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On Classes Q#
p for Hyperbolic Riemann

Surfaces

Rauno Aulaskari and Huaihui Chen

Abstract. _e Qp spaces of holomorphic functions on the disk, hyperbolic Riemann surfaces or
complex unit ball have been studied deeply. Meanwhile, there are a lot of papers devoted to the Q#

p
classes of meromorphic functions on the disk or hyperbolic Riemann surfaces. In this paper, we
prove the nesting property (inclusion relations) of Q#

p classes on hyperbolic Riemann surfaces. _e
same property for Qp spaces was also established systematically and precisely in earlier work by the
authors of this paper.

1 Introduction

Let R be a hyperbolic Riemann surface, a ∈ R and let g(z, a) be Green’s function
of R with logarithmic singularity at a. Let M(R) denote the collection of all func-
tions meromorphic on R. For f ∈ M(R), we consider the second order diòerential
f #(z)2 dxdy, where

f #(z) = ∣ f ′(z)∣
1 + ∣ f (z)∣2

is the spherical derivative of f with respect to the local parameter z = x + iy, and
deûne

D#
( f ) = 1

π ∫ ∫R
f #(z)2 dxdy,

and
B#

p( f ) = sup
a∈R

1
π ∫ ∫R

f #(z)2g p
(z, a) dxdy for p ≥ 0.

Note that πD#( f ) is the spherical area of f (R) as a covering surface. By Q#
p(R) and

Q#
p,0(R), we denote the classes of functions f ∈ M such that B#

p( f ) < ∞ and

lim
a→∂R

∫ ∫
R
f #(z)2g p

(z, a) dxdy = 0,

respectively (cf. [5–7]). _e class Q#
p,0(R) is deûned for p > 0 only. For the spe-

cial case p = 1 these classes have been deûned and studied by S. Yamashita; that is,
Q#

1 (R) = UBC(R) (meromorphic functions of uniformly bounded characteristic)
and Q#

1,0(R) = UBC0(R) (cf. [15]). We have B#
0( f ) = D#( f ), and Q#

0(R) is the spher-
ical Dirichlet class usually denoted by AD#(R).
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Recall that the class N(R) of normal functions (see [2, 11]) and class N0(R) of
strongly normal functions are deûned as follows:

N(R) = { f ∈ M(R) ∶ sup
a∈R

f #(a)
λ(a)

< ∞} ,

N0(R) = { f ∈ M(R) ∶ lim
a→∂R

f #(a)
λ(a)

= 0} ,

where λ(z)∣dz∣ is the Poincaré metric of R. We also deûne other kinds of normal
functions:

CN(R) = { f ∈ M(R) ∶ sup
a∈R

f #(a)
c(a)

< ∞} ,

CN0(R) = { f ∈ M(R) ∶ lim
a→∂R

f #(a)
c(a)

= 0} ,

where c(a) = e−γ(a) and

γ(a) = lim
z→a( g(z, a) − log

1
∣z − a∣

)

is the Robin constant under the same local parameter z. By using the universal cover-
ing and the Schwarz lemma, we may show that c(a) ≤ λ(a) so that CN(R) ⊂ N(R)
and CN0(R) ⊂ N0(R). It is obvious that CN(∆) = N(∆) and CN0(∆) = N0(∆) for
the unit disk ∆.

If we consider analytic functions and their derivatives on the unit disk or a hyper-
bolic Riemann surface or the unit ball in the above deûnitions, we obtain Qp , Qp,0
spaces, Bloch spaces, and the Dirichlet space. _ese spaces have been studied exten-
sively and deeply. _ere are a lot of references dedicated to this subject (see [3–7,9,10,
12–14], in particular, [14]). _e nesting property (inclusion relations) of Qp spaces on
hyperbolic Riemann surfaces was established systematically and precisely in [4]. In
this paper, we investigate the same problem for Q#

p classes. Our results are as follows:
(a) For f ∈ M(R), let

Ip( f ) =
1
π ∫ ∫R

f #(z)2g p
(z, a) dxdy.

If D# = D#( f ) < 1, then

(
f #(a)
c(a)

)
2
≤

Ip( f )
λp

≤
Iq( f )
λq

≤
D#

1 − D# for p > q > 0,

where

λp = 2π(1 − D#
)
2
∫

∞

0

tpe2tdt
(D# + (1 − D#)e2t)2 for p > 0.

Further, the estimates are precise, and one of the equalities holds if and only if R is
obtained from a hyperbolic surface R0 by deleting a set of capacity 0 and f is extended
to a conformal mapping of R0 onto a spherical disk such that f (a) is the spherical
center of the disk.
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(b) If the assumption D# < 1 is omitted, then

f #(a)
c(a)

≤ bp,Ip( f ) , Ip( f ) ≤ ap,q ,Iq( f ) , for p > q > 0.

(c) _e following inclusion relations hold:

CN(R) ⊃ Q#
p(R) ⊃ Q#

q(R) ⊃ AD#
(R),

CN0(R) ⊃ Q#
p,0(R) ⊃ Q#

q ,0(R), for p > q > 0.

2 A Spherical Area Inequality

First we formulate the following elementary spherical isoperimetric inequality on the
sphere (see the proof of [8, Lemma II]).

Lemma 2.1 Let γ be a piecewise smooth simple closed curve on the Riemann sphere
that has spherical length l and bounds two domains of spherical areas S and π−S. _en

S(π − S) ≤ l 2

4
.

Lemma 2.2 Let S = S1 + ⋅ ⋅ ⋅ + Sn and −π < S j < π for j = 1, . . . , n. If ∣S∣ < π, then

∣S∣(π − ∣S∣) ≤
n
∑
j=1

∣S j ∣(π − ∣S j ∣).

Proof Weprove the lemma by induction to n. _e lemma is obviously true for n = 1.
Assume that the lemma is true for n = k. Denote S′ = S2 + ⋅ ⋅ ⋅ + Sk+1 and S = S1 + S′.
Without loss of generality, assume that S ≥ 0 and S1 ≥ 0. _en we have −S1 ≤ S′ ≤ S
and

∣S′∣(π − ∣S′∣) ≤
k+1
∑
j=2

∣S j ∣(π − ∣S j ∣)

by the induction assumption. _us

∣S∣(π − ∣S∣) = πS1 − S2
1 + πS′ − S′2 − 2S1S′

≤
k+1
∑
j=1

∣S j ∣(π − ∣S j ∣) − (π(∣S′∣ − S′) + 2S1S′) .

Note that π(∣S′∣ − S′) + 2S1S′ = 2S1S′ ≥ 0 if S′ ≥ 0 and π(∣S′∣ − S′) + 2S1S′ = 2∣S′∣(π −
S1) ≥ 0 if S′ ≤ 0. _is shows that the lemma is also true for n = k + 1. _e lemma is
proved.

Lemma 2.3 Let γ be a piecewise smooth closed curve (or a ûnite sum of such curves)
on the complex w-plane of spherical length l , and let

S = i
2 ∫γ

wdw
1 + ∣w∣2

.

If ∣S∣ < π, then ∣S∣(π − ∣S∣) ≤ l 2
4 .
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Proof By an approximation, we may assume that γ is a polygonal closed curve. It is
obvious that such a γ may be written as a ûnite sum of polygonal Jordan closed curves
γ j , where γ j has spherical lengths l j and bounds a domain Ω j , for j = 1, . . . , n. _en,
S is a sum of S j , where S j is the same integral taken over l j , for j = 1, . . . , n. By Green’s
formula, for j = 1, . . . , n, we have

S j = ±
i
2 ∫ ∫Ω j

d( wdw
1 + ∣w∣2

) = ±
i
2 ∫ ∫Ω j

d (
w

1 + ∣w∣2
) dw

= ±
i
2 ∫ ∫Ω j

dw dw
(1 + ∣w∣2)2 = ±∫ ∫

Ω j

dudv
(1 + ∣w∣2)2

according to whether γ j has an anti-clockwise or clockwise direction. _e last integral
in the above equality is the spherical area of Ω j .

Since ∣S∣ < π and ∣S j ∣ < π for j = 1, . . . , n, we may use Lemmas 2.1 and 2.2, and
obtain

∣S∣(π − ∣S∣) ≤
n
∑
j=1

∣S j ∣(π − ∣S j ∣) ≤
n
∑
j=1

l 2j
4
≤

l 2

4
.

_eorem 2.4 (Spherical isoperimetric inequality of meromorphic functions on Rie-
mann surfaces) Let Ω be a relatively compact domain on a Riemann surface with a
piecewise smooth boundary Γ = ∂Ω, let f be a non-constant function meromorphic on
Ω, and let S and l be the spherical area of f (Ω) as a covering surface and the spherical
length of γ = f (Γ), respectively. If S < π, then S(π − S) ≤ l 2/4.

Proof Assume that Γ is positively oriented. First, we assume that f is holomorphic
on Ω. _en, as the proof of Lemma 2.3, using Green’s formula, we have

S = ∫ ∫
Ω
f #(z)2 dxdy = i

2 ∫ ∫Ω

d f (z) d f (z)
(1 + ∣ f (z)∣2)2

=
i
2 ∫Γ

f (z) d f (z)
1 + ∣ f (z)∣2

=
i
2 ∫γ

wdw
1 + ∣w∣2

.

Using Lemma 2.3 we obtain the conclusion of the lemma. In the case where f has
ûnitely many poles on Ω, the lemma can be proved by considering Ω

′
obtained from

Ω by deleting some parameter disks (or half disks) around the poles, and letting these
disks shrink to points. _e proof is complete.

_eorem 2.5 Let R be a hyperbolic Riemann surface, let g(z, a) be a Green’s function
of R with logarithmic singularity at a ∈ R and for t ≥ 0, let Rt = {z ∈ R ∶ g(z, a) > t}.
For f ∈ M(R) and t ≥ 0, let

ψ(t) = ∫ ∫
R t
f #(z)2 dxdy,

which denotes the spherical area of f (Rt) as a covering surface. If ψ(t) > 0 for t > 0,
then ψ is a continuous decreasing function and

(2.1) ∫ ∫
R t
f #(z)2g p

(z, a) dxdy = −∫
∞

t
σ pdψ(σ), f or p ≥ 0, t ≥ 0,
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where the integral at the right side is understood as a Stieltjes integral and deûned by the
limit as t → 0 if t = 0. If ψ(t0) < π for some t0 ≥ 0, then

(2.2) ψ(σ) ≤ πψ(t)
ψ(t) + (π − ψ(t))e2(σ−t) f or σ ≥ t ≥ t0 .

Proof First we assume that R is a ûnite surface and f is meromorphic on R. Let
g∗(z, a) be the harmonic conjugate of g(z, a) and let G(z) = g(z, a)+ ig∗(z, a). For
t ≥ 0, let

Γt = {z ∈ R ∶ g(z, a) = t}, ψ0(t) = ∫
Γt

f #(z)2

∣G′(z)∣2
∂g
∂n
ds.

By substituting dgdg∗ = ∣G′(z)∣2 dxdy, we have

∫ ∫
R t
f #(z)2g p

(z, a) dxdy = ∫ ∫
R t

f #(z)2

∣G′(z)∣2
g p

(z, a)∣G′
(z)∣2 dxdy

= ∫ ∫
R t

f #(z)2

∣G′(z)∣2
g p

(z, a) dgdg∗

= ∫

∞

t
∫

Γσ

f #(z)2

∣G′(z)∣2
g p

(z, a)( ∂g
∂n

)
2
dsdn

= ∫

∞

t
∫

Γσ

f #(z)2

∣G′(z)∣2
g p

(z, a) ∂g
∂n
ds dσ

= ∫

∞

t
σ pψ0(σ) dσ ,

(2.3)

where we have set σ = g(z, a) and hence dσ = (∂g/∂n) dn along Γσ . In particular,

(2.4) ψ(t) = ∫
∞

t
ψ0(σ) dσ .

Combining (2.3) and (2.4) gives (2.1).
For t ≥ t0, by Schwarz’s inequality, we have

ψ0(t) =
1
2π ∫Γt

f #(z)2

∣G′(z)∣2
∂g
∂n
ds∫

Γt

∂g
∂n
ds

≥
1
2π

(∫
Γt

f #(z)
∣G′(z)∣

∂g
∂n
ds)

2

=
1
2π

(∫
Γt
f #(z) ds)

2

.

_us, using Lemma 3.1, the spherical isoperimetric inequality for the function f on
the domain Rt , we have

(2.5) ψ(t)(π − ψ(t)) ≤ 1
4
(∫

Γt
f #(z) ds)

2

≤
π
2
ψ0(t).

Since ψ(t) ≤ ψ(t0) < π, it follows from (2.4) and (2.5) that

−
ψ′(t)

ψ(t)(π − ψ(t))
≥

2
π
.
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Integrating the above inequality from t0 to t gives

π − ψ(t)
ψ(t)

≥
π − ψ(t0)
ψ(t0)

e2(t−t0)

from which (2.2) follows.
Now, assume that R is a general hyperbolic Riemann surface. Let Rn be a regular

exhaustion of R, and let ψn(t) be deûned for f , Rn and a, as in the theorem. By what
we have proved for ûnite surfaces, for n = 1, 2, . . . , we have

ψn(σ) ≤
πψn(t)

ψn(t) + (π − ψn(t))e2(σ−t) for σ ≥ t ≥ t0 ,(2.6)

∫ ∫
Rn

t

f #(z)2g p
n(z, a) dxdy = −∫

∞

t
σ pdψn(σ), for p ≥ 0, t ≥ 0,(2.7)

where gn(z, a) is a Green’s function of Rn . It is obvious that ψn(t) → ψ(t) for every
ûxed t ≥ 0, so letting n → ∞ in (2.6) we obtain (2.2). Using (2.7) and integrating by
parts, it follows that

(2.8) ∫ ∫
Rn

t

f #(z)2g p
n(z, a) dxdy = tpψn(t) + p∫

∞

t
σ p−1ψn(σ) dσ ,

for p ≥ 0, t ≥ 0. Letting n →∞ in (2.8) and integrating by parts again gives

∫ ∫
R t
f #(z)2g p

(z, a) dxdy = tpψ(t) + p∫
∞

t
σ p−1ψ(σ) dσ = −∫

∞

t
σ pdψ(σ).

_is shows (2.1). Taking the limit as t → 0 completes the proof.

We call (2.2) the spherical area inequality.

3 A Lemma from Calculus

All of our main results are obtained by using a lemma that belongs entirely to real
analysis. We formulate and prove it in this section.

Lemma 3.1 Let ψ(t), t ≥ 0, be a positive continuous and decreasing function (ψ(0)
is allowed to assume∞). For p ≥ 0 and t ≥ 0, deûne

hp(t) = −∫
∞

t
σ pdψ(σ),

where the integral is understood as in _eorem 2.4. If ψ(t0) < π for some t0 and (2.2)
holds for σ > t ≥ t0, then for p > q > 0,

(3.1)
1
π

lim
t→∞ e

2tψ(t) ≤
hp(t0)

λp
≤

hq(t0)
λq

≤
h0(t0)

λ0
=
e2t0ψ(t0)
π − ψ(t0)

,

where

λp = 2πe−4t0(π − ψ(t0))2
∫

∞

t0

tpe2tdt
(ψ(t0) + (π − ψ(t0))e2(t−t0))2 for p ≥ 0.
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Proof Let p > q > 0. Note that (2.2) implies that e2tψ(t)/(π − ψ(t)) is decreasing
and, consequently, d(e2tψ(t)/(π − ψ(t))) ≤ 0 and

dhq(t) = tqdψ(t) ≤ − 2
π
tqψ(t)(π − ψ(t)) dt for t ≥ t0 .

On the other hand, using (2.2) and integrating by parts twice, we have

hq(t) = tqψ(t) + q∫
∞

t
σ q−1ψ(σ) dσ

≤ tqψ(t) + qπψ(t)∫
∞

t

σ q−1dσ
ψ(t) + (π − ψ(t))e2(σ−t)

= 2πe−2tψ(t)(π − ψ(t))∫
∞

t

e2σσ qdσ
(ψ(t) + (π − ψ(t))e2(σ−t))2 .

_us,

(3.2)
dhq(t)
hq(t)

≤ −
tqe2tdt

π2
∫
∞
t e2σσ q(ψ(t) + (π − ψ(t))e2(σ−t))−2dσ

.

Since, by (2.2),

(3.3) ψ(t) ≤ πψ(t0)
ψ(t0) + (π − ψ(t0))e2(t−t0) for t ≥ t0 ,

we may replace ψ(t) in (3.2) by the right side of (3.3) and obtain

dhq(t)
hq(t)

≤ −
tqe2t(ψ(t0) + (π − ψ(t0))e2(t−t0))−2dt

∫
∞
t e2σσ q(ψ(t0) + (π − ψ(t0))e2(σ−t0))−2dσ

for t ≥ t0 .

Consequently, integrating this from t0 to t gives

(3.4) hq(t) ≤ hq(t0) ⋅
∫
∞
t e2σσ q(ψ(t0) + (π − ψ(t0))e2(σ−t0))−2dσ

∫
∞
t0 e

2σσ q(ψ(t0) + (π − ψ(t0))e2(σ−t0))−2dσ
for t ≥ t0 .

Finally integrating by parts, using (3.4), and exchanging the order of integral, we
have

hp(t0) = tp−q
0 hq(t0) + (p − q)∫

∞

t0
tp−q−1hq(t) dt

≤ tp−q
0 hq(t0) +

(p − q)hq(t0)
λ′q

∫

∞

t0
tp−q−1dt

⋅ ∫

∞

t

σ qe2σdσ
(ψ(t0) + (π − ψ(t0))e2(σ−t0))2

= tp−q
0 hq(t0) +

(p − q)hq(t0)
λ′q

⋅ ∫

∞

t0

σ qe2σdσ
(ψ(t0) + (π − ψ(t0))e2(σ−t0))2 ∫

σ

t0
tp−q−1dt

= hq(t0) ⋅
∫
∞
t0 σ pe2σ(ψ(t0) + (π − ψ(t0))e2(σ−t0))−2dσ

∫
∞
t0 σ qe2σ(ψ(t0) + (π − ψ(t0))e2(σ−t0))−2dσ

,
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where

λ′q = ∫
∞

t0

tqe2tdt
(ψ(t0) + (π − ψ(t0))e2(t−t0))2 .

_e second inequality of (3.1) is proved.
_e third inequality of (3.1) follows from

lim
q→0

hq(t0)
λq

=
h0(t0)

λ0
=
e2t0ψ(t0)
π − ψ(t0)

.

To show the ûrst one of (3.1), it suõces to prove that

(3.5) lim
p→∞

hp(t0)
λp

=
1
π

lim
t→∞ e

2tψ(t).

Integrating by parts, we have

hp(t0) = tp0ψ(t0) + p∫
∞

t0
tp−1ψ(t) dt,

λp = e−2t0 tp0 (π − ψ(t0)) + pπe−2t0(π − ψ(t0))∫
∞

t0

tp−1dt
ψ(t0) + (π − ψ(t0))e2(t−t0) .

Denote the last integral by ω(p). It is easy to see that

ω(p) ≥ 1
π ∫

∞

t0
tp−1e−2tdt ≥ e

−2t0Γ(p)
2pπ

and tp0 = o(ω(p)) as p → ∞. So, we only need to calculate the limit of B(p) =

ω(p)−1
∫
∞
t0 tp−1ψ(t) dt.

Letting k(t) = (ψ(t0) + (π − ψ(t0))e2(t−t0))ψ(t) and integrating by parts, we
obtain

B(p) = 1
ω(p) ∫

∞

t0

tp−1k(t)dt
ψ(t0) + (π − ψ(t0))e2(t−t0)

= e−2t0(π − ψ(t0)) lim
p→∞ e

2tψ(t)

−
1

ω(p) ∫
∞

t0
dk(t)∫

t

t0

σ p−1dσ
ψ(t0) + (π − ψ(t0))e2(σ−t0) .

_e last term I is estimated as a sum of two terms I′ and I′′, which correspond to the
integrals from T to∞ and from t0 to T , respectively. Suppose T is suõciently large.
Let τ1(t) = e2tψ(t)/(π −ψ(t)), which is decreasing as mentioned before, let τ2(t) =
ψ(t0)e−2t + (π − ψ(t0))e−2t0 , which is also decreasing, and let µ(t) = τ1(t)τ2(t).
_en

dk(t) = d{µ(t)(π − ψ(t))} = (π − ψ(t))dµ(t) − µ(t)dψ(t),

∣I′∣ ≤ 1
ω(p) ∫

∞

T
∣dk(t)∣ ∫

t

t0

σ p−1dσ
ψ(t0) + (π − ψ(t0))e2(σ−t0) ≤ ∫

∞

T
∣dk(t)∣

≤ −∫

∞

T
(πdµ(t) + µ(t0)dψ(t)) → 0 as T →∞,
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since µ and ψ are both positive and decreasing. _is shows that I′ → 0 as T → ∞

uniformly for p > 0. On the other hand, for a given T > t0,

∣I′′∣ ≤ 1
ω(p) ∫

T

t0
∣dk(t)∣ ∫

t

t0

σ p−1dσ
ψ(t0) + (π − ψ(t0))e2(σ−t0)

≤
T p

pπω(p) ∫
T

t0
∣dk(t)∣ → 0 as p →∞.

_us, I → 0 as p →∞. _is shows that B(p) → e−2t0(π −ψ(t0)) limt→∞ e2tψ(t). So
(3.5) and the ûrst inequality of (3.1) are proved. _e proof of the lemma is complete.

4 The Case D#
( f ) < 1

Diòerent from the holomorphic case (see [4]), precise estimates can be obtained un-
der the assumption D#( f ) < 1 only.

_eorem 4.1 Let R be a hyperbolic Riemann surface, a ∈ R, and let f ∈ M(R) be a
non-constant function such that

D#
= D#

( f ) = 1
π ∫ ∫R

f #(z)2 dxdy < 1.

For p > 0, denote

Ip( f ) = ∫ ∫
R
f #(z)2g p

(z, a) dxdy, λp = 2π(1 − D#
)
2
∫

∞

0

tpe2tdt
(D# + (1 − D#)e2t)2 .

_en, for p > q > 0, we have

(4.1) (
f #(a)
c(a)

)
2
≤

Ip( f )
λp

≤
Iq( f )
λq

≤
D#

1 − D# .

Proof Let ψ(t) and hp be the functions deûned in _eorem 2.4 for R, a, f and in
Lemma 6.1 for ψ(t) and t0 = 0, respectively. We have Ip( f ) = hp(0) for p ≥ 0 by
(2.1). _e λp is the same in Lemma 6.1. Using (3.1), we obtain the second and third
inequalities of (4.1). It remains to prove that

(4.2) lim
t→∞ e

2tψ(t) = π( f
#(a)
c(a)

)
2
.

To show this, we take ζ = ξ + iη = exp{−g(z, a) − ig∗(z, a)} as a local parameter
around a. _en, for suõcient large t,

e2tψ(t) = e2t ∫ ∫∣ζ∣<e−t
f #(ζ)2dξdη,

which tends to π f #(a)2 obviously as t → ∞. Note that γ(a) = 0 and c(a) = 1 under
this parameter. _e theorem is proved.
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Example 4.2 Consider the function f (z) = z on the unit disk ∆ and let a = 0. We
have

ψ(t) = π
1 + e2t

, D#
( f ) = 1

2
,

f #(a)
c(a)

= 1,

Ip( f ) = 2π∫
∞

0

tpe2tdt
(1 + e2t)2 for p > 0.

So, the equalities in (2.2) and (4.1) hold for σ > t ≥ 0 and p > q > 0, respectively. _is
shows that (2.2) and (4.1) are all sharp.

_e conditions ψ(t0) < π for (2.2) and D#( f ) < 1 for (4.1) are essential in their
proofs. In fact, the following examples show that it is impossible to bound Ip( f ) or
f #(a)/c(a) in terms of D#( f ) without the condition D#( f ) < 1.

Example 4.3 For δ > 0, let fδ(z) = δ(z + 1/z) for z ∈ ∆. We have D#( fδ) = 1
for δ > 0, since fδ maps ∆ univalently onto the extended complex plane with a slit
[−2δ, 2δ]. Let δn = (n+1/n)−1, then fδn(1/n) = 1 and fδn maps the disk {z ∶ ∣z∣ < 1/n}
onto a domain that covers the exterior of the unit disk and has a spherical area bigger
than π/2. _us,

I1( fδn) ≥ ∫ ∫∣z∣<1/n
f #δn(z)

2 log
1
z
dxdy ≥ log n∫ ∫∣z∣<1/n

f #δn(z)
2dxdy ≥ π

2
log n,

which tends to the inûnity as n →∞. Meanwhile, c(0) = 1 and f #δn(0) = 1/δn .

Example 4.4 Let fn(z) = nz for z ∈ ∆ and n = 1, 2, . . . . _enD#( fn) → 1 as n →∞.
However, c(0) = 1 and f #(0) = n →∞ as n →∞.

5 Nesting Property of Classes CN(R) and Q#
p(R) for p > 0

Although the condition D#( f ) < 1 is necessary for (4.1), yet it is really possible to
bound Ip( f ) by Iq( f ) for p > q > 0 and to bound f #(a)/c(a) by Ip( f ) for p > 0
without any additional condition about D#( f ). We will formulate and prove these
results in this section, from which the nesting property of classes CN(R) and Q#

p(R)
for p > 0 follows.

_eorem 5.1 Let R be a hyperbolic Riemann surface, a ∈ R and let f ∈ M(R) be not a
constant. Let p > q > 0, and let Ip( f ), Iq( f ) be deûned in _eorem 2.5. If Iq( f ) < ∞,
then

(5.1) Ip( f ) ≤ ap,q ,Iq( f ) , (
f #(a)
c(a)

)
2
≤ bq ,Iq( f ) .

Proof Let ψ(t) be the function deûned in _eorem 2.4 for f . Assume that Iq( f ) <
∞. _en 0 < ψ(t) < ∞ for t > 0. Take t0 = (2Iq( f )/π)1/q . _en ψ(t0) ≤ π/2, since,
by _eorem 2.4,

Iq( f ) = −∫
∞

0
tqdψ(t) ≥ −∫

∞

t0
tqdψ(t) ≥ tq0ψ(t0).
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Using _eorems 2.4 and 2.5, the second inequality of (3.1) with t0 = (2Iq( f )/π)1/q ,
we have

Ip( f ) = −∫
∞

0
tpdψ(t) = −∫

t0

0
tpdψ(t) − ∫

∞

t0
tpdψ(t)

≤ −tp−q
0 ∫

t0

0
tqdψ(t) −

4 ∫
∞
t0 tpe2te−4(t−t0)dt

∫
∞
t0 tqe2t(1 + 2e2(t−t0))−2dt ∫

∞

t0
tqdψ(t) ≤ ap,q ,t0 .

_is shows the ûrst one of (5.1).
Using the ûrst one of (3.1) (p is replaced by q) with t0 = (2Iq( f )/π)1/q and (4.2),

we obtain

(
f #(a)
c(a)

)
2
≤

hq(t0)
λq

≤
Iq( f )
λq

.

Note that

λq = 2πe−4t0(π − ψ(t0))
2
∫

∞

t0

tqe2tdt
(ψ(t0) + (π − ψ(t0))e2(t−t0))2

≥ 2πe−4t0
∫

∞

t0

tqe2tdt
(1 + e2(t−t0))2 = bq ,t0 .

_is shows the second one of (5.1). _e theorem is proved.

_enesting property ofQp(R) andCN(R) is formulated in the following theorem,
which are consequences of _eorem 4.1.

_eorem 5.2 For any hyperbolic Riemann surface R, we have

Q#
q(R) ⊂ Q#

p(R) ⊂ CN(R) and Q#
q ,0(R) ⊂ Q#

p,0(R) ⊂ CN0(R) f or p > q > 0.

6 Spherical Dirichlet Class

As indicated in Section 4, Ip( f ) and f #(a)/c(a) cannot be bounded in terms of
D#( f )without an additional condition. However, it is still true thatAD#(R) ⊂ Q#

p(R)
for p > 0 and, consequently, AD#(R) ⊂ CN(R).

Lemma 6.1 Let R be a hyperbolic Riemann surface, a ∈ R, and let f ∈ M(R) be not
a constant. If D#( f ) < ∞ and

D#
t0( f ) =

1
π ∫ ∫g(z ,a)>t0

f #(z)2 dxdy = k < 1

for some t0 > 0, then

(6.1) Ip( f ) ≤ πtp0D
#
( f ) + 2πk

1 − k ∫
∞

t0
tpe−2(t−t0)dt f or p > 0,

where Ip( f ) is deûned in _eorem 2.5.

Proof Let p > 0 be given. Let ψ(t) be the function deûned in _eorem 2.4. We have

−∫

t0

0
tpdψ(t) ≤ −tp0 ∫

t0

0
dψ(t) ≤ tp0ψ(0) = πtp0D

#
( f )
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and, using the third inequality of (3.1) to ψ(t),

−∫

∞

t0
tpdψ(t) = hp(t0) ≤ λp ⋅

e2t0ψ(t0)
π − ψ(t0)

= 2πe−2t0ψ(t0)(π − ψ(t0))∫
∞

t0

tpe2tdt
(ψ(t0) + (π − ψ(t0))e2(t−t0))2

≤
2πk
1 − k ∫

∞

t0
tpe−2(t−t0)dt.

_us, (6.1) follows, since Ip( f ) = −∫
∞
0 tpdψ(t) by _eorem 2.4. _e lemma is

proved.

_eorem 6.2 If R is a hyperbolic Riemann surface, then

AD#
(R) ⊂ Q#

p(R) ⊂ CN(R) f or p > 0.

Proof Let p > 0 and f ∈ AD#(R), i.e., D#( f ) < ∞. _en there exists a compact set
E1 ⊂ R such that

1
π ∫ ∫R∖E1

f #(z)2 dxdy < 1
2
.

Since

lim sup
a→∂R

max
z∈E1

g(z, a) = M < ∞,

we have a compact set E2 ⊂ R such that g(z, a) < t0 = M + 1 for a ∈ R∖E2 and z ∈ E1.
Let a ∈ R ∖ E2 and let D#

t0( f ) be deûned in Lemma 7.2 for a. Since

D#
t0( f ) ≤

1
π ∫ ∫R∖E1

f #(z)2 dxdy < 1
2
,

we may use Lemma 7.2 and obtain

1
π ∫ ∫R

f #(z)2g(z, a)p dxdy ≤ tp0D
#
( f )+2∫

∞

t0
tpe−2(t−t0)dt = A1 for a ∈ R∖E2 .

On the other hand, the integral on the le� side of the above inequality is continuous
with respect to a. Letting

A2 = max
a∈E2

1
π ∫ ∫R

f #(z)2g(z, a)p dxdy < ∞,

we have B#
p( f ) ≤ max{A1 , A2}. _is shows that f ∈ Q#

p(R), and the theorem is
proved.

As a special case p = 1, sinceQ#
1 (R) = UBC (cf. [15]), the ûrst inclusion in_eorem

5.2 gives an aõrmative solution to Yamashita’s question [16].
A hyperbolic Riemann surface is called a regular surface if max{g(z, a) ∶ z ∈ E} →

0 as a → ∂R for any compact set E ⊂ R. For regular surfaces the previous theorem
can be strengthened.
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_eorem 6.3 If R is a regular hyperbolic Riemann surface, then

AD#
(R) ⊂ Q#

p,0(R) ⊂ CN0(R) for p > 0.

Proof _e proof is similar to that of the above theorem. _is time, instead of the
number 1/2, we take a number є, which may be arbitrarily small. Now,M = 0 since R
is regular. So, we may take t0 arbitrarily small. _en, for a ∈ R ∖ E2,

1
π ∫ ∫R

f #(z)g(z, a)p dxdy ≤ tp0D
#
( f ) + 2є

1 − є ∫
∞

t0
tpe−2(t−t0)dt = A1 .

_e theorem is proved, since A1 → 0 as є, t0 → 0.

7 The Equality Condition of (3.1) and (4.1)

It is easy to verify that all equalities in (4.1) hold for R = ∆, a = 0 and the function
f (z) = z. More generally, by considering a rotation of the Riemann sphere, we may
conclude that all equalities in (4.1) hold if R is a simply-connected hyperbolic Rie-
mann surface, a ∈ R and f is a conformal mapping of R onto a spherical disk such
that f (a) is the spherical center of the spherical disk. In this section we want to prove
the following theorem.

_eorem 7.1 Let R be a hyperbolic Riemann surface, a ∈ R, and let f ∈ M(R) be not
a constant. If R is obtained from a simply-connected hyperbolic Riemann surface R′ by
deleting at most a set of capacity zero and f is extended to a conformal mapping of R′
onto a spherical disk such that f (a) is the spherical center of the disk, then all equalities
in (4.1) (for any p > q > 0) hold. Conversely, if 0 < D#( f ) < 1 and the equality in
(4.1) holds for some p > q > 0, then the above condition, denoted by condition (∗), is
satisûed.

_enotion of capacity is deûned in terms of the logarithmic potential or transûnite
diameter (cf. [1]). Let E be a compact set in the complex plane, let Ω be the comple-
ment of E that is connected, and let g(z) be a Green’s function of Ω whose asymptotic
behavior at the inûnity is of the form

g(z) = log ∣z∣ + γ + є(z),

where γ is a constant and є(z) → 0 as z → ∞. It was proved that the capacity of E,
denoted by cap E, is equal to e−γ , which assumes 0 if Ω possesses no Green’s function.
Also, it is known that if cap E = 0, then E is totally disconnected and of Lebesque
measure zero (dimension 2), and the complement of E is connected.
For a relatively closed set E in the unit disk ∆, we say that E is of capacity zero if

any compact subset of E is of capacity zero. _is deûnition is extended naturally to a
hyperbolic Riemann surface R. We say that a closed set E ⊂ R has capacity zero if for
any point in R there exists a parameter disk D ∈ R around this point such that D⋂ E
is of capacity zero. _e following suõcient and necessary condition for a set to be of
capacity zero was shown by the authors in [4] for the case of the unit disk, and, by
considering a universal covering, it can be proved for Riemann surfaces.
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Lemma 7.2 Let R be a hyperbolic Riemann surface and let E ⊂ R be a closed set. If E
has capacity zero, then R∖E is connected and gR∖E(p, a) = gR(p, a) for all a, z ∈ R∖E,
where gR∖E(p, a) and gR(p, a) denote Green’s functions of R ∖ E and R, respectively.
Conversely, if R ∖ E is connected and the equality holds for some a ∈ R ∖ E and all
p ∈ R ∖ E, then E is of capacity zero.

In order to prove_eorem7.1 wewill list a couple of lemmas and partly prove them.

Lemma 7.3 Under the assumption of Lemma 6.1 with t0 = 0, if the second equality
in (3.1) holds for some p > q > 0, then

(7.1) ψ(t) = πψ(0)
ψ(0) + (π − ψ(0))e2t

for t ≥ 0.

Conversely, if (7.1) holds, then all equalities in (3.1) hold for any p > q > 0.

Proof From the proof of Lemma 6.1, it is easy to see that the second equality in (3.1)
for some p > q > 0 implies (7.1). Conversely, if (7.1) holds, then

hp(0) = −∫
∞

0
tpdψ(t) = 2πψ(0)(π − ψ(0))∫

∞

0

tpe2t dt
(ψ(0) + (π − ψ(0))e2t)2

=
λpψ(0)
π − ψ(0)

holds for any p ≥ 0. _us, all equalities in (3.1) hold for any p > q > 0.

_e following lemma is direct consequence of _eorem 2.4 and Lemma 7.3.

Lemma 7.4 Let R be a hyperbolic Riemann surface, a ∈ R and let f ∈ M(R) be not a
constant with D#( f ) < 1. If the second equality in (4.1) holds for some p > q > 0, then
the function ψ(t) deûned in _eorem 2.4 satisûes (7.1). Conversely, (7.1) implies that all
equalities in (4.1) hold for any p > q > 0.

An equivalent formulation of the condition (∗) is the following: f is conformal
mapping and f (R) is obtained from a spherical disk of center f (a) by deleting at
most a set of capacity zero.

Proof of_eorem 7.1 First, assume that R, a, f satisûes the spherical Kobayashi
condition. Without loss of generality, assume that f (a) = 0. _en, by the equiva-
lent formulation of condition (∗), f is univalent and R′ = f (R) = ∆ρ ∖ E, where ∆ρ
is the disk of center 0 and radius ρ, and E is a set of capacity 0. By Lemma 7.2,

gR(p, a) = gR′( f (p), 0) = log
ρ

∣ f (p)∣
for p ∈ R.

_us,

ψ(t) = ∫ ∫∣w∣<ρe−t

dudv
(1 + ∣w∣2)2 =

πρ2

ρ2 + e2t
,

and so (7.1) holds. By Lemma 7.4, all equalities in (4.1) hold.
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Now, assume that 0 < D#( f ) < 1 and the second equality in (4.1) holds for some
p > q > 0. _en, by Lemma 7.4, the function ψ(t) deûned in _eorem 2.4 satisûes
(7.1) and all equalities in (4.1) hold.

Let G(p) = g(p, a)+ ig∗(p, a) and F(p) = exp{−G(p)} for p ∈ R. Here F(p) is a
multiple-valued analytic function. However, ∣F(p)∣ = exp{−g(p, a)} is single-valued
on R, F(p) is single-valued near a, and F′(a) ≠ 0. So, wemay take ζ = F(p) as a local
parameter around a andwrite f (ζ) = b1ζ+b2ζ2+⋅ ⋅ ⋅ if ∣ζ ∣ is suõciently small (without
loss of generality we assume that f (a) = 0). On the other hand, c(a) = 1, with respect
to the parameter ζ , since gR(p, a) = log 1

F(p) = log 1
ζ(p) for ∣ζ(p)∣ < δ according to

the deûnition of F(p), and f #(a) = ∣b1∣ with respect to the same parameter. _us,

(7.2) ∣b1∣2 =
f #(a)2

c(a)2 =
D#

1 − D# =
ψ(0)

π − ψ(0)
,

since all equalities in (4.1) hold. _us, by (7.1) and (7.2),

(7.3) ψ(t) = π
k
∑
j=0

(−1) j
∣b1∣2( j+1)e−2( j+1)t

+ O(e−2(k+1)t
), t →∞.

We claim that b j = 0 for j ≥ 2. Assume to the contrary that b2 = ⋅ ⋅ ⋅ = bk−1 = 0 and
bk ≠ 0 with k ≥ 2. _en

∣ f (ζ)∣2 = ∣b1∣2∣ζ ∣2 + S1 , ∣ f ′(ζ)∣2 = ∣b1∣2 + k2
∣bk ∣

2
∣ζ ∣2(k−1)

+ S2 ,

where

S1 =
2(k−1)
∑
j=k

Re(b1b jζζ
j
) + O(∣ζ ∣2k),

S2 =
2k
∑
j=k

jRe(b1b jζζ
j−1

) + k(k + 1)Re(bkbk+1ζ k−1ζ
k
) + O(∣ζ ∣2k).

Consequently,

1
(1 + ∣ f (ζ)∣2)2 =

k−1
∑
j=0

( j + 1)(−1) j
∣b1∣2 j

∣ζ ∣2 j

+
k−1
∑
j=1

j( j + 1)(−1) j
∣b1∣2( j−1)

∣ζ ∣2( j−1) 2(k−1)
∑
j=k

Re(b1b jζζ
j
) + O(∣ζ ∣2k)

and

f #(ζ)2
=

k−1
∑
j=0

(−1) j
( j + 1)∣b1∣2( j+1)

∣ζ ∣2 j
+ k2

∣bk ∣
2
∣ζ ∣2(k−1)

+ S3 ,

where

S3 = ∑
j≠l
α j, l ζ jζ

l
+ O(∣ζ ∣2k).

_us,

(7.4) ψ(t) =
k
∑
j=0

(−1) j
∣b1∣2( j+1)e−2( j+1)t

+ k∣bk ∣
2e−2kt

+ O(e−2(k+1)t
), t →∞.
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Comparing (7.3) with (7.4) gives bk = 0, a contradiction. _is shows that f (p) =

b1F(p) for p close to a and, consequently, f (p) is equal to b1F(p) on R identically
and F(p) is actually single-valued on R.

Now we want to prove that f is univalent on R. R′ = f (R) is contained in the disk
∆ρ = {w ∶ ∣w∣ < ρ} of center 0 and radius ∣b1∣, since f (p) = b1F(p) and ∣F(p)∣ < 1 for
p ∈ R. Let

(7.5) gR′(w , 0) = log
1
∣w∣

+ u(w), w ∈ R′ ,

where u is a harmonic function on R′. Applying _eorem 4.1 to the surface R′ and
the identity function h(w) = w, the point w = 0 and parameter w, we have

(7.6) e2u(0) ≤ D#(h)
1 − D#(h)

=
A#( f )

1 − A#( f )
.

According the deûnition of F, we have

gR(p, a) = log
1

∣F(p)∣
= log

1
∣ f (p)∣

+ log ∣b1∣, p ∈ R.

Deûne g(p) = gR′( f (p), 0) for p ∈ R. _en, by (7.5),

g(p) = log
1

∣ f (p)∣
+ u( f (p)), p ∈ R.

We may take w = f (p) as a local parameter around a, since f (p) is local univalent
at a. _en ∣ f (p)∣ in the above equality for g(p) can be replaced by ∣w(p)∣ for p close to
a. _en g(p) is a positive harmonic function on R∖{a} and g(p) = log 1

∣w(p)∣ +O(1)
as p → a, where w is a local parameter around a with w(a) = 0. It is known [1]
that the Green function gR(p, a) is the smallest one among functions with these two
properties. _us, gR(p, a) ≤ g(p) for p ∈ R and, consequently,

(7.7) log ∣b1∣ ≤ u( f (p)), p ∈ R ∖ {a}.

Letting p → a gives

(7.8) ∣b1∣2 ≤ e2u(0) .

Now, from (7.2), (7.6), and (7.8), we conclude that ∣b1∣ = eu(0) and A#( f ) = D#( f ),
which implies the univalence of f .

It follows from (7.7) and the equality ∣b1∣ = eu(0) that u(w) = log ∣b1∣ in a neigh-
bourhood of the origin and, consequently, for w ∈ R′. _is shows that gR′(w , 0) =

g∆ρ(w , 0) for w ∈ R′. By Lemma 7.2, R, f , a satisûes the condition (∗) (the equiva-
lent formulation). _e proof is complete.
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