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In this work, the development of two-dimensional current sheets with respect to tearing
modes, in collisionless plasmas with a strong guide field, is analysed. During their
nonlinear evolution, these thin current sheets can become unstable to the formation of
plasmoids, which allows the magnetic reconnection process to reach high reconnection
rates. We carry out a detailed study of the effect of a finite βe, which also implies
finite electron Larmor radius effects, on the collisionless plasmoid instability. This
study is conducted through a comparison of gyrofluid and gyrokinetic simulations. The
comparison shows in general a good capability of the gyrofluid models in predicting the
plasmoid instability observed with gyrokinetic simulations. We show that the effects of
βe promotes the plasmoid growth. The effect of the closure applied during the derivation
of the gyrofluid model is also studied through the comparison among the variations of the
different contributions to the total energy.
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1. Introduction

Magnetic reconnection is a change of topology of the magnetic field lines taking place in
regions of intense localised current, referred to as current sheets. This fundamental process
ultimately converts magnetic energy into bulk flow and particle heating, and is responsible
for the explosive release of magnetic energy in astrophysical and laboratory plasmas. The
instabilities of very elongated reconnecting current sheets leading to the formation of
secondary magnetic islands, called plasmoids, have generated a lot of interest, as they are
believed to achieve fast reconnection. Plasmoids have been thoroughly studied through the
most standard reconnection model based on the Sweet–Parker (SP) theory in the resistive
magnetohydrodynamics (RMHD) framework (Biskamp 1986; Loureiro et al. 2005). In
Biskamp (1986), it has been shown that collisional current sheets become unstable above
a critical Lundquist number S = μ0LspvA/η > Sc = 104, where Lsp is the length of the SP
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current sheet, η is the resistivity and vA is the Alfvèn speed. Much work has followed and
allowed to identify the plasmoid regime as a function of the Lundquist number and of the
characteristic scale of a dynamic of the ions (ion-sound Larmor radius ρs or ion skin depth
di scales) at which a transition to a non-collisional regime, dominated by kinetic effects,
occurs (Uzdensky, Loureiro & Schekochihin 2010a,b; Ji & Daughton 2011; Daughton &
Roytershteyn 2012; Loureiro & Uzdensky 2015; Bhat & Loureiro 2018). This extension
of the resistive reconnection regime with the inclusion of the ion dynamics enlarged the
study to a broader parameter space, but also suggested that plasmoids are fundamental
features of reconnecting current sheets, regardless of the value of the Lundquist number
(Ji & Daughton 2011; Daughton & Roytershteyn 2012).

The plasma in the magnetosphere and solar wind, which regularly undergoes
reconnection, is so dilute that collisions between particles are extremely infrequent. In
such plasmas, electron inertia becomes particularly relevant to drive reconnection in thin
current sheets. Indeed, recent observations revealed many reconnection onsets driven by
electrons, in the presence of a strong guide field, close to the dayside magnetopause and
magnetosheath (Burch et al. 2016; Phan et al. 2018) with current sheets having a thickness
of the order of the electron inertial length. Regarding experiments, a study by Olson
et al. (2016) also gave direct experimental proof of plasmoid formation at the electron
scale in a weakly collisional regime. In these collisionless, magnetised environments,
effects of the finite electron Larmor radius (FLR) on the reconnection process can also
become non-negligible, in particular when βe, defined as the ratio between equilibrium
thermal electron pressure and guide field magnetic pressure, is not much smaller than
unity. Although the plasma-β effect was found to have an effect on the plasmoid instability
threshold in the collisional regime (Ni et al. 2012) and in the semi-collisional regime (Baty
2014), it has been ignored in most collisionless studies. This motivates the study of the
formation of plasmoids in non-collisional current sheets and, in particular, of the effects
relevant at the electron scales such as the electron skin depth and the electron Larmor
radius.

In Granier et al. (2022a), the purely collisionless plasmoid regime was investigated
in the regime of strong guide field with βe → 0. The instability was studied in a phase
space defined by two kinetic scales, de (electron inertial length) and ρs (the ion-sound
Larmor radius), compared with the current sheet length Lcs. In a first regime, where
the ion-sound Larmor radius is much smaller than the thickness of the boundary layer,
ρs � δin, plasmoids were obtained for current sheets having a critical aspect ratio A(1)

� =
(Lcs/δcs) ∼ (Lcs/de) ∼ 10. In a second regime, where the ion-sound Larmor radius is of
the order of, or larger than, the thickness of the inner region, the critical aspect ration can
be below 10 and was found to scale as A(2)

� ∝ Lcs/ρs. In the present work, we relax the
assumption of small βe and carry out a detailed study of the effect of a finite βe, on the
collisionless plasmoid instability, in the case of a strong guide field. We consider inertial
reconnection, and finite electron FLR effects arise from the combination of electron inertia
and finite βe parameters. This study is conducted through a comparison of gyrofluid and
gyrokinetic simulations. Previously, the gyrokinetic method was successfully employed to
examine reconnection (Pueschel et al. 2011; Zocco & Schekochihin 2011; Zacharias et al.
2014; Numata & Loureiro 2015; Rogers et al. 2007). Both approaches are assuming that the
plasma is immersed in a strong guide field oriented along the z direction. As a by-product
of our analysis, we also obtain a way to validate, by means of gyrokinetic simulations, part
of the results on collisionless plasmoid instability obtained by Granier et al. (2022a) with
a gyrofluid approach in the βe → 0 limit (later referred to as the fluid limit).

The adopted gyrofluid model is the 2-field system presented in Granier et al. (2022b)
and assumes cold and immobile ions along the guide field direction. Gyrofluid models,
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although greatly simplified with respect to the original gyrokinetic system, are useful
tools for studying collisionless reconnection, in which the microscopic scales, such as the
electron skin depth and the electron Larmor radius, can be more important than resistivity.
In addition, the gyrofluid framework is less costly in terms of computational resources,
and physically more intuitive when compared with the kinetic or gyrokinetic framework.
So far, gyrofluid modelling has allowed us to gain a good understanding of the role of
collisionless effects (e.g. Del Sarto et al. 2011; Comisso et al. 2013; Tassi et al. 2018;
Granier et al. 2021, 2022b).

The gyrokinetic model, adopted for the comparison, is a δf model which solves
the electromagnetic gyrokinetic Vlasov–Maxwell system. The gyrokinetic equations are
solved by means of the AstroGK code, presented and used in Numata et al. (2010);
Numata & Loureiro (2015). One of the main advantages of using the AstroGK code for
a comparison with the gyrofluid results, is that, in a specific limit, the gyrokinetic system
solved by AstroGK reduces to the one that was taken to derive the 2-field gyrofluid
model used in this study (Howes et al. 2006). This allows us to study the effect of the
closure applied on the moments, performed during the derivation of the gyrofluid model,
on the distribution and conversion of energy during reconnection, and identify the possible
limitations of the gyrofluid approach. The specific limit in which the AstroGK code has
to be used, in order to reproduce the parent gyrokinetic model of the gyrofluid model, is
that corresponding to a straight guide field, with no density and temperature gradients and
without collisions. To be consistent with the gyrofluid approach, the ions are assumed to
be cold.

The article is organised as follows. In § 2 we present the gyrofluid and gyrokinetic
systems, as well as the numerical set-up. In § 3 we present the results concerning the
plasmoid instability obtained from a comparison of the two approaches. In § 4 we compare
the energy variations in the two frameworks and discuss the effect of the closure hypothesis
on the energy conversion. Section 5 is devoted to conclusions.

2. Adopted models
2.1. Gyrofluid

The gyrofluid model used for our analysis is that considered by Granier et al. (2022b),
which consists of the following evolution equations

∂Ne

∂t
+ [G10eφ − ρ2

s 2G20eB‖, Ne] − [G10eA‖, Ue] = 0, (2.1)

∂Ae

∂t
+ [G10eφ − ρ2

s 2G20eB‖, Ae] + ρ2
s [G10eA‖, Ne] = 0, (2.2)

complemented by the relations(
G2

10e − 1
ρ2

s

+ ∇2
⊥

)
φ − (G10e2G20e − 1) B‖ = G10eNe, (2.3)

∇2
⊥A‖ = G10eUe, (2.4)

(G10e2G20e − 1)
φ

ρ2
s

−
(

2
βe

+ 4G2
20e

)
B‖ = 2G20eNe. (2.5)

Equation (2.1) corresponds to the electron gyrocentre continuity equation, whereas
(2.2) refers to the electron momentum conservation law, along the guide field direction.
The static relations (2.3)–(2.5) descend from quasi-neutrality and from the projections of
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Ampère’s law along directions parallel and perpendicular to the guide field, respectively.
As mentioned previously, the guide field is directed along the z axis of a Cartesian
coordinate system x, y, z, and, in the present two-dimensional (2D) version of the model,
the dependent variables are functions only of x and y, as well as of the time variable
t. We indicated with Ne and Ue the fluctuations of the electron gyrocentre density
and parallel velocity, respectively, whereas φ and B‖ indicate the fluctuations of the
electrostatic potential and of the magnetic field along the guide field. The variable Ae
is defined by Ae = G10eA‖ − d2

e Ue, where A‖ is the z-component of the magnetic vector
potential, de = √

mec2/4πe2n0/L is the normalised electron skin depth and G10e is an
electron gyroaverage operator, defined later in (2.10). The operator [ , ] is the canonical
Poisson bracket and is defined by [ f , g] = ∂xf ∂yg − ∂yf ∂xg, for two functions f and g. The
perpendicular Laplacian operator ∇2

⊥ is defined by ∇2
⊥f = ∂xxf + ∂yyf . The variables are

normalised as

t = vA

L
t̂, x = x̂

L
, y = ŷ

L
, (2.6a–c)

diNe,i = N̂e,i

n0
, diUe,i = Ûe,i

vA
, (2.7a,b)

A‖ = Â‖
LB0

, diB‖= B̂‖
B0

, φ = c
vA

φ̂

LB0
, (2.8a–c)

where the hat indicates dimensional variables, c is the speed of light, L is a characteristic
scale length, n0 is the equilibrium uniform density, B0 is the amplitude of the guide
field and vA = B0/

√
4πmin0 is the Alfvén speed, with mi indicating the ion mass. The

normalised ion skin depth is defined by di = √
mic2/4πe2n0/L, where e indicates the

proton charge. In (2.7a,b) we also introduced the quantities Ni and Ui, corresponding to the
ion gyrocentre density and parallel velocity fluctuations, respectively. Such moments do
not evolve in the model (2.1)–(2.5), and the assumptions on such quantities are discussed
later in this section, as well as in § 4. We find it also useful to write explicitly the expression
for the magnetic field normalised with respect to the guide field amplitude. In the present
2D setting, by virtue of the normalisation (2.6a–c)–(2.8a–c), such expression is given by

B(x, y, t) = z + diB‖(x, y, t)z + ∇A‖(x, y, t) × z, (2.9)

where z is the unit vector along z. Independent parameters in the model are βe =
8πn0T0e/B2

0, ρs =
√

T0emic2/(e2B2
0)/L and de.1 These three parameters correspond to the

ratio between equilibrium electron pressure and magnetic guide field pressure, to the
normalised sonic Larmor radius and to the electron skin depth, respectively.

The model is formulated on a domain {(x, y) : −Lx ≤ x ≤ Lx,−Ly ≤ y ≤ Ly}, with
Lx and Ly positive constants. Periodic boundary conditions are assumed. This allows
to express gyroaverage operators in terms of the corresponding Fourier multipliers.
In particular, we associate the electron gyroaverage operators G10e and G20e with
corresponding Fourier multipliers in the following way (Brizard 1992)

G10e = 2G20e → e−k2
⊥(βe/4)d2

e , (2.10)

where k2
⊥ = k2

x + k2
y is the squared perpendicular wave number and kx = mπ/Lx, ky =

nπ/Ly are the x and y components of the wave vector, with m and n positive integers. As is

1According to a customary notation, in the symbols ρs, the subscript s is to indicate a sonic quantity and not the
particle species.
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customary with gyrofluid models, (2.1) and (2.2) are expressed in terms of gyrocentre
variables. However, for the sake of the subsequent analysis, it can be useful also to
express their relation with particle variables. Such relation, in particular, is affected by
the quasi-static assumption, used in the derivation of the model (Tassi, Passot & Sulem
2020) to obtain a closure on the infinite hierarchy of moment equations obtained from a
parent gyrokinetic system. As a consequence of such quasi-static closure (which are briefly
recalled in § 4) the normalised density fluctuations and parallel velocity fluctuations of the
electrons, indicated with ne and ue, respectively, are related to those of the corresponding
gyrocentres by

Ne = G−1
10e

(
ne + (G2

10e − 1)
φ

ρ2
s

− G2
10eB‖

)
, (2.11)

Ue = G−1
10eue. (2.12)

In addition, in our gyrofluid model we neglect the contributions due to the density and
parallel velocity fluctuations of the ion gyrocentres, by imposing that Ni = 0, Ui = 0.
Furthermore, ions are assumed to be cold, i.e. τ → 0, where τ = T0i/T0e is the ratio
between ion and electron equilibrium temperature.

In terms of the ion particle density and parallel velocity fluctuations, denoted as ni and
ui, respectively, such assumptions lead to the relations ni = ∇2

⊥φ + B‖ = ne and ui = 0.
From the quasi-neutrality relation (2.3), Ampère’s law (2.4) and (2.5), combined with
(2.11) and (2.12), we can obtain the relations

ne = 2
2 + βe

∇2
⊥φ = − 2

βe
B‖, (2.13)

ue = ∇2
⊥A‖, (2.14)

that permit to express the electron particle (as opposed to gyrocentre) density and parallel
velocity fluctuations, in terms of electromagnetic perturbations such as φ, B‖ and A‖.

It is also particularly relevant to consider the limit βe → 0 with de and ρs remaining
finite (which implies me/mi → 0). This corresponds to suppressing the effects of parallel
magnetic perturbations and electron FLR effects. One of the purposes of our investigation
is indeed to consider possible modifications, due to kinetic effects, of the plasmoid
instability scenario described by Granier et al. (2022a) and which was conceived namely
in the regime with βe → 0 and finite de and ρs. In this limit, the gyroaverage operators can
be approximated in the Fourier space in the following way:

G10ef (x, y) = 2G20ef (x, y) = f (x, y) + O(βe). (2.15)

Using this development in (2.1)–(2.5) and neglecting the first-order corrections, we obtain
the evolution equations (Schep, Pegoraro & Kuvshinov 1994)

∂ne

∂t
+ [φ, ne] − [A‖, ue] = 0, (2.16)

∂

∂t
(A‖ − d2

e ue) + [φ, A‖ − d2
e ue] − ρ2

s [ne, A‖] = 0, (2.17)
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where the static relations (2.3)–(2.5) are replaced by

∇2
⊥φ = Ne = ne, (2.18)

∇2
⊥A‖ = Ue = ue, (2.19)

B‖ = 0. (2.20)

In this limit, particle density and parallel velocity fluctuations coincide with the
corresponding gyrocentre counterparts. The system (2.16) and (2.17), complemented by
the static relations (2.18) and (2.19) corresponds to the model by Cafaro et al. (1998),
adopted for describing collisionless reconnection in the presence of electron inertia and
finite sonic Larmor radius effects. Because of the absence of FLR effects, we refer to the
model (2.16)–(2.19) as to the fluid limit of the general gyrofluid model (2.1)–(2.5). This
model was used extensively for studying reconnection in the past, and a dispersion relation
was derived in Porcelli (1991).

We point out that it is possible to take the small FLR limit of (2.2), with parameters
satisfying (de � 1, ρs � 1, de/ρs � 1, βe = O(1)) and ∇2

⊥ = O(1), to obtain an Ohm’s
law given by

∂

∂t

(
A‖ +

(
βe

4
− 1

)
d2

e∇2
⊥A‖

)
+
[
φ, A‖ +

(
βe

4
− 1

)
d2

e∇2
⊥A‖

]
+ ρ2

s

(
βe

2 + βe
− 1

)
[∇2

⊥φ, A‖] = 0. (2.21)

This equation retains first-order corrections proportional to (βe/4)d2
e and βeρ

2
s /(2 + βe),

that arise from both electron FLR (assuming G10e ≈ 1 + (βe/4)d2
e∇2

⊥ for de � 1) and finite
B‖ effects, respectively. The dispersion relation of Porcelli (1991), which was obtained by
adopting boundary layer and asymptotic matching techniques for βe = 0, can be extended
by identifying an effective electron skin depth d′

e and effective sonic Larmor radius ρ ′
s,

given by d′
e/de = √

1 − βe/4 and ρ ′
s/ρs = √

2/(βe + 2), respectively. This assumes that
one can perform the matching asymptotic expansion as in the case without electron
FLR effects, apart from the correction embedded in d′

e. This excludes, in particular, the
role played, in the dispersion relation, by a possible innermost boundary layer of size
proportional to some positive power of βe. However, as shown in figure 1, the comparison
with numerical simulations suggests that, at least for the small values of βe considered,
such approximation, appears to describe effectively the dependence on βe of the linear
growth rate.

2.2. Gyrokinetic
In this section, we present the electromagnetic δf gyrokinetic model used in this work
(Howes et al. 2006; Numata et al. 2010), from which the gyrofluid model can be
derived with appropriate approximations and closure hypotheses (Tassi et al. 2020). The
gyrokinetic model is formulated in terms of the perturbation of the gyrocentre distribution
function gs = gs(Xs, v‖, v⊥, t) where v‖, v⊥ are the parallel and perpendicular velocity
coordinates. The guiding centre coordinates are given by

X s = x + vths

ωcs
v × z, (2.22)

where x is the particle position, v is the particle velocity, vths = √
T0s/ms is the thermal

speed and ωcs = eB0/(msc) is the cyclotron frequency. The index s labels the particle
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species, with s = e for electrons and s = i for ions. For simplicity, we assume a
uniform background plasma, and two-dimensionality (∂/∂z = 0). By adopting the same
normalisation scheme with the gyrofluid model, the gyrokinetic system can be written in
the following way:

∂

∂t

(
gs + 1

ρs

Zs√
σsτs

v‖J0sA‖

)

= −
[
J0sφ −

√
τsβe

2σs
v‖J0sA‖ + τs

Zs
ρ2

s v
2
⊥J1sB‖, gs + 1

ρs

Zs√
σsτs

v‖J0sA‖

]
, (2.23)

∑
s

Zsn̄s = φ
∑

s

Zs

ρ2
s τs

(
1
n0

∫
dŴF̂eqs

(1 − J0s)

)

+ B‖
∑

s

Zs

(
1
n0

∫
dŴF̂eqs

v2
⊥J0sJ1s

)
, (2.24)

∑
s

Zsūs = −∇2
⊥A‖, (2.25)

∑
s

p̄s = −φ
∑

s

1
ρ2

s

(
1
n0

∫
dŴF̂eqs

v2
⊥J0sJ1s

)

− B‖

(
2
βe

+
∑

s

∫
dŴF̂eqs

(v2
⊥J0sJ1s)

2

)
. (2.26)

Equation (2.23) is the gyrokinetic equation, whereas (2.24)–(2.26) correspond to the
quasi-neutrality relation and to the parallel and perpendicular projection of Ampère’s law.
We have introduced the following additional normalisations

gs = ĝs

F̂eqs

, v‖,⊥ = v̂‖,⊥
vths

, dip̄s =
ˆ̄ps

n0T0e
, (2.27a–c)

where the Maxwellian equilibrium distribution function in the dimensional form is

F̂eqs
(v̂‖, v̂⊥) = n0

(
ms

2πT0s

)3/2

e−msv̂
2
‖/2T0s−msv̂

2
⊥/2T0s . (2.28)

The species-dependent parameters are the mass ratio σs = ms/mi, temperature ratio τs =
T0s/T0e and charge number ratio Zs = qs/qi. Obviously, σi = 1, τe = 1, Zi = 1. We fix
Ze = −1, i.e. qi = e, throughout this work. We may occasionally denote the non-trivial
ones as σe = σ , τi = τ .

The velocity moments of the distribution function appear in (2.24)–(2.26) are defined
by

din̄s = 1
n0

∫
dŴF̂eqs

J0sgs, (2.29)

diūs =
√

τsβe

2σs

1
n0

∫
dŴF̂eqs

v‖J0sgs, (2.30)
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dip̄s = τs
1
n0

∫
dŴF̂eqs

v2
⊥J1sgs, (2.31)

where the volume element dŴ in velocity space is defined as dŴ = πv3
ths

dv‖ dv2
⊥. Note

that these quantities are moments of gs, thus are different from the actually particle density,
flow and pressure, i.e. the moments of the total distribution function δFs defined later on.

Finally, the gyroaverage operators J0s and J1s can be expressed, analogously to (2.10),
in terms of Fourier multipliers in the following way:

J0s → J0(αs), J1s → J1(αs)

αs
, (2.32a,b)

where J0 and J1 are the zeroth- and first-order Bessel functions, respectively, and the
argument is defined by αs = k⊥v⊥vths/(Lωcs) = k⊥v⊥(ρs

√
σsτs/Zs).

2.3. Connection between the gyrofluid and the gyrokinetic models
We assume the distribution function can be written as

ĝs(X s, v‖, v⊥, t) = F̂eqs

∞∑
n,m=0

Hm(v‖)Ln

(
v2

⊥
2

)
fmns(X s, t) (2.33)

where Hm and Ln indicate the Hermite and Laguerre polynomials, respectively, of order
m and n, with m and n non-negative integers. From the orthogonality properties of the
Hermite and Laguerre polynomials, the following relation holds:

fmns = 1

n0

√
m!

∫
dŴF̂eqs

gsHm(v‖)Ln

(
v2

⊥
2

)
. (2.34)

The functions fmns are coefficients of the expansion and are proportional to fluctuations
of the gyrofluid moments. Indeed, for instance, f20e is proportional to gyrocentre electron
parallel temperature fluctuations and f00e is proportional to gyrocentre electron density
fluctuations.

In the present 2D case with an isotropic equilibrium temperature, the system is closed by
a closure called ‘quasi-static’ which was derived in Tassi et al. (2020) and which implies
that, with the exception of Ne,i and Ue,i, all the other gyrofluid moments are constrained
by the relations

fmns = −δm0

(
G1ns

1
di

2Zs

τsβe
φ + 2G2nsdiB‖

)
, (2.35)

where δm0 is a Kronecker delta and m and n are non-negative integers, with (m, n) �= (0, 0)

and (m, n) �= (1, 0), namely to exclude Ne,i and Ue,i. In (2.35), we also introduced the
gyroaverage operators which, as Fourier multipliers, are given by

G1n(bs) → e−bs/2

n!

(
bs

2

)n

, n ≥ 0, (2.36)

G20(bs) → e−bs/2

2
, G2n(bs) → −e−bs/2

2

((
bs

2

)n−1 1
(n − 1)!

−
(

bs

2

)n 1
n!

)
, n ≥ 1,

(2.37a,b)

with bs = k2
⊥v2

ths
/(Lωcs)

2 = k2
⊥d2

i (σsτsβe/(2Z2
s )) = k2

⊥ρ2
s (σsτs/Z2

s ). Expressed in terms of
particle variables, this closure implies that, with the exception of ne,i and ue,i, the
fluctuations of the particle moments are zero.

https://doi.org/10.1017/S0022377823000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000570


Integrated gyrofluid and gyrokinetic collisionless plasmoid instability 9

The (2D) quasi-static closure is valid when

ω̂

k̂y

� vths, (2.38)

for s = e, i are satisfied, where k̂y is the y component of the wave vector and ω̂ is the
frequency obtained from the dispersion relation of the gyrokinetic equation linearised
about an equilibrium φ(0) = B(0)

‖ = 0, A(0)

‖ = ax, with a constant a (strictly speaking, in
order to perform the gyroaverage of the function A(0)

‖ = ax, the linearisation is not carried
out on (2.23), which assumes periodic fields, but on its slightly more general form, in
which Bessel function operators are replaced by gyroangle averages, so that, for instance,
J0sf , for a function f , is replaced by < f (x) >X s= (1/(2π))

∫ 2π

0 dθ f (X s − (vths/ωcs)v ×
z), with θ indicating the gyroangle). The condition (2.38) is better fulfilled for waves
with small phase velocity along y, which justifies the term quasi-static. With regard to the
moments not fixed by the quasi-static closure, we have that the dynamics of Ne and Ue
is governed by the evolution (2.1) and (2.2), that can then be obtained from the zeroth-
and first-order moment, with respect to the parallel velocity coordinate v‖, of the electron
gyrokinetic equations (2.23), with s = e.

In the context of the tearing instability, the dispersion relations of the tearing mode
usually satisfy the condition ω/ky � vthe . This relation indicates that electrons have time
to thermalise along the field lines while the tearing mode develops. Similar comments
have already been made in the context of the MHD model with pressure anisotropies.
Shi, Lee & Fu (1987) discussed the following two equations of state: double adiabatic and
isothermal. According to Kulsrud (1983), a double adiabatic closure requires L/t � vthe ,
with t the characteristic scale of time variation and L the scale of the spatial variation. Shi
et al. (1987) indicated that L/t � vthe cannot be satisfied by most tearing modes with t and
L taken to be the growth time and the wavelength of the mode, respectively. On the other
hand, the isothermal closure for the electrons, valid in the opposite regime (L/t � vthe )
can be a better approximation for the study of the tearing instability.

Concerning Ni and Ui, as stated previously, we assume the conditions

Ni = 0, Ui = 0, (2.39a,b)

to hold. This assumption effectively decouples the ion gyrofluid dynamics from the
electron gyrofluid dynamics, leaving (2.1)–(2.5) a closed system.

Whereas all the terms in (2.1)–(2.5) do not assume any ordering on βe, the assumption
(2.39a,b), as can be derived from the four-field model in Granier et al. (2022b), is valid
for βe � 1.2 Thus, in this respect, the adopted gyrofluid model is not derived from the
parent gyrofluid model (or from gyrokinetics) under a consistent ordering in βe. For this
reason, our analysis will be restricted to moderate values of βe (we take βe ≤ 0.692),
where effects of βe associated with electron FLR and parallel magnetic perturbations are
nevertheless appreciable. Checking that, in gyrokinetic simulations, the energy associated
with the perturbations Ni and Ui remains small, will be an empirical way to make sure
that the condition (2.39a,b) is approximately fulfilled. On the other hand, we expect, in the
gyrokinetic simulations, a departure from the condition (2.39a,b) as βe increases.

2In this regard it could be useful to mention here a misprint in (2.2) in Granier et al. (2022b), where Ui should have
been multiplied by the factor 2ρ2

s⊥/βe⊥ .

https://doi.org/10.1017/S0022377823000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000570


10 C. Granier and others

We finally mention that in both gyrofluid and gyrokinetic simulations, we consider the
cold-ion case, i.e.

τ � 1, (2.40)

where we recall that τ = τi = T0i/T0e.

2.4. Numerical set-up
We assume an equilibrium in which the electromagnetic quantities are given by

φ(0) = 0, A(0)

‖ = Aeq
‖0/ cosh2(x), B(0)

‖ = 0, (2.41a–c)

with Aeq
‖0 = 1.299, in order to have maxx(Beq

y (x)) = 1. This equilibrium corresponds to a
current sheet centred at x = 0, of dimensionless length 2Ly = 2L̂y/L, and of dimensionless
width corresponding to unity. Due to periodicity assumption in the simulations,3 the
dimensionless equilibrium A(0)

‖ is replaced by

A(0)

‖ =
n=30∑

n=−30

Aeq
‖0anein2πx, (2.42)

where an are the Fourier coefficients of the function 1/ cosh2(x).
Note that, in order to satisfy (2.3)–(2.5) at equilibrium, the corresponding equilibrium

density and parallel electron velocity fluctuations of the electron gyrocentres are fixed as

N(0)
e = 0, ∇2

⊥A(0)

‖ = G10eU(0)
e . (2.43a,b)

Also in the gyrokinetic simulations, in accordance with (2.43a,b), the equilibrium current
density is assumed to be entirely due to the parallel electron velocity (we recall that,
as discussed in § 2.3, the gyrokinetic admits, unlike the gyrofluid model, also a finite
parallel ion flow). For both the gyrofluid and gyrokinetic simulations, the perturbation of
the equilibrium magnetic flux function A(0)

‖ is of the form A(1)

‖ ∝ cos(kyy) and is initially
excited by the mode m = 1. The stability condition is given by the tearing parameter
(Furth, Killeen & Rosenbluth 1963), which for our equilibrium is given by

Δ′ = 2
(5 − k2

y)(k
2
y + 3)

k2
y(k2

y + 4)1/2
. (2.44)

The equilibrium (2.41a–c) is tearing unstable when Δ′(ky) > 0, which corresponds to
wave numbers ky = πm/Ly <

√
5. In this article, we refer to Δ′ as that associated with

the initially excited mode m = 1. However, depending on the ratio between the width
and the length of the initial current sheet, several wavenumbers ky with a positive tearing
parameter can result from nonlinear interactions of the mode m = 1. After the saturation
of the tearing modes, eventually, the X-point collapse and a secondary thinning current
sheet forms. The secondary current sheet becomes thinner until reaching a minimum
width, and is subject to an inflow that compresses it. Therefore, the instability threshold
of this secondary current sheet is not indicated by Δ′ which is specific to the initial static

3In the AstroGK code, a shape function Sh(x) is multiplied to A(0)
‖ to enforce periodicity (Numata et al. 2010).

This minor difference in the simulation set-up between two models practically introduces no difference in the following
results.
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No. ρs Δ′ βe me/mi γL γmax Plasmoid

1GF1 0.3 14.3 0.2491 0.01 0.214 0.285 One small
1GF2 0.3 14.3 0.06228 0.0025 0.225 0.322 No
1F 0.3 14.3 0 0 0.230 0.337 No
2GF1 0.3 29.09 0.2491 0.01 0.211 0.342 One plasmoid
2GF2 0.3 29.09 0.1246 0.005 0.218 0.367 One plasmoid
2GF3 0.3 29.09 0.06228 0.0025 0.231 0.378 One plasmoid
2GF4 0.3 29.09 0.0124 0.0005 0.241 0.385 Several plasmoids
2F 0.3 29.09 0 0 0.242 0.386 Several plasmoids
3GF1 0.5 14.3 0.692 0.01 0.286 0.334 Several plasmoids
3GF2 0.5 14.3 0.3460 0.005 0.310 0.383 Several plasmoids
3F 0.5 14.3 0 0 0.338 0.448 Several plasmoids
4F 0.06 14.3 0 0 0.081 0.188 No

TABLE 1. Gyrofluid and fluid simulations.

No. ρs Δ′ βe me/mi γL γmax Plasmoid

1GK1 0.3 14.3 0.2491 0.01 0.2245 0.308 One small
1GK2 0.3 14.3 0.06228 0.0025 0.2438 0.342 No
2GK1 0.3 29.09 0.2491 0.01 0.2165 0.352 One large
2GK2 0.3 29.09 0.1246 0.005 0.2267 0.389 One large
2GK3 0.3 29.09 0.06228 0.0025 0.2329 0.401 One large
3GK1 0.5 14.3 0.692 0.01 0.3040 0.362 One
3GK2 0.5 14.3 0.3460 0.005 0.3286 0.410 One
3GK3 0.5 14.3 0.1730 0.0025 0.3472 0.453 One
4GK1 0.06 14.3 0.009965 0.01 0.08617 0.207 No
4GK2 0.06 14.3 0.002491 0.0025 0.08779 0.209 No

TABLE 2. Gyrokinetic simulations.

current sheet. In this secondary current sheet, small perturbations can grow and cause the
emergence of other islands, when they enter their nonlinear phase. This dynamics is due to
the superposition of several unstable modes with different wavenumbers and growth rates,
among which the fastest mode is obviously the dominant one.

The fluid numerical solver SCOPE3D (Solver Collisionless Plasma Equations in 3D)
(Granier et al. 2022a) is pseudo-spectral and the advancement in time is done through a
third-order Adams–Bashforth scheme. The numerical solver SCOPE3D has been adapted
to solve the gyrofluid equations. The gyrokinetic model is solved by AstroGK (Numata
et al. 2010). Although AstroGK employs some sophisticated techniques for the treatment
of linear terms, it uses essentially the same pseudo-spectral and temporal schemes.

3. Results on the plasmoid onset

An extensive numerical simulation campaign, reported in tables 1 and 2, was carried
out to study the physical conditions under which plasmoids appear.

Each simulation is identified by a code of the form pF/GF/GK r, where p and r are integers
and F, GF and GK indicate whether the simulation is carried out in the fluid limit, with the
gyrofluid model or with gyrokinetic model, respectively. For all the simulations, the value
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of the electron skin depth is fixed to de = 0.085. Simulations with the same number p are
characterised by the same values of de, ρs and Δ′. For a fixed p, different values of the
index r, on the other hand, indicate different values of βe (and, consequently, of me/mi),
with βe decreasing as r increases. Not all the simulations of table 1 have a corresponding
simulation in table 2 and vice versa, although this is the case for most of the simulations.
In particular, we point out that, because gyrokinetic simulations always have a finite value
of βe, strictly speaking there is no gyrokinetic counterpart for the fluid simulations, which
formally correspond to the βe → 0 limit.

For all the gyrokinetic simulations, the temperature ratio is set to τ = 10−3, where the
ion Larmor radius is

√
τρs. As mentioned before, the gyrofluid model assumes τ → 0.

Therefore, in both the gyrofluid and gyrokinetic approach, the ion Larmor radius effects
are neglected.

For p = 1, 3, 4, the initial current sheet extends along −π < y < π, which gives
Δ′

m=1 = 14.3 for the initially excited mode, and Δ′
m=2 = 1.23 for the generated mode

m = 2. For p = 2, we enlarge the box along y to −1.4π < y < 1.4π, which gives Δ′
m=1 =

29.09, and the modes m = 2 and m = 3 are generated with Δ′
m=2 = 5.94 and Δ′

m=3 = 0.46.
As a first general comment, we observe, by comparing gyrofluid and gyrokinetic

simulations with the same indices p and r, that, in terms just of appearance or absence
of plasmoids, gyrofluid simulations agree with the gyrokinetic ones. Therefore, in this
respect, we can conclude that the quasi-static closure for the electrons and the suppression
of ion gyrocentre fluctuations, do not affect critically the stability of the nonlinear current
sheet. However, as discussed in the following sections, differences appear in terms of the
number and size of plasmoids. In particular, when more than one plasmoid is observed,
this is indicated in tables 1 and 2, generically, as ‘several plasmoids’. The number of
plasmoids in the same simulation can indeed vary in time, as plasmoids can form at
different times and pairs of plasmoids can merge into a single one.

3.1. Growth rates
Before discussing in detail the plasmoid instability, we briefly comment about the linear
growth rate of the m = 1 tearing mode excited by the perturbation of the initial equilibria
(2.41a–c). In the tables, we reported the value of the linear and maximum growth rate of
the tearing instability, evaluated measuring the following quantity at the X-point

γ = d
dt

log
∣∣∣A(1)

‖
(π

2
, 0, t

)∣∣∣ . (3.1)

The linear growth rate obtained by the two approaches are in very good agreement.
For a fixed p, increasing βe and me/mi stabilises the tearing mode. This aligns with the

results of Numata et al. (2011), in which similar stabilisation effects are observed when
increasing βe and the mass ratio.

Figure 1 shows the solution of the dispersion relation derived from the fluid model by
Porcelli (1991) given by

π

2

(
Beq′

y (0)γ

2ky

)2

= −ρs
π

Δ′ + ρ2
s de

2ky

γ Beq′
y (0)

. (3.2)

As shown in figure 1, for de = 0.085 and ρs = 0.3, this dispersion relation agrees with
the linear growth rate of 1F and 2F. With Ohm’s law (2.21) that retains first-order
FLR corrections as well as corrections due to parallel magnetic perturbations, we can
extend the dispersion relation (3.2) by replacing de and ρs with the effective parameters
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FIGURE 1. Evolution of linear growth rate as a function of ky for de = 0.085, ρs = 0.3. For
βe = 0, the solution corresponds to that of Porcelli (1991), while the cases βe = 0.12 and βe =
0.24 represent an extension of this solution accounting for small electronic FLR effects and
parallel magnetic perturbations.

d′
e = √

1 − βe/4de and ρ ′
s = √

2/(2 + βe)ρs, respectively. The solution of this small FLR
dispersion relation, for βe = 0.12 and βe = 0.24, are shown on figure 1 and allow a good
prediction of the linear growth rate of the gyrofluid simulations for ρs = 0.3. In particular,
this permits the isolation of the stabilising effect of βe on the growth rate, when only βe
is varied. Such stabilising effect becomes easier to identify in the small Δ′ limit, in which
(3.2) (with de and ρs replaced by the corresponding primed effective parameters) yields
γ ∝ d′

eρ
′
sΔ

′ ∼ deρs(1 − (3/8)βe)Δ
′ for βe → 0.

By comparing the growth rate results, for a fixed mass ratio, of simulations p = 1, 3, 4,
we note that increasing βe and ρs, as ρs ∼ √

βe/2, destabilises the tearing mode. Increasing
these parameters can be seen as fixing the background density, the ion mass and the guide
field amplitude, while increasing the electron temperature. It was shown numerically in
Numata & Loureiro (2015) and Granier et al. (2022b) that, in this latter situation, the
linear tearing growth rate is first ruled by the destabilising effect of the sonic Larmor
radius. However, in cases where the electron temperature is high enough for the effects of
ρe to take over those of ρs, the linear growth rate is damped. Here, we find ourselves in the
first case, for which the effects of the sonic Larmor radius are visibly dominant.

In the nonlinear phase, a slight discrepancy in the maximum growth rate can be noted for
the largest βe values. Figure 2 shows the value of γmax for the set of simulations p = 2 and
p = 3. The gyrofluid and gyrokinetic simulations yield the same dependence of γmax on the
parameters, with the gyrofluid simulations slightly underestimating the maximum growth
rate measured in the nonlinear phase. This discrepancy suggests that, for large values of
βe and during the nonlinear phase, the efficiency of the gyrofluid model to reproduce the
gyrokinetic results becomes limited. As commented in § 2.3, one reason for this might be
the absence of ion gyrocentre density and parallel velocity fluctuations, which occurs in
the gyrofluid model, even for large βe, due to the imposed condition (2.39a,b).

3.2. Remarks on the numerical resolution
It is important to anticipate the role of the resolution in this study. In the forming nonlinear
current sheet, tearing modes grow and can become unstable at different times. The current
sheet can therefore be broken by multiple dominant modes, and the number of plasmoids
is highly sensitive to the resolution used. Given that the fluid simulations 2F and 3F were
those which allowed the formation of several plasmoids, we carried out resolution tests
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(a) (b)

FIGURE 2. Maximum growth rates of the collisionless tearing mode as a function of βe, for
the cases (a) p = 2 and (b) p = 3.

nx × ny # plasmoids Comments on the order of appearance

200 × 120 1 1 at the centre
2002 3 2 symmetrically with respect to the centre then 1 at the centre
200 × 400 3 2 symmetrically with respect to the centre then 1 at the centre
23042 7 6 symmetrically with respect to the centre then 1 at the centre
3400 × 4800 7 6 symmetrically with respect to the centre then 1 at the centre

TABLE 3. number of visible plasmoids for simulation 2F for different grids.

with the gyrofluid code on these two simulations to determine the necessary number of
points along y, that does not prevent the growth of large mode numbers.

Table 3 reports the number of visible plasmoids for simulation 2F as a function of the
number of points and indicates their order of appearance. The convergence is reached for
a resolution of 23042.

For 3F, which is close to marginal stability, a spatial discretisation smaller than 2Ly/ny ∼
0.0078 was needed. Unfortunately, it is not foreseeable to perform gyrokinetic simulations
with such a high resolution. Therefore, a grid of 256 × 128 points has been used for
all the gyrokinetic runs. We compared these gyrokinetic simulations to fluid/gyrofluid
simulations performed with a nearly identical resolution. However, since the fluid code is
much less demanding in computation time, we also performed the fluid simulations with
grids up to 23042 points.

3.3. Effect of βe on the plasmoid onset
In this section we present how the βe parameter changes modify the critical aspect ratio
for the plasmoid formation. We measure the current sheet aspect ratio using the current
density j‖. The length is defined such that the current distribution from the X-point to Lcs/2
equals a specific value α

1
N

N∑
i=1

(j‖|X − j‖(0, iΔy, t))2 = αj‖|X, (3.3)
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where Δy is the mesh length along y and N indicates the number of points from y = 0 to
y = Lcs/2. The constant α is taken to 1/3 as it gives good measurement of the length of the
region with a strong current. Formula (3.3) allows us to apply a single consistent method
for all the simulations, while taking into account the reduction of the current intensity
along the layer. The width of the current sheet corresponds to the distance between the
two points along x where the value of j‖ takes the same value as at the point (0, Lcs/2).

We focus first on the comparison of the series of simulations for p = 1, starting with the
higher βe case, for which βe = 0.2491. The contour plots of the parallel electron velocity
ue (proportional to the parallel current density), for the gyrofluid simulation 1GF1 and of the
current density, j‖, for the gyrokinetic simulations 1GK1, are shown in figure 3. Isolines of
the magnetic potential, showing the topology of the magnetic field, are overplotted. Both
approaches indicate the formation of an island at the X-point. For the fluid simulation, the
aspect ratio is Acsf = 4.90. In the gyrokinetic case, we measure Acsk = 4.03. We observe
a persistent difference between the value of the gyrofluid and gyrokinetic aspect ratios,
which is explained by the difference in resolution. However, their evolution according to
the parameters are in agreement.

For the lowest βe cases, for which βe = 0.06228, the contour plots of the simulations
1GF2 and 1GK2, are shown in figure 4. The two simulations lead to the formation of a
stable current sheet having an aspect ratio decreasing in time. The maximum aspect ratio
is reached when the growth rate measure by (3.3) has reached its maximum value and
the process enters the saturation phase. From the gyrofluid simulation we measured a
maximum aspect ratio Acsf = 5.11. In the gyrokinetic case, the aspect ratio is Acsk = 4.14.
The measured aspect ratio are very close to those obtained for βe = 0.2491, and yet, no
island develops at the X-point.

Exciting only the mode m = 1 results in the development of secondary modes due to
nonlinear interactions. The growth of these modes can be observed by comparing their
amplitude evolution over time. As is typical for tearing instability, we observe that these
modes grow faster than the mode m = 1, but their amplitudes remain smaller in our
simulations. In addition, we find that increasing βe (while increasing the mass ratio) slows
down the growth of these generated modes in all simulations. In simulation set p = 1, there
is the mode m = 2, which according to theory has a positive Δ′. However, in the case with
βe = 0.2491, for which mode 2 grows more slowly, a plasmoid forms at the X-point. It
is worth pointing at the reference Del Sarto & Deriaz (2017) in which they observed that
after the saturation of m = 1, the linear growth of m = 2 persists and dominates until the
formation of a second island, despite the absence of a secondary evolving current sheet.
However, here, by examining the evolution of the amplitude of the Fourier modes for
which Δ′ > 0, as well as the time derivative of their amplitude evolution, we see that the
appearance of plasmoids occurs after the saturation of all the subdominant primary modes
that fulfill the instability criterion for the initial magnetic equilibrium.

For 1GF1, we measured Lcs/ρs ∼ 2 and Lcs/ρe ∼ 12, and the plasmoid formation
indicates that the critical aspect ratio is A� < Lcs/δcs ∼ 4. In contrast, for 1GF2, we have
Lcs/ρs ∼ 3 and Lcs/ρe ∼ 64, and the critical aspect ratio has not been reached, A� >

Lcs/δcs ∼ 4, indicating that no plasmoids are formed. In this first set of tests, we are
operating at the boundary between stability and instability. By increasing βe, electron
FLR effects become especially significant in the inner region, providing an additional
mechanism to break the frozen-in condition. These combined effects are crucial in
reducing the critical aspect ratio of the secondary current sheet. In addition to the electron
FLR effects, a notable difference between the regimes of negligible βe and finite βe is the
behavior of the perpendicular velocity flow. In the fluid case, the perpendicular velocity is
determined by u⊥ = ẑ × ∇φ, whereas in the gyrofluid case, a nonlinear grad-B drift due
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FIGURE 3. (a,b) Contour of the parallel electron velocity ue (proportional to the parallel current
density and normalised by d̂i/L and by the Alfvén velocity vA) for simulation 1GF1. (c,d) Contour
of the parallel current density j‖ (normalised by en0vA) of simulation 1GK1. The difference in
normalisation conventions leads to a factor −di = −0.85 between the two quantities. Isolines of
the magnetic potential are superimposed on all the contours.

to the non-uniformity of the parallel magnetic field also affects the perpendicular velocity,
which is given by u⊥ = ẑ × ∇(G10eφ − ρ2

s 2G20eB‖). When examining the velocity vector
field in the x direction near the reconnection points, we observe that it is not uniform in
time, we see intermittent acceleration and deceleration, resulting in a non-uniform flow.
This non-uniformity of the inflows and outflows becomes more pronounced as the grad-B
drift becomes significant.

In the series of simulations for p = 2, the idea is to consider the same parameters
as those for p = 1 but with a longer forming current sheet. Since highly unstable
primary reconnecting modes favour the formation of extended secondary current sheets
we consider a larger domain size along the y direction, with Ly = 1.4π, that corresponds
to Δ′ = 29.9. The other parameters are kept the same. In this case, the current sheet has
an aspect ratio above the critical value, indicating that plasmoid formation occurs also for
βe = 0. Figure 5 shows the plasmoids obtained at the end of the simulations 2GK1–2GK3.
The magnetic potential contour is shown as the plasmoid reaches its maximum size, which
occurs in the saturation phase of the tearing instability. Figure 6 shows the evolution in
time of the aspect ratio of the secondary current sheet. It can be seen that increasing βe
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FIGURE 4. (a,b) Contour of the electron velocity ue (proportional to the parallel current density)
for simulation 1GF2. (c,d) Contour of the parallel current density j‖ of simulation 1GK2. The
difference in normalisation conventions leads to a factor −di = −1.7 between the two quantities.
Isolines of the magnetic potential are superimposed on all the contours.

results in larger sized plasmoids, although, from the aspect ratio measurement, increasing
βe reduces the aspect ratio obtained just before the plasmoid onset.

In comparison, figure 7 shows the aspect ratio obtained for the simulations 4GK1 and
4GK2. For this set of simulations, the effects of βe are negligible and the parameters ρs and
Δ′ are smaller than those of simulations 2GK1–2GK3. Nevertheless, despite a very different
set of parameters, the two set of simulations lead to the formation of current sheets whose
aspect ratio is almost identical. Yet, unlike cases 2, cases 4 remain stable.

Figure 8 shows the evolution of the instability in detail for the runs 2F, 2GF4, 2GF3
and 2GF1 with the highest resolution. In the secondary current sheet, we observe that
some modes may reach a high amplitude from an early stage and continue growing,
while others may remain stable for a long time until they become unstable at a later
stage and experience explosive growth. In the case βe = 0, it was observed in Granier
et al. (2022a) that for ρs � de, the first plasmoids that break up the current sheet are
symmetrically located above and below the X-point of the mode m = 1. These plasmoids
are then ejected from the current sheet, carried by the outflow, and merge with the island
of the m = 1 tearing mode. A recent result obtained in a 2D collisionless fluid model
(Grasso & Borgogno 2022) has indeed shown that ρs significantly enlarge the spectrum
of the linear unstable reconnecting modes that develop in the presence of a sheared flow
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FIGURE 5. Contour of the parallel current density j‖ for simulations 2GK3, 2GK2 and 2GK1.
Isolines of the magnetic potential are superimposed on all the contours.

FIGURE 6. Aspect ratio of the forming current sheet as a function of time for simulations
2GK1, 2GK2 and 2GK3.

FIGURE 7. Aspect ratio of the forming current sheet as a function of time for the simulations
4GK1 and 4GK2.
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(a)

(b)

(c)

(d)

FIGURE 8. Contour of ue with isolines of A‖. From (a) to (d) panels: 2F (23042), 2GF4, 2GF3
and 2GF1 (2304 × 2400).

and magnetic field. Given the shape of the initial perturbation of the equilibrium, these
plasmoids cannot coincide with the O-points of low tearing modes. For example, some
of the O-points of modes 3, 4, 5 and 6 would grow at 1.4π/3, 2 × 1.4π/4, 1.4π/5 and
2 × 1.4π/6, respectively. Instead, the position of the appearing O- and X-points of these
new reconnection events indicates that the wavelength which has reached its nonlinear
phase is associated with a large mode.
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When βe is increased, we observe fewer plasmoids, as shown in figure 8. The emergence
of these structures from the current starts when the associated mode reaches a sufficiently
large amplitude. After they emerge, their growth becomes extremely rapid, taking only a
few Alfvèn timescales to form. While increasing βe may suggest a decrease in the critical
aspect ratio, our observations reveal that it actually results in a slower growth rate of
the modes propagating in the current sheet. Therefore, this parameter is also responsible
for the slower development of these plasmoids, resulting in only one island reaching an
explosive growth before the others. This island is located at the centre of the secondary
current sheet and is therefore not affected by the upstream and downstream outflow, and
ejects any other growing magnetic islands towards the m = 1 mode islands.

3.4. Validation of the plasmoid regime for ρs � de

A theory and numerical study developed by Granier et al. (2022a) stated that, for a current
sheet close to marginal stability, the regime ρs � de promotes the plasmoid formation.
In this reference, the simulations were carried out with the fluid model (2.16) and (2.17)
which assumes a negligible mass ratio and a negligible βe. In this subsection, we present
a gyrokinetic validation of these results. In addition to observing a possible role played by
the closure, we also compare the fluid results with those including a finite mass ratio of
me/mi = 0.005, and consequently a small βe. Moreover, as already recalled, the evolution
of ion quantities such as Ni and Ui, prevented by the gyrofluid model, but present in the
gyrokinetic simulations, might in principle also play a role.

Therefore, in this subsection we focus on the low βe regime and compare the simulation
set for p = 3, for which ρs � de, with the simulation set for p = 4, for which ρs � de.
These two sets of simulation lead to the formation of a secondary current layer close
to the instability threshold. In the gyrofluid and fluid model, ρs is related to electron
parallel compressibility effects and can be shown to be due to a non-isotropic component
of the electron pressure tensor. When ρs becomes non-negligible, ion-sound Larmor
effects become important, and the diamagnetic drift z × ∇2

⊥ρ2
s Ne affects the perpendicular

flow. This alters the structure of the current sheet and transforms it into a cross-shaped
pattern aligned with the magnetic island separatrices, as described in Cafaro et al.
(1998). This effect is known to enhance the linear growth rate of the tearing mode
significantly.

Figure 9 shows the evolution of the instability for the simulations 3GK3 (lowest βe
gyrokinetic case of this series) and 3F. For the two approaches, the current sheet becomes
plasmoid unstable. Also in this case the resolution plays an important role. With a
resolution of 17282, three plasmoids were visible in the simulations 3F. However, the same
fluid simulation performed with a resolution 500 × 360 shows only one plasmoid. Since
a resolution higher than that was not foreseeable with the gyrokinetic code, we used a
grid of 256 × 128 points that allowed to observe one single plasmoid at the centre. In
the regime ρs � de, the current aligns with the magnetic field lines, thus forming a cross
shaped current sheet. This behavior is retrieved by the gyrokinetic simulation.

Figure 10 shows the evolution of the secondary current sheet for the cases 4GK3 (lowest
βe gyrokinetic case of this series) and 4F. The current sheet formed in the two frameworks
does not follow the separatrices but remains mainly aligned along x = 0. For 4F, where
ion-sound Larmor radius effects are negligible, the secondary current sheet has the
dimensions A� > Acs ∼ 9. This is consistent with the numerical results of Granier et al.
(2022a), which indicate that in this regime, an aspect ratio threshold of A(1)

� ∼ 10 is
required for plasmoid growth. On the other hand, for 3F where ρs > δin, the threshold
A(2)

� decreases proportionally to Lcs/ρs, and plasmoids form.
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(b)(a) (c)

(d ) (e) ( f )

FIGURE 9. (a–c) Contour of the parallel current density ue = Ue for simulation 3F (17282).
(d–f ) Contour of the parallel current density j‖ of simulation 3GK3. The difference in
normalisation conventions leads to a factor −di = −1.7 between the two quantities. Isolines
of the magnetic potential are superimposed on all the colour maps.

This comparison makes it possible to show that, if Lcs/de is sufficiently large, the current
sheet becomes unstable regardless of the value of ρs. However, the effect of a large sonic
Larmor radius is significant, when the system is marginally stable, to switch from a stable
secondary current sheet to an unstable one. This is consistent with the fact that ion-sound
Larmor radius effects allows for faster than exponential growth in the nonlinear phase
(Aydemir 1992).

4. Energy partition: similarities and differences between gyrokinetics and gyrofluid
4.1. Energy components

As we consider here a plasma with no collisions, the gyrokinetic system solved by
AstroGK conserves the total energy (Hamiltonian) (Howes et al. 2006; Schekochihin
et al. 2009), normalised by B2

0/(4π)

W(δFe, δFi) = 1
2

∫
dx dy

(
τsβe

2

∑
s

1
n0

∫
dŴF̂eqs

δF 2
s + |∇⊥A‖|2 + d2

i |B‖|2
)

, (4.1)

where δFs = gs + (1/di)(2Zs/(τsβe))(J 2
0s − 1)φ + div

2
⊥J1sJ0sB‖ is the perturbation of

the particle distribution function for the species s. The first term is the perturbed entropy of
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(b)(a)

(c) (d )

FIGURE 10. (a,b) Contour of the parallel current density ue = Ue for simulation 4F (17282).
(c,d) Contour of the parallel current density j‖ of simulation 4GK2. The difference in
normalisation conventions leads to a factor −di = −1.7 between the two quantities. Isolines
of the magnetic potential are superimposed on all the colour maps.

the species s, while the second term and third terms are the energy of the perpendicular and
parallel perturbed magnetic field. We can extract the first two moments from the perturbed
particle distribution function as

δFs = dins +
√

2σs

τsβe
div‖us + h′

s, (4.2)

where the perturbed density and parallel velocity of the particle of species s are denoted
as ns and us, respectively, and h′

s contains all higher moments of the perturbed distribution
function. By definition, ∫

dŴF̂eqs
h′

s = 0,

∫
dŴF̂eqs

v‖h′
s = 0. (4.3a,b)

We can therefore decompose the expression (4.1) in the following way

W(δFe, δFi) = 1
2

∫
dx dy

(∑
s

(
τsρ

2
s n2

s + σsd2
i u2

s + τsβe

2
1
n0

∫
dŴF̂eqs

h′
s
2
)

+ |∇⊥A‖|2 + d2
i |B2

‖|
)

. (4.4)
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The first term is the energy generated by the electron density variance, the second term
is the kinetic energy of the parallel electron flow, and the third term is the free electron
energy.

With regard to the collisionless gyrofluid model, the system of (2.1)–(2.5) possesses a
conserved Hamiltonian given by

Hgf (Ne, Ae) = 1
2

∫
dx dy(ρ2

s N2
e + d2

e U2
e + |∇⊥A‖|2 − Ne(G10eφ − ρ2

s 2G20eB‖)). (4.5)

We remark that, as is shown in the Appendix, the form of the Hamiltonian (4.5), obtained
from the quasi-static closure, is the same that one obtains by imposing what we refer to as
an isothermal gyrofluid closure (the relations between φ, A‖, B‖ and Ne, Ue will, however,
be different in the two cases).

Using the relation (2.13) and (2.14) we can also write the Hamiltonian in terms of
particle variables as follows:

Hp(ne, Ae) = 1
2

∫
dx dy

(
ρ2

s neG−2
10ene + d2

e(G
−1
10eue)

2 + |∇⊥A‖|2 + d2
i |B‖|2

+ ne(1 − 2G−2
10e)φ + φ(G−2

10e − 1)
φ

ρ2
s

)
. (4.6)

When we consider the limit βe, me/mi → 0 the Hamiltonian of the gyrofluid equations is
reduced to

Hp(ne, Ae) = 1
2

∫
dx dy(ρ2

s n2
e + d2

e u2
e + |∇⊥A‖|2 + |∇⊥φ|2), (4.7)

which is namely the Hamiltonian of the fluid (2.16) and (2.17). In (4.7), the contribution
from left to right are the energy generated by the electron density fluctuation, the parallel
electron kinetic energy, the perpendicular magnetic energy and the perpendicular plasma
kinetic energy which is essentially the E × B flow energy.

4.2. Negligible βe: fluid versus gyrokinetic
On figure 11 we present the comparison between the energy variation of the fluid case
1F and that of the low βe gyrokinetic case 1GK3 (βe = 0.062). The variations are defined
as (1/2)

∫
dr(ξ(x, y, t) − ξ(x, y, 0))/E(0) where the function ξ can be replaced by the

different contributions to Ŵ and H (where Ŵ is also considered in the 2D limit) and E(0)
is the initial total energy. On the gyrokinetic plots, the four main energy channels are
shown as solid lines. The solid purple line is the total ion energy variation. We also show
the evolution of the variations relative to the density variance (dashed dotted), the parallel
kinetic energy (densely dashed) and the perpendicular kinetic energy (loosely dashed),
that are components of the total particle energy. The same channels are shown for the
electrons in green.

The amount of magnetic energy that is converted is identical between fluid and
gyrokinetics and appears to be transferred mainly to the electrons. On the other hand,
it is not identically distributed in the gyrokinetic and fluid frameworks. For the fluid
simulations, the magnetic energy has no choice but to be converted into electron
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(a) (b)

(c) (d)

FIGURE 11. Time evolution of the energy variations for the cases 1F (a) and 1GK3 (b). (c) and
(d) show the time evolution of the different contributions to the parallel kinetic energy for the
corresponding simulations. No plasmoids in this case.

density fluctuations or electron parallel acceleration, whereas in the gyrokinetic case,
there is little energy sent to these channels. This suggests that, in the gyrokinetic
framework, the energy of the electrons increases due the fluctuations of the higher-order
moments of the distribution function due to phase mixing (Loureiro, Schekochihin
& Zocco 2013; Numata & Loureiro 2015), such as, for instance, the perpendicular
and parallel electron temperature. It is likely that the magnetic energy is actually
converted into thermal electron energy. Such possibility is prevented in the fluid case
because, as a consequence of the closure, for βe → 0, no temperature fluctuations are
allowed.

The striking difference between the two approaches is that the parallel electron kinetic
energy increases in the fluid case, whereas it is quasi-constant or decreasing in the
gyrokinetic one (figure 11). In order to investigate the origin of this difference, we
performed an initial condition check and decomposed the parallel electron kinetic energy.
The decomposition leads to three energy components, namely the equilibrium part (u2

eq),
the perturbation part (ũ2

e) and the cross term (2ũeueq). The change of each component
is shown on the bottom panel of figure 11. The equilibrium contribution clearly does
not change in time. The quadratic perturbation part is always positive but globally the
variation of parallel electron kinetic energy can decrease because of the cross term
becoming negative, which is the case for the gyrokinetic simulation. For the fluid case,
the perturbation term increases considerably, leading to a positive variation of the parallel
kinetic energy, since the electrons are highly accelerated for conservation of the total
energy.

With regard to the ions, the closure assumptions imply an even rougher approximation
of the ion dynamics, in the fluid case, with respect to gyrokinetics. In the gyrokinetic case,
for low βe, we can see on figure 11 that the main component of the total ion energy consists
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of the perpendicular kinetic energy, which is included in the hs
′ part in (4.4),4 given by

1
2

∫
dx dyd2

i u2
⊥,i, (4.8)

where the perpendicular ion velocity u⊥,i is calculated directly from its definition as a
moment in the following way:

diu⊥,i =
√

τiβe

2σi

1
n0

∫
dŴFeqi

v⊥δFi. (4.9)

Note that the perpendicular flow holds the identity from the definition

diu⊥,i = (−∇φ − ρ2
s ∇ · p⊥⊥,i) × z, (4.10)

where the perpendicular pressure tensor is given by

dip⊥⊥,i = τi
1
n0

∫
dŴFeqi

v⊥v⊥δFi. (4.11)

The perpendicular flow is given by the sum of E × B drift and diamagnetic drift of
perturbed pressure.

In spite of the closure, the evolution of the energy component (4.8) is very similar to
that of the E × B flow energy of the gyrofluid case. For a very small βe, no parallel ion
kinetic energy and parallel magnetic energy seems to be generated.

4.3. Finite βe: gyrofluid versus gyrokinetic
When βe is very small, the FLR corrections become negligible and the particle and
gyrocentre variables coincide. On the other hand, for non-negligible βe, the electron
Larmor radius becomes finite and the relations (2.11) and (2.12) allow us to relate the
density and parallel velocity of the particles to those of the gyrocentres. In figure 12 we
compare the gyrofluid energy variations with the gyrokinetic ones for 0 < βe < 1. For this
purpose, we use the simulation set for p = 3.

In the plot referring to the gyrofluid energy, we show the variation of both the particles
and gyrocentres energy. For instance, the curve referring to ‘Kin‖e’ corresponds to the
variation of (1/2)

∫
dx dyd2

e u2
e , which is comparable to the second term of the gyrokinetic

energy (4.4). The one referring to ‘Gyrocentre Kin‖e’ corresponds to the variation of
(1/2)

∫
dx dyd2

e U2
e . By increasing βe, the difference between the variation of the energy

of the gyrocentres and that of the particles increases. With finite βe, we now note a
loss of parallel kinetic energy of the electrons for the gyrofluid case, which is in better
agreement with the gyrokinetic approach. Increasing βe, will also generate more parallel
magnetic energy, which is well reproduced by the gyrofluid model. On the other hand,
the gyrokinetic cases indicate that a significant part of the magnetic energy is now
converted into parallel ion kinetic energy. As mentioned previously, a limitation of the
reduced gyrofluid model is that the ion parallel velocity has been ‘artificially’ removed by
imposing Ui = ui = 0. The limitations of this assumption become evident, in particular,
from figure 12 which shows that, in the gyrokinetic case, for sufficiently large βe, the ion
fluid is actually accelerated along the z axis. On the other hand, it seems that despite this
missing element, the gyrofluid model is suitable for studying the formation of plasmoid
for 0 < βe < 1.

4Since the v⊥ moments are generally not orthogonal, we cannot clearly separate each of them.
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FIGURE 12. Time evolution of the energy variations for the cases 3GF and 3GK .

5. Conclusion

In this work, we have numerically investigated the plasmoid formation employing
both gyrofluid and gyrokinetic simulations, assuming a finite, but small βe. We can
conclude that the formation of plasmoids in a current sheet depends on various parameters,
including the relative scales of the electron and ion-sound Larmor radii and the current
sheet length. When electron FLR and ion-sound Larmor radius effects are taken into
account, the critical aspect ratio A�

cs for plasmoid formation is reduced, which promotes
plasmoid growth. These results contribute to shedding light on collisionless reconnection
mediated by the plasmoid instability and, in particular, on the role of the effects present at
the electron scale.

This work has shown the ability of the reduced gyrofluid model to achieve relevant new
insights into current-sheet stability and magnetic reconnection. In particular, predictions
on marginal stability on current sheets, obtained by Granier et al. (2022a) in the fluid
limit, have been confirmed by gyrokinetic simulations. It also indicates that the fluid and
gyrofluid models make it possible to obtain accurate results in short computational times.

The comparison between the gyrofluid and the gyrokinetic models has revealed key
similarities and differences between the two frameworks, which gives insight into the
important underlying physical effects. Indeed, the adopted gyrokinetic model is a δf
model from which the gyrofluid model can be derived with appropriate approximations
and closure hypotheses. This has allowed us to directly identify possible limitations
of the closures applied to the gyrofluid moments, that distinguish the gyrofluid model
from its gyrokinetic parent model. We therefore presented the effect of the closure
on the distribution and conversion of energy during reconnection. The closure, which
does not allow for parallel temperature fluctuations, implies that gyrocentre moment
fluctuations energies in which the magnetic energy can be converted, must be those of
the electron density and parallel velocity. This is not in agreement with the gyrokinetic
simulations, but does not seem to interfere with the formation of plasmoids. In particular,
for relatively small but finite βe, the hypothesis of absent parallel ion motion made in the
gyrofluid framework is valid and does not affect the plasmoid instability. The gyrokinetic
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perpendicular ion velocity is well represented by the fluid E × B velocity. On the other
hand, gyrokinetic simulations show a large fraction of magnetic energy transferred to
fluctuations of higher-order moments.
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Appendix. Comparison between the gyrofluid isothermal and the quasi-static closure

In this appendix, we first show how the gyrofluid Hamiltonian (4.5) can be obtained
from the gyrokinetic Hamiltonian (4.1) by applying the quasi-static closures and the
assumptions described in § 2.3. Subsequently, we compare with the gyrofluid Hamiltonian
obtained by applying what we refer to as gyrofluid isothermal closure.

The conserved energy (4.1) of the δf gyrokinetic model used for the comparison in this
paper can be expressed in terms of the gyrocentre perturbed distribution function

gs = δFs + 1
di

2Zs

τsβe

(
φ −

〈
φ − di

√
τsβe

2σs
v⊥ · A⊥

〉
X s

)
, (A1)

where 〈 〉X s denotes the gyroaverage at constant guiding centre X s and A⊥ is the magnetic
vector potential associated with parallel magnetic perturbations, so that ∇ × A⊥ = B‖z. In
this way, we obtain

W(δFe, δFi) = Hgy(ge, gi) = 1
2

∫
dx dy

∑
s

1
n0

∫
dŴF̂eqs

(
τsβe

2
g2

s

+ Zs

di
gs

(
J0sφ +

√
τsβe

2σs
v‖J0sA‖ + τs

Zs
ρ2

s v
2
⊥J1sB‖

))
. (A2)

Note that, in (A2), we already took the spatial 2D limit, in order to directly obtain the
gyrofluid Hamiltonian.

The gyrocentre perturbed distribution function can be developed as a series of its
gyrocentre moments using Hermite and Laguerre polynomials. Here, we retain only the
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first two moments of the hierarchy for the two species, and apply two different closures,
namely the quasi-static closure (Tassi et al. 2020), and a gyrofluid isothermal closure,
where the perpendicular and parallel gyrocentre temperature fluctuations T⊥s = T‖s = 0,
are set equal to zero (as all the other higher-order gyrofluid moments). Such kind of closure
is applied, for instance, by Scott (2010), although in this reference, gyrocentre temperature,
as well as heat flux fluctuations, are retained and all the other higher-order moments are
set equal to zero.

For the quasi-static closure, the expansion of the gyrocentre perturbed distribution
functions for the two species are given by

ge = diNe +
√

2σe

βe
div‖Ue −

∞∑
n=1

Ln

(
v2

⊥
2

)(
G1ne

1
di

2Ze

βe
φ + 2G2nediB‖

)
, (A3)

gi = −
∞∑

n=1

Ln

(
v2

⊥
2

)(
G1ni

1
di

2
τiβe

φ + 2G2nidiB‖

)
. (A4)

The difference between electron and ion treatments in (A3) and (A4), is clearly due
to the assumption (2.39a,b). We mention that, by retaining, in (A4), also ion gyrocentre
density and parallel velocity fluctuations, and applying the same procedure described
in the following, one can derive the energy of the 4-field Hamiltonian gyrofluid model
described by Granier et al. (2022b).

In the case of the gyrofluid isothermal closure the truncated expansion simply gives

ge = diNe +
√

2σe

βe
div‖Ue, (A5)

gi = 0. (A6)

To simplify the infinite sums in (A3) and (A4), we can make use of the following
relations (Szegö 1975)

J0(αs) = e−bs/2
∞∑

n=0

Ln(v
2
⊥/2)

n!

(
bs

2

)n

, (A7)

2
J1(αs)

αs
= e−bs/2

∞∑
n=0

L(1)
n (v2

⊥/2)

(n + 1)!

(
bs

2

)n

, (A8)

where L(1)
n are associated Laguerre polynomials and of the expression of the operators

(2.36) and (2.37a,b). We therefore obtain the following equality, that can be injected in
(A3) and (A4),

∞∑
n=1

Ln

(
v2

⊥
2

)(
G1ns

1
di

2Zs

τsβe
φ + 2G2nsdiB‖

)
= (J0(αs) − G10s)

1
di

2Zs

τsβe
φ

+
(

v2
⊥

J1(αs)

αs
− 2G20s

)
diB‖. (A9)

We can now reduce the gyrokinetic Hamiltonian (A2) to gyrofluid ones by injecting
the two sets of truncated perturbed gyrocentre distribution functions. In the quasi-static
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case, thanks to the relation (A9), all the contributions involving G1ns and G2ns , with n ≥ 1,
cancel. It turns out that the two resulting gyrofluid Hamiltonians can be written in an
identical form, which corresponds to the following

H(Ne, Ae) = 1
2

∫
dx dy(ρ2

s N2
e − AeLUe(Ae) − Ne(G10eLφ(Ne)

− ρ2
s 2G20eLB(Ne))), (A10)

where we recall that Ae = G10eA‖ − d2
e Ue and the linear operators LUe , Lφ and LB are

given by

B‖ = LB(Ne), φ = Lφ(Ne), (A 11a,b)

Ue = LUe(Ae), (A12)

through the quasi-neutrality relation and the two components of Ampère’s law. The
expression (A10) coincides, up to integration by parts, to the Hamiltonian (4.5).

Evidently, the quasi-static quasi-neutrality equation and Ampère’s law will differ from
the isothermal ones. Therefore, the total conserved energy are actually evolving differently
and the operators LB, Lφ and LUe are closure-dependent operators.

For instance, the explicit form of the quasi-neutrality relation, in the quasi-static case,
can be written as

− G10eNe + ∇2
⊥φ + (G2

10e − 1)
φ

ρ2
s

+ (1 − G10e2G20e)B‖ = 0, (A13)

while in the case of the gyrofluid isothermal closure, we have

− G10eNe + ∇2
⊥φ + (Γ0e − 1)

φ

ρ2
s

+ (1 − Γ0e − Γ1e)B‖ = 0, (A14)

and where the Γ0,1e operators are defined in Fourier space in the following way

Γ0e → I0

(
k2

⊥
βe

2
d2

e

)
e−k2

⊥(βe/2)d2
e , Γ1e → I1

(
k2

⊥
βe

2
d2

e

)
e−k2

⊥(βe/2)d2
e , (A 15a,b)

where In are the modified Bessel functions of order n.
A first comment is that the two closures, and consequently the two sets of static

equations are, in fact, identical if we assume

G1ne = G2ne = 0, for n ≥ 1, (A16)

which gives the approximations

Γ0e(be)
1/2 = G10e, (Γ0e(be) − Γ1e(be))

1/2 = 2G10eG20e. (A 17a,b)

On the other hand, the relations (A 17a,b) can be interpreted in a different way, i.e.
considering the exact expressions (A 15a,b) for Γ0e and Γ1e, and assuming that the
expressions for G10e and G20e can be adapted to match the quasi-neutrality relations
following from the two closures. In this way, from the first relation in (A 17a,b), one
retrieves, for the case s = e, the approximate expression for the operators G10s introduced
by Dorland & Hammett (1993). The advantages of this approach have been more recently
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discussed also by Mandell, Dorland & Landreman (2018). The above approach is indeed
reminiscent of the approach used by Dorland & Hammett (1993) in order to find an
expression for G10s yielding a better agreement of liner gyrofluid theory with the linear
gyrokinetic theory. A similar approach, accounting also for G20s in a finite-β gyrofluid
model, was followed by Despain (2011).

A second point is that, in the limit of negligible ion and electron Larmor radius, when
considering τi → 0 and βe → 0, the two sets of static relations become identical and we
obtain the same fluid Hamiltonian

For instance, both (A14) and (A13) will reduce to the quasi-neutrality relation

Ne = ∇2
⊥φ, (A18)

which is going to give rise to the E × B flow energy in the fluid Hamiltonian.
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