
BULL. AUSTRAL. MATH. SOC. 13A17, 13A15

VOL. 43 (1991) [233-239]

A NOTE ON UNIVERSALLY ZERO-DIVISOR RINGS

S. VlSWESWARAN

In this note we consider commutative rings with identity over which every unitary
module is a zero-divisor module. We call such rings Universally Zero-divisor (UZD)
rings. We show (1) a Noetherian ring it is a UZD if and only if R is semilocal
and the Krull dimension of R is at most one, (2) a Prufer domain R is a UZD if
and only if R has only a finite number of maximal ideals, and (3) if a ring R has
Noetherian spectrum and descending chain condition on prime ideals then it is a
UZD if and only if Spec (R) is a finite set. The question of ascent and descent of
the property of a ring being a UZD with respect to integral extension of rings has
also been answered.

INTRODUCTION

Let R be a commutative ring with identity. Let M be a unitary iZ-module. Recall
that M is said to be a Zero-divisor R-module if for every submodule N of M, N ^ M,
the set of zero divisors of M/N (that is, {x £ R : xm £ N for some m G M \ N})
denoted by ZR(M/N) is the union of a finite number of prime ideals of R. R is said
to be a Zero-divisor ring (Z.D. ring) if R is a Z.D. .R-module [4]. In this note we study
the properties of those commutative rings R with identity for which every -R-module
is a Z.D. .R-module.

All rings considered here are assumed to be commutative and with identity. If
A C B are rings we assume that A and B have the same identity element. By
dimension of a ring we mean the Krull dimension. Modules are assumed to be unitary.
Whenever a set A is a subset of a set B and A ^ B we denote this symbolically as
ACB.

We begin with the following definition.
We say a ring R is a Universally Zero-divisor (UZD) ring if every .R-module is a

Z.D. .R-module.
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PROPOSITION 1. Let R be a ring. Then R is a UZD if and only if the union
of any family of prime ideals of R is the union of a finite number of prime ideals of R
(not necessarily belonging to the same family).

PROOF: Assume that R is a UZD. Let {Pa }Q£A be any family of prime ideals of R.
Let M = 0 R/Pa (that is, direct sum of the il-modules R/Pa), It is easy to see that

a€A t

ZR(M) = U Pa. Since R is a UZD, M is a Z.D. .R-moduleand so ZR(M) - \J Q, for
a6A t=l

t

some finite number of prime ideals Q i , . . . , Q t of R. Thus ZR(M) = \J Pa — (J Q;.
<*eA i=i

Conversely assume that the union of any family of prime ideals of R is the union of
a finite number of prime ideals of R. Let M be any .R-module. Let N be a submodule
of M, N ^ M. Notice that R\ZR(M/N) is a saturated multiplicatively closed subset
of R. Hence by [1, Exercise 7 (i), p.44] ZR(M/N) is a union of prime ideals of R. By
assumption it follows that ZR(M/N) is the union of a finite number of prime ideals of
R. Thus M is a Z.D. .R-module. Hence we obtain that R is a UZD. •

REMARK 2. Using the above Proposition we see that R is a UZD implies that any
homomorphic image of R is a UZD and S-1R is a UZD for every multiplicatively
closed subset 5 of R, S C R\ {0}.

PROPOSITION 3 . Let R be an integral domain with quotient field K. Then R
is a UZD if and only if K is a Z.D. R-module.

PROOF: The "only if" part is clear. The "if" part follows from [13, Remark 2.1]
and Proposition 1. D

PROPOSITION 4.

(i) Let R be a Noetherian ring. Then R is a UZD if and only if R is semilocal
and the dimension of R is at most 1.

(ii) A Prufer domain R is a UZD if and only if R has only a finite number
of maximal ideals.

The proof of Proposition 4 makes use of the following results.

LEMMA 5 . If a ring R is a UZD then R has only a finite number of maximal
ideals.

PROOF: Let {Ma}QgA be the family of all maximal ideals of R. By Proposition
J

1, |J Ma = U Qj for some finite number of prime ideals Qi, . . . , Q« of R. Let
a6A i=l

Mi [i = 1, . . . , s) be maximal ideals of R such that Qi C M,- (for i = 1, . . . , s). Then
M M

it is clear that |J Ma = (J Q< = \J Af,-. It is now evident that distinct elements
a€A t= l t = l

among Mi, . . . , M, are all the maximal ideals of R. D
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RESULT 6. In a Noetherian ring every prime ideal has finite height [1, Corollary 11.12].

RESULT 7. In a Noetherian ring any prime ideal of height 2 contains an infinite number
of height 1 prime ideals [11, Theorem 144].

RESULT 8. Let / be any ideal of a Noetherian ring R, I ^ R. Then the set of prime
ideals of R which are minimal over I is finite.

Result 8 follows by applying [1, Exercise 9, p.79] to the Noetherian ring R/I.

PROOF OF PROPOSITION 4: (i) Assume that R is a Noetherian ring and R is a
UZD. By Lemma 5, R is semilocal. We prove that the dimension of R is at most 1.
Suppose that the dimension of R is at least 2. Then by Result 6 it follows that there
exists a prime ideal p of R such that height p = 2.

Let {Qa}a€A be the set of all height one prime ideals of Rp. Note that {QQ}c*eA =
{PaRP}aeA. where {Pa}a6A are prime ideals of R such that height Pa = 1 and Pa C p
for each a £ A. By Result 7 it follows that A is an infinite set. Result 8 and [2, Exercise
2, p.121] imply that there exists an element y £ pRp which is not in any of the minimal
prime ideals of Rp. Now Result 8 implies that y can belong to only a finite number
of height 1 prime ideals of Rp. Let them be {PaiRp}i=i • Let A = A \ {oi , . . . , at}.
Then it is easy to see that \J PaRp cannot be equal to the union of any finite number

of prime ideals of Rp. This is in contradiction to the fact that Rp is a UZD. Thus R

is semilocal and the dimension of R is at most 1.

Conversely if R is semilocal and the dimension of R is at most 1 then any prime
ideal of R is either a maximal ideal of R or a minimal prime ideal of R. Since the set
of minimal prime ideals of a Noetherian ring is finite we obtain that R has only a finite
number of prime ideals. It is then clear that R is a UZD.

(ii) In view of Lemma 5, we need only prove the "if part" of (ii). Assume that
R is a Prufer domain with only a finite number of maximal ideals M\, . . . , Mt. Let
{Pa}aeA be any family of prime ideals of R. Let d be the union of those P a ' s which
are contained in Mi (for i = 1, ...,t). Now RM{ is a valuation ring and so in the

case d ^ 0, (7,- is the union of some pairwise comparable prime ideals of R and hence
t

d £ Spec(ii). This is true for i - 1, . . . , * . Further it is clear that |J Pa = \Jd.
Hence by Proposition 1, R is a UZD. a € A i=1 D

REMARK 9. We have noted in Proposition 3 that an integral domain R is a UZD if
and only if the quotient field of R is a Z.D. iZ-module. We now mention an example
which shows (for an arbitrary ring ii) that "the total quotient ring of R is a Z.D. R-

module" need not imply that R is a UZD. Consider T = Q(v/2) [[X, Y, Z}], the power
series ring in three indeterminates X, Y, Z over Q(\/2) where Q denotes the field of
rationals. Let M denote the unique maximal ideal of T. Let S = Q + M. Notice that
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the dimension of T is 3 and T is a finite integral extension of S. Hence by [6, 11.8,
p.106] and [3, Theorem 2] it follows that the dimension of 5 is 3 and S is Noetherian.
Consider the chain of prime ideals (0) C P\ C P2 C M of S where Pi = XT and
P2 = XT + YT. Let R = S/(XS). We now show that the unique maximal ideal
M/(XS) of R is full of zero divisors. For an element m G M, let m + XS G M/(XS).

Note that (m + XS)(y/2X + XS) = s/2{mX) + XS = X(y/2m) +XS = XS since
y/2m G M C S. But y/2X $ XS. For if y/2X G XS then we obtain y/2 G S
which in turn implies that \/2 = q + y for some q G Q, y G M. This implies that
V2 - q = y G Q(\/2) D M = (0) and so y/2 = q G Q which is not true. Thus
y/2X £ XS. This proves that M/(XS) is full of zero divisors. Hence R equals the
total quotient ring of R. Since R is a Noetherian ring, R is a Z.D. iE-module. Since
the dimension of R is 2, it follows from Proposition 4 (i) that R is not a UZD.

PROPOSITION 1 0 . Let R be a ring with Noetheriaji spectrum and descending

chain condition on prime ideals. Then R is a UZD if and only if Spec (R) is a finite

set.

PROOF: Assume that R has Noetherian spectrum and has descending chain con-
dition on prime ideals and R is a UZD. The argument that we shall give below to
show that Spec(il) is a finite set closely follows an argument of Heinzer and Lantz
[10, Proposition 3.7]. By Lemma 5, R has only a finite number of maximal ideals
say Mi, . . . , Mt. Let, if possible, Spec(il) be an infinite set. Then Spec {RM^ is
an infinite set for some i G {1, . . . , < } . Now RM{ has Noetherian spectrum and so

i = \/(2/i) •••> yh)R\fi for some y, G MiRM{ (j = 1, ..., h) [12, Corollary 2.4].

It is then clear that Spec (-RAfJl/l/i]) ' s a n infinite set for some j G {1, . . . , h}. Since

-RM,[1/(3/J)] is a UZD, it has only a finite number of maximal ideals say Ni, ...N,. Note

that each NB (g = 1, . . . , a) is of the form QgRMi [1/Vj] for some prime ideal Q9.RM,- of

RMi such that QJ-RM^ C MiRj^i • Notice that Spec [{RMi^-IVj])N ) is an infinite set

for some J £ { 1 , . , . , « } . Further observe that M,- D Q9 . Now (RM{ [l/yj])N — RQB

by [2, Proposition 11 (iii), p.70] and thus Spec (-RQ,) is an infinite set and RQ9 has

Noetherian spectrum and is a UZD. Hence applying the above argument to the ring

J?Q9 yields H G Spec (R) such that Qg D H and Spec (RH) is infinite. So by repeating

the above procedure we obtain a strictly descending sequence of prime ideals of R. This

is in contradiction to the assumption that R has descending chain condition on prime

ideals. Therefore Spec(iZ) is a finite set. D

The converse is obvious.

REMARK 11. (i) We mention an example to show that the hypothesis in Proposition 10
that R has Noetherian spectrum cannot be dropped. There exists a valuation ring V

such that the set of prime ideals of V forms an infinite ascending chain (0) C Pi C
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P2 C • • • C M = | J Pi [5, Example 5, p.578]. Thus Spec ( 7 ) is an infinite set but by

Proposition 4 (ii), V is a UZD. Further, note that V has descending chain condition
on prime ideals.

(ii) We now mention an example to show that the hypothesis in Proposition 10
that R has descending chain condition on prime ideals cannot be dropped.

Let F be a field and {-Xi}~i be a set of elements algebraically independent over
F. Let K = F{{Xi}%x). Let G be the direct sum of countably many copies of Z,
the additive group of integers. We order G with reverse lexicographic ordering. Then
there exists a valuation ring W on K with value group G by [7, Example 2.6]. It is
easy to verify that the set of all prime ideals of W forms an infinite descending chain
M D Pi D P2 D But W is a UZD and W has Noetherian spectrum.

Next we consider the ascent and descent of UZD with respect to integral extension
of rings.

PROPOSITION 12. (i) Let RcT be rings. Let T be integral over R. HT is
a UZD then R is a UZD.

(ii) Let B be a finite integral extension ring of a ring A. If B has finitely many
minimal prime ideals and if A is a UZD then B is a UZD.

PROOF: (i) Let {Pa}aeA- be any family of prime ideals of R. Now for each Pa,
there exists Qa G Spec(T) such that Qa H R = Pa by [1, Theorem 5.10]. Since T is

UZD, by Proposition 1, \J Qa = (j Hi for some Hi G Spec(T) (t = 1, . . . , a). Now
a€A t= l

it follows that U ^a = U (Qa n R) = \J (Hi n R). Hence R is a UZD.
a€A a£A t=l

(ii) By hypothesis B has only a finite number of minimal prime ideals, say
Qij •••) Qt- Notice that each B/Q,- (i = 1, ..., t) is a finite integral extension of
A/(Qi D A) and 4/(Q,- D 4) is a UZD (for i = 1, . . . , t). We prove that B/Qi is a
UZD for each i G {1, . . . ,<}• T h e n »* wi11 follow t h a t B i s a UZD. Hence it suffices
to prove (ii) in the case in which B is an integral domain. Let K denote the quotient
field of B. Let X be an indeterminate over K. Consider V = K [[X]] = K + M where
M = XK [[X]]. Let B\ = B + M; A\ = A + M. Since B is a finite integral extension
of A, it follows that B\ is a finite integral extension of A\. As A is a UZD, A\ is a
Z.D. ring by [13, Remark 2.1]. Hence Bx is a Z.D. ring by [9, Theorem 2.9]. Again by
[13, Remark 2.1], B is a UZD. This completes the proof of (ii). D

*
REMARK 13. We mention an example to show that Proposition 12 (ii) does not extend
to infinite integral extensions. Gilmer and Huckaba in [8, Example p.211] have con-
structed for a fixed prime p an infinite algebraic extension L of the field of rationals Q
such that the integral closure Zv of Zv in L has an infinite number of maximal ideals.
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Since Zv is a 1-dimensional quasilocal domain it is clear that Zv is a UZD. As Zv has
an infinite number of maximal ideals, Zv is not a UZD.

We conclude this note with the following Proposition which determines when every
overling of an integral domain is a UZD.

PROPOSITION 1 4 . Let R be an integral domain with quotient Held K. Then
each overling of R is a UZD if and only if the integral closure of R in K is a Prufer
domain with only finitely many maximal ideals.

PROOF: (=>•) Let !R denote the integral closure of R in K. Let Q G Spec (R).

Let a £ K, Q ^ O . Let X be an indeterminate over RQ . Let g denote the i?Q homo-
morphism from # Q [ X ] to i?Q[a] determined by g{X) = a. Now -RQ[<*] is a UZD and
hence it has only a finite number of maximal ideals. We assert that ker g % Q.RQ[.X] .
For if kerg C QR~Q[X] then (RQ[X])/(qRQ[X}) ~ (RQ) / (QRQ)[X] becomes a ho-
momorphic image of -RQ[O:] which would force ( 5 Q ) / ( Q . R Q ) [ . X ' ] to have only a finite
number of maximal ideals, a contradiction. Hence ker<7 % Q.RQ[JC]. SO by [6, Lemma
19.14] either a or a " 1 is in RQ . Thus Rq is a valuation ring for each Q e Spec (R).

Hence R is a Prufer domain. Since R is a UZD, R has only a finite number of maximal
ideals.

( <=) Let A be any overling of R. Let A denote the integral closure of A in K.

Then A is a Prufer domain with only a finite number of maximal ideals by [6, Theorem
26.1 (a) and Exercise 14, p. 331]. So A is a UZD by Proposition 4(ii). Now Proposition
12 (i) implies that A is a UZD. D
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