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Abstract

Erdős proved that every real number is the sum of two Liouville numbers. A set W of complex numbers
is said to have the Erdős property if every real number is the sum of two members of W. Mahler divided
the set of all transcendental numbers into three disjoint classes S, T and U such that, in particular, any two
complex numbers which are algebraically dependent lie in the same class. The set of Liouville numbers
is a proper subset of the set U and has Lebesgue measure zero. It is proved here, using a theorem of Weil
on locally compact groups, that if m ∈ [0,∞), then there exist 2c dense subsets W of S each of Lebesgue
measure m such that W has the Erdős property and no two of these W are homeomorphic. It is also proved
that there are 2c dense subsets W of S each of full Lebesgue measure, which have the Erdős property.
Finally, it is proved that there are 2c dense subsets W of S such that every complex number is the sum of
two members of W and such that no two of these W are homeomorphic.
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1. Preliminaries

In 1844, Joseph Liouville proved the existence of transcendental numbers [1, 2]. He
introduced the set L of real numbers, now known as Liouville numbers, and showed
that they are all transcendental. A real number x is said to be a Liouville number if for
every positive integer n, there exists a pair of integers (p, q) with q > 1 such that

0 <
∣∣∣∣∣x −

p
q

∣∣∣∣∣ <
1
qn .

In [8], in 1962, Paul Erdős proved that every real number is the sum of two Liouville
numbers (and also, if nonzero, is the product of two Liouville numbers). He gave two
proofs. One was a constructive proof. The other proof used the fact that the set L of
all Liouville numbers is a dense Gδ-set in R and showed that every dense Gδ-set in R
has this property.
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DEFINITION 1.1. A subset W of the set C of all complex numbers is said to have the
Erdős property [7] if every real number is a sum of two numbers in W. A subset V of
the set C of all complex numbers is said to have the multiplicative Erdős property if
every positive real number is a product of two numbers in V.

By the theorem proved by Erdős mentioned above, the set L of all Liouville
numbers has the Erdős property and the multiplicative Erdős property.

The classification of Mahler partitions the set C of all complex numbers into
four sets denoted by A, S, T and U, characterised by the rate with which a nonzero
polynomial with integer coefficients approaches zero when evaluated at a particular
number. We follow the presentation in [4, Section 3]. While the definitions and results
therein are stated and proved for real numbers, they carry over to the case of complex
numbers.

Given a polynomial P(X) ∈ C[X], recall that the height of P, denoted by H(P), is the
maximum of the absolute values of the coefficients of P. Given a complex number ξ,
a positive integer n, and a real number H ≥ 1, we define the quantity

wn(ξ, H) = min{|P(ξ) | : P(X) ∈ Z[X], H(P) ≤ H, deg(P) ≤ n, P(ξ) � 0}.

Furthermore, we set

wn(ξ) = lim sup
H→∞

− log wn(ξ, H)
log H

and

w(ξ) = lim sup
n→∞

wn(ξ)
n

.

DEFINITION 1.2. Let ξ be a complex number. Then ξ is said to be

(i) an A-number if w(ξ) = 0;
(ii) an S-number if 0 < w(ξ) < ∞;
(iii) a T-number if w(ξ) = ∞ and wn(ξ) < ∞ for any n ≥ 1;
(iv) a U-number if w(ξ) = ∞ and wn(ξ) = ∞ for all n ≥ n0, for some positive

integer n0.

REMARK 1.3. Note the following from [2, 4, 10, 11].

(i) The A-numbers are the algebraic numbers.
(ii) Each Liouville number is a real U-number.
(iii) If the complex numbers α and β are algebraically dependent then they are in

the same Mahler class; for example, the numbers α,−α, nα are all in the same
Mahler set, for n ∈ N.

(iv) The two-dimensional Lebesgue measure of each of the sets A, U and T is zero;
S has full two-dimensional Lebesgue measure, that is, its complement in C has
zero two-dimensional Lebesgue measure.
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(v) The one-dimensional Lebesgue measure of each of the sets A ∩ R, U ∩ R, L
and T ∩ R is zero; S ∩ R has full one-dimensional Lebesgue measure, that is, its
complement in R has zero one-dimensional Lebesgue measure.

(vi) If a is an algebraic number with a � 0, then exp(a) ∈ S.

André Weil (see [9, 16]) proved the following generalisation of the Steinhaus
theorem [14].

THEOREM 1.4. If G is a locally compact Hausdorff group and B is a subset of G
of positive (left) Haar measure, then BB−1 = {b1b−1

2 : b1, b2 ∈ B} contains an open
neighbourhood of the identity.

COROLLARY 1.5 (See [3, 13]).

(i) If B is a subset of R of positive one-dimensional Lebesgue measure, then the set
B − B = {b1 − b2 : b1, b2 ∈ B} contains an open interval containing 0.

(ii) If D is a subset of C of positive two-dimensional Lebesgue measure, then the set
D − D = {d1 − d2 : d1, d2 ∈ D} contains an open disc with centre 0.

(iii) If E is a subset of the multiplicative group C∗ of all nonzero complex numbers,
where E has positive two-dimensional Lebesgue measure, then the set EE−1 =

{e1 · e−1
2 : e1, e2 ∈ E} contains an open disc with centre 1.

(iv) If F is a subset of the multiplicative group R>0 of all positive real numbers, then
the set FF−1 = { f1 · f −1

2 : f1, f2 ∈ F} contains an open interval containing 1.

The following theorem was proved by Mahler [10]. (See [4, Section 3.5].)

THEOREM 1.6. If a is an algebraic number with a � 0, then exp(a) ∈ S.

REMARK 1.7. It is an immediate consequence of Theorem 1.6 and Definition 1.2
that the number e and exp(a), for a any nonzero algebraic number, are not Liouville
numbers.

As the set of nonzero algebraic numbers is a dense subset of C and exp is a
continuous mapping from C onto C \ {0}, we obtain the following corollary.

COROLLARY 1.8. If A′ is the set of all nonzero algebraic numbers, then B = exp(A′)
is a countably infinite dense subset of S (and also a countably infinite dense subset
of C) and B has two-dimensional Lebesgue measure equal to zero.

COROLLARY 1.9. The set S is dense in the set of all transcendental numbers and in C.

2. The main results

DEFINITION 2.1. A subset W of C is said to have the complex Erdős property if every
complex number is a sum of two members of W. A subset V of C is said to have the
complex multiplicative Erdős property if every nonzero complex number is a product
of two members of V.
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REMARK 2.2. Let A ⊆ B ⊆ C and C ⊆ D ⊆ C. If A has the Erdős property, then so does
B. If B ⊆ R, the set of all real numbers, and A has the multiplicative Erdős property,
then so does B. If C has the complex Erdős property, then so does D. If C has the
complex multiplicative Erdős property, then so does D.

PROPOSITION 2.3

(i) Let E be a subset of C of positive two-dimensional Lebesgue measure such that
if x ∈ E, then −x ∈ E and nx ∈ E, for all n ∈ N. Then E has the complex Erdős
property.

(ii) Let F be a subset of R of positive one-dimensional Lebesgue measure such that
if x ∈ F, then −x ∈ F and nx ∈ F, for all n ∈ N. Then F has the Erdős property.

(iii) If G is a subset of C∗ with positive two-dimensional Lebesgue measure such
that if x ∈ G, then x−1 ∈ g and xn ∈ G, for all n ∈ N, then G has the complex
multiplicative Erdős property.

(iv) If H is a subset of R>0 with positive one-dimensional Lebesgue measure such
that if x ∈ F then x−1 ∈ F and xn ∈ F, for all n ∈ N, then H has the multiplicative
Erdős property.

PROOF. By Corollary 1.5, F − F contains a nonempty open interval I containing 0 in
R and E − E contains a nonempty open disc D with centre 0 in C. As E = −E and
F = −F,

E + E =
⋃

n∈N
n(E + E) =

⋃

n∈N
n(E − E) =

⋃

n∈N
nD = C and

F + F =
⋃

n∈N
n(F + F) =

⋃

n∈N
n(F − F) =

⋃

n∈N
nI = R.

So items (i) and (ii) are proved.
The proofs of items (iii) and (iv) for the multiplicative Erdős cases are

analogous. �

The next result follows from Proposition 2.3 and Remark 1.3(iii), (iv) and (v).

COROLLARY 2.4. The real Mahler set S ∩ R has the Erdős property and the multi-
plicative Erdős property and the complex Mahler set S has the complex Erdős property
and the complex multiplicative Erdős property.

REMARK 2.5. In contradistinction with the result of Erdős that the set L of zero
Lebesgue measure has the Erdős property and the results in [7] that certain subsets of
Lebesgue measure zero of the set L have the Erdős property, we have in Corollary 2.4
and Theorem 2.6 sets of all Lebesgue measures having the Erdős property.

THEOREM 2.6. Let m ∈ [0,∞). Then there exist 2c dense subsets W of S each of
two-dimensional Lebesgue measure m such that W has the Erdős property and no
two of these W are homeomorphic. There also exist 2c dense subsets of S which have
full two-dimensional Lebesgue measure, and no two of these are homeomorphic.
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PROOF. First consider the case m ∈ (0,∞). Let W be the set (S \ [−1, 1]) ∩ R. Then W
is a set of positive one-dimensional Lebesgue measure and two-dimensional Lebesgue
measure 0. By Proposition 2.3(ii), W has the Erdős property. By Remark 2.2, any set
which contains W has the Erdős property. Let Vm be the intersection of S with any
square in C of side

√
m, X any subset of [−1, 1] ∩ S and B the subset of S defined

in Corollary 1.8. Then the set V∗m = W ∪ Vm ∪ X ∪ B is a set of two-dimensional
Lebesgue measure m which has the Erdős property. As S ∩ [−1, 1] has cardinality c,
there are 2c choices for X each resulting in a different set V∗m. So for each m ∈ (0,∞),
there are 2c subsets of S of two-dimensional Lebesgue measure m and having the Erdős
property. Each of these sets contains the set B, and so, by Corollary 1.8, is dense in S.

Next, consider the case m = 0. We simply choose V0 = ∅ in the above proof.
Finally, consider the case of full two-dimensional Lebesgue measure. This time, we

put V∞ = C \ R instead of Vm in our proof and we obtain the desired result.
In each of the three cases above, we use the Lavrentieff theorem [15, Theorem

A8.5], which says that there are at most c subspaces of C which are homeo-
morphic. Thus, there exist 2c subsets of S of measure m ∈ [0,∞) which have the
Erdős property, no two of which are homeomorphic, and 2c subsets of S of full
two-dimensional Lebesgue measure which have the Erdős property, no two of which
are homeomorphic. �

THEOREM 2.7 (See [6, 12]). There exist 2c dense subsets W of S such that W has the
complex Erdős property and no two of these W are homeomorphic.

PROOF. Let D be a closed disc in C of radius one with centre 0. Put W = S \ D. By
Proposition 2.3, W has the complex Erdős property. Therefore, any set which contains
W has the complex Erdős property. Let X be any subset of D ∩ S and let B be as in
Corollary 1.8. Then X ∪W ∪ B has the complex Erdős property and is dense in S. As
the cardinality of D ∩ S is c, there are 2c sets X ∪W ∪ B, each a subset of S and having
the complex Erdős property. As in the proof of Theorem 2.6, the Lavrentieff theorem
implies that these subsets can be chosen so that no two are homeomorphic. �

PROPOSITION 2.8. Let S′ = exp(S ∩ R) ∩ S. Then S′ has full Lebesgue measure in the
set R>0 of positive real numbers.

PROOF. Note that exp maps R onto R>0 and exp is Lipschitz continuous on bounded
sets. As S ∩ R has full Lebesgue measure in R, R \ S has Lebesgue measure zero.
Therefore, exp(R \ S) has Lebesgue measure zero. As the map exp is surjective from
R to R>0 and exp(R \ S) has zero Lebesgue measure, exp(S ∩ R) has full measure
in R>0. Noting that any subset of a set of Lebesgue measure zero has Lebesgue
measure zero, we see that the set exp(S ∩ R) ∩ (R>0 \ S) has Lebesgue measure zero.
So S′ = exp(S ∩ R) ∩ S has full Lebesgue measure in R>0. �

PROPOSITION 2.9. The set exp(S ∩ R) has the multiplicative Erdős property and the
set exp(S) has the complex multiplicative Erdős property.
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PROOF. We shall apply Proposition 2.3(iv) to the set S′ = exp(S ∩ R) ∩ S. First
observe that exp maps R onto R>0. Let x ∈ S′. Then x ∈ S and x = exp(s), for some
s ∈ S ∩ R. Now for any n ∈ N, ns ∈ S ∩ R and so exp(ns) ∈ exp(S ∩ R). However,
exp(ns) = (exp(s))n = xn. As x ∈ S ∩ R, xn ∈ S ∩ R. Thus, xn ∈ S′. Also, x ∈ S implies
x−1 ∈ S. Further, x = exp(s) implies x−1 = exp(−s) ∈ exp(S). So by Proposition 2.3(iv)
and Proposition 2.8, exp(S ∩ R) ∩ S has the multiplicative Erdős property. Thus,
exp(S ∩ R) has the multiplicative Erdős property.

As exp maps C onto C \ {0}, an analogous argument shows that exp(S) has the
complex multiplicative Erdős property. �

PROPOSITION 2.10. Let S′′ = S ∩ (0,∞). Then log(S′′) ∩ S has full Lebesgue measure
in R.

PROOF. Clearly (R \ S) ∩ (0,∞) has zero Lebesgue measure. As log is Lipschitz
continuous on all closed bounded subintervals of (0,∞), log((R \ S) ∩ (0,∞)) has zero
Lebesgue measure. Thus, log S′′ has full Lebesgue measure in R. As R \ S has zero
Lebesgue measure, log(S′′) ∩ S has full Lebesgue measure in R. �

PROPOSITION 2.11. The sets log(S′′) and (log(S′′)) ∩ S have the Erdős property.

PROOF. Observe that if x ∈ log(S′′) ∩ S, then x = log y, y ∈ S′′ and x ∈ S. So nx = n,
log y = log(yn) and clearly yn ∈ S′′, for any n ∈ N. So nx ∈ log(S′′) ∩ S. Also, −x =
log(1/y) and 1/y ∈ S ∩ (0,∞). So −x ∈ log(S′′) ∩ S. By Propositions 2.3 and 2.10 and
Remark 2.2, log(S′′) and (log(S′′)) ∩ S have the Erdős property. �

REMARK 2.12. Let X be a subset of the set of positive real numbers and the set Y =
{log x : x ∈ X} ∩ X such that every positive real number is a product of two numbers
in Y. If r is any positive real number strictly greater than 1, we put t = log(r). As t is
a positive real number, t = y1 · y2, where y1, y2 ∈ Y . So t = y1 · log x2 = log xy1

2 , x2 ∈ X.
So et = xy1

2 ; that is, r = xy1
2 . Thus,

every positive real number strictly greater than 1 equals ab,

for b = y1 ∈ Y ⊆ X and a = x2 ∈ X.
This should be contrasted with the Gelfond–Schneider theorem [2] which says that

for any algebraic numbers a and b, with a � 0, 1 and b not a rational number, ab is a
transcendental number.

The authors do not know whether any interesting set X with the property stated
above exists. Of course, X = (0,∞) is an example. However, we observe that Burger [5]
proves that for any positive real number r, there exist Liouville numbers a and b such
that r = ab.
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[8] P. Erdős, ‘Representation of real numbers as sums and products of Liouville numbers’, Michigan
Math. J. 9 (1962), 59–60.

[9] K.-G. Grosse-Erdmann, ‘An extension of the Steinhaus–Weil theorem’, Colloq. Math. 57 (1989),
307–317.

[10] K. Mahler, ‘Zur approximation der exponential Function und des Logarithmus I’, J. reine angew.
Math. 166 (1932), 118–136.

[11] K. Mahler, ‘On the approximation of logarithms of algebraic numbers’, Philos. Trans. Roy. Soc.
Lond. Ser. A 245, 371–398.

[12] S. A. Morris, ‘Transcendental groups’, Preprint, 2021, arXiv:2112.12450.
[13] A. D. Pollington, ‘Some metric properties of sum sets’, in: Number Theory with an Emphasis on the

Markhoff Spectrum (eds. A. D. Pollington and W. Moran) (Marcel Dekker Inc., New York, 1993),
207–214.

[14] K. Stromberg, ‘An elementary proof of Steinhaus’s theorem’, Proc. Amer. Math. Soc. 36 (1972),
308.

[15] J. van Mill, The Infinite-Dimensional Topology of Function Spaces (Elsevier, Amsterdam, 2001).
[16] A. Weil, L’intégration dans les groupes topologiques et ses applications (Hermann, Paris, 1940).

TABOKA PRINCE CHALEBGWA,
The Fields Institute for Research in Mathematical Sciences, 222 College Street,
Toronto, Ontario MST 3J1, Canada
e-mail: taboka@aims.ac.za

SIDNEY A. MORRIS, School of Engineering, IT and Physical Sciences,
Federation University Australia, PO Box 663, Ballarat, Victoria 3353, Australia
and
Department of Mathematical and Physical Sciences,
La Trobe University, Melbourne, Victoria 3086, Australia
e-mail: Morris.sidney@gmail.com

https://doi.org/10.1017/S0004972723000047 Published online by Cambridge University Press

https://arxiv.org/abs/2112.12450
mailto:taboka@aims.ac.za
mailto:Morris.sidney@gmail.com
https://doi.org/10.1017/S0004972723000047

	1 Preliminaries
	2 The main results

