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On Classes Qj for Hyperbolic Riemann
Surfaces

Rauno Aulaskari and Huaihui Chen

Abstract. The Q, spaces of holomorphic functions on the disk, hyperbolic Riemann surfaces or
complex unit ball have been studied deeply. Meanwhile, there are a lot of papers devoted to the Q;
classes of meromorphic functions on the disk or hyperbolic Riemann surfaces. In this paper, we
prove the nesting property (inclusion relations) of Q; classes on hyperbolic Riemann surfaces. The
same property for Q, spaces was also established systematically and precisely in earlier work by the
authors of this paper.

1 Introduction

Let R be a hyperbolic Riemann surface, a € R and let g(z, a) be Green’s function
of R with logarithmic singularity at a. Let M(R) denote the collection of all func-
tions meromorphic on R. For f € M(R), we consider the second order differential
f#(2)* dxdy, where
f#(z) _ |f,(Z)|

1+[f(2)
is the spherical derivative of f with respect to the local parameter z = x + iy, and
define

1
D# . /f # 2 d d ,
(1= [ [ 5y dxay
and
B(f =sup — fff (2)*g? (z,a) dxdy for p > 0.
aeR 7T

Note that 7D*(f) is the spherical area of f(R) as a covering surface. By Q}(R) and
Q},0(R), we denote the classes of functions f € M such that B}, (f) < oo and

lim ffRf#(z)zgp(z,a)dxdyzo,

a—0dR

respectively (cf. [5-7]). The class Q} (R) is defined for p > 0 only. For the spe-
cial case p = 1 these classes have been defined and studied by S. Yamashita; that is,
Qf (R) = UBC(R) (meromorphic functions of uniformly bounded characteristic)
and Q] ;(R) = UBCy(R) (cf. [15]). We have B (f) = D*(f), and Qf(R) is the spher-
ical Dirichlet class usually denoted by AD*(R).
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Recall that the class N(R) of normal functions (see [2,11]) and class No(R) of
strongly normal functions are defined as follows:

N(R) = {feM(R):snelg ];((;)) < oo},

No(R) = {f € M(R) lim J;((:)) - 0},

where A(z)|dz| is the Poincaré metric of R. We also define other kinds of normal
functions:

CN(R) = {feM(R):supf#(a) < oo},

acr ¢(a)

CNo(R) = {feM(R): lim (@) —0},

a=3R c(a)

where c(a) = e7?(*) and

1
y(a) = yg;(g(z, a) - log = a|)
is the Robin constant under the same local parameter z. By using the universal cover-
ing and the Schwarz lemma, we may show that c(a) < A(a) so that CN(R) c N(R)
and CNy(R) c No(R). It is obvious that CN(A) = N(A) and CNy(A) = Ny (A) for
the unit disk A.

If we consider analytic functions and their derivatives on the unit disk or a hyper-
bolic Riemann surface or the unit ball in the above definitions, we obtain Q,, Q,,0
spaces, Bloch spaces, and the Dirichlet space. These spaces have been studied exten-
sively and deeply. There are a lot of references dedicated to this subject (see [3-7,9,10,
12-14], in particular, [14]). The nesting property (inclusion relations) of Q, spaces on
hyperbolic Riemann surfaces was established systematically and precisely in [4]. In
this paper, we investigate the same problem for Q; classes. Our results are as follows:

(a) For f e M(R), let

()=~ [ [ 52z a) dxay.
If D* = D*(f) <1, then

(L@ B0 40
@) 71, T A 1-DF

forp>g>0,

where
~ oo [ tPe*'dt
Ap=2m(1-D") [0 (D" + (1- D)) for p > 0.

Further, the estimates are precise, and one of the equalities holds if and only if R is
obtained from a hyperbolic surface R, by deleting a set of capacity 0 and f is extended
to a conformal mapping of Ry onto a spherical disk such that f(a) is the spherical
center of the disk.
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(b) If the assumption D* < 1 is omitted, then

#
a
fc((a)) by Ip(f) <apgu ), forp>q>0.

(c) The following inclusion relations hold:
EN(R) > Qj(R) > Q}(R) > AD*(R),
CNo(R) 2 Q}o(R) 2 Q) o(R), forp>g>0.

2 A Spherical Area Inequality
First we formulate the following elementary spherical isoperimetric inequality on the

sphere (see the proof of [8, Lemma II}).

Lemma 2.1 Lety be a piecewise smooth simple closed curve on the Riemann sphere
that has spherical length | and bounds two domains of spherical areas S and m—S. Then

ZZ
S(m-S8) < —.
(n-9)< 7

Lemma 2.2 LetS=8 +--+S,and -n<Sj<nforj=1,...,n If|S| < m, then

510w~ 181) < 3 8510~ [5,D.

Proof We prove the lemma by induction to #n. The lemma is obviously true for n = 1.
Assume that the lemma is true for n = k. Denote ' = S, +---+ Sg;and S = §; + §'.
Without loss of generality, assume that S > 0 and S; > 0. Then we have -§; < §' < §
and

, , k+1

IS°10 =18 < X 18107 - [S;1)

j=
by the induction assumption. Thus
IS|(7 = |S]) = 7S, — S + 7S’ — 8> = 28,8’

k+1 , , ,

< zl 1S;1(m = [8;]) = (m(|S'] = §") +25:8").
i

Note that 7(|S"| - ") + 28,8 = 25,8’ 2 0if §’ > 0 and 7(|S'| - §") + 28,8 = 2|S'|(m -
S1) > 0if S’ < 0. This shows that the lemma is also true for n = k + 1. The lemma is
proved. ]

Lemma 2.3 Let y be a piecewise smooth closed curve (or a finite sum of such curves)
on the complex w-plane of spherical length I, and let
i wdw

_E y1+|W|2'

If|S| < 7, then |S|(n - |S]) < E.
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Proof By an approximation, we may assume that y is a polygonal closed curve. It is
obvious that such a y may be written as a finite sum of polygonal Jordan closed curves
yj» where y; has spherical lengths /; and bounds a domain Q;, for j =1,..., n. Then,
S isasum of S;, where S; is the same integral taken over [;, for j = 1,..., n. By Green’s
formula, for j=1,...,n, we have

Sf:*if/.d(lﬁ;vz - ff (1+|w|2) v
ff (iw|jw)2_ ff (1iL|lj|V2)2

according to whether y; has an anti-clockwise or clockwise direction. The last integral
in the above equality is the spherical area of ().

Since |S| < 7 and |Sj| < 7 for j = 1,...,n, we may use Lemmas 2.1 and 2.2, and
obtain
n n l]2 1
Sie-ls) < S Isr-Ish < 5 2 < L .
j=1 j=1

Theorem 2.4 (Spherical isoperimetric inequality of meromorphic functions on Rie-
mann surfaces) Let Q be a relatively compact domain on a Riemann surface with a
piecewise smooth boundary I = 0Q), let f be a non-constant function meromorphic on
Q, and let S and | be the spherical area of f(Q) as a covering surface and the spherical
length of y = f(T'), respectively. If S < m, then S(m - S) < 1*/4.

Proof Assume that I is positively oriented. First, we assume that f is holomorphic
on Q. Then, as the proof of Lemma 2.3, using Green’s formula, we have

) . df(z)df(z)
s-ffgf( *dxdy = 2/[ (1+1f(2)?)?
@df@) i [ wdw

r1+|f(2))2 2y 1+ w]r

Using Lemma 2.3 we obtain the conclusion of the lemma. In the case where f has

finitely many poles on Q, the lemma can be proved by considering Q' obtained from
Q by deleting some parameter disks (or half disks) around the poles, and letting these
disks shrink to points. The proof is complete. ]

Theorem 2.5 Let R be a hyperbolic Riemann surface, let g(z, a) be a Green’s function
of R with logarithmic singularity at a € R and for t > 0, let Ry = {z € R : g(z,a) > t}.
For f e M(R) and t > 0, let

v = [ [ @ dsdy,

which denotes the spherical area of f(R;) as a covering surface. If y(t) > 0 for t > 0,
then y is a continuous decreasing function and

(2.1) / A f#(z)zgp(z,a)dxdy:—ftooapdl//(a), for p>0, t>0,
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where the integral at the right side is understood as a Stieltjes integral and defined by the
limitast — 0ift = 0. If y(¢o) < 7 for some to > 0, then

my(t)
y(t) + (m—y(t))erlo)

(2.2) y(o) < for a>t>t.

Proof First we assume that R is a finite surface and f is meromorphic on R. Let
£ (z, a) be the harmonic conjugate of g(z, a) andlet G(z) = g(z,a) +ig*(z, a). For
t>0,let

f(2)?

|G (2)|? an

r={zeRigma)=t), ()= [

By substituting dgdg” = |G'(2)[? dxdy, we have

(2.3) /ff(z)g (z,a) dxdy = ff EE ;ng (z,a)|G'(2)? dxdy
-/, gi ;ngp(z,a)dgdg*
gm0l e
:[ f f#(z)rzgp(z,a)aidsda

r |G'(2)
= / o?yo (o) do,
t
where we have set 0 = g(z, a) and hence do = (dg/dn) dn along T,;. In particular,
(2.4) WO = [ w(o)do.

Combining (2.3) and (2.4) gives (2.1).
For t > to, by Schwarz’s inequality, we have

#(,)2
f(2)" 9g ;. f 9% 4
27 Jr, |G (2)]? on r, on

>2n( Rt ) il @ )

Thus, using Lemma 3.1, the spherical isoperimetric inequality for the function f on
the domain R;, we have

vo(t) =

2
1 #

(5) w(t)(ﬂ—w(t))sél(frtf <z>ds) < Tyo(o).

Since y(t) < w(ty) < m, it follows from (2.4) and (2.5) that

v 2
V/(t)(ﬂ y(0) ~
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Integrating the above inequality from t, to t gives

m-y(t) S ”—‘//(to)ez(z—to)
v(t) — y(h)

from which (2.2) follows.

Now, assume that R is a general hyperbolic Riemann surface. Let R" be a regular
exhaustion of R, and let y,, (¢) be defined for f, R” and a, as in the theorem. By what
we have proved for finite surfaces, for n =1,2,. .., we have

mya (1)
Va(t) + (1= yu(t))e?lo=t)

2.7) ffR F*(2)*¢ (2, a) dxdy = —ftw oPdy,(a), forp>0, t30,

foro >t > to,

(2.6) (o) <

where g,(z, a) is a Green’s function of R". It is obvious that v, (t) - y(¢) for every
fixed t > 0, so letting n — oo in (2.6) we obtain (2.2). Using (2.7) and integrating by
parts, it follows that

8 [[ rErdEaddy =ty p [ o y(o)do,
RY t
for p> 0, t>0. Letting n — oo in (2.8) and integrating by parts again gives

ff F(2)2¢" (z,a) dxdy = Py (1) +pf°° oy (o) do = f°° oPdy(a).
R; t t
This shows (2.1). Taking the limit as t — 0 completes the proof. ]

We call (2.2) the spherical area inequality.

3 A Lemma from Calculus

All of our main results are obtained by using a lemma that belongs entirely to real
analysis. We formulate and prove it in this section.

Lemma 3.1 Lety(t), t > 0, be a positive continuous and decreasing function (y(0)
is allowed to assume oo). For p > 0 and t > 0, define

h(0) == [ oPdy(o),

where the integral is understood as in Theorem 2.4. If y(to) < 7 for some to and (2.2)
holds for o > t > tq, then for p > q > 0,

hp(to) _ halto) _ ho(to) _ ey (to)
Ay A T A m-y(ty)’

1
(3.1) - tlin; e*y(t) <
where

Ap = 2me o (n—y(10)* [
to

tPe?tdt
(w(to) + (m—y(ty))e(t=10))2

for p>0.
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Proof Letp > g > 0. Note that (2.2) implies that e*'y/(t)/(m — y(t)) is decreasing
and, consequently, d(e?y(t)/(m - y(t))) < 0 and

dhgy(t) = t1dy(t) < —thl//(t)(n —y(t))dt fort>t.
3
On the other hand, using (2.2) and integrating by parts twice, we have

hy(t) = t1y(1) + q ftw o1y (o) do

<tty(e) + quy() [

01 ldo
V(0 + (r— p(0)e2D

o ~ o e*’oldo
2O YO | G ey
Thus,
(3.2) dhe(D) etde .
he(t) n? [ e20a(y(t) + (m—y(t))e2(o-D)2dg
Since, by (2.2),
(3.3) w(t) < my(to) for t> to,

" y(to) + (m =y (to)) et

we may replace y(t) in (3.2) by the right side of (3.3) and obtain
dhg(t) __ t1e(y(to) + (7~ v(ty))e2(10)) 24t
he(t) = [;7 e270(y(to) + (m = y(to))e(o=1)) 2do

Consequently, integrating this from ¢, to t gives

[ @709 (y(to) + (m~ (10))e* o) 2do
[ @701 (y(to) + (m— y(1a))eXo- ) 2dg

Finally integrating by parts, using (3.4), and exchanging the order of integral, we
have

for t > ty.

(3.4) hy(t) <hg(to)- for t > t,.

hplto) =t Mhy(t0) + (p-a) [ 077y (1) d
(0= )hy(to)

a1 gy
/Vq to

<tiThy(to) +

.f°° d1¢*°do
e (y(to) + (m—y(to))e2(o=))2

_ tg_qhq(to) + (p- q)hq(to)

Aq
b ole™do fo (p=a-14y
o (Y(to) + (m—y(to))e2(0=))2 Jy,

ftooo aPe? (y(ty) + (m - w(ty))e2 %)) 2dg
ftoo a1e2e (y(to) + (m - W(to))ez(a—to))_zdaa

0

= hq(tO) :
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where
* tie*tdt
to (y(to) + (m—y(to))e2(t=t))2”

The second inequality of (3.1) is proved.
The third inequality of (3.1) follows from

lim hq(to) _ ho(to) _ e**y(to)

q—0 Aq Ao m— l//(to) '

X, =

To show the first one of (3.1), it suffices to prove that

hplto) _ 1 lim e*'y(t).

T t—oo

(3.5) lim
p—)oo

P
Integrating by parts, we have

hp(to) = w(to) +p [~ e y(o)at,

_ o 2to P —2tg _ it P14t
Ay = e y(10)) + pre oo y(10)) [ s

Denote the last integral by w(p). It is easy to see that
L e, e T(p)
> — P e dt > ———F-
w(p)z [ e .
and t) = o(w(p)) as p » 0. So, we only need to calculate the limit of B(p) =
w(p)™ [, thy(t)dt.

Letting k(t) = (y(to) + (m — w(to))e**"*))y(t) and integrating by parts, we
obtain

_ 1 o tP 1k (t)dt
w(p) Jww  w(to) + (m—w(ty))e(t=to)
= e_ZtO(T[—l//(t()))phm EZtW(t)
1 < t oPlde
-— dk(t .
w(p) Jto ® to W(to) + (m— w(to))ez(‘f—to)

The last term I is estimated as a sum of two terms I’ and I”’, which correspond to the
integrals from T to oo and from #, to T, respectively. Suppose T is sufficiently large.
Let 7,(t) = e*'y(t)/(m — w(t)), which is decreasing as mentioned before, let 7,(t) =
v(to)e " + (m — w(to))e 2", which is also decreasing, and let u(t) = 7,(t)72(t).
Then

dk(t) = d{u(t)(m =y (1)} = (= (1)) du(t) - u(t)dy(2),

, 1 oo t oo o
|I|S@fT k(o) [ w(to)+(n—1//(to))ez(”‘t°)S/T |dk(6)|

<= [ (rdu(t) + u(ro)dy (1) >0 as T oo,

B(p)
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since y and v are both positive and decreasing. This shows that I’ — 0 as T — oo
uniformly for p > 0. On the other hand, for a given T > t,,

. 1 T t oo
‘I |S w(p)[to |dk(t)| o l/](to)_,’_(7.[_w(to))ez(a—to)

T k() -0
< t) — as p — oo.
pra(p) Ju P

Thus, I - 0 as p — oco. This shows that B(p) — e (7 — y(ty)) lim;_ o e*'y(t). So
(3.5) and the first inequality of (3.1) are proved. The proof of the lemma is complete.
|

4 The Case D*(f) <1

Different from the holomorphic case (see [4]), precise estimates can be obtained un-
der the assumption D*(f) < 1only.

Theorem 4.1 Let R be a hyperbolic Riemann surface, a € R, and let f € M(R) be a
non-constant function such that

D#:D#(f):lfff#(z)zdxdy<l.
nJ Jr
For p > 0, denote

tPe?tdt

— # 2 p — R AY o
()= [ [ @ e aydxdy, Ay =2m(1-D"Y [ S
Then, for p > q > 0, we have

oy B0 ) 0
@) =71, T A, 1-DF

Proof Let y(t) and h, be the functions defined in Theorem 2.4 for R, a, f and in
Lemma 6.1 for y(t) and o = 0, respectively. We have I,(f) = h,(0) for p > 0 by
(2.1). The A, is the same in Lemma 6.1. Using (3.1), we obtain the second and third
inequalities of (4.1). It remains to prove that

(4.) (

ffa)y?
c(a) ) '

To show this, we take { = & + in = exp{—g(z,a) — ig"(z,a)} as a local parameter
around a. Then, for sufficient large ¢,

e’y (t) = e* [vfmqitf#(()zdfd’%

which tends to 7f*(a)? obviously as t — co. Note that y(a) = 0 and c(a) = 1 under
this parameter. The theorem is proved. ]

(4.2) tlin; e*y(t) = n(
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Example 4.2 Consider the function f(z) = z on the unit disk A and let a = 0. We

have
__ Tz # 1 f*(a) _
l/J(t)_1+ez“ b (f)_Z’ c(a)
o tPelldt
Ip(f):27'r 0 m forp>0.

So, the equalities in (2.2) and (4.1) hold for ¢ > t > 0 and p > g > 0, respectively. This
shows that (2.2) and (4.1) are all sharp.

The conditions (o) < 7 for (2.2) and D*(f) < 1 for (4.1) are essential in their
proofs. In fact, the following examples show that it is impossible to bound I,(f) or
f*(a)/c(a) in terms of D*( f) without the condition D*(f) < 1.

Example 4.3 For 8 > 0, let f5(z) = 8(z +1/z) for z € A. We have D*(f5) =1
for § > 0, since fs; maps A univalently onto the extended complex plane with a slit
[-26,208]. Let 8, = (n+1/n)~", then f5,(1/n) = land fs, maps the disk {z : |z| < 1/n}
onto a domain that covers the exterior of the unit disk and has a spherical area bigger
than 7/2. Thus,

1
L(fs,) > f[ fi (z)zlogfdxdyzlognff i (2)*dxdy > Elogn,
|lz|<1/n """ z lz]<i/n """ 2
which tends to the infinity as n — co. Meanwhile, ¢(0) = 1 and f§ (0) =1/8,.

Example 4.4 Let f,(z) =nzforze Aandn =1,2,.... Then D*(f,) » lasn — oo.
However, ¢(0) =1and f*(0) = n - oo as n — oo.

5 Nesting Property of Classes CN(R) and Q}(R) for p>0

Although the condition D*(f) < 1is necessary for (4.1), yet it is really possible to
bound I,(f) by I,(f) for p > q > 0 and to bound f*(a)/c(a) by I,(f) for p > 0
without any additional condition about D*(f). We will formulate and prove these
results in this section, from which the nesting property of classes €N (R) and Qj (R)
for p > 0 follows.

Theorem 5.1 Let R be a hyperbolic Riemann surface, a € R and let f € M(R) be not a
constant. Let p > q > 0, and let I,(f), I;(f) be defined in Theorem 2.5. If I,(f) < oo,
then

# 2
(5.1 I(f) < p.q1,()> ({((aa))) <ba(p):

Proof Let y(t) be the function defined in Theorem 2.4 for f. Assume that I;(f) <
c0. Then 0 < y(t) < oo for ¢ > 0. Take ty = (21,(f)/m)"9. Then y(ty) < 7/2, since,
by Theorem 2.4,

(f) == [ vdy(yz = [ ttay(e) > y(ro).
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Using Theorems 2.4 and 2.5, the second inequality of (3.1) with t, = (21,(f)/m)"1,
we have

(== [~ ayn =~ [y - [T eayo

bg [0 a 4 [ tpe2temd(t=t) gy e 1
< -t t t) - —— t t) < -
0 fo y(t) [, 12t (14 2e2(-10))2d [to v(t) < apq

This shows the first one of (5.1).
Using the first one of (3.1) (p is replaced by q) with to = (21,(f)/m)"9 and (4.2),

we obtain
(L@l 1),
c(a) Ag Aq
Note that
tie*dt
g =2me (= y(ty))”
q = 2me (71 w( 0)) (w(to) + (m — (ko) )e2(t-10))2
—4ty o tq€2tdt _
> 2me . 7(1+ez(t_t0))2 =bg.t,-
This shows the second one of (5.1). The theorem is proved. |

The nesting property of Q,(R) and CN(R) is formulated in the following theorem,
which are consequences of Theorem 4.1.

Theorem 5.2 For any hyperbolic Riemann surface R, we have

QZ(R) c Q;(R) c CN(R) and Q;)O(R) c Q;)O(R) c CNo(R) for p>q>0.

6 Spherical Dirichlet Class

As indicated in Section 4, I,(f) and f*(a)/c(a) cannot be bounded in terms of
D*(f) without an additional condition. However, itis still true that AD*(R) c Qj (R)
for p > 0 and, consequently, AD*(R) ¢ CN(R).

Lemma 6.1 Let R be a hyperbolic Riemann surface, a € R, and let f € M(R) be not
a constant. If D*(f) < oo and

D=~ [[  fePdedy=k<

0 /4 g(z,a)>ty

for some ty > 0, then

(6.1) L,(f) < ! D*(f) + % T e 20 gt for p> o0,
—k Ju

where I,(f) is defined in Theorem 2.5.

Proof Let p > 0be given. Let y(¢t) be the function defined in Theorem 2.4. We have

- [ ay(ty < [ ay(n) < dy(0) = mif D' ()
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and, using the third inequality of (3.1) to y(t),

o 2ty
_[ tpdw(t):hp(to)g,yp.w
to

m—y(to)
o tPe?dt
=2me 2y (to) (m - y(t, f
e I//( 0)(7-[ l//( 0)) o (V/(t()) + (T[— q/(t()))ez(t_to))z

< k= tPe2(710) gy,

- 1- k to
Thus, (6.1) follows, since I,(f) = - [;~ t’dy(t) by Theorem 2.4. The lemma is
proved. ]

Theorem 6.2  If R is a hyperbolic Riemann surface, then
AD*(R) c Qy(R) c CN(R)  for p>0.

Proof Letp>0and f € AD*(R),i.e, D*(f) < oco. Then there exists a compact set
E; c R such that

1 [ fH(2)*dxdy < L
T R\E; 2
Since

lim sup max g(z,a) = M < oo,
a—dR Z€E1

we have a compact set E; c R such that g(z,a) <ty = M +1fora € RN E,and z € E;.
Let a € R\ E; and let D (f) be defined in Lemma 7.2 for a. Since

(s [[, F@rdedy <,

we may use Lemma 7.2 and obtain

lfff”’(z)zg(z,a)l”dxdysth#(f)Jermtf”efz(t*"’)dt:Al for a € R\E,.
nJ Jr t

0

On the other hand, the integral on the left side of the above inequality is continuous
with respect to a. Letting

1
A,y = - *(2)*g(z,a)? dxd ,
2 r;legﬂffRf(Z) 8(z,a)P dxdy < oo

we have B} (f) < max{A;, As}. This shows that f € Qj(R), and the theorem is
proved. ]

Asaspecial case p = 1, since Qf (R) = UBC (cf. [15]), the first inclusion in Theorem
5.2 gives an affirmative solution to Yamashita’s question [16].

A hyperbolic Riemann surface is called a regular surface if max{g(z,a) : z € E} —
0 as a — OR for any compact set E c R. For regular surfaces the previous theorem
can be strengthened.
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Theorem 6.3 If R is a regular hyperbolic Riemann surface, then
AD*(R) € Q) 4(R) c ENo(R) for p > 0.

Proof The proof is similar to that of the above theorem. This time, instead of the
number 1/2, we take a number €, which may be arbitrarily small. Now, M = 0 since R
is regular. So, we may take t, arbitrarily small. Then, for a € R \ E,,

l//f#(z)g(z,a)pdxdySth#(f)+lifmtpe_z(t_“’)dt:Al.
T R —€ Jty

The theorem is proved, since A; — O ase€, to — 0. |

7 The Equality Condition of (3.1) and (4.1)

It is easy to verify that all equalities in (4.1) hold for R = A, a = 0 and the function
f(2) = z. More generally, by considering a rotation of the Riemann sphere, we may
conclude that all equalities in (4.1) hold if R is a simply-connected hyperbolic Rie-
mann surface, a € R and f is a conformal mapping of R onto a spherical disk such
that f(a) is the spherical center of the spherical disk. In this section we want to prove
the following theorem.

Theorem 7.1  Let R be a hyperbolic Riemann surface, a € R, and let f € M(R) be not
a constant. If R is obtained from a simply-connected hyperbolic Riemann surface R' by
deleting at most a set of capacity zero and f is extended to a conformal mapping of R’
onto a spherical disk such that f(a) is the spherical center of the disk, then all equalities
in (4.1) (for any p > q > 0) hold. Conversely, if 0 < D*(f) < 1 and the equality in
(4.1) holds for some p > q > 0, then the above condition, denoted by condition (*), is
satisfied.

The notion of capacity is defined in terms of the logarithmic potential or transfinite
diameter (cf. [1]). Let E be a compact set in the complex plane, let Q be the comple-
ment of E that is connected, and let g(z) be a Green’s function of () whose asymptotic
behavior at the infinity is of the form

8(z) =loglz| +y +e(2),

where y is a constant and €(z) — 0 as z — oo. It was proved that the capacity of E,
denoted by cap E, is equal to e™?, which assumes 0 if Q possesses no Green’s function.
Also, it is known that if cap E = 0, then E is totally disconnected and of Lebesque
measure zero (dimension 2), and the complement of E is connected.

For a relatively closed set E in the unit disk A, we say that E is of capacity zero if
any compact subset of E is of capacity zero. This definition is extended naturally to a
hyperbolic Riemann surface R. We say that a closed set E c R has capacity zero if for
any point in R there exists a parameter disk D € R around this point such that DN E
is of capacity zero. The following sufficient and necessary condition for a set to be of
capacity zero was shown by the authors in [4] for the case of the unit disk, and, by
considering a universal covering, it can be proved for Riemann surfaces.
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Lemma 7.2  Let R be a hyperbolic Riemann surface and let E c R be a closed set. If E
has capacity zero, then R\ E is connected and gr<g(p, a) = gr(p, a) foralla,z € R\E,
where gr g (p,a) and gr(p, a) denote Green’s functions of R \ E and R, respectively.
Conversely, if R \ E is connected and the equality holds for some a € R \ E and all
P € R\ E, then E is of capacity zero.

In order to prove Theorem 7.1 we will list a couple of lemmas and partly prove them.

Lemma 7.3  Under the assumption of Lemma 6.1 with ty = 0, if the second equality
in (3.1) holds for some p > q > 0, then

my(0)
y(0) + (7 - y(0))e
Conversely, if (71) holds, then all equalities in (3.1) hold for any p > q > 0.

(71) y(t) = fort>0.

Proof From the proof of Lemma 6.1, it is easy to see that the second equality in (3.1)
for some p > g > 0 implies (71). Conversely, if (71) holds, then

) ) p 2t
p(0) == [~ ey =2y (e-p(0) [ ot
_ Apy(0)
m—y(0)
holds for any p > 0. Thus, all equalities in (3.1) hold for any p > g > 0. |

The following lemma is direct consequence of Theorem 2.4 and Lemma 7.3.

Lemma 7.4  Let R be a hyperbolic Riemann surface, a € R and let f € M(R) be not a
constant with D*(f) < L. If the second equality in (4.1) holds for some p > q > 0, then
the function y(t) defined in Theorem 2.4 satisfies (7.1). Conversely, (7.1) implies that all
equalities in (4.1) hold for any p > q > 0.

An equivalent formulation of the condition (*) is the following: f is conformal
mapping and f(R) is obtained from a spherical disk of center f(a) by deleting at
most a set of capacity zero.

Proof of Theorem 7.1 First, assume that R, a, f satisfies the spherical Kobayashi
condition. Without loss of generality, assume that f(a) = 0. Then, by the equiva-
lent formulation of condition (*), f is univalent and R" = f(R) = A, \ E, where A,
is the disk of center 0 and radius p, and E is a set of capacity 0. By Lemma 7.2,

gu(p.a) = gu((p).0) =log; f(”p)| for peR.

Thus,
2

dudv 7p
t = = bl
v f fwkpﬂ L+ wP)?  prs et

and so (71) holds. By Lemma 7.4, all equalities in (4.1) hold.

https://doi.org/10.4153/CMB-2015-033-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-033-8

On Classes Q; for Hyperbolic Riemann Surfaces 27

Now, assume that 0 < D*(f) < 1and the second equality in (4.1) holds for some
p > g > 0. Then, by Lemma 74, the function y(t) defined in Theorem 2.4 satisfies
(7.1) and all equalities in (4.1) hold.

Let G(p) = g(p,a) +ig*(p,a) and F(p) = exp{-G(p)} for p € R. Here F(p) isa
multiple-valued analytic function. However, |F(p)| = exp{—-g(p, a) } is single-valued
on R, F(p) is single-valued near g, and F'(a) # 0. So, we may take { = F(p) as alocal
parameter around a and write f({) = b;{+b,{*+--- if | (| is sufficiently small (without
loss of generality we assume that f(a) = 0). On the other hand, c(a) = 1, with respect
to the parameter {, since gr(p,a) = log ﬁ = log ﬁ for |{(p)| < & according to

the definition of F(p), and f*(a) = |b;| with respect to the same parameter. Thus,
,_f'(a)? D* v(0)
o= LA D

~c(a)? 1-D* m-y(0)
since all equalities in (4.1) hold. Thus, by (7.1) and (7.2),

(72)

k ) ) )
(73) l//(t) =y (_1)]|b1|2(]+1)e—2(]+1)t i 0(6_2(k+1)t), t = oo.
j=0
We claim that b; = 0 for j > 2. Assume to the contrary that b = -+ = by_; = 0 and

by = 0 with k > 2. Then
FOF = PP+ 81 1FOF = il + Kb PIRPED + 55,

where
Z(kfl) — 2k
Sy = Zk Re(b1b;CC) + O(|C]7),
j=
%k e T k17K 2k
Sy = ZkJRe(blbjC( )+ k(k+1)Re(brbra ("¢ )+ O([¢]™).
j=
Consequently,
1 k-1 ) o
e = G )() b P
EGRE ol
kb i 12G-1) 1 712(-1) 2(k30) o 2k
+ 211(]+1)(—1)]|bl| 7Y Zk Re(b1b;¢C") + O([¢]™)
= =
and
k-1 ) ) )
A = T (-1 G+ DI LY P + 2 [ PIEPE Y + s,
j=0
where
—1
S3= Y a1 ¢ +O(|().
j*l
Thus,

k . . .
74)  y(t) = T (1) |b POV 20D 4 kb Pe 2K + O(e7 20Dt o5 0.
j=0
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Comparing (7.3) with (7.4) gives by = 0, a contradiction. This shows that f(p) =
by F(p) for p close to a and, consequently, f(p) is equal to b F(p) on R identically
and F(p) is actually single-valued on R.

Now we want to prove that f is univalent on R. R" = f(R) is contained in the disk
A, ={w:|w| < p} of center 0 and radius ||, since f(p) = b1F(p) and |F(p)| <1 for
peR. Let

(7.5) gr(w,0) = logl—l| +u(w), weR,
w

where u is a harmonic function on R’. Applying Theorem 4.1 to the surface R’ and
the identity function h(w) = w, the point w = 0 and parameter w, we have

(2(0) D*(h) _ A(f) _
~1-D*(h) 1-A*(f)
According the definition of F, we have

(7.6)

gr(p,a)=1o +log|by|, peR.

1 R 1
MEOIRO]
Define g(p) = gr'(f(p),0) for p € R. Then, by (7.5),

1

We may take w = f(p) as a local parameter around g, since f(p) is local univalent
at a. Then |f(p)|in the above equality for g(p) can be replaced by |w(p)| for p close to
a. Then g(p) is a positive harmonic function on R\ {a} and g(p) = log m +0(1)
as p — a, where w is a local parameter around a with w(a) = 0. It is known [1]
that the Green function gr(p, a) is the smallest one among functions with these two
properties. Thus, gr(p, a) < g(p) for p € R and, consequently,

(7.7) log|bi| <u(f(p)), peR~{a}.
Letting p — a gives
(7.8) |by]? < 240,

Now, from (7.2), (7.6), and (7.8), we conclude that |by| = ¢*“(®) and A*(f) = D*(f),
which implies the univalence of f.

It follows from (7.7) and the equality |b;| = ¢*(%) that u(w) = log|b,| in a neigh-
bourhood of the origin and, consequently, for w € R’. This shows that gz (w,0) =
ga,(w,0) for w € R". By Lemma 72, R, f, a satisfies the condition (*) (the equiva-
lent formulation). The proof is complete. ]
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