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Involutions Fixing Fn ∪ {Indecomposable}

Pedro L. Q. Pergher

Abstract. Let Mm be an m-dimensional, closed and smooth manifold, equipped with a smooth invo-

lution T : Mm → Mm whose fixed point set has the form Fn ∪ F j , where Fn and F j are submanifolds

with dimensions n and j, F j is indecomposable and n > j. Write n − j = 2pq, where q ≥ 1 is odd

and p ≥ 0, and set m(n− j) = 2n + p− q + 1 if p ≤ q + 1 and m(n− j) = 2n + 2p−q if p ≥ q. In this

paper we show that m ≤ m(n − j) + 2 j + 1. Further, we show that this bound is almost best possible,

by exhibiting examples (Mm(n− j)+2 j , T) where the fixed point set of T has the form Fn ∪ F j described

above, for every 2 ≤ j < n and j not of the form 2t − 1 (for j = 0 and 2, it has been previously

shown that m(n − j) + 2 j is the best possible bound). The existence of these bounds is guaranteed by

the famous 5/2-theorem of J. Boardman, which establishes that under the above hypotheses m ≤ 5
2

n.

1 Introduction

Suppose Mm is a smooth and closed m-dimensional manifold and T : Mm → Mm is

a smooth involution defined on Mm. The fixed point set of T, F, is a disjoint union of

closed submanifolds of Mm, F =

⋃n
j=0 F j , where F j denotes the union of those com-

ponents of F having dimension j and thus n is the dimension of the components of F

of largest dimension. If the involution pair (Mm, T) is not an equivariant boundary,

then n cannot be too small with respect to m. This intriguing fact was first evidenced

from an 1964 result of P. E. Conner and E. E. Floyd [4, Theorem 27.1] which states

that for each natural number n, there exists a number ϕ(n) with the property that if

(Mm, T) is an involution fixing F =

⋃n
j=0 F j and if m > ϕ(n), then (Mm, T) bounds

equivariantly. Later, this was explicitly confirmed by the well-known 5
2
-Theorem of J.

Boardman [1]: if (Mm, T) fixes F =

⋃n
j=0 F j and Mm is non-bounding, then m ≤ 5

2
n.

A strengthened version of this fact was obtained by R. E. Stong and C. Kosniowski [7]:

if (Mm, T) is a non-bounding involution, which is equivalent to the fact that the nor-

mal bundle of F in Mm is not a boundary (see [4]), then m ≤ 5
2
n. In particular, if F

is non-bounding (which means that at least one F j is non-bounding), then m ≤ 5
2
n.

The generality of this result, which is valid for every n ≥ 1, allows the possibility that

fixed components of all dimensions j, 0 ≤ j ≤ n, occur; in this way, it is natural to

ask whether there exist better bounds for m when we omit some components of F and

restrict the set of involved dimensions n. This question is inspired by the following

results from the literature:

(1) (R. E. Stong and C. Kosniowski [7]): if (Mm, T) is an involution whose fixed

point set has constant dimension n, and if m > 2n, then (Mm, T) bounds equivari-

antly. In particular, if F = Fn with constant dimension n is non-bounding, and if
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(Mm, T) fixes F, then m ≤ 2n. This bound is best possible, as can be seen by taking

the involution (Fn × Fn, T), where Fn is any non-bounding n-dimensional manifold

(with the exception of n = 1 and n = 3) and T switches coordinates; that is, one has

in this case an improvement for the Boardman bound by omitting the j-dimensional

components of F with j < n and excluding n = 1 and 3.

(2) (D. C. Royster [14]): In this case, the result in question refers to an intrigu-

ing improvement for the Boardman bound, given by n odd and the omission of the

j-dimensional components of F with 0 < j < n. Let (Mm, T) be an involution

whose fixed point set has the form F = Fn ∪ {point}. Then in this case the bound

for the codimension of the top dimensional component of F is constant and quite

small: m ≤ n + 1. Evidently, this bound is best possible, and is realized by the invo-

lution (RPn+1, T), where RPn+1 is the (n + 1)-dimensional real projective space and

T[x0, x1, . . . , xn+1] = [−x0, x1, . . . , xn+1], with n odd.

This class of problems was introduced by P. Pergher [8], where the above Royster

result was enlarged in the following way: if (Mm, T) is an involution fixing F =

Fn ∪ {point}, where n = 2p with p odd, then m ≤ n + p + 3. This case (F =

Fn ∪{point}) was completed by R. Stong and P. Pergher[9]: for each natural number

n, write n = 2pq, where p ≥ 0 and q is odd, and set

m(n) =

{

2n + p − q + 1 if p ≤ q + 1,

2n + 2p−q if p ≥ q.

Then if (Mm, T) is an involution fixing F = Fn ∪ {point}, m ≤ m(n); further,

there are involutions with m = m(n) fixing a point and some Fn, which shows that

these bounds are best possible.

Once the cases F = Fn and F = Fn ∪ {point} are established, the next natural

step is to consider fixed point sets of the form F = Fn ∪ F j , 0 < j < n. Recently,

some advances have been obtained in this direction. Specifically, we find best possible

bounds for j = 1 in [5,6], j = 2 in [10,11,13], and j = n−1 in [12]. For F = Fn∪F1,

this bound is m = m(n − 1) + 1 if n is odd, and m = m(n − 1) + 2 if n is even. For

F = Fn ∪ F2, this bound is m = m(n − 2) + 4, and for F = Fn ∪ Fn−1 it is m = 2n

(which coincides with m = m(n − (n − 1)) + 2(n − 1)). We remark that the method

used in the case F = Fn ∪ Fn−1 does not work for F = Fn ∪ Fn−2; on the other

hand, the arguments used in the cases j = 0, 1, and 2 become an unpleasant mess

for j > 2. In other words, the general case F = Fn ∪ F j , n > j, is difficult. In this

paper we contribute to this general case by supposing that F j is an indecomposable

j-dimensional manifold; we recall that a closed manifold is called indecomposable

if its unoriented cobordism class cannot be expressed as a sum of products of lower

dimensional cobordism classes. This hypothesis is not so restrictive, since in a certain

sense half of the manifolds have this property (if j is not of the form 2t − 1, then half

of the elements of the unoriented cobordism group N j are indecomposable). The

result to be proved is the following.

Theorem 1 Let (Mm, T) be an involution having fixed point set of the form F =

Fn ∪ F j , where F j is indecomposable and n > j. Then m ≤ m(n − j) + 2 j + 1.
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The crucial point of our method will be the combination of two very special

characteristic classes. One of them, called X, was introduced by R. E. Stong and

P. Pergher [9]. It was also used to find bounds in [5, 11, 13]. The other class, asso-

ciated with line bundles over closed manifolds, is built with the use of the splitting

principle, and is well related with the standard class that detects indecomposability.

In addition, we will also give examples of involutions (Mm(n− j)+2 j , T) having fixed

point set F of the form F = Fn ∪ F j , where F j is indecomposable and n > j, for

every n ≥ 3 and j ≥ 2 not of the form 2t − 1 (we recall that indecomposable

j-dimensional manifolds occur only for these values of j), thus showing that the

bound m ≤ m(n − j) + 2 j + 1 is almost best possible.

Note that if the pair (n, j) satisfies n − j = 2p for some p ≥ 0, then

m(n− j)+2 j +1 = 2(n− j)+2p−1 +2 j +1 = 2(n− j)+
n − j

2
+2 j +1 =

5

2
n+1−

j

2
.

Therefore, our result is redundant for these pairs if in addition j = 0 or 2 (as previ-

ously mentioned, in these cases m(n − j) + 2 j is the best possible bound). However,

for the remaining pairs (n, j), the result improves the Boardman bound. The best

possible improvement in this case occurs when n − j is odd: m ≤ n + j + 2. Again,

this characterizes an intriguing small codimension phenomenon: the maximal codi-

mension in this case (= j + 2) does not depend on n.

The question of either improving the bound m ≤ m(n − j) + 2 j + 1 to m ≤
m(n − j) + 2 j or finding a maximal example (Mm(n− j)+2 j+1, T) will be left open.

2 Proof of the Result and Almost Maximal Examples

First we give some preliminaries and establish the notations to be used in the proof of

the result announced in Section 1. Consider an involution (Mm, T) with fixed point

set of the form Fn ∪ F j , where Fn is any n-dimensional closed manifold and F j is

an indecomposable j-dimensional manifold with n > j. Denote by η → Fn and

µ → F j the normal bundles of Fn and F j in Mm, and write

W (Fn) = 1 + w1(Fn) + · · · + wn(Fn) = 1 + θ1 + · · · + θn,

W (η) = 1 + u1 + · · · + uk,

W (F j) = 1 + w1 + · · · + w j ,

W (µ) = 1 + v1 + · · · + vl,

for the Stiefel–Whitney classes of Fn, η, F j , and µ, respectively; here, m = j + l =

n + k. The following fact from [4] will be needed to prove our result: the projec-

tive space bundles RP(η) and RP(µ), with the standard line bundles λ → RP(η) and

ν → RP(µ), are cobordant as elements of the cobordism group of manifolds with

line bundles, Nm−1(BO(1)). This implies that any class of dimension m − 1, given

by a product of the characteristic classes wi(RP(η)) and w1(λ), evaluated on the fun-

damental homology class [RP(η)], gives the same characteristic number as the one

obtained by the corresponding product of the classes wi(RP(µ)) and w1(ν), evaluated
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on [RP(µ)]. The key point is the choice of suitable classes; as mentioned in Section 1,

this will be made by combining two very special classes. The Stiefel–Whitney classes

W (RP(η)) and W (RP(µ)) were determined in [3, p. 517]: setting W (λ) = 1 + c,

W (ν) = 1 + d, one has

W (RP(η)) = (1 + θ1 + · · · + θn){(1 + c)k + (1 + c)k−1u1 + · · · + (1 + c)uk−1 + uk},

W (RP(µ)) = (1 + w1 + · · · + w j){(1 + d)l + (1 + d)l−1v1 + · · · + (1 + d)vl−1 + vl},

where we are suppressing bundle maps.

Now we describe the class X of Stong and Pergher mentioned in Section 1; this

class is associated with line bundles over projective space bundles, hence sometimes

we use the notation X(λ → RP(η)) to specify the line bundle. For any integer r, one

lets

W [r] =

W (RP(η))

(1 + c)k−r
.

Note that each class W [r] j is a polynomial in the classes wi(RP(η)) and c. Further,

these classes satisfy the following special properties (see [9, §2]:

W [r]2r = θrc
r + terms with smaller powers of c,

W [r]2r+1 = (θr+1 + ur+1)cr + terms with smaller powers of c.

Write n − j = 2pq, where p ≥ 1 and q is odd, and suppose first that p < q + 1. In

this case, the class X is

X(λ → RP(η)) = W [2p − 1]
q+1−p

2p+1
−1

.W [r1]2r1
.W [r2]2r2

. . .W [rp]2rp
,

where ri = 2p − 2p−i for 1 ≤ i ≤ p. If p ≥ q + 1, X is

X(λ → RP(η)) = W [r1]2r1
.W [r2]2r2

. . . .W [rq+1]2rq+1
,

where ri = 2p − 2p−i for 1 ≤ i ≤ q + 1. An easy calculation shows that X has

dimension m(n− j); also, by using the properties of the classes W [r] j listed above, it

can be proved that X has the form

X(λ → RP(η)) = At .c
m(n− j)−t + terms with smaller powers of c,

where At is a cohomology class of dimension t ≥ n − j + 1 and comes from the

cohomology of Fn (see [9, 11].

The next step is to describe a special class associated with line bundles over closed

manifolds, which is well related with the standard class that detects indecomposabil-

ity. First we recall that R. Thom [15, p. 79] showed that the geometric concept of

indecomposability is recognized in the following algebraic way: identify wi(F j) with

the i-th elementary symmetric function on one-dimensional variables t1, t2, . . . , t j ,

and next express the symmetric function t
j
1 + t

j
2 + · · · + t

j
j as a j-dimensional poly-

nomial s j(F j) in wi ′s(F j). Then F j is indecomposable if and only if the characteristic
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number s j(F j)[F j] is nonzero. Now consider an arbitrary line bundle λ → N, where

N is a closed (m− 1)-dimensional manifold, and take the polynomial on degree-one

variables x1, x2, . . . , xm−1, c given by

S2 j+1(x1, x2, . . . , xm−1, c) = x
j
1(x1 + c) j+1 + x

j
2(x2 + c) j+1 + · · · + x

j
m−1(xm−1 + c) j+1.

This polynomial is symmetric in the variables x1, x2, . . . , xm−1. As before, we then

identify w1(λ) with c and each wi(N) to the i-th elementary symmetric function in

the variables x1, x2, . . . , xm−1; next we express the above polynomial as a polyno-

mial of dimension 2 j + 1 in the wi ′s(N) and w1(λ). This class will be denoted by

S2 j+1(λ → N). Our interest is to analyze the behavior of S2 j+1 with respect to line

bundles over projective space bundles; to do this, we will use the splitting principle,

which allows writing the Stiefel–Whitney class of any e-dimensional vector bundle ξ
formally as

W (ξ) = 1 + w1(ξ) + w2(ξ) + · · · + we(ξ) = (1 + x1)(1 + x2) · · · (1 + xe),

where each xi has degree one. Consider an e-dimensional vector bundle ξ → Q,

where Q is a closed s-dimensional manifold, and let λ → RP(ξ) be the standard line

bundle. Using the splitting principle, write

W (Q) = (1 + x1)(1 + x2) · · · (1 + xs),

W (ξ) = (1 + y1)(1 + y2) · · · (1 + ye),

and set w1(λ) = c. Then

W (RP(ξ)) = (1 + x1)(1 + x2) · · · (1 + xs)(1 + c + y1)(1 + c + y2) · · · (1 + c + ye).

It follows that

S2 j+1(λ → RP(ξ)) = x
j
1(x1 + c) j+1 + x

j
2(x2 + c) j+1 + · · · + x j

s (xs + c) j+1

+ y
j+1
1 (y1 + c) j + y

j+1
2 (y2 + c) j + · · · + y j+1

e (ye + c) j

= x
j
1

(

c j+1 +

j
∑

i=0

(

j + 1

i

)

x
j+1−i
1 ci

)

+ x
j
2

(

c j+1 +

j
∑

i=0

(

j + 1

i

)

x
j+1−i
2 ci

)

+ · · · + x j
s

(

c j+1 +

j
∑

i=0

(

j + 1

i

)

x j+1−i
s ci

)

+ y
j+1
1 (y1 + c) j

+ y
j+1
2 (y2 + c) j + · · · + y j+1

e (ye + c) j

= (x
j
1 + x

j
2 + · · · + x j

s )c j+1 + terms with smaller powers of c

= s j(Q)c j+1 + terms with smaller powers of c.
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Now we return to the line bundles over the projective space bundles coming from

the fixed data of (Mm, T). The fact that

X(λ → RP(η)) = At .c
m(n− j)−t + terms with smaller powers of c,

where At is a cohomology class of dimension t ≥ n − j + 1 and comes from the

cohomology of Fn, says that each term of X(λ → RP(η)) has a factor of dimension

at least n − j + 1 from the cohomology of Fn. On the other hand, the fact that

S2 j+1(λ → RP(η)) = s j(Fn)c j+1 + terms with smaller powers of c,

says that every term of S2 j+1(λ → RP(η)) has a factor of dimension at least j from

the cohomology of Fn. In this way, X(λ → RP(η)).S2 j+1(λ → RP(η)) is a class in

Hm(n− j)+2 j+1(RP(η), Z2) with each one of its terms having a factor of dimension at

least n + 1 from Fn, which means that

X(λ → RP(η)).S2 j+1(λ → RP(η)) = 0.

Suppose by contradiction that m > m(n− j)+2 j +1. Then m−1 ≥ m(n− j)+2 j +1,

and thus it makes sense to consider the class

X(λ → RP(η)).S2 j+1(λ → RP(η)).cm−1−m(n− j)−2 j−1 ∈ Hm−1(RP(η), Z2),

which yields the zero characteristic number

X(λ → RP(η)).S2 j+1(λ → RP(η)).cm−1−m(n− j)−2 j−1[RP(η)].

Our next task is to analyse the class associated with ν → RP(µ) and belonging to

Hm−1(RP(µ), Z2) which corresponds to

X(λ → RP(η)).S2 j+1(λ → RP(η)).cm−1−m(n− j)−2 j−1.

This class is

Y(ν → RP(µ)).S2 j+1(ν → RP(µ)).dm−1−(m(n−2)+2),

where Y(ν → RP(µ)) is obtained from X(λ → RP(η)) by replacing each W [r]i by

W [n + r − j]i . One has

S2 j+1(ν → RP(µ)) = s j(F j)d j+1 + terms with smaller powers of d

= s j(F j)d j+1 +
∑

At d
s,

where t + s = 2 j + 1, s < j + 1 and At comes from F j . Thus each At is zero

and S2 j+1(ν → RP(µ)) = s j(F j)d j+1. This implies that if I denotes the ideal of
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H∗(RP(µ), Z2) generated by the classes coming from F j and with positive dimen-

sion, then S2 j+1(ν → RP(µ)).θ = 0 for each θ ∈ I . Thus, in the computation of Y,

one needs to consider only that W (RP(µ)) ≡ (1 + d)l
= (1 + d)n+k− j mod I and,

for each integer t , W [t] ≡ (1 + d)t mod I . For ri = 2p − 2p−i , i = 1, 2, . . . , p, set

ti = n + ri − 2 = 2pq + 2 + 2p − 2p−i − 2 = 2pq + 2p − 2p−i . Then

W [ti]2ri
≡

(

2pq + 2p − 2p−i

2p+1 − 2p−i+1

)

d2ri mod I .

Also, if r = 2p − 1,

t = n + r − 2 = 2pq + 2p − 1,

W [t]2r+1 ≡

(

2pq + 2p − 1

2p+1 − 1

)

d2r+1 mod I .

The lesser term of the 2-adic expansion of 2pq + 2p is 2p+1. Using the fact that a bi-

nomial coefficient
(

a
b

)

is nonzero modulo 2 if and only if the 2-adic expansion of b

is a subset of the 2-adic expansion of a, we conclude that the above binomial coeffi-

cients are nonzero modulo 2. It follows that all classes W [r]i occurring in Y satisfy

W [r]i ≡ di mod I , which implies that Y ≡ dm(n− j) mod I . Since from the Leray–

Hirsch theorem (see [2, p. 129]) H∗(RP(µ), Z2) is the free H∗(F j , Z2)-module on

1, d, d2, . . . , dn+k− j−1, we then have

Y(ν → RP(µ)).S2 j+1(ν → RP(µ)).dm−1−(m(n−2)+2)[RP(ν)]

= s j(F j).dm− j−1[RP(ν)] = s j(F j)[F j] = 1,

which gives the desired contradiction.

Finally, we describe the almost maximal examples mentioned in Section 1. Take

n ≥ 3 and j ≥ 2 not of the form 2t − 1, with n > j. Choose any indecomposable

j-dimensional manifold F j . As remarked in Section 1, Pergher and Stong [9] con-

structed for each n ≥ 1 a special involution (Mm(n), Tn) for which the fixed point set

has the form Fn ∪ {point}. Consider the involution (Mm(n− j) × F j × F j , T), where

T(x, y, z) = (Tn− j(x), z, y). The fixed point set of T has the form

(Fn− j ∪ {point}) × F j
= (Fn− j × F j) ∪ F j ,

which shows that (Mm(n− j) × F j × F j , T) is the desired example.
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