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In an effort to capture the continuous hydraulic jump and flow structure for a jet impinging
on a disk, we recently proposed a composite mean-field thin-film approach consisting of
subdividing the flow domain into three distinct connected regions of increasing gravity
strength (Wang et al., J. Fluid Mech., vol. 966, 2023, A15). In the present study, we further
validate our approach, and examine the characteristics and structure of the circular jump
and recirculation. The influence of the disk radius is found to be significant, especially
in the subcritical region. Below a disk radius, the jump transits from type Ia to type
0 after the recirculation zone has faded. The supercritical flow and jump location are
insensitive to the disk size, but the jump length and height as well as the vortex size
are strongly affected, all decreasing with decreasing disk radius, exhibiting a maximum
with the flow rate for a small disk. The jump is relatively steep with a strong recirculation
zone for a high obstacle at the disk edge. Comparison against the Navier–Stokes solution
of Askarizadeh et al. (Phys. Rev. Fluids, vol. 4, 2019, 114002; Intl J. Heat Mass Transfer,
vol. 146, 2020, 118823) for the weak and intermediate surface tension suggests that the
surface tension effect is unimportant for a high obstacle for a jump of type 0 or type Ia. The
film thickness at the disk edge for a freely draining film is found to comprise, in addition
to a static component (capillary length), a dynamic component: h∞ ∼ (Fr/r∞)2/3 that we
establish by minimizing the Gibbs free energy at the disk edge, and, equivalently, is also
the consequence of the flow becoming supercritical near the edge. By assuming negligible
film slope and curvature at the leading edge of the jump and maximum height at the trailing
edge, we show that the jump length is related to the jump radius as LJ ∼ Re(Fr2/rJ

5)1/3.
The vortex length follows the same behaviour. The energy loss and conjugate depth ratio
exhibit a maximum with the flow rate, which we show to originate from the descending
and ascending branches of the supercritical film thickness. The presence of the jump is not
necessarily commensurate with that of a recirculation; the existence of the vortex closely
depends on the upstream curvature and steepness of the jump. The surface separating the
regions of existence/non-existence of the recirculation is given by the universal relation
Re10/3Fr2 = 9r9∞/50. The jump can be washed off the edge of the disk, particularly at
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low viscosity and small disk size. The flow in the supercritical region remains insensitive
to the change in gravity level and disk size but is greatly affected by viscosity.

Key words: boundary layer structure, thin films

1. Introduction

In a recent study (Wang, Baayoun & Khayat 2023), we proposed a theoretical treatment
to simulate the circular hydraulic jump and recirculation for a jet impinging on a disk.
We formulated a composite mean-field thin-film approach, which consists of subdividing
the flow domain into three regions of increasing gravity strength: a developing boundary
layer near impact, an intermediate supercritical viscous layer leading up to the edge of
the jump and a region comprising the jump and subcritical flow. The film was assumed
to drain freely at the edge of the disk. The idea of subdividing the flow domain into three
regions originates from Watson (1964). However, Watson (1964) did not include the effect
of gravity in the supercritical region and assumed a uniform flow downstream of the jump.
In addition, the jump was assumed to be shock-like, and the jump location was determined
through the balance of mass and momentum across the shock, so the flow details in the
jump region could not be captured.

Earlier efforts to capture the smooth variation of the jump and the vortex structure
are credited to Bohr, Putkaradze & Watanabe (1997) and Watanabe, Putkaradze & Bohr
(2003), who introduced second-order corrections by accounting for an additional gravity
effect as they ensured that their velocity profile satisfies the radial momentum equation at
the disk. When the momentum equation is not satisfied, the model reduces to a first-order
equation for the film thickness, which becomes singular at some radial distance. Although
the first-order model can successfully predict the jump location, it fails to capture the
flow structure over the entire domain (Bohr, Dimon & Putzkaradze 1993; Kasimov 2008;
Fernandez-Feria, Sanmiguel-Rojas & Benilov 2019; Wang & Khayat 2019). In order to
fix the two required boundary conditions for the second-order model, Bohr and coworkers
used two experimental points near the leading and trailing edges of the jump; some prior
knowledge of the location of the jump was also required. In this regard, even though
their theory showed good agreement with the earlier measurements of Bohr et al. (1996),
it remains semi-empirical. A similar approach was later adopted by Bonn, Andersen &
Bohr (2009) to study the hydraulic jump in a channel. Roberts & Li (2006) derived a
model based on centre-manifold theory to describe the dynamics of thin films on curved
substrates. A smooth profile was generated for the circular hydraulic jump on a flat
substrate, and the vortex was captured as well. However, they simply imposed the boundary
conditions in a manner similar to that of Watanabe et al. (2003). A more recent attempt was
made by Razis, Kanellopoulos & Van der Weele (2021) to capture the continuous jump in
an inclined channel. They extended the Saint-Venant equations by including the effect of
the longitudinal normal stress. They derived analytically an approximate expression for
the jump length as a function of the Froude and effective Reynolds numbers, highlighting
the strong interplay among inertia, gravity and viscous diffusion, as contributing to the
balance of forces that shape the jump.

Unlike existing formulations that capture the continuous jump profile and the
recirculation zone, our approach does not require any empirically or numerically adjustable
boundary conditions. The governing boundary-layer equations for the thin film are elliptic
given the presence of the hydrostatic pressure gradient in the original boundary-layer
equations, thus resulting in a two-point boundary-value problem, requiring upstream and
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downstream boundary conditions, particularly at the edge of the disk. The ellipticity is
preserved through the presence of the gravity term in the velocity profile that was taken
to satisfy the radial momentum equation at the disk. We demonstrated that the stress or
corner singularity for a film draining at the edge is equivalent to the infinite slope of
the film surface, which we imposed as the downstream boundary condition. We validated
our approach against existing measurements and numerical simulation. Measurement data
were taken from Hansen et al. (1997) and Duchesne, Lebon & Limat (2014) for fluids
of different viscosities and decades of flow rates. Comparisons were made for the film
profile, jump location as well as the local Froude number. Comparison was made against
the spectral inertial–lubrication model of Rojas et al. (2010), the numerical solution of the
boundary-layer equations of Fernandez-Feria et al. (2019), the Navier–Stokes solution of
Zhou & Prosperetti (2022) as well as existing mean-field models (Kasimov 2008; Dhar,
Das & Das 2020). Overall, agreement with our numerical predictions was surprisingly
close; the reader is particularly referred to the validation § 4 of Wang et al. (2023).

Based on the experimental observations of Liu & Lienhard (1993), Ellegaard et al.
(1996) and Bush, Aristoff & Hosoi (2006), as well as the numerical simulations of
Askarizadeh et al. (2020), the circular hydraulic jump tends to be classified into five
distinct types based on the configuration of the roller and separation bubble. By increasing
the height of the obstacle mounted at the disk edge, different types of hydraulic jumps
can be obtained. Type 0 corresponds to a circular hydraulic jump without the presence
of either a vortex near the disk or a roller at the free surface. Type Ia represents a jump
with a single vortex near the disk, while type Ib refers to a jump with one roller formed
only at the free surface. As indicated by Askarizadeh et al. (2020), the type Ib jump was
not reported by Ellegaard et al. (1996) and Bush et al. (2006) as the occurrence of this
type is possible during the transition from type Ia to type II where a very weak separation
bubble keeps appearing and disappearing. In fact, in the experimental work of Chang,
Demekhin & Takhistov (2001), they found that the vortex near the plate disappears when
the flow rate falls below a critical value, resulting in a much smoother jump profile. When
both a separation bubble near the disk and a roller near the free surface are observed,
the hydraulic jump is of type IIa or type IIb, the difference being in the distinct shape
appearance of the jump. Type IIb exhibits a tiered structure, which is referred to as a
‘double-jump’ by Bush et al. (2006). The aim of the present study is to use our recent
formulation and solution procedure (Wang et al. 2023) to examine the different features
of the type 0 and type Ia circular hydraulic jumps and elucidate the flow structure in each
case.

Since our numerical approach was validated against experiment and numerical
simulation, it will be used to establish and test new scaling arguments for the jump
location, jump length, conjugate depth ratio (the ratio of the film heights at the trailing
and the leading edges of the jump), energy loss across the jump and film thickness at the
edge of the circular disk. Using a first-order model, Bohr et al. (1993) located the jump by
matching the up- and downstream solution branches through a Bélanger shock (Bélanger
1841), and proposed a scaling for the hydraulic jump radius as RJ ∼ Q5/8ν−3/8g−1/8,
where Q is the flow rate of the jet, ν is the kinematic viscosity of the fluid and g is
the acceleration due to gravity. More recently, Duchesne et al. (2014) established their
scaling law by assuming that the Froude number based on the jump location and height
(FrJ) is constant, and eliminating the jump height assuming lubrication flow to obtain
an implicit relation: RJ[ln(R∞/RJ)]3/8 ∼ Q5/8ν−3/8g−1/8, involving the disk radius R∞.
Their scaling law is therefore semi-empirical since the value of FrJ must be imposed from
the experiment. Later, Duchesne & Limat (2022) proposed a modified scaling law by using
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Watson’s (1964) similarity solution in the supercritical region and the lubrication flow in
the subcritical region. The scaling also includes the influence of the disk size, and is given
as RJ[ln(R∞/RJ)]1/8 ∼ Q5/8ν−3/8g−1/8. We revisit this issue, elucidating the conditions
for the validity of existing scaling laws for the jump radius and assessing the impact of the
choice of the velocity profile.

We examine another important flow characteristic, the thickness at the edge of the
disk, which remains largely unaddressed in the literature, as the flow near the disk edge
experiences a complex interplay of inertia, gravity and surface tension (Higuera 1994).
For the situation when the flow drains freely off the disk edge, there are mainly two
approaches to determine the film height or equivalent conditions at the disk edge: imposing
an infinite slope (Bohr et al. 1993; Kasimov 2008; Dhar et al. 2020) or assuming the edge
thickness to be essentially equal to the capillary length (Duchesne et al. 2014; Ipatova,
Smirnov & Mogilevskiy 2021; Duchesne & Limat 2022). As indicated in the experimental
work of Duchesne et al. (2014), the edge film thickness also follows a weak power-law
dependence on the flow rate. Although we have extensively validated our approach (Wang
et al. 2023) for a film freely draining at the disk edge, we further verify our model against
the numerical solution of the Navier–Stokes equations of Askarizadeh et al. (2019, 2020)
when an obstacle is placed at the disk edge. We also examine the influence of the obstacle
height on the jump and vortex structure. In addition, we examine the jump length and
its relation to the vortex size. By balancing the drag at the disk in the jump region with
fluid inertia, and assuming dominant viscous over gravity effect, Avedisian & Zhao (2000)
obtained a relation between the length of the jump and its radius as LJRJ/hJ ∼ Q/ν, where
hJ is the film thickness at the leading edge of the jump (see also the different treatment of
Razis et al. (2021) for the planar jump).

Finally, the present calculations are based on our approach (Wang et al. 2023), which
we have previously validated by focusing mainly on the influence of the flow rate on the
jump radius and film profile. While our earlier study was focused on the methodology,
the present work is focused on the fundamental characteristics of the jump and flow
structure. Therefore, we examine the dependence of the flow structure on the disk size
and the film height at the disk edge, including the dependence of the jump radius and
length, vortex size, energy loss across the jump and conjugate depth ratio. Guided by our
numerical predictions and theoretical analyses, we delineate the regions of existence of
the jump and the recirculation zone. Since these aspects have not been comprehensively
explored in the literature, and in an effort to ensure that our theoretical predictions
are accurate and physically realistic over the range of parameters considered, we
validate our theoretical results against existing numerical and experimental data whenever
possible.

The rest of this paper is organized as follows. In § 2, we briefly review the general
problem and physical domain; we review the formulation of the problem and the solution
strategy in terms of the general governing equations and boundary conditions in each
region of the flow. In § 3, we examine the influence of the disk geometry on the jump
and flow structure, namely the influence of the disk size and the height of the obstacle,
which is often placed at the edge of the disk to control the subcritical film height and jump
location. Further verification is conducted by comparing our approach against existing
numerical simulations. Detailed scaling analyses are formulated in § 4 for the jump radius,
jump length, energy loss, conjugate depth ratio and thickness at the edge of the disk.
The scaling laws are validated against existing experimental data and verified against our
numerical results. In § 5, we conduct further parametric studies and scaling to explore
the overall regions of existence for the two types (0 and Ia) of jump. Finally, concluding
remarks and discussion are given in § 6.
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2. Review of the physical domain, problem formulation and solution strategy

In this section, we briefly revisit our earlier formulation (Wang et al. 2023) for
completeness. The flow domain is subdivided into different regions of increasing
gravitational strength. The governing equations and matching conditions are given in each
subregion, followed by an outline of our solution strategy.

2.1. The physical domain and problem statement
Consider the steady laminar incompressible flow of a circular (axisymmetric) jet of a
Newtonian fluid emerging from a nozzle of radius a, impinging vertically downward at
a volume flow rate Q on a flat disk of radius R∞. The flow configuration is depicted
schematically in figure 1, where dimensionless variables and parameters are used. The
problem is formulated in the (r, θ, z) fixed coordinates, with the origin coinciding with the
disk centre. The flow is assumed to be independent of θ , thus excluding polygonal flow. In
this case, u(r, z) and w(r, z) are the corresponding dimensionless velocity components in
the radial and vertical directions, respectively. The r axis is taken along the disk radius and
the z axis is taken along the jet axis. The length and the velocity scales are conveniently
taken to be the radius of the jet, a, and the average jet velocity W ≡ Q/πa2, in both
the radial and vertical directions. Since the pressure is expected to be predominantly
hydrostatic for a thin film, it will be scaled by ρga, where g is the acceleration due
to gravity. In the absence of surface tension, two main dimensionless groups emerge in
this case: the Reynolds number Re = Wa/ν, where ν is the kinematic viscosity, and the
Froude number Fr = W/

√
ag. Another useful and related number is the Galileo number

Ga = Re2/Fr2, which is the ratio of gravity to viscous forces and is independent of
the flow rate. Although we do not take the effect of surface tension into account, we
note, as indicated by Bush & Aristoff (2003), that the effect of surface tension becomes
dynamically significant only when the radial curvature force becomes comparable with
the hydrostatic pressure force, that is, when 2/BoJ becomes appreciable: 2/BoJ = O(1) or
higher. Here, BoJ = rJ(HJ − hJ)Bo is the jump Bond number, and Bo = ρga2/σ , where
σ is the surface tension, rJ is the dimensionless jump radius and hJ and HJ are the
dimensionless film heights at the leading and trailing edges of the jump (in units of the
jet radius a). Therefore, the influence of surface tension becomes appreciable for a jump
of small radius and height. Moreover, it is generally weak in terrestrial experiments; its
influence is heightened dramatically in a microgravity setting, or when internal jumps arise
between immiscible fluids of comparable density (Bush & Aristoff 2003). In addition,
the numerical simulation results of Askarizadeh et al. (2019) suggest that a decrease
in capillary effect occurs by increasing the viscosity, the density or the gravitational
acceleration. In this work, we monitor the value of the jump Bond number to ensure that
the surface tension effect remains indeed negligible.

Consequently, the present formulation and results should remain valid as long as
the surface tension effect is insignificant; some jump structures cannot be captured by
the present model. As mentioned earlier, there are different types of hydraulic jumps,
including type 0, type Ia, type Ib, type IIa and type IIb, depending on the parameter
range (Bush et al. 2006; Askarizadeh et al. 2020). The objective of the current work is
to investigate the characteristics of the circular hydraulic jump of type 0 and type Ia only,
as long as the jumps are not in the capillary-dominant range (Askarizadeh et al. 2019).

As shown in figure 1, we identify the flow, including the stagnation flow region (I)
and the other three main regions: a developing boundary-layer region (II) where gravity
is essentially dominated by inertia, a fully developed viscous region (III) with moderate
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Free jet region
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Inviscid region
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h′ → –∞

h∞
r∞rJ– rJ rv– rs rv+ rJ+

u(r,z)δ(r)

Figure 1. Schematic illustration of the axisymmetric jet flow impinging on a flat stationary disk and the
hydraulic jump of type Ia with one vortex downstream. Shown are the stagnation region (I), the developing
boundary-layer region (II) and the fully developed viscous region (V). The fully developed viscous region
comprises a moderate-gravity viscous region (III) where the gravitational effect is moderate, followed by a
strong-gravity viscous region (IV) where gravitational effect is strong. All notations are dimensionless. In this
case, the jet radius is equal to one. The film is allowed to fall freely over the edge of the disk where an infinite
slope in the film thickness occurs, h′(r = r∞) → −∞. The red dashed curve is the schematic film-thickness
profile reflecting the approach of Wang & Khayat (2019), terminating with a singularity at a finite radius
denoted here by rs. The jump location coincides with h′′(rJ) = 0 and h(rJ−) = hJ and h(rJ+) = HJ . The
downward arrow represents the gravitational acceleration.

gravitational effect and a fully developed viscous region (IV) with strong gravitational
effect. The jump is a smooth transition region that connects the (upstream) supercritical
and the (downstream) subcritical regions. Again, the analysis of the boundary-layer region,
near impact, is crucial in order to fix an upstream boundary condition for the thin-film
viscous flow, relevant to the jet conditions.

We assume that the inception of the boundary layer coincides with the stagnation
point, thus assuming the impingement zone to be negligibly small, which is a common
practice for an impinging jet. In fact, the velocity outside the boundary layer rises
rapidly from 0 at the stagnation point to the impingement velocity in the inviscid far
region. The impinging jet is predominantly inviscid close to the stagnation point, and
the boundary-layer thickness remains negligibly small. Obviously, this is the case for a
jet at a relatively large Reynolds number. Indeed, the analysis of White (2006) shows that
the boundary-layer thickness is constant near the stagnation point and is estimated to be
O(Re−1/2). Ideally, the flow at the boundary-layer edge should correspond to the (almost
parabolic) potential flow near the stagnating jet, with the boundary-layer leading edge
coinciding with the stagnation point (Liu & Lienhard 1993). However, the assumption of
uniform horizontal flow near the wall and outside the boundary layer is reasonable. The
distance from the stagnation point for the inviscid flow to reach uniform horizontal velocity
is small, of the order of the jet radius (Lienhard 2006). Clearly, in this case, the flow detail
near the impingement region is not accurately treated. However, similar to previous studies
(Watson 1964; Bush & Aristoff 2003; Prince, Maynes & Crockett 2012; Prince, Maynes
& Crockett 2014; Wang & Khayat 2018, 2019, 2020), this simplification serves as an initial
condition for solving the flow in the developing boundary-layer region (II), and then results
in accurate flow detail for the subsequent flow domains. In their numerical simulation,
Sung, Choi & Yoo (1999) assumed the flow to emerge out of a vertical source for planar
flow and a collar for axisymmetric flow. The flow profile and film height are imposed at
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the inlet. These constitute the two boundary conditions required for their finite-element
simulation.

In addition, we observe that in the absence of gravity, the steady flow acquires a
similarity character. In this case, the position or effect of the leading edge is irrelevant.
This assumption was adopted initially by Watson (1964), and has been commonly used in
existing theories (Bush & Aristoff 2003; Prince et al. 2012, 2014; Wang & Khayat 2018,
2019, 2020). Readers are referred to Wang et al. (2023) for a complete discussion.

The boundary layer grows until it reaches the film surface at the transition location r =
r0. Here, the film thickness is defined as h0 ≡ h(r = r0) which corresponds to an upstream
boundary condition for the flow in the fully developed viscous region. We denote by δ(r)
the boundary-layer thickness. The leading edge of the boundary layer is taken to coincide
with the disk centre. We let U(r) ≡ u(r, z = h) denote the velocity at the free surface.
Assuming the jet and stagnation flows to be inviscid irrotational, the radial velocity outside
the boundary layer is then U(0 ≤ r ≤ r0) = 1 as the fluid there is unaffected by the viscous
stresses. We recall that both velocity components have been scaled by the (inviscid) jet
velocity W. The potential flow ceases to exist in the fully developed viscous region r0 <

r < r∞, and U becomes dependent on r. We note that r0 is the location beyond which
the viscous stresses become appreciable right up to the free surface, where the entire flow
is of the boundary-layer type. We follow Rojas et al. (2010) and take the jump location
rJ to coincide with the vanishing of the concavity: h′′(r = rJ) = 0. The definition of the
jump radius at the location where the free surface changes concavity is reasonable as this
location is very close to the start of the separation zone which is experimentally considered
as the location of the jump in the literature (Bohr et al. 1996). In fact, the jump location
obtained through this definition essentially coincides with the position where the local
Froude number is equal to one, changing from larger than one upstream of the jump to
less than one downstream (see Wang et al. (2023) for further details). This is consistent
with the numerical result of Askarizadeh et al. (2019) who found that, in a flow dominated
by gravity, the criterion of a local Froude number equal to one proved to be effective for
locating the jump. Their predicted jump location was close to the position with the highest
interfacial gradient, which also appears to be the case of the present predictions.

Downstream of the jump, the film decreases in thickness and eventually falls freely over
the edge of the disk, at r = r∞, where an infinite (downward) slope in thickness is assumed
(Bohr et al. 1993; Kasimov 2008; Dhar et al. 2020). In fact, we shall see that the infinite
slope is directly related to the stress singularity expected to occur at the disk edge (Higuera
1994; Scheichl, Bowles & Pasias 2018). Finally, we assume throughout the present study
that the locations rJ− and rJ+ coincide with the locations of the leading and trailing edge
of the jump, respectively, and we denote the film height at rJ− as h(r = rJ−) = hJ and
the film height at rJ+ as h(r = rJ+) = HJ . We assume that the leading edge of the jump
coincides with the starting point of the strong-gravity viscous region (further detail about
how to determine rJ− can be found in the solution strategy of Wang et al. (2023) or the
summary of the solution strategy in § 2.3), and the trailing edge of the jump coincides
with the location of the maximum film height. Introducing the local Froude number as
Frl(r) = Fr/2rh3/2, we follow Liu & Lienhard (1993) and Duchesne et al. (2014), and
introduce the local Froude number at r = rJ− as FrJ− = Frl(r = rJ−) = Fr/2rJh3/2

J , and
the local Froude number at r = rJ+ as FrJ+ = Frl(r = rJ+) = Fr/2rJH3/2

J . In addition,
we define the jump length as LJ = rJ+ − rJ− and the vortex length as Lvortex = rv+ − rv−
(see figure 1).

Unless otherwise specified, the Reynolds number is assumed to be moderately large so
that our analysis is confined to the laminar regime. Consequently, for steady axisymmetric
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thin-film flow, in the presence of gravity, the mass and momentum conservation equations
are formulated using a thin-film or Prandtl boundary-layer approach, which amounts to
assuming that the radial flow varies much slower than the vertical flow (Schlichting &
Gersten 2000). We observe that the pressure for a thin film is hydrostatic as a result of its
vanishing at the film surface (in the absence of surface tension) and the small thickness
of the film, yielding p(r, z) = h(r) − z. By letting a subscript with respect to r or z denote
partial differentiation, the reduced dimensionless relevant conservation equations become

ur + u
r

+ wz = 0, Re(uur + wuz) = − Re
Fr2 h′ + uzz, (2.1a,b)

where a prime denotes total differentiation with respect to r. These are the thin-film
equations commonly used to model the spreading liquid flow (Tani 1949; Bohr et al. 1993,
1996; Kasimov 2008; Wang & Khayat 2019). At the disk, the no-slip and no-penetration
conditions are assumed to hold at any r. At the free surface z = h(r), the kinematic and
dynamic conditions must hold. In this case

u(r, z = 0) = w(r, z = 0) = 0, w(r, z = h) = u(r, z = h)h′(r), uz(r, z = h) = 0.

(2.2a–c)

The flow field is sought separately in the developing boundary-layer region for 0 < r < r0
(with the assumption that the impingement zone is negligibly small), the fully developed
viscous region with moderate gravity for r0 < r < rJ− and the fully developed viscous
region with strong gravity for rJ− < r < r∞. Additional boundary conditions are needed,
which are given when the flow is analysed in each region.

2.2. The flow in the boundary-layer region (0 < r < r0)

In this region, the boundary layer grows with radial distance, eventually invading the
entire film depth, reaching the free surface at the transition, r = r0, where the fully
developed viscous region begins. For 0 < r < r0, the free surface lies at some height
z = h(r) > δ(r) and is above the boundary-layer outer edge. The flow in the developing
boundary-layer region is assumed to be sufficiently inertial for inviscid flow to prevail
between the boundary-layer outer edge and the free surface (see figure 1). In this case,
the following conditions at the outer edge of the boundary layer z = δ(r) and beyond
must hold: u(r < r0, δ ≤ z < h) = 1, uz(r < r0, z = δ) = 0. Subject to these conditions,
the weak form of the conservation equations for r < r0 become∫ δ

0
u dz + h − δ = 1

2r
,

Re
r

d
dr

∫ δ

0
ru(u − 1) dz = − Re

Fr2 δh′ − τw, (2.3a,b)

where τw(r) ≡ uz(r, z = 0) is the wall shear stress or skin friction. For simplicity, we
choose a similarity cubic profile for the velocity:

u(r ≤ r0, z) = 3
2
η − 1

2
η3 ≡ f (η), (2.4)

where η = z/δ, leading to the following problem for the boundary-layer and free-surface
heights:

h − 3
8
δ = 1

2r
,

39
280

Re
r

δ(rδ)′ = Re
Fr2 δ2h′ + 3

2
, δ(r = 0) = 0. (2.5a–c)

The transition location is found when the boundary-layer thickness becomes equal to the
film thickness. Consequently, the boundary condition for the film thickness at the transition
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The characteristics of the circular hydraulic jump and vortex structure

location h0 ≡ h(r = r0) = δ(r = r0) is obtained. Clearly, the formulations presented for
the flow in the developing boundary-layer region are the same as those of Wang & Khayat
(2019).

2.3. The flow in the fully developed viscous region (r0 ≤ r ≤ r∞)

Downstream of the transition point (r > r0), the potential flow ceases to exist, with the
velocity at the free surface becoming dependent on r: u(r > r0, z = h) = U(r). In this
case, the weak form of (2.1) reads∫ h

0
u dz = 1

2r
,

Re
r

d
dr

∫ h

0
ru2 dz = − Re

Fr2 hh′ − τw. (2.6a,b)

If the similarity velocity profile u(r > r0, z) = U(r)f (η) is adopted, where f (η) is still
given in (2.4) with η = z/h. The film thickness and surface velocity are governed by Wang
et al. (2023)

U = 4
5rh

, Re
(

5
4Fr2 − 68

175
1

r2h3

)
h′ = 1

rh2

(
68
175

Re
r2 − 3

2h

)
, h(r = r0) = h0.

(2.7a–c)

This model is equivalent to that developed originally by Tani (1949), and has been
extensively (and successfully) used in the literature (Bohr et al. 1993; Kasimov 2008;
Fernandez-Feria et al. 2019; Wang & Khayat 2019; Dhar et al. 2020). However, (2.7b)
exhibits a singularity at some finite radial position, which is taken to coincide with the
jump location (Wang & Khayat 2019).

In order to capture the continuous jump, we again assume a cubic velocity profile that
satisfies the momentum equation (2.1b) at the disk or −(Re/Fr2)h′ + uzz(r, z = 0) = 0.
In this case, the radial velocity profile is non-self-similar, and is given as a function of the
surface velocity U(r) and the gravitational term (Re/Fr2)h2h′ as

u(r > r0, z) = 1
4

[(
6U − Re

Fr2 h2h′
)

η + 2
Re
Fr2 h2h′η2 −

(
2U + Re

Fr2 h2h′
)

η3
]

. (2.8)

Here η = z/h. We observe that the non-self-similarity is due to the presence of the gravity
term. An equivalent profile to (2.8) was adopted initially by Bohr et al. (1997) and later by
Watanabe et al. (2003), who introduced a shape parameter λ(r), and by Bonn et al. (2009)
for the hydraulic jump in a channel. Clearly, if (2.8) is adopted, the skin friction coefficient
or wall shear stress is given by τw(r) = 1

4 (6(U/h) − (Re/Fr2)hh′). Substituting (2.8) into
(2.6) we obtain the following second-order system in U and h:

Re
Fr2 h2h′ = 30U − 24

rh
, (2.9a)

− 1
70

(
11
6

Re
Fr2 h2h′ + 41U

)
hU′ = 3

2Fr2 hh′ + 3
Re

U
h

+ 1
14

(
Re
Fr2 Uh2h′ − 27

5
U2 − Re2

60Fr4 h4h′2
)(

h′ + h
r

)
. (2.9b)

Equations (2.9) are integrated subject to the following boundary conditions obtained from
the solution of (2.7):

uJ = U(r = rJ−), hJ = h(r = rJ−), h′(r = r∞) → −∞. (2.10a–c)

We observe that system (2.9) is equivalent to the system of equations (2.25) in Watanabe
et al. (2003). Eliminating U, we obtain an ordinary differential equation of second order
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in h:

Re2

Fr2 r2h4
(

4
Re
Fr2 rh3h′ + 41

)
h′′ = 1632Re(rh)′ − 6300r2

− 2
Re
Fr2 r2h3h′

[
Re2

Fr2 h3h′(5rh′ + h) + 41 Re h′ + 2100r
]

.

(2.11)

In order to obtain a unique, smooth and continuous jump free-surface profile, the following
steps are taken in the solution process:

(i) System (2.5a,b) is solved subject to (2.5c) over the range 0 ≤ r ≤ r0 to obtain the
boundary-layer and film thickness profiles between the impingement point r = 0 and
the transition point r = r0.

(ii) Subject to the obtained boundary condition (2.7c), (2.7b) is integrated forward in
r over the range r0 ≤ r ≤ rs, hence generating a film thickness profile that exhibits
a singularity at some finite radius r = rs. Although this location is not used in the
solution process, it gives a close estimate of the jump location (Wang & Khayat
2019).

(iii) Next, we integrate the second-order equation (2.11) over the range rJ− ≤ r ≤ r∞,
where r0 	 rJ− < rs (see figure 1), subject to the known values of the height
h(r = rJ−) and slope h′(r = rJ−) from the solution of (2.7). The location of the
starting point rJ− for the solution of (2.11) is determined by ensuring that h′(r =
r∞) → −∞ for the free-draining fluid or h(r = r∞) = h∞ when a constant edge
film thickness is imposed.

In sum, the composite film profile is determined by solving system (2.5) over the range
0 ≤ r ≤ r0, (2.7) over the range r0 ≤ r ≤ rJ− and (2.11) over the range rJ− ≤ r ≤ r∞. We
take the jump location r = rJ to coincide with h′′(rJ) = 0. Hence, rJ− is the position
of the leading edge of the jump. Finally, it is important to point out that, given the
sensitivity of the solution of (2.11) on the initial conditions and the ensuing numerical
instability (Watanabe et al. 2003; Roberts & Li 2006), the solution must begin at a location
close to the jump, thus rendering crucial the introduction of the boundary-layer and
moderate-gravity regions. This, in turn, ensures the imposition of appropriate boundary
conditions: h(r = rJ−) and h′(r = rJ−).

Next, we consider two well-established limit flows for reference. The first is the limit
of infinite Froude number in the supercritical region. We note that the supercritical flow
consists essentially of a balance between the effects of inertia and viscosity with negligible
gravity effect. This limit was first considered by Watson (1964) and later adopted by others
(see Wang & Khayat (2019) and references therein). For Fr → ∞, the solution of problem
(2.5) upstream of the transition point reduces to

δ(r < r0) = 2

√
70
39

r
Re

, h(r < r0) = 1
4

(√
210
13

r
Re

+ 2
r

)
, U(r < r0) = 1.

(2.12a–c)

For comparison, Watson’s expressions are reproduced here in dimensionless form:

δ(r < r0) =
√ √

3c3

π − √
3c

r
Re

, h(r < r0) =
(

1 − 2π

3
√

3c2

)√ √
3c3

π − √
3c

r
Re

+ 2,

2r
,

U(r < r0) = 1, (2.12d–f )
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where c = 1.402. Comparison of the numerical coefficients between (2.12a,b) and (2.12d,e)
reveals a surprisingly close agreement between Watson’s solution and that based on the
cubic velocity profile.

The transition point is determined by setting δ(r0) = h(r0), yielding r0 =
(78Re/875)1/3, which is very close to that obtained by Watson (1964): r0 =
0.3155(πRe)1/3. Thus, in the absence of the gravity effect, the boundary-layer height
grows like

√
r, and the film height decreases predominantly like 1/r. Downstream of the

transition point, the flow is governed by (2.7). Setting Fr → ∞, it is not difficult to show
that the solution reduces to

h(r ≥ r0) = 233
340

1
r

+ 175
136

r2

Re
, U(r ≥ r0) = 4

5rh
, (2.13a,b)

suggesting that h decreases like 1/r for small r and increases like r2 for large r.
For comparison, Watson’s expressions are reproduced here in dimensionless form:

h(r ≥ r0) = 3c(3
√

3c − π)

8π

1
r

+ 2π

3
√

3

r2

Re
, U(r ≥ r0) = 3

√
3c2

4πrh
. (2.13c,d)

Comparison of the numerical coefficients between (2.13a,b) and (2.13c,d) reveals a
surprisingly close agreement between Watson’s similarity solution and that based on the
cubic velocity profile (see also Prince et al. 2012; Wang et al. 2023). The behaviour based
on (2.12)–(2.13) reflects the profiles in the absence of gravity.

The second asymptotic flow often used in the literature is the limit of negligible inertia
in the subcritical region. The flow is captured using lubrication theory, which consists of
integrating equation (2.1b) to obtain the parabolic velocity profile u = (Re/Fr2)h′(z2/2 −
hz), yielding the following profiles for the film thickness and surface velocity:

h =
[

h4
∞ + 6

Fr2

Re
ln
(r∞

r

)]1/4

, U = 3
4rh

, (2.14a,b)

where we recall h∞ to be the thickness at the edge of the disk. In addition, (2.14a) requires
imposing the value of the edge thickness h∞. In contrast, in the absence of surface tension
effect, the edge thickness for a free-draining film is determined accurately by our numerical
approach (see § 4.2).

3. The influence of the disk geometry

In this section, we examine the influence of the disk geometry, namely the disk radius
and the height of the obstacle placed at the edge of the disk. In our recent paper (Wang
et al. 2023), we have exclusively focused on the case of flows draining freely at the edge
of the disk. In practice, an obstacle is placed to control the film thickness and explore its
influence on the jump and flow structure.

3.1. The influence of the disk size
The disk size is expected to be of significant influence on the flow and jump structure.
For a given flow rate, the jump location and shape are affected by the amount of fluid
accumulated downstream, which is directly related to the disk size. In their solution of the
Navier–Stokes equations, Fernandez-Feria et al. (2019) considered the flow on two disks
of different diameters without accounting for the surface tension effect. Their data are
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Navier–Stokes solution
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Figure 2. Comparison of the free-surface profile based on the present approach against the Navier–Stokes
profiles of Fernandez-Feria et al. (2019) for Re = 854.29, Fr = 97.19 and (a) r∞ = 53.33, (b) r∞ = 80.

reported here in our figure 2(a,b) (red symbols) from their figure 6(a,b) for two disk sizes:
r∞ = 53.33 and 80 (in units of a), respectively, for a flow of water–glycerol mixture at
Re = 854.29 and Fr = 97.19. A comparison of our predictions in figure 2(a,b) (solid black
curves) yields an overall close agreement for both disk sizes. In the absence of surface
tension, the numerical profiles exhibit some waviness or ripples at the trailing edge of
the jump, which is not captured by our solution or the pseudospectral solution of the
full boundary-layer equations of Fernandez-Feria et al. (2019). The ripples are typically
predicted by the Navier–Stokes solution, which are most likely due to flow instability
in the absence of surface tension; the flow instability weakens or disappears when the
effect of surface tension is included (Askarizadeh et al. 2019, 2020; Fernandez-Feria
et al. 2019; Wang & Khayat 2021). This issue is discussed further when we examine the
influence of the disk obstacle (refer to figure 7 below, showing the Navier–Stokes profiles
of Askarizadeh et al. (2020) with small ripples for weak surface tension and no ripples for
moderate surface tension).

Figure 3 illustrates further the influence of the disk size for Re = 854.29 and Fr = 97.19.
Since the flow disturbance transported in the supercritical region is only unidirectional,
we see from figure 3(a,b) that the supercritical flow is insensitive to the variation of
r∞, a trend well contrasted with the flow in the subcritical region, agreeing with the
numerical simulation of Fernandez-Feria et al. (2019). The subcritical film depth increases
with increasing disk size, causing τw to decrease. The jump moves slightly upstream as a
result of the accumulated viscous drag and gravity (figure 3a,b). The jump response is
consistent with the measurements of Rao & Arakeri (2001), the Navier–Stokes solution
of Fernandez-Feria et al. (2019), the scaling law of Duchesne et al. (2014) as well as our
scaling law (4.5) or (4.6) (see § 4). Our numerical calculations (shown in the inset of
figure 3a) suggest that rJ ∼ r−19/20

∞ , reflecting a weak dependence, which may explain
the absence of the disk size dependence in the scaling law of Bohr et al. (1993). Both our
scaling law (4.5) or (4.6) and the scaling laws of Duchesne et al. (2014); Duchesne & Limat
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Figure 3. Influence of the disk radius r∞ on (a) the free-surface profile (solid curves) and the boundary-layer
thickness (dashed curves) and (b) the wall shear stress. Streamlines for (c) r∞ = 40, (d) r∞ = 50 and
(e) r∞ = 60. The inset in (a) shows the dependence of the jump radius and maximum film height on
the disk radius. The red and green dash-dotted curves in (a) are the descending ((233/340)(1/r)) and
ascending ((175/136)(r2/Re)) parts of film thickness (2.13a), respectively. Here, Re = 854.29 and Fr = 97.19
are parameters used in Fernandez-Feria et al. (2019).

(2022) propose an implicit relation for the jump radius with a logarithmic dependence on
the disk size. The vortex becomes increasingly apparent as a result of the jump steepening
and film profile flattening in the subcritical region with increasing disk size, and the jump
is of type Ia. Below a critical disk size, the recirculation vanishes (figure 3c–e), and the
jump is of type 0. It is expected that no jump exists if the disk is sufficiently small (Rao
& Arakeri 2001). The profiles for a small disk with no separation are reminiscent of the
profiles with expansive interaction discussed by Bowles (1995) for the flow over a sloped
bed. Similarly, the profiles over a larger disk with separation correspond to a compressive
interaction.

3.2. The interplay between the flow rate and disk size
Although the jump position does not seem to be significantly influenced by the disk radius,
the flow field and vortex structure appear to be more sensitive to the disk size (figures 2
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Figure 4. Influence of the Froude number (flow rate) on the film profile for three different disk sizes:
(a) r∞ = 93.75, (b) r∞ = 50 and (c) r∞ = 25. Here, Ga = 100 (50.11 < Re < 551.25), corresponding to the
range of flow rate in the experiment of Duchesne et al. (2014). Dash-dotted and dotted curves represent the locus
of the film heights at the trailing and leading edges of the jump, respectively. Other dimensionless numbers
are Bo = 1.19, and BoJ = 4.52–36.95 for r∞ = 93.75, BoJ = 4.27–30.02 for r∞ = 50 and BoJ = 3.84–15.28 for
r∞ = 25.

and 3). These jump features are further examined by varying the flow rate over the same
experimental range as that of Duchesne et al. (2014) but for a disk almost twice and four
times smaller. Figure 4 illustrates the influence of the flow rate on the film profile for
a disk of radius r∞ = 93.75 (figure 4a), r∞ = 50 (figure 4b) and r∞ = 25 (figure 4c).
Figure 4(a) typically illustrates the film profiles for a film draining at the edge of the
disk at different flow rates. Although similar or equivalent flow details were not reported
by Duchesne et al. (2014), the profiles in figure 4(a) correspond to the same range of
flow rates and conditions of their experiment. The figure shows that the boundary-layer
thickness diminishes with increasing flow rate, following closely (2.12a), with the film
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thickness profile well reflected in (2.12b). The figure indicates that the jump radius and
film heights at the leading and trailing edges of the jump grow with the Froude number.
While the supercritical region extends in length and diminishes in thickness, the subcritical
region shrinks in length with diminishing thickness growth with flow rate, evolving from
an essentially linear to a logarithmic (lubrication) profile (excluding the vicinity of the
edge). We shall refer to this figure when examining various characteristics of the jump.

Figure 4(c) shows that the monotonic growth of the film height in figure 4(a,b) is clearly
replaced by a height that increases with the flow rate, reaching an overall maximum
and decreasing as the flow rate is increased further. The results seem to suggest that a
maximum for the maximum film height will show as well when r∞ = 93.75 and 50 if the
flow rate increases further, but the flow may become unstable if the flow rate is further
increased. This non-monotonicity in the jump height with increasing flow rate was also
reported by Rao & Arakeri (2001) in their experimental study (see their figure 7). This
maximum for the maximum film height shown in figure 4(c) is related to the competition
between the accumulation at the jump and the drainage at the disk edge. When the flow
rate is small, the jump occurs far upstream from the disk edge, and the flow at the jump is
dominated by the viscous effect at the jump, leading to an increase in the jump height HJ
with increasing flow rate (Fr). In contrast, the drainage plays a significant role when the
flow rate is large, and the jump occurs closer to the disk edge, resulting in a decrease in the
jump height HJ with increasing flow rate (Fr). Figure 4(c) also shows a significant change
in the film profile in the subcritical region as well as smoothening in the jump region
compared with figure 4(a,b). As the flow rate increases, the slope of the film profile in
the subcritical region (especially the part near the jump) remains essentially unaffected for
r∞ = 93.75, remains unaffected in the small range of Fr and increases slightly in the large
range of Fr for r∞ = 50, and increases essentially for the whole range of Fr considered for
r∞ = 25. The steepness of the jump profile and the film profile in the subcritical region
act as the adverse and favourable pressure gradients, respectively. We expect, and as we
confirm below, a gradual and significant change in the flow field and vortex structure as
the disk size increases.

Further details of the influence of the disk size on the jump radius are reported in
figure 5. The profiles are shown for three different disk sizes: r∞ = 93.75, r∞ = 50
and r∞ = 25. Figure 5(a) confirms the overall lack of sensitivity of the jump radius
to the size of the disk, simultaneously indicating a decrease in the jump radius with
increasing disk size. The figure also suggests, albeit in a faint manner, the tendency
of the jump radius to grow linearly with the flow rate for the smaller disk size, in
agreement with the measurements of Mohajer & Li (2015), reported in their figure 4.
In figure 5(b,c), we compare our theoretical predictions against the measurements of
Duchesne (2014), available only for r∞ = 93.75 and r∞ = 50. For the cases r∞ = 93.75
and 50, figure 5(b,c) shows that the theoretical predictions agree very well with the
measured jump radius, tending to slightly overpredict the jump radius in the small-Fr range
(Fr < 35), and slightly underpredict the radius for larger Fr (Fr > 35). We also added the
radius distributions based on our scaling law (4.6) which we establish in § 4.1, showing a
close agreement with both theory and experiment.

Figure 6 illustrates the interplay between the flow rate and the disk size for various
characterizing parameters of the jump. As indicated in figure 6(a), the film height hJ at the
leading edge of the jump increases monotonically with increasing flow rate (Fr) for any
disk size. This increase is the result of the viscous effect (Watson 1964; Bowles & Smith
1992), which can be elucidated by applying (2.13a) at the jump and using the scaling of
Bohr et al. (1993) for the jump radius. Thus, far from impingement, (2.13a) reduces to
hJ ∼ (175/136)(r2

J/Re) ∝ Fr1/2/Re1/4, which reflects a monotonic increase with the flow
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Figure 5. Influence of Fr (flow rate) for different disk sizes on the jump radius. (a) The prediction based on
the present approach. Comparison between the present approach, the measurements of Duchesne (2014) and
the present scaling (4.6) for (b) r∞ = 93.75 and (c) r∞ = 50. Here Ga = 100, corresponding to the parameters
in the experiment of Duchesne et al. (2014).

rate, following Fr1/4 close to the trend observed in figure 6(a). This trend, however, varies
slightly with the disk radius, which is not considered in the scaling of Bohr et al (1993).

Figure 6(b) shows that the height HJ at the trailing edge of the jump is smaller for a
smaller disk (see also figure 3); for a smaller disk size, the jump occurs closer to the disk
edge (figures 3 and 5a), as less flow is accumulated in the subcritical region due to a
stronger drainage at the disk edge, leading to a smaller HJ . In contrast to hJ , figure 6(b)
suggests that HJ does not always increase monotonically with the flow rate. In fact, HJ
reaches a maximum for the disk of radius r∞ = 25. As discussed earlier (see figure 4c),
the non-monotonicity of HJ is related to the interplay between the accumulation effect at
the jump and the drainage effect at the disk edge. This behaviour, based on our numerical
approach, can be confirmed by using the expression (2.14a) from lubrication theory and
the scaling law for the jump radius (4.6) established shortly. The resulting approximate
profiles for HJ are shown in dashed curves in figure 6(b). It is worth noting that the
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Figure 6. Influence of Fr (flow rate) for different disk sizes on the film height at the leading edge of the jump
(a), the film height at the trailing edge of the jump (maximum of the film height) (b), the difference between
the film heights at the trailing and leading edges of the jump (c), the film height gradient at the jump (d), the
jump length LJ ≡ rJ+ − rJ− (e) and the vortex length Lvortex ≡ rv+ − rv− ( f ). Here Ga = 100, corresponding
to the parameters in the experiment of Duchesne et al. (2014). The dashed curves are predictions based on the
lubrication approach (2.14a) and scaling of rJ (4.6).

non-monotonicity in the jump height is not captured if the scaling of Bohr et al. (1993)
is used, which excludes the influence of the disk size on the jump radius. Furthermore,
the height HJ varies rather insignificantly with the flow rate for the smallest disk size,
remaining essentially constant, again in agreement with the data in figure 4 of Mohajer &
Li (2015), as well as the earlier observation of Hansen et al. (1997). The non-monotonic
behaviour of the jump height HJ further results in the non-monotonicity in the difference
between the heights at the trailing and leading edges of the jump, HJ − hJ (figure 6c). As
indicated in figure 6(d), the film height slope at the jump essentially decreases with the
increase in the flow rate for all three different disk sizes, and a smoother jump profile is
observed for a smaller disk size (also see figure 4). It is interesting to note that, in the small
range of Fr, there is a small increase in the steepness of the jump for the largest disk size.
This prediction is somewhat consistent with the observation of Chang et al. (2001), who
observed that the jump becomes smoother when the flow rate is smaller than a critical
value. However, they also reported that the wall vortex also disappeared in this case.
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The non-monotonicity is also reflected in the response of the jump length and vortex size
in figures 6(e) and 6( f ), respectively. In fact, Craik et al. (1981) found that the jump length
increases monotonically with the flow rate (see their figure 5). A similar trend was also
observed by Rao & Arakeri (2001) for a relatively large disk (see their figure 5), but they
reported a decrease in the jump length with increasing flow rate for a small disk (see their
figure 6). The monotonic increase in the vortex length was observed by Rao & Arakeri
(2001), while the non-monotonic behaviour was illustrated by Craik et al. (1981). Both LJ
and Lvortex are overall smaller for a smaller disk size.

To further explain the behaviour of the jump, we first refer to Avedisian & Zhao (2000).
By balancing the drag at the disk in the jump region with fluid inertia, and assuming a
dominant viscous over gravity effect, Avedisian & Zhao (2000) obtained a relation between
the length of the jump and its radius as LJrJ/hJ ≈ Re, where hJ is the film thickness at
the leading edge of the jump (see also the different treatment of Razis et al. (2021) for
the planar jump). An approximate relation among the jump length, location and height
can be derived by applying (2.11) at rJ− and rJ+. We observe that both the slope and
concavity are relatively small at these two locations (Bush & Aristoff 2003), so (2.11)
reduces to 136 Re h ≈ 525r2. By applying this relation at the leading and trailing edges
of the jump and subtracting them, we arrive at LJ(rJ+ + rJ−)/(HJ − hJ) ≈ 136Re/525.
If we take rJ ≈ (rJ− + rJ+)/2, we obtain a more general relation than Avedisian & Zhao
(2000):

LJ ≈ 68
525

Re
HJ − hJ

rJ
. (3.1)

This expression indicates that the behaviour of the jump length depends on the rate of
increase of the height difference and the jump radius. Figures 5 and 6 show that while rJ
increases monotonically with the flow rate (or Fr), HJ − hJ experiences a decrease as the
jump occurs closer to the edge of the disk (figure 6c). This decrease in HJ − hJ as well as
the shrinking jump length are also discernible in the profiles measured by Rao & Arakeri
(2001) in their figure 7 for the smallest disk they considered.

The non-monotonicity in the vortex size as well as the disappearance of the vortex
are related to the steepness of the jump profile and the slope of the film profile in
the subcritical region. As shown in figure 6(d), the film gradient at the jump decreases
monotonically, signifying the decrease in the steepness of the jump, and the recirculation
zone disappears as the steepness of the jump is below a critical value. Before this critical
value, flow separation happens, but the favourable pressure gradient in the subcritical
region determines the location of the reattachment of the flow separation. In this case,
the increase in the vortex size in the small range of Fr is caused by the essentially constant
film profile gradient in the subcritical region, and the decrease in the vortex size in the
middle range of Fr is attributed to the increase in the steepness of the film profile in the
subcritical region (see figure 4c). The jump becomes of type 0 (no vortex) when Fr exceeds
39 for r∞ = 25. In addition, as indicated by Chang et al. (2001), the vortex under the jump
disappears when the flow rate is smaller than a critical value; meanwhile, the jump length
experiences a transition and becomes much wider (see their figure 9).

Finally, Chang et al. (2001) reported that, as the jump radius decreases significantly, the
surface tension effect becomes important. They also noted that this feature corresponds
to the type II jump observed by Ellegaard et al. (1998), who found that a surface roller
appears under the free surface, and the jump becomes much smoother. The Navier–Stokes
solution of Askarizadeh et al. (2020) confirmed that as the surface roller appears, the
vortex near the wall disappears. Clearly, this particular phenomenon is beyond the scope
of our current study.
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Figure 7. Comparison of the free-surface profiles between our approach (black solid line) and the
Navier–Stokes (NS) solution of Askarizadeh et al. (2019, 2020), shown in red symbols in (a) and (b),
respectively, for σ = 10 and 45 mN m−1, and corresponding obstacle heights of 1 and 0.05 mm. Flow fields
based on (c) the present approach and (d) numerical simulation of Askarizadeh et al. (2020), with the inset in
(c) depicting the surface velocity and wall shear stress distributions. In all cases, Re = 381.97, Fr = 9.76 and
r∞ = 16.

980 A15-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.8


W. Wang, A. Baayoun and R.E. Khayat

3.3. The influence of the obstacle height at the edge of the disk
Although we have extensively validated the present approach in Wang et al. (2023) for a
film freely draining at the disk edge, we further verify our model against the numerical
solution of the Navier–Stokes equations when an obstacle is placed at the disk edge. As
mentioned earlier, the solution strategy here is slightly different from the case of the
flow of a freely draining film; we shoot for a known edge film thickness here instead
of an infinity film slope at the edge of the disk. Askarizadeh et al. (2019) explored the
origin of the hydraulic jump. They identified two different flow regimes in the jump
formation: gravity- and capillary-dominant flow regimes. Between these two regimes,
there is the capillary–gravity regime, when both gravity and capillary effects play a role in
the formation of the jump. They found that the gravity effect is important for a flow with
high viscosity, density and flow rate, as well as low surface tension. Later, Askarizadeh
et al. (2020) investigated the heat transfer in the jump region. In figure 7, we compare
our approach against their simulated flow for a fluid of density ρ = 1100 kg m−3 and
kinematic viscosity ν = 10 cSt, at a flow rate Q = 30 ml s−1. The simulated jet is injected
from a nozzle of radius a = 2.5 mm, impinging onto a horizontal circular disk of radius
R∞ = 40 mm. For the flow with surface tension σ = 10 mN m−1, the obstacle was 10 mm
in length and 1 mm in height at the disk edge (figure 7a), and was 10 mm in length and
0.05 mm in height for σ = 45 mN m−1 (figure 7b), with corresponding simulation data
taken from Askarizadeh et al. (2019, 2020), respectively. The two figures indicate that
the film thickness at the disk edge, resulting from the combined obstacle height, capillary
length and the contribution of the weak power-law dependence on the flow rate, is sensibly
the same.

The predicted profiles based on our approach are generally in good agreement with
the numerical simulation for both cases. Recalling that the effect of surface tension is
neglected in the present study, figure 7(a,b) suggests a minimal importance of surface
tension, the discrepancy being localized at the jump level. For low surface tension
(dominant gravity), our profile is slightly lower with a milder curvature than the exact
numerical profile (figure 7a). Again, the ripple immediately downstream of the jump is
commonly predicted in numerical simulations without surface tension, which is possibly
due to the flow instability in the absence of surface tension; the flow instability is not
present when the surface tension effect is included in the simulation (Fernandez-Feria
et al. 2019; Wang & Khayat 2021; Zhou & Prosperetti 2022). At higher surface tension,
the numerical curvature is milder, and our prediction for the film height at the jump is
slightly higher than the result of the numerical simulation (figure 7b). The agreement
between the current predictions and numerical simulations in the supercritical flow
is very close, which is not surprising given the absence of strong film curvature,
except for very near jet impingement. This discrepancy is due to our neglecting the
impingement zone; our approach cannot capture accurately the jet profile. However, and
as can be observed from figure 7(a,b), the disagreement has little consequence on the
accuracy of our approach downstream of the impingement zone (see also figure 17c
below). We have already explained the rationale behind neglecting the impingement zone
in § 2.1.

Figure 7(c) depicts the predicted flow field as well as the wall shear stress and surface
velocity distributions (inset), to be contrasted against the simulated flow field reproduced
in figure 7(d) from the Navier–Stokes solution of Askarizadeh et al. (2020). The vortex
near the disk under the jump is clearly visible in figure 7(c), and is similar to the
numerically predicted vortex in figure 7(d), of comparable height. It is slightly shorter
because of the smoother jump profile as a result of the influence of the surface tension
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effect included in the numerical simulation of Askarizadeh et al. (2020). We note that, in
addition to the height of the obstacle, the length of the obstacle is also specified in the
numerical simulation of Askarizadeh et al. (2019, 2020), but this length is irrelevant in the
current approach as we simply impose the film height near the disk edge. In this case,
the current approach does not treat the flow over the obstacle, as well as the flow
near the obstacle accurately. However, the length of the obstacle is an important parameter
in the numerical simulation; beyond a critical obstacle length, the flow remains unaffected
(Passandideh-Fard, Teymourtash & Khavari 2011).

As indicated in the numerical simulation of Askarizadeh et al. (2020), the height of the
obstacle can affect significantly the flow structure; the jump transits from type 0 to type
Ia, then to type Ib, and finally to type IIa and type IIb as the height is increased. As the
effect of surface tension is not included in the present approach, we are unable to capture
jumps of type Ib, type IIa and type IIb, but the current approach can still capture the type
0 and type Ia jumps, and partially explore the influence of the film thickness at the disk
edge on the flow structure. As mentioned above, the film thickness at the disk edge when
an obstacle is present is the combination of the obstacle height, capillary length and the
contribution of the weak power-law dependence on the flow rate, which is a more complex
issue than the situation when the flow drains freely at the disk edge (see § 4.2). To keep the
treatment manageable in the presence of an obstacle, we simply impose the film thickness
at the edge of the disk as the boundary condition.

We explore further the effect of the film thickness at the disk edge for Re = 381.97,
Fr = 9.76 and r∞ = 16. Similar to the experimental measurements of Bohr et al. (1996)
and the Navier–Stokes solution of Askarizadeh et al. (2020), figure 8 indicates that the flow
in the supercritical region is unaffected by the value of the film thickness at the disk edge.
In contrast, the flow in the subcritical and jump regions is significantly influenced when
h∞ varies. Figure 8(a) shows that the film thickness in the subcritical region increases
overall with h∞, pushing the jump location closer to the impinging jet, in agreement with
Bohr et al. (1996), Passandideh-Fard et al. (2011) and Askarizadeh et al. (2019, 2020).
However, as we show in the inset of figure 8(a), both the jump radius and maximum film
height saturate to a constant value in the lower range of h∞, which is the case when the
flow drains freely at the disk edge. It also suggests that the flow at the jump is not sensitive
to the edge condition for the free-draining situation, as long as the film thickness at the
disk edge is close to a draining fluid thickness with no obstacle. Meanwhile, the wall
shear stress in the subcritical region is greatly affected; the wall shear stress decreases
overall as flow is slowed down when the film thickness in the subcritical region is increased
(figure 8b), and the strength of the separation zone increases with the increase of h∞ as
a result of the steepening of the jump (figure 8b–e). In fact, Askarizadeh et al. (2020)
also showed that the heat transfer characteristics also exhibit similar features to the wall
shear stress. Although we have shown that the vortex size increases with the rise of h∞, the
behaviour of the vortex size is much more complex in reality. The surface tension becomes
important when the jump radius becomes smaller, and instability will also appear as the
film height rises. In this case, the size of the vortex near the wall will decrease until it
disappears (Craik et al. 1981; Bohr et al. 1996; Chang et al. 2001; Askarizadeh et al.
2020), and hydraulic jump either becomes unstable (Craik et al. 1981) or transfers to a
type Ib jump (only a surface roller shows) then type II jump (Bohr et al. 1996; Askarizadeh
et al. 2020), with both a wall vortex and a surface roller. As the current study focuses on
the type I jump or type Ia jump (Askarizadeh et al. 2020), the surface tension effect is not
considered.
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Figure 8. Influence of the film thickness at the disk edge on (a) the free-surface profile (solid curves) and the
boundary-layer thickness (dashed curves) and (b) the wall shear stress. Shown in (c–e) are the streamlines for
(c) h∞ = 0.65, (d) h∞ = 0.85 and (e) h∞ = 1.05. The inset in (a) shows the dependence of the jump radius
and maximum film height on the film thickness at the disk edge. Here, Re = 381.97, Fr = 9.76 and r∞ = 16 are
parameters corresponding to the simulation of Askarizadeh et al. (2019, 2020).

4. Scaling analysis and estimates

Duchesne et al. (2014) proposed a scaling law for the jump radius based on the constancy
of the local Froude number at the trailing edge of the jump. This scaling law includes
the influence of the disk size on the jump radius. Later, they proposed a modified scaling
law in Duchesne & Limat (2022), which also includes the influence of the disk size. In
the current study, we revisit the scaling law for the jump radius by including the effect
of the film thickness at the edge, and establish scaling laws for the other jump properties,
such as the jump length, vortex size, energy loss across the jump and conjugate depth
ratio, among others. The validation of the scaling laws and estimates is conducted against
existing measurements and numerical simulations for a flow draining freely at the disk
edge, as well as against our numerical approach (Wang et al. 2023).
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4.1. The scaling law for the jump radius
By considering the horizontal momentum conservation across the jump, and assuming
lubrication flow downstream of the jump, Higuera (1994) derived an expression for the
jump location in the plane. Following his treatment, we first consider the weak form of
the radial momentum equation (2.6), which takes the following approximate form across
a narrow jump:

Re
[∫ hJ

0
u2(rJ−, z) dz −

∫ HJ

0
u2(rJ+, z) dz

]
= Re

2Fr2 (H2
J − h2

J) + LJτw(r = rJ), (4.1)

where LJ is the jump length and τw(r = rJ) = uz(r = rJ, z = 0) is the wall shear
stress at the jump. Here, rJ− and rJ+ are radial locations immediately upstream and
downstream of the jump, with corresponding heights hJ ≡ h(r = rJ−) and HJ ≡ h(r =
rJ+), respectively. Assuming the jump length to be relatively small (LJ 	 rJ), the gravity
term to be negligible compared with the momentum flux in the supercritical region and
the momentum flux term to be negligible compared with the gravity term in the subcritical
region, (4.1) reduces to ∫ hJ

0
u2(rJ−, z) dz ≈ H2

J

2Fr2 . (4.2)

It is helpful to establish a scaling law independent of the choice of the velocity profile.
When gravity is negligible, the supercritical velocity profile (2.8) reduces to u(rJ−, z) =
uJf (η), where f (η) is a non-specified similarity function of η = z/hJ , and is given by (2.4)
for a cubic profile. In this case, we deduce from (2.6a) that uJ ≡ U(rJ−) = 1/2χ1rJhJ ,
and recalling (4.2), we obtain

HJ ≈
√

χ2

2χ2
1

Fr
rJ

√
hJ

, (4.3)

where χ1 = ∫ 1
0 f (η) dη and χ2 = ∫ 1

0 f 2(η) dη. For a cubic profile χ1 = 5/8 and
χ2 = 17/35. These values are close to those based on Watson’s (1964) similarity
profile: χ1 = 0.615 and χ2 = 0.476. The flow downstream of the jump must be analysed
in order to determine the still unknown jump radius rJ . The earlier estimates imply that
the convective terms in (2.1b) are negligible in this region, and then the balance of
viscous and pressure forces for lubrication flow leads to the following downstream jump
height from (2.14a): HJ = [h4∞ + 6(Fr2/Re) ln(r∞/rJ)]1/4. Next, the general supercritical
thickness, which reduces to (2.13a) for a cubic profile, yields the film thickness at the jump
leading edge: hJ = (2/3)(χ0χ1/χ2)(r2

J/Re) + (1/2χ1 − (χ1 − χ2)/4χ1χ2)(1/rJ), where
χ0 = f ′(η = 0), which is equal to 3/2 for a cubic profile. Finally, substituting for hJ and
HJ in (4.3), we obtain the desired equation for the jump radius, including the effect of the
disk radius and the film thickness at the edge of the disk:

χ2
2 Fr4

4χ4
1 rJ4

[
2
3

χ0χ1

χ2

rJ
2

Re
+ 1

rJ

(
1

2χ1
− χ1 − χ2

4χ1χ2

)]−2

≈ 6
Fr2

Re
ln
(

r∞
rJ

)
+ h∞. (4.4)

Under some conditions, this relation can be simplified. For a film draining freely at
the disk edge, the jump is either of type 0 or type Ia. As indicated by Bowles &
Smith (1992), the effect of viscosity in the incident profile upstream of the jump is
responsible for the substantial increase in thickness of the incident layer ahead of the
jump. Watson’s (1964) solution as well as the film height profile (2.13a) account for
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the viscous effect in the upstream profile. This profile suggests that the radial spreading
near impingement dominates the descending portion of the film, and the viscous effect
dominates the ascending portion of the film (see figure 3). In this case, the jump tends
to occur downstream of the ascending portion of the film thickness. On the other hand,
when an obstacle is placed at the disk edge, the situation is different. As indicated in
figure 3 of Bohr et al. (1996), when the height of the obstacle increases, the jump radius
decreases and the film height downstream of the jump increases, but the flow in the
supercritical region does not change. As the jump radius decreases, the jump still occurs
downstream of the ascending portion of the film for a relatively small obstacle height and
the jump remains of type Ia, but the jump occurs in the descending portion of the film
for a relatively large obstacle height and the jump transits to type II. Hence, assuming a
relatively large jump radius, the film thickness at the leading edge of the jump reduces to
hJ ≈ (2/3)(χ0χ1/χ2)(r2

J/Re). For a draining film at the disk edge, we show shortly that
the film thickness at the edge is estimated as h∞ ≈ (27/70)1/3(Fr/r∞)2/3 from (4.8) in
the absence of the surface tension effect. Consequently, (4.4) reduces to a somewhat more
familiar and tractable form:

rJ

[
1
6

(
27
70

)4/3( Fr
r∞

)8/3

+ Fr2

Re
ln
(

r∞
rJ

)]1/8

≈ γ Fr1/32Re1/4, (4.5)

where γ = ((3/32)(χ4
2 /χ6

1 χ2
0 ))1/8 is a constant, which depends only on the type of

velocity profile adopted in the averaging process. For a cubic profile, γ = 2/3. This scaling
law (4.5) can be simplified further for a disk of relatively large diameter, so the first term
on the left-hand side becomes negligible (h∞ → 0), yielding

rJ

[
ln
(

r∞
rJ

)]1/8

= γ Fr1/4Re3/8. (4.6)

This scaling law is similar to the one obtained by Duchesne & Limat (2022), who adopted
the similarity velocity and height profiles for the flow in the viscous region from Watson
(1964), yielding γ = 0.5 (compared with γ = 0.67 when a cubic profile is used). If the
logarithmic dependence is dropped, we recover the scaling law of Bohr et al. (1993), who
suggested the value γ = 0.73.

Relation (4.6) is very similar to the scaling law of Duchesne et al. (2014), which
we recast here as rJ[ln(r∞/rJ)]3/8 = γ Fr1/4Re3/8, where γ = (1/2π)(π/6)3/8Fr−1

J . We
observe that Duchesne et al. (2014) established their scaling law by assuming that FrJ ≡
Fr/2rJH3/2

J is constant, therefore allowing them to eliminate HJ between this relation and
the lubrication result (2.14a) HJ = [6(Fr2/Re) ln(r∞/rJ)]1/4 to obtain the expression for
rJ . Their scaling law is therefore semi-empirical since the value of FrJ must be imposed
from experiment. In contrast, relation (4.5) and its simplified form (4.6), as well as that
of Higuera (1994) for a planar jump, do not rely on empirical input. Finally, although the
relations (4.5) and (4.6) are derived for a general similarity velocity profile, they are used
based on the cubic profile to generate numerical results.

Figure 9 shows the comparison between our scaling law (4.6) and other laws, including
the measurements of Hansen et al. (1997). Our scaling law (4.6) is as accurate as that
of Rojas, Argentina & Tirapegui (2013). This latter relates the radius of the jump, in
particular, to the height downstream of the jump (see their relation (15)). In the absence
of surface tension, the relation, written here as rJ ≈ [(9/70)(ReFr2/H2

J )]1/4, is based on
their spectral approach for inertial–lubrication flow (Rojas et al. 2010) and the inviscid
Belanger equation (White 2006).
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10–1
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rJ

Experiment
Present scaling (4.6)

Scaling of Rojas et al. (2013)

Figure 9. Comparison of scaling laws for the influence of the Froude number (flow rate) on the jump radius.
Our scaling law (4.6) is compared against the scaling law of Rojas et al. (2013). Measurements of Hansen et al.
(1997) are added for reference. Results for water (ν = 1 cSt) (Ga = 627 840) are in red, those for silicone oil
(ν = 15 cSt) (Ga = 2790) are in blue and those for silicone oil (ν = 95 cSt) (Ga = 70) are in green.

We recall that Rojas et al. (2013) fixed their downstream thickness from the experiment
in both their numerical solution and scaling. It is important to observe that our scaling
law is not expected to remain accurate for low-viscosity fluids because it is based on the
lubrication assumption. However, it seems to yield a reasonably accurate description if γ

is slightly readjusted from 2/3. We have taken γ = 0.45 in figure 9 for water. Finally, the
discrepancy at low flow rates is not surprising since it was difficult to observe the jump,
so the first few data points are not reliable (Hansen et al. 1997). Another source for the
discrepancy at low flow rates for (4.6) and existing scaling laws is the narrow or shock-like
assumption of the hydraulic jump made and only the ascending part of hJ is kept when
deriving the scaling.

Finally, we show how our scaling law (4.6) can be used to estimate the (constant)
value of FrJ . We consider the flow on a large disk so r∞  rJ . In this case,
assuming lubrication subcritical flow, evaluating (2.14a) at the jump and keeping the
dominant terms, we have HJ ≈ (6(Fr2/Re) ln r∞)1/4. Simultaneously, (4.6) reduces to
rJ ≈ γ Fr1/4Re3/8(ln r∞)−1/8. Then, recalling the definition FrJ = Fr/2rJH3/2

J , we have

FrJ = 1

2 × 63/8γ (ln r∞)1/4 , (4.7)

which clearly demonstrates that FrJ is independent of Fr (or Re), and depends only on the
size of the disk. In addition, as reflected in the scaling of the jump radius (4.6), the value
of γ depends only on the velocity profile adopted, confirming the constancy of FrJ . The
independence of FrJ of the flow rate and viscosity is consistent with the measurements of
Duchesne et al. (2014), who also found that FrJ is independent of surface tension. This
behaviour is also consistent with the experimental findings of Mohajer & Li (2015), who
found that FrJ is independent of the flow rate, but is dependent on surface tension. They
attributed this dependence on surface tension to the edge condition, as the flow only drains
out of the disk at one outlet, instead of the uniform edge flow around the disk in Duchesne
et al. (2014). Moreover, they also found that FrJ decreases weakly with increasing disk
size. This weak dependence on the disk size is consistent with the behaviour shown in
(4.7). In contrast, for a planar hydraulic jump, Dhar et al. (2020) found that FrJ changes
slightly with the Reynolds number, the channel length as well as the channel inclination.
Although the origin of the constancy of FrJ is to date not fully understood, Dhar et al.
(2020) attributed the difference between the cases of the circular and the planar hydraulic
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jump to the definition of FrJ; for a circular hydraulic jump, FrJ involves both the jump
radius and jump height, but it involves only the jump height for a planar hydraulic jump.
In this case, based on the definition of FrJ = Fr/2rJH3/2

J for a circular hydraulic jump,
a constant FrJ (independent of the flow rate) indicates that the denominator scales like
Fr: rJH3/2

J ∼ Fr. If γ is taken equal to 0.54 (instead of 0.67 for a cubic profile), then
(4.7) yields FrJ = 0.32, in agreement with the data from the measurements of Duchesne
et al. (2014) for r∞ = 93.75, based on the jump height estimated from lubrication flow.
It is important to recall that we arrived at (4.7) by assuming that the jump radius is small
relative to the disk radius (r∞  rJ). As we see later, the constancy of FrJ may not hold
under some flow conditions.

4.2. The film thickness and velocity at the edge of the disk for a freely draining film
The thickness at the edge of the disk remains largely unaddressed in the literature, as
the flow near the disk edge experiences a complex interplay of inertia, gravity and surface
tension (Higuera 1994; Wang et al. 2023). For a film draining freely off the disk edge, there
are mainly two approaches to determine the film height or equivalent conditions at the
disk: imposing an infinite slope (Bohr et al. 1993; Kasimov 2008; Dhar et al. 2020; Wang
et al. 2023) or assuming the edge thickness to be essentially equal to the capillary length
(Duchesne et al. 2014; Ipatova et al. 2021; Duchesne & Limat 2022). In the experimental
work of Duchesne et al. (2014), they found that there are mainly two different scenarios for
the flow at the disk edge: total wetting and partial wetting. For the total wetting, the flow
leaves the top surface of the disk and wets the lateral edge fully. In this case, Duchesne et al.
(2014) found that the edge film thickness is predominantly equal to the capillary length for
silicone oil, but also follows a weak power-law dependence on the flow rate. In contrast,
when using a water–glycerol mixture as the working fluid, they found that the film flows
under partial wetting conditions. Even for a clean enough glass disk, all the top surface
of the disk remains wetted, but dewetting occurs on the lateral edge of the disk, with the
formation of rivulets, causing a slight break in the axisymmetry of the flow. Nevertheless,
the film thickness remains nearly constant with relative fluctuations due to the vicinity of
the rivulets. The constant film thickness is very close to the capillary length

√
σ/ρg of

the fluid, which results from the balance between the hydrostatic pressure and the surface
tension forces at the disk perimeter. This value is also consistent with the measurements
of Dressaire et al. (2010).

When related to the capillary length, the film thickness at the disk edge is essentially
equal to the thickness of the liquid film under static conditions. This is not an unreasonable
analogy since the flow downstream of the jump has predominantly the character of
gradually varied and slow flow. This static thickness is governed by the minimum
free energy, and was given by Lubarda & Talke (2011), which is recast here as hs =
(2/

√
Bo) sin(θY/2), where θY is the contact angle. This expression is equivalent to

expression (5.1) of Duchesne & Limat (2022); see also de Gennes, Brochard-Wyart &
Quéré (2004) for further interpretation.

In addition to this static character, Duchesne et al. (2014) found that the edge film
thickness follows a weak power-law dependence on the flow rate. The film thickness at
the edge may then be construed as comprising static and dynamic contributions.

To explore the dynamic component of the film height at the disk edge, we follow
Yang & Chen (1992) and Yang, Chen & Hsu (1997), and apply the minimum mechanical
(Gibbs free) energy principle. We thus consider the minimum of the energy flux, and
set (∂/∂h)

∫ h
0 ((1/2)Fr2u2 + h)ur dz = 0 at r = r∞. This principle states that a fluid
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flowing over the edge of a disk under the influence of a hydrostatic pressure gradient
will adjust itself so that the mechanical energy within the fluid will be minimum with
respect to the film thickness at the disk edge. Since the flow is predominantly slow and
of lubrication character in the subcritical region (Duchesne et al. 2014), we then can use
u = (3/2rh3)(hz − z2/2) (Wang & Khayat 2019), yielding the following estimates for the
edge thickness (and average velocity 〈u∞〉 = 1/2r∞h∞):

hd ≈
(

27
70

)1/3( Fr
r∞

)2/3

. (4.8)

Although expression (4.8) seems to yield overall a good agreement with numerical
and experimental results, it is not expected to hold when the subcritical flow deviates
from lubrication flow, especially near the disk edge where inertial (and possibly surface
tension) effects become tangible. Our own numerical predictions suggest that the flow can
accelerate considerably near the edge for the local Froude number Frl to exceed unity
near the edge (see figure 11 in Wang et al. 2023). We recall the local Froude number
in terms of the average velocity and film height as Frl = Fr〈u〉/√h. Noting from (2.6a)
that 〈u〉 = 1/2rh, then Frl = Fr/2rh3/2. Upon setting Frl = 1 at the edge of the disk, we
obtain

hd =
(

1
4

)1/3( Fr
r∞

)2/3

. (4.9)

In fact, considering the effect of surface tension at the disk edge, Rahman, Faghri &
Hankey (1992) proposed an expression for the film thickness at the edge, which is the sum
of the height obtained based on the exit Froude number being equal to 1 and σ /ρgR, in
which R is the radius of curvature at the exit. In this case, the methodology in Rahman et al.
(1992) is consistent with (4.9) if the surface tension effect is not considered. More recently,
Wang & Khayat (2019) assumed that the edge film thickness is given by h∞ = hs + hd,
comprising the effects of surface tension, inertia and gravity. In this work, only the effects
of inertia and gravity are considered so h∞ = hd.

Aside from a difference of a few per cent in the coefficients, expression (4.8) or (4.9)
yields the same dependence of the edge thickness on the flow parameters, involving only
the Froude number and disk radius. The validity of the two estimates is established by
comparison against our numerical result. Figure 10 shows that the numerical predictions
for the edge thickness (figure 10a,b) and average velocity (figure 10c) follow closely (4.8)
for low flow rates and (4.9) for high flow rates. The numerical (solid) curves in figure 10 fall
between the two estimates over the entire Fr range considered. It eventually merges with
the (4.9) curve as Fr increases beyond the range shown. Recalling that we determine the
edge condition by assuming an infinite slope at the disk edge, the obtained film thickness
at the disk edge indeed depends on the flow conditions, which we explore further below.
In other words, the flow upstream is sensitively influenced by edge conditions (Higuera
1994).

The measurements of the film thickness at the disk edge were carried out for silicone
oil by Duchesne (2014), who found that the film thickness is only weakly dependent on
the flow rate. In order to assess this dependence, we compare our theoretical estimate (4.8)
for the dynamic contribution against experiment after subtracting the static contribution
from the measurements of Duchesne (2014). For this, we first note the surface tension
σ = 20 mN m−1, and, for a best fit, we choose the static contact angle θY = π/4. The
close agreement in figure 10(b) between our numerical profile and the measurements of
Duchesne (2014) highlights the existence and contribution of the dynamic component of
the thickness at the edge of the disk.
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Figure 10. Influence of Fr (flow rate) on film thickness h∞ and the average velocity Fr〈u∞〉 at the edge of
the disk. (a,c) Predictions based on the present approach against expressions (4.8) and (4.9). (b) Comparison
between the present approach and the measurements in Duchesne (2014). Here, Ga = 100 (50.11 < Re < 551.25)
and r∞ = 93.75, corresponding to the range of flow rates in the experiment of Duchesne et al. (2014).

Figure 11 displays the influence of the disk radius on the film thickness at the edge
for two different flow rates corresponding to Re = 854, Fr = 97 (in red) and Re = 356,
Fr = 194 (in blue), for 50 < r∞ < 80. The solid curves correspond to our numerical
predictions and the dashed curves are based on expression (4.9), showing a close
agreement. This also indicates that the local Froude number has reached unity near the
edge as a result of flow acceleration. The edge thickness decreases essentially at the
same rate with respect to the disk radius independently of the flow rate. The decrease
of h∞ in the figure appears to be almost linear in both cases but it follows the r−2/3

∞
behaviour shown in (4.9). We have also added four values of the edge thickness based
on the Navier–Stokes solution of Fernandez-Feria et al. (2019) when the effect of surface
tension is not considered, which agree with our predictions and expression (4.9) to within
a few per cent; the two red circles correspond to the Navier–Stokes profiles in figure 2(a,b).
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Figure 11. Influence of r∞ (disk radius) on thickness h∞ at the edge of the disk. Here, red curves and
circle symbols correspond to Re = 854, Fr = 97, and blue curves and circle symbols correspond to Re = 356,
Fr = 194. Simulation results come from the Navier–Stokes solutions of Fernandez-Feria et al. (2019).
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Figure 12. Dependence of the jump length, vortex length and vortex height on the film thickness at the disk
edge. Here, Re = 381.97, Fr = 9.76 and r∞ = 16 are parameters corresponding to the simulation of Askarizadeh
et al. (2019, 2020).

4.3. The jump length and vortex size
We identify the jump length, LJ ≡ rJ+ − rJ−, as the difference in position between
the leading edge of the jump and its trailing edge (location of maximum film height).
Figure 12 illustrates the dependence of the jump length, vortex length and height on the
film thickness at the disk edge for the same parameter range used in figure 7. All three
quantities increase when the subcritical film thickens. In particular, both the jump and
vortex lengths grow at the same rate, while the vortex height grows more rapidly with the
film thickness. We already reported in figure 6 that the jump and vortex lengths experience
the same growth rate with the flow rate, especially in the lower-Fr range. Whether the
correlation between the jump length and vortex size exists under more general conditions
is an interesting and fundamental issue, which we explore further next.

By balancing the drag at the disk in the jump region with fluid inertia, and assuming
dominant viscous over gravity effects, Avedisian & Zhao (2000) obtained a relation
between the length of the jump and its radius as LJrJ/hJ ≈ Re, where hJ is the film
thickness at the leading edge of the jump (see also the different treatment of Razis et al.
(2021) for the planar jump). An approximate relation among the jump length, location and
height can be derived by applying (2.11) at rJ− and rJ+. We observe that both the slope
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and concavity are relatively small at these two locations (Bush & Aristoff 2003), so (2.11)
reduces to 136 Re h ≈ 525r2. By applying this relation at the leading and trailing edges
of the jump and subtracting them, we arrive at LJ(rJ+ + rJ−)/(HJ − hJ) ≈ 136Re/525.
If we take rJ ≈ (rJ− + rJ+)/2, we obtain a more general relation than Avedisian & Zhao
(2000):

LJ ≈ 68
525

Re
HJ − hJ

rJ
. (4.10)

We can further simplify this expression to obtain a relation between the jump length and
jump radius. We first note that at the leading edge of the jump, r = rJ−, where the film
slope is small, (2.7b) yields hJ ≈ (272Fr2/875r2

J )
1/3. The trailing edge, r = rJ+, is part

of the subcritical region where the local Froude number is sensibly constant (Duchesne
et al. 2014; Wang & Khayat 2019; Wang et al. 2023), except perhaps near the edge where
the flow may accelerate. Recalling the definition of the local Froud number at the jump
location, we have HJ = (Fr/2rJFrJ)

2/3. In this case

LJ ≈ CRe
(

Fr2

rJ5

)1/3

, (4.11)

where C = (68/525)[(1/2FrJ)
2/3 − (272/875)1/3] is a constant that depends on FrJ ,

which is independent of Fr (or Re), and depends only on the size of the disk (see expression
(4.7)). Interestingly, if the scaling law of Bohr et al. (1993) is used: rJ ≈ 0.73Re3/8Fr1/4,
then we find from (4.11) that LJ ≈ 0.73CRe3/8Fr1/4. In other words, the jump length also
scales like the jump radius. Perhaps a more accurate estimate would be to adopt the scaling
law (4.6) or that of Duchesne et al. (2014), which accounts for the influence of the disk
radius. Thus, by applying the scaling law (4.6) to determine the jump radius, we use (4.11)
to obtain an estimate of the jump length in terms of the flow parameters Re, Fr and r∞.
We suspect that the vortex length may follow closely (4.11) if a constant different from C
is used. Although it is difficult to establish this correlation, it is worth assessing its validity
numerically (see next).

Figure 13 shows the influence of the flow rate on the jump and vortex lengths, based on
the profiles corresponding to the flow rate range of Duchesne et al. (2014) in figure 4(a).
The behaviour of the jump length LJ with respect to the flow rate agrees qualitatively with
the measurements of Craik et al. (1981) (see their figure 6) and Rao & Arakeri (2001)
(see their figure 6). In addition, as indicated in figure 17 below, the jump length (the
radial distance between the two vertical dotted lines) obtained from the present approach
also agrees qualitatively with the jump length of the measurements of Duchesne et al.
(2014). Figure 13 shows that the dependence of the jump length on the flow rate follows
closely LJ ∼ Fr1/2. This behaviour becomes closely mimicked by estimate (4.11) once the
dependence of rJ on the flow rate is established. This can be done by adopting the scaling
law (4.6). Alternatively, for the range of flow rates considered in figure 13, which is the
same as the range examined by Duchesne et al. (2014), the data in figure 5(a,b) suggest
that the jump radius follows closely rJ ≈ 1.08Fr7/10, yielding the LJ ∼ Fr1/2 behaviour in
figure 14. Incidentally, the rJ ∼ Fr7/10 behaviour is also consistent with the measurements
of Hansen et al. (1997).

The measurements of Duchesne et al. (2014) suggest that FrJ � 0.37 for the range
of flow rates considered, yielding C = 0.07. Given the simplifying assumptions (the
negligible slope and concavity at the leading and trailing edges of the jump) made to
obtain (4.11), we have adjusted this value to FrJ � 0.32 to obtain the closer agreement
shown in figure 13. The vortex length also appears to follow closely the same dependence

980 A15-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.8


The characteristics of the circular hydraulic jump and vortex structure

6

5

4

3

2

1

5 15 25 35 45 55

Fr

L J
, 
L v

or
te

x
LJ Present approach Lvortex

LJ Expression (4.11)

Figure 13. Influence of the Froude number (flow rate) on the jump and vortex lengths. Solid and dash-dotted
curves based on our predictions and the dashed curve based on expression (4.11). Here FrJ = 0.32, Ga = 100
and r∞ = 93.75, corresponding to the parameters in the experiment of Duchesne et al. (2014).
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Figure 14. Influence of Fr (flow rate) on (a) the film depth immediately upstream and downstream of the
jump and (b) the conjugate depth ratio. Here Ga = 100 and r∞ = 93.75, corresponding to the parameters in the
experiment of Duchesne et al. (2014). Inset in (a) shows the experimental measurements of Craik et al. (1981)
for Re = 265.46–1238.44, Fr = 0.18–0.85; the grey dashed curve in the inset is included for visual guidance.
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on the flow rate, namely Lvortex ∼ Fr1/2. Finally, and as we see below, the monotonicity
depicted in figure 13 is lost for the variation of the jump and vortex lengths with respect to
parameters other than the flow rate, and consequently (4.11) does not always hold.

4.4. The energy loss and conjugate depth ratio
For the flow of an impinging jet and hydraulic jump, the supercritical film thickness
follows closely the analytical expression (2.13a) given the negligible gravity effect over
a wide range of the supercritical region, up to the leading edge of the jump. Consequently,
if the jump occurs close to the jet impact point then hJ ≈ (233/340)(1/rJ), reflecting
the dominant radial spreading effect, and if it occurs further downstream, then hJ ≈
(175/136)(r2

J/Re), implying the dominant viscous effect (Bowles & Smith 1992). The two
terms of expression (2.13a) are reflected in figure 3 for reference. We again consider the
influence of flow rate over the experimental range of Duchesne et al. (2014), and recall
that the jump radius follows closely rJ ≈ 1.08Fr7/10. Recalling that Re = √

GaFr with
Ga = 100 yields hJ ≈ 0.64Fr−7/10 and hJ ≈ 0.15Fr2/5, close and far from impingement,
respectively. Referring to figure 4(a), for the small flow rate range (Fr < 10), both the
radial spreading and viscous effects are important, while the viscous effect dominates the
flow for the higher flow rate range (Fr > 10). The overall behaviour for the supercritical
thickness at the leading edge of the jump may then be given from (2.13a). As to the
film height immediately downstream of the jump, our numerical predictions indicate that
HJ ≈ 1.3Fr4/25 (Wang et al. 2023). In sum, we have the following dependence on the
flow rate (Froude number), based on our approach, for the film heights at the leading and
trailing edges of the jump:

hJ ≈ 0.64Fr−7/10 + 0.15Fr2/5, HJ ≈ 1.3Fr4/25, (4.12a,b)

which, in turn, yield
HJ

hJ
≈ 1

0.49Fr−43/50 + 0.12Fr6/25 . (4.13)

These expressions are used to produce the plots in figure 14. The behaviour (4.12b) of
HJ , based on our approach, agrees closely with the measurements of Duchesne et al.
(2014), as shown in figure 14(a). Our numerical results overlap with the predictions of
expression (4.12a) for hJ , and also agree with the available measurements of Duchesne
(2014). We have also added in the inset of figure 14(a) the data from figure 7 of Craik et al.
(1981), who investigated the stability of the hydraulic jump for a water jet impinging onto
a rectangular tank with outflow at four corners. The data are included only for reference,
showing a similar trend to our approach. As indicated in the numerical simulation work
of Askarizadeh et al. (2019), there are two different flow regimes in the jump formation,
gravity- and capillary-dominant flow regimes, and the role of surface tension is significant
when the flow regime is capillary-dominant. Clearly, the high surface tension value of
the working fluid in the experiments of Craik et al. (1981) results in the non-negligible
effect of surface tension. More importantly, the tank container used as the impinging plate
and unclear downstream flow condition for a certain hJ in Craik et al. (1981) make the
quantitative comparison unachievable.

The estimate of HJ/hJ (4.13) is used to plot the conjugate depth ratio against Fr
(flow rate) in figure 14(b), which shows a close agreement with our numerical solution.
More importantly, it helps elucidate the origin of the non-monotonicity in figure 14(b),
and a similar behaviour of the Froude numbers at the leading and trailing edges of the
jump and energy loss across the jump, which we examine shortly. The behaviour of the

980 A15-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.8


The characteristics of the circular hydraulic jump and vortex structure

conjugate depth ratio in figure 14(b) should be contrasted with that of Higuera (1994) in his
figure 3. Interestingly, Higuera’s figure shows a monotonically decreasing depth ratio with
the Froude number, thus corresponding to the descending part of the curves in figure 14(b).
The absence of an ascending branch in Higuera’s formulation is due to the nature of his
supercritical profile, which increases predominantly linearly with the streamwise distance
for a planar hydraulic jump in a two-dimensional channel. Consequently, and as we can
see from his figure 2, this implies monotonically increasing hJ and HJ , yielding the
monotonically decreasing behaviour in his figure 3.

In the hydraulic jump literature, which is focused mainly on planar flow, it is customary
to consider the conjugate depth ratio and relative energy loss across the jump in terms
of the approaching Froude number FrJ− in the supercritical region (see e.g. Palermo &
Pagliara (2018) and references therein). For a planar jump, FrJ− is a parameter that is
only related to the flow rate and film height at the leading edge of the jump, and is easy
to monitor and measure in experiments. Clearly, the Froude number at the trailing edge
of the jump FrJ+ is also of interest. We recall from § 2.1 that, for a circular hydraulic
jump, FrJ− = Fr/2rJh3/2

J and FrJ+ = Fr/2rJH3/2
J . To establish the expression of FrJ−

and FrJ+, we first recall the momentum balance equation (4.1) for a shock-like jump,
assuming LJ ≈ 0. To further proceed, a velocity profile in both super- and subcritical
regions is required. Liu & Lienhard (1993) assumed a uniform velocity both up- and
downstream of the jump, and obtained an expression between the depth ratio and the
supercritical approaching Froude number. More accurate profiles, parabolic, cubic or a
combination of them, are extensively employed to study the flow of hydraulic jump,
yielding a good agreement with experiment and numerical simulation (Bohr et al. 1993;
Kasimov 2008; Wang & Khayat 2018, 2019; Dhar et al. 2020). For simplicity, we adopt
the general similarity velocity profile for both the supercritical and subcritical regions:
u = Uf (η), where U = 1/2χ1rh (see § 4.1). When applied at the leading and trailing edges
of the jump, the integrals in the momentum balance equation (4.1), leading to

χ2

2χ2
1

1
hJHJ

= r2
J

Fr2 (HJ + hJ). (4.14)

This equation can be rearranged to yield the local Froude numbers at the leading and
trailing edges of the jump in terms of the conjugate depth ratio HJ/hJ:

FrJ− =
√

χ2
1

2χ2

(
HJ

hJ
+ 1

)
HJ

hJ
and FrJ+ =

√
χ2

1
2χ2

(
hJ

HJ
+ 1

)
hJ

HJ
. (4.15a,b)

Clearly, these expressions are closely related to the Belanger equation for inviscid flow
(Chanson 2012). Once expression (4.13) of the conjugate depth ratio is used, the leading
and trailing Froude numbers become functions of Fr (flow rate). Alternatively, we use the
numerical values of the depth ratio based on the present approach. This allows us to assess
the error induced by assuming the jump to be a shock as opposed to being continuous.
Thus, we examine in figure 15 the dependence of FrJ− (figure 15a) and FrJ+ (figure 15b)
on Fr over the same experimental range of flow rates as in Duchesne et al. (2014).
In contrast to the monotonic behaviour of FrJ− observed in the planar hydraulic jump
(Higuera 1994), the FrJ− of the circular hydraulic jump increases over the smaller range
of flow rate (Fr < 10) and decreases over the larger range of flow rate (Fr > 10), exhibiting
a maximum at Fr ≈ 10. This behaviour of FrJ− is well captured by the expression (4.15a)
and the behaviour of the conjugate depth ratio in figure 14(b). The almost constant FrJ+
reflected in the measurements of Duchesne et al. (2014) is also well reflected in both
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Figure 15. Influence of Fr (flow rate) on the Froude number (a) FrJ− at the leading edge and (b) FrJ+ at the
trailing edge of the jump. Here Ga = 100 and r∞ = 93.75, corresponding to the parameters in the experiment
of Duchesne et al. (2014). In (4.15), χ1 = 0.615 and χ2 = 0.476, based on Watson’s (1964) similarity profile.

our numerical calculation and the expression (4.15b). However, the theoretical profiles
in figure 15(b) suggest the presence of non-monotonic responses that are not clearly
visible from experiment. Both profiles based on our current approach and expression
(4.15b) show a decrease in FrJ+ for smaller Fr, consistent with experiment, reaching a
minimum, and an increase over the higher Fr range, which is somewhat consistent with
experiment. Perhaps more precise measurements will show a more coherent trend similar
to theory. We emphasize again that the non-monotonic response in figure 15 and other
figures is the result of the non-monotonicity of the conjugate depth ratio with respect to
the radial distance. The discrepancy between the present approach and the prediction from
the expressions (4.15a) and (4.15b) is expected since these expressions are based on the
shock-like assumption adopted in the momentum balance equation (4.14) as opposed to
the continuous jump approach. We discuss the physical interpretation of the discrepancy
when we examine the energy loss next.

We next follow Palermo & Pagliara (2018), and introduce the energy dissipation
as the difference in the total energy heads EJ− = (1/2)Fr2〈uJ−〉2 + hJ and EJ+ =
(1/2)Fr2〈uJ+〉2 + HJ at the leading and trailing edges of the jump, respectively, where
〈u〉 = (1/h)

∫ h
0 u dz is the local average velocity. Recalling from the mass conservation

equation (2.6a) that 〈u〉 = 1/2rh, then the energy dissipation becomes

�EJ ≡ EJ− − EJ+ = 1
8

Fr2

(
1

r2
J−h2

J
− 1

r2
J+H2

J

)
+ hJ − HJ. (4.16)
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It is not difficult to show, upon recalling the definition of the jump length LJ = rJ+ − rJ−
and the approximation rJ ≈ (rJ− + rJ+)/2 for the jump radius, that the relative energy
dissipation is

�EJ

EJ−
=

Fr2
J−

[
1 −

(
1 + LJ

rJ

)−2 h2
J

H2
J

]
+ 2

(
1 − HJ

hJ

)

Fr2
J− + 2

. (4.17)

This expression is the same as expression (12) of Lawson & Phillips (1983), who
investigated the turbulent circular hydraulic jump from a source with a circular deflection
plate to control its exiting height. If we further assume that LJ 	 rJ , then, upon recalling
(4.15a), (4.17) reduces to an expression entirely in terms of the conjugate depth ratio:

�EJ

EJ−
=

Fr2
J−

(
1 − h2

J

H2
J

)
+ 2

(
1 − HJ

hJ

)

Fr2
J− + 2

. (4.18)

In this case, we recover essentially expression (8) of Palermo & Pagliara (2018) for
a horizontal channel, who examined the energy dissipation for a jump in a sloped
channel with a rough bottom. Both research groups found that their theory agrees
well with the experimental data available from either the existing literature or their
own measurements. In particular, they found that the relative energy dissipation always
increases monotonically with the approaching Froude number. They attributed the
monotonicity to that of the conjugate depth ratio. As we see next, the monotonic behaviour
is not preserved for the circular hydraulic jump as a result of the non-monotonic depth ratio
in our current problem (see figure 14b).

Figure 16 illustrates the influence of the Froude number on the relative energy
dissipation �EJ/EJ− over the same range of flow rates as in the experiment of Duchesne
et al. (2014). The relative energy dissipation �EJ/EJ− exhibits a maximum after a
relatively rapid increase in the low-Fr range, reaching a maximum and decrease rather
slowly with increasing Fr. The non-monotonic response is at first surprising since it has
not been predicted or observed in the hydraulic jump literature (see Palermo & Pagliara
(2018) and references therein). There are important differences between the flow across
the present circular jump and that across the typical jump in a channel. For the present
jump, both the supercritical and subcritical film thicknesses vary significantly with the
radial position as a result of jet impingement and film drainage at the edge of the disk. We
have shown how these differences can lead to the non-monotonic response for the depth
ratio in figure 14(b). Clearly, the maximum of the energy dissipation is closely tied to
the maximum in the conjugate depth ratio. To confirm the trend predicted by the present
approach, we have also computed the distributions based on the simpler shock-jump model
(Bohr et al. 1993; Wang & Khayat 2019), and also found a similar response, which is based
on expression (4.17) and shown in figure 16.

Finally, the discrepancy between our numerical predictions and the approximate
expressions (4.15) and (4.17) in figures 15 and 16 originates from the shock-like assumption
and the similarity velocity profile used to derive these expressions. Physically, these
approximations prohibit the inviscid–viscous interaction from coming into play at the
leading edge. For a more detailed discussion about the inviscid–viscous interaction, the
reader is referred to our recent work (Wang et al. 2023) and Bowles & Smith (1992),
Higuera (1994) and Bowles (1995). In sum, Bowles (1995) examined the free-interaction

980 A15-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.8


W. Wang, A. Baayoun and R.E. Khayat

0.16

0.13

0.10

0.07

5 15 25 35 45 55

Fr

Present approach

Expression (4.17)

�
E J

/E
J–

Figure 16. Influence of Fr (flow rate) on the relative energy loss. Here Ga = 100 and r∞ = 93.75,
corresponding to the parameters in the experiment of Duchesne et al. (2014). In (4.15) and (4.17), χ1 = 0.615
and χ2 = 0.476, based on Watson’s (1964) similarity profile.

problem of the planar flow of a sloped liquid layer over an obstacle, describing the
internal structure of the continuous jump as dominated by the viscous–inviscid interaction
between the hydrostatic pressure gradient and the viscous effect near the solid wall. In our
formulation, this interaction is ensured through the inclusion of the pressure gradient in
the velocity profile, which is taken to satisfy the radial momentum equation at the disk. As
Bowles (1995) observes, the free interaction involves one of two mechanisms, depending
on the pressure development: an increase in pressure can possibly lead to separation (a
compressive interaction) and a decrease leads perhaps to a finite-distance singularity in the
solution (an expansive interaction). In Wang et al. (2023), we have previously discussed
this issue; for more detail, refer to § 3.4 in Wang et al. (2023).

In our earlier study (see figure 6 of Wang et al. 2023), we compared our theoretical
prediction for the film profile over the entire domain against the measurements of
Duchesne et al. (2014) for silicone oil (20 cSt) of density 960 kg m−3 and kinematic
viscosity 2 × 10−5 m2 s−1. The liquid was injected downward from a jet of radius
a = 1.6 mm onto a horizontal circular disk of radius R∞ = 15 cm. However, although
the comparison led to a close agreement against experiment, the validation was limited
to a film profile for one flow rate, namely Q = 17 cm3 s−1. In an effort to explore
the supercritical flow, Duchesne (2014) reported measurements in his thesis for three
different flow rates concentrated on the supercritical and jump regions. In his figure V.4,
he considered the film profiles for Q = 7.7, 11 and 17 cm3 s−1 against the predictions of
Watson (1964), which showed some agreement in the supercritical region at a small flow
rate.

Figure 17 shows the comparison of the free-surface profiles based on our approach and
experiment for a disk of 15 cm radius or r∞ = 93.75. The flow conditions in dimensionless
form correspond to Fr = 7.64, 10.92 and 16.87 in figures 17(a)–17(c), respectively. We also
include the prediction from the Navier–Stokes numerical solution of Zhou & Prosperetti
(2022) for the highest flow rate in figure 17(c). The theoretical profiles agree well with
experiment but, like the Navier–Stokes numerical solution, they underestimate slightly the
supercritical film thickness at the jump, especially for the highest flow rate considered
(figure 17c). In contrast, and as we showed previously (see figure 6 of Wang et al.
2023), in the subcritical region, the theoretical and numerical predictions almost fit all the
experimental data points, except near the disk edge. The agreement with the Navier–Stokes
solution of Zhou & Prosperetti (2022) is surprisingly close, except near impingement (see
also figure 7). We recall that the effect of surface tension was neglected in our model but
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Figure 17. Comparison of the free-surface profile in the supercritical and jump regions based on the present
approach against the measurements of Duchesne (2014) for (a–c) three different flow rates. Here, Ga = 100 and
r∞ = 93.75. The green curves are based on expressions (2.12a,b) and (2.13a), the red curve in (c) is from the
Navier–Stokes solution of Zhou & Prosperetti (2022), the blue circles are from Duchesne (2014) and the black
curves are from the present approach. The vertical dotted lines delimit the jump region/length based on the
present approach.

was included in the numerical simulation (see also Wang & Khayat 2021), confirming that,
in this case, the effect of surface tension may only be important near the edge and at the
jump. As to the location of the jump, the experimental data suggest a slightly smaller jump
radius than predicted by our approach and the numerical simulation. As mentioned earlier
(figure 7), the discrepancy in the film profile near impingement is due to our neglecting
the impingement zone (see our discussion in § 2.1). Finally, figure 17 illustrates additional
jump features such as the jump length LJ and the heights hJ and HJ at the leading and
trailing edges of the jump. We have delineated the jump length LJ by two vertical (dotted)
lines, reflecting a visual measure of the growth of the jump length with the flow rate, and
corroborating the predicted growth in figure 6(e). The values of hJ and HJ are the same as
reported in figure 6(a,b) as well as in figure 14(a).

5. Further parametric assessment

When validating our approach against experiment and numerical simulation, and reporting
a detailed account of the influence of the flow rate in this and earlier studies of Wang et al.
(2023), we observed the non-monotonic behaviour of the jump length and vortex size.
In an effort to shed further light on the origin of the non-monotonicity, we now examine
theoretically the effects of Fr (gravity) and Re (viscosity) on the flow structure. Finally, we
also focus on the conditions of jump and vortex existence in the parameter space.

5.1. The influence of the Froude number (gravity)
The influence of gravity on the film profile in the strong-gravity viscous region is shown
in figure 18 for Re = 1000 and r∞ = 25. We observe that the jump radius and height
increase with Fr, and the jump is washed out of the disk when Fr exceeds a critical
value. For the film height, the subcritical film thickness increases monotonically with Fr,
as the flow becomes more difficult to drain under lower gravity level, leading to more
flow accumulation in the subcritical region (see also expressions (2.14a) and (4.8)). In
addition, as the jump occurs closer to the disk edge for a larger Fr, the interplay between
the accumulation effect at the jump and the drainage effect at the disk edge also strengthens
the steepness of the film profile in the subcritical region (again, see expressions (2.14a) and
(4.8)), reflected in the more favourable pressure gradient. A steeper height profile in the

980 A15-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.8


W. Wang, A. Baayoun and R.E. Khayat

h′
(r

 =
 r J)

H
J 

–
 h

J

r

Fr

Fr = 2, 6, 10, 14, 18, 22, 25 

h

1.0

0.8

0.6

0.4

0.2

0

5 10 15 20 25

0.30

0.25

0.20

0.15

2 10 18 25

0.4

0.3

0.2

Figure 18. Influence of the Froude number (gravity level) on the film profile in the jump and subcritical
regions. Here, Re = 1000 and r∞ = 25. Dotted and dash-dotted curves represent the locus of the film heights
at the leading and trailing edges of the jump, respectively. The inset shows the influence of the Froude number
(gravity level) on the jump slope (blue curve) and the difference between the film heights at the trailing and
leading edges of the jump (red curve).

subcritical region also results in the location of the maximum film height closer to the
upper corner of the jump profile.

The influence of gravity on the jump slope h′(r = rJ) and jump height HJ − hJ
(difference between the heights at the trailing and leading edges of the jump) is also added
in the inset of figure 18. Although both heights increase monotonically with increasing
Fr, their difference (jump height) increases non-monotonically, displaying a maximum. At
small Fr, gravity is relatively strong, with the jump occurring closer to impingement and
experiencing a stronger accumulation at the trailing edge. This accumulation, however,
cannot be sustained as gravity diminishes (Fr > 17) as a result of the accelerated drainage
as the jump emerges closer to the edge. This results, in turn, in a slower increase rate
of the height at the trailing edge of the jump compared with the height at the leading
edge. In addition, the interplay between the accumulation and drainage effects causes a
non-monotonic behaviour of the jump slope, which first increases with Fr, reaching a
maximum at Fr ≈ 9, then decreases with Fr (see inset of figure 18). The non-monotonic
response is now be correlated with the behaviour of the jump length and vortex size.

The influence of gravity on the vortex size and jump length is shown in figure 19, where
the vortex length, vortex height and jump length are plotted against Fr for different Re and
a disk radius r∞ = 25 in figures 19(a)–19(c), respectively. In contrast to the behaviour in
figures 12 and 13, and similar to figure 6(e, f ) for r∞ = 25, the vortex and jump sizes in
figure 19 do not behave monotonically with respect to Fr. For any Re considered in the
figure, the vortex size initially increases with Fr, attaining a maximum, while the jump
length decreases to a minimum coinciding with the maximum of the vortex length. The
vortex decreases in size to eventually vanish while the jump continues to extend in length,
but exhibits a maximum before it continues to shrink. Both the maximum in vortex length
and the minimum in jump length occur almost at the same Froude number. The growth
rate in the vortex length and the drop rate in the jump length with Fr are much weaker than
the growth rate of the vortex height, but both vortex length and height vanish at the same
Froude number, signalling the disappearance of the recirculation zone.
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Figure 19. Influence of gravity on the vortex and jump size. The dependence of (a) the vortex length, (b) the
vortex height and (c) the jump length on Fr for different Re for a disk of dimensionless radius r∞ = 25.

The behaviour for Re = 1000 in figure 19 corresponds to the flow in figure 18. Clearly,
the non-monotonic change of vortex size with increasing Fr, as well as the disappearance
of the vortex, result from the non-monotonicity of the jump steepness in slope and height
(see the inset of figure 18), as well as the monotonic increase in the steepness of film
profile in the subcritical region. As to the jump length, its early decrease in figure 19(c)
with increasing Fr stems from the combined effects of increasing jump height and radius
as estimate (4.10) suggests (recall that Re is fixed here). The early decrease is dominated
by the sharp increase of the jump radius with decreasing gravity illustrated in figure 18.
As Fr increases further, the jump radius increases at a slower rate, leaving the jump length
governed predominantly by the increase in the jump height HJ − hJ , displaying eventually
a maximum detected in figure 19(c).

It is interesting to note that the vortex length and height do not achieve the maximum
values for the same Fr. This response can be attributed to the steepening of the subcritical
film height with increasing Fr, leading to a more pronounced favourable pressure gradient
(see figure 18). Consequently, this causes the flow reattachment to shift closer to the
separation point, leading to a decrease in the vortex length. However, as the film height
at the jump increases continuously, it leads to the continuous growth of the vortex height,
resulting in the vortex length and height not achieving the maximum values at the same
Fr.

5.2. The influence of the Reynolds number (viscosity)
The influence of viscosity on the film profile is shown in figure 20 for Fr = 25 and r∞ = 25.
We observe that the jump radius increases as Re increases, while the jump height decreases
with increasing Re, and again the jump is washed out of the disk if Re is larger than a
critical value; no jump forms for a very low-viscosity fluid. The subcritical film thickness
decreases monotonically overall with Re, as less flow accumulates in the subcritical region
for a lower-viscosity fluid (see also expression (2.14a)). In addition, a larger Re leads
to a smoother film profile in the subcritical region, as the accumulation effect at the
jump becomes weaker and the drainage effect at the disk edge becomes stronger; the
jump occurs closer to the disk edge, leading to a flatter film profile in this region. The
monotonic response with increasing Re is reflected in the inset of figure 20 for the jump
slope and height, which is in sharp contrast with the non-monotonic response when gravity
(Fr) is varied (see figure 18). The monotonicity of HJ − hJ with Re is caused by the
diminishing flow accumulation for lower viscosity level and the drainage at the disk edge.
This behaviour has its repercussions on the jump length and vortex size, as we now see.
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Figure 20. Influence of the Reynolds number (viscosity) on the film profile in the jump and subcritical regions.
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Figure 21. Influence of viscosity on the vortex and jump size. The dependence of (a) the vortex length,
(b) the vortex height and (c) the jump length on Re for different Fr for a disk of dimensionless radius r∞ = 25.

Figure 21 shows the dependence of the vortex size (figure 21a,b) and the jump length
(figure 21c) on Re for different Fr. In contrast to the effect of gravity in figure 19, the
response with Re is essentially monotonic for the vortex size, which is closely related to
the monotonic decrease in the jump slope and height. Over the range of Re considered, we
see that as viscosity decreases (Re increases), the jump lengthens and the vortex shrinks
in size to eventually disappear at a rate that increases with increasing Fr. However, we
observe that the jump length exhibits a maximum at any Froude number if a wider range
of Re is considered; this is reflected in figure 21(c) for Fr = 25. The increase in the jump
length clearly results from the smoother jump profile, as the jump occurs closer to the disk
edge. The decrease in the jump length is mainly caused by the decrease in the difference
between HJ and hJ (see expression (4.10) above).
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Figure 22. Influence of Fr and Re on the maximum length (a) and maximum height (b) of the separation
zone in a three-dimensional plot. Another dimensionless parameter is r∞ = 25. The curves projected on the
Lvortex–Fr and Hvortex–Fr planes are for Re = 400 (red lines), 600 (green lines), 800 (blue lines) and 1000
(cyan lines), and the curves projected on the Lvortex–Re and Hvortex–Re planes are for Fr = 2 (red lines), 10
(green lines), 17 (blue lines) and 25 (cyan lines). (c) The influence of Fr and Re on the jump length in a
three-dimensional plot.

5.3. Existence of the jump and the recirculation zone
Although our discussion has been in terms of the three parameters Re, Fr and r∞, it is
helpful to introduce the following transformation (Wang & Khayat 2019):

r → Re1/3r, (z, h, δ) → Re−1/3(z, h, δ), u → u, w → Re−2/3w. (5.1a–d)

In this case, the problem is reduced to a two-parameter problem, involving

α ≡ Re1/3Fr2, β ≡ Re−1/3r∞, (5.2a,b)

as the two parameters.
The results reported above clearly indicate that a jump may form with no recirculation

downstream. There are also instances where the jump itself does not appear or is so
weak that is difficult to identify its location. This is clearly illustrated in figure 4(c) for
Fr = 55 and r∞ = 25 where the jump is washed down close to the edge, exhibiting a
large jump length (figure 6e). We therefore expect the jump to simply not form for some
flow parameter range (particularly for low viscosity), with the liquid flowing off the edge
as a very thin film over the entire disk, resembling supercritical flow. Figure 22 shows
three-dimensional perspectives of the simultaneous influence of Re and Fr on the vortex
size and jump length, summarizing our findings. In particular, figure 22(a,b) shows the
region (bottom dark blue region) where the vortex has essentially disappeared, while the
jump length has increased.

We estimate the limit condition for the non-existence of the jump by recalling
(4.6). Noting that the jump disappears (falls off the edge) when it reaches the edge
of the disk, setting rJ = r∞ and keeping the dominant terms in (4.6) yields: r∞ ≈
(4/5)3/8(136/175)3/4(70/27)1/4Fr1/4Re3/8. The numerical coefficient is very close to
unity, so that

r∞ = Fr1/4Re3/8 or α = β8 (5.3)

represents the boundary in the parametric space (Fr, Re, r∞) or plane (α, β) for the
existence of the jump. We recall (5.2) for the expressions of α and β.

The region of existence for the recirculation zone is established numerically from the
data in figures 19, 21 and 22, which turned out to be above the surface:

Re10/3Fr2 = 9r9
∞/50 or α = 9β9/50. (5.4)

Figure 23(a,b) shows the regions of existence of the jump and the vortex in the
two-parameter plane (α, β) and corresponding three-dimensional perspective. The region
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Figure 23. (a,b) Marginal separation curve in the (α, β) plane for the existence of the hydraulic jump and
vortex on a flat solid disk. The log–log plot in (b) reflects the scaling laws (5.3) and (5.4) for the separation
curve. The region of existence of a vortex in (c) lies above the surface. The curves projected on the r∞–Fr plane
are for Re = 400 (red lines), 600 (green lines), 800 (blue lines) and 1000 (cyan lines), and the curves projected
on the r∞–Re plane are for Fr = 2 (red lines), 10 (green lines), 17 (blue lines) and 25 (cyan lines).

of vortex existence lies above the surface in figure 23(c). This surface therefore represents
the disk radius below which no vortex exists. Gravity and viscosity enhance the formation
of recirculation.

6. Concluding remarks

In an effort to capture the continuous hydraulic jump and flow structure for a jet impinging
on a disk, we recently proposed a composite mean-field thin-film approach consisting
of subdividing the flow domain into three distinct connected regions of increasing
gravity strength: a developing boundary layer near the impact of negligible gravity, an
intermediate supercritical viscous layer of moderate gravity and a region comprising the
jump and subcritical flow of strong gravity (Wang et al. 2023). Unlike existing models, the
approach does not require any empirically or numerically adjusted boundary conditions.
We demonstrated that, for a freely draining flow, the stress or corner singularity for a
film draining at the edge is equivalent to an infinite slope of the film surface, which we
imposed as the downstream boundary condition that ensures the upstream influence. The
approach was extensively validated against existing experiments and numerical simulation
of the boundary-layer and Navier–Stokes equations. In § 2, we briefly reviewed the general
problem and physical domain, as well as the formulation of the problem and the solution
strategy in terms of the general governing equations and boundary conditions in each
region of the flow.

In the present study, we further validated our approach, and examined the characteristics
and structure of the circular hydraulic jump and recirculation. In § 3, we examined the
influence of the disk geometry on the jump and flow structure, namely the influence of the
disk size and the height of the obstacle, which is often placed at the edge of the disk to
control the subcritical film height and jump location. We further validated our approach
against the numerical simulation of Fernandez-Feria et al. (2019). We found the influence
of the disk size to be significant, especially in the subcritical region. Below a critical disk
radius, the jump transits from type Ia to type 0 after the recirculation zone has faded. The
supercritical flow and, to a lesser extent, the jump location are surprisingly insensitive
to the variation of the disk size (figure 3). In an effort to stimulate further experimental
work, we examined the influence of the disk size over the same experimental flow rate
and conditions of Duchesne et al. (2014); see figure 4. Unlike the location of the jump,
the jump height, jump length and vortex size are strongly affected by the disk size, all
decreasing with decreasing disk radius, exhibiting a non-monotonic response (maximum)
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with respect to the flow rate for r∞ = 25 (see figures 4–6, including further validation
against experiment). We also explored the influence of the obstacle height, often placed
at the edge of the disk in practice. The jump is relatively steep with a strong recirculation
zone for a high obstacle. As the obstacle height decreases, the jump moves downstream,
and the recirculation zone shrinks to disappear below a critical obstacle height. The
supercritical flow remains unaffected (figure 9). Upon comparing our approach against
the Navier–Stokes solution of Askarizadeh et al. (2019), we found that our predicted film
profile remains close to the simulated profiles in the presence and absence of surface
tension (figure 7); the surface tension effect is unimportant in this case.

Detailed scaling analyses were formulated in § 4 for the jump radius, jump length,
energy loss, conjugate depth ratio and thickness at the edge of the disk in the presence
and absence of an obstacle. The scaling laws were validated against our approach
and existing experimental and numerical data. By keeping the dominant terms in the
momentum balance equation across the jump, we derived a new scaling law (4.6) based
on the conservation equations across the jump and lubrication flow for the jump height:
rJ[ln(r∞/rJ)]1/8 ≈ (2/3)Fr1/4Re3/8. This scaling is similar to that proposed by Duchesne
et al. (2014) but does not require any empirical input or adjustment. It generalizes that of
Bohr et al. (1993) to include the effect of the disk size, and appears to hold well for flows
at high and low flow rates (see figure 9).

The film thickness at the edge of the disk remains largely unaddressed in the literature.
We showed that, in addition to the static component, the thickness being proportional
to the capillary length (Duchesne & Limat 2022), there is a dynamic component h∞ ∼
(Fr/r∞)2/3 that we established by minimizing the Gibbs free energy of the flow at the disk
edge. We also showed that this behaviour is also the consequence of the flow becoming
supercritical near the disk edge, and was validated against the measurements of Duchesne
(2014) in figure 10 and the Navier–Stokes solutions of Fernandez-Feria et al. (2019) in
figure 11. By assuming negligible film slope and curvature at the leading edge of the jump
and maximum height at the trailing edge, we showed that the jump length is related to
the jump radius as LJ ∼ Re(Fr2/r5

J)
1/3 or (4.11), which reduces to LJ ∼ Fr1/2 when Fr

represents the dimensionless flow rate. This behaviour is reflected in figure 13 in close
agreement with our numerical predictions over the range of experimental flow rates of
Duchesne et al. (2014). The figure also shows that the vortex length follows the same
behaviour as the jump length. Unfortunately, we were unable to establish the behaviour of
Lvortex using scaling arguments as we did for LJ .

In contrast to channel flow, the energy dissipation exhibits a maximum at some flow
rate (or Fr), which we showed to result from the non-monotonic behaviour of the depth
ratio, originating from the descending and ascending branches of the film thickness in
the supercritical region for an impinging jet (figure 14). This connection was missed in
the existing literature, particularly studies on channel flow or flows where the developing
boundary-layer and viscous-film regions were not fully accounted for in the supercritical
formulation for a circular jump. In the work of Higuera (1994), for instance, the conjugate
depth ratio was predicted to monotonically decrease with the Froude number due to the
linearly growing film profile upstream. The non-monotonicity of the conjugate depth
ratio and energy loss, as well as the local Froude number, with respect to the flow rate,
reflected in figures 14–16, was confirmed by incorporating the supercritical film thickness
behaviours close and far from impingement, as reflected by (4.12a). Finally, the presence of
the jump is not necessarily commensurate with that of a recirculation, reflecting a jump of
type 0; the existence of the vortex closely depends on the upstream curvature and steepness
of the jump. Our calculations suggest that the surface in the parametric space separating
the regions of existence/non-existence of the recirculation is given by the universal relation
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Re10/3Fr2 = 9r9∞/50 (figure 23). The jump itself can be washed down off the edge of the
disk, particularly at low viscosity and small disk size (figure 4c).
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