U\ for each
w e ft.

REMARK. If F is multivalued and C is a cone then (3.3) is satisfied.

Proof. Firstly note F: Q x U2 ^> CK(E) is hemicompact (see [17, Lemma 2.1]). Also
Theorem 2.8 implies that F has a deterministic fixed point. Apply Theorem 1.2 and we
deduce that F has a random fixed point. •

REMARK. It is also easy to establish a random analogue of Theorem 2.6. We leave this to
the reader.
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