Integral Equations Satisfied by Lamé-Wangerin Functions
By C. G. LaMBE
(Received 5th March 1951. Read 2nd June 1951.)

Summary.

Integral equations are obtained with nuclei (1 — zt/a)?" and (z—t)*"
which are satisfied by characteristic solutions of the transformed
Lamé-Wangerin equation of order 7, and each of the two character-
istic solutions is expressed in terms of the other by a contour integral.

«. Imtroduction.

Lamé-Wangerin functions are the solutions of Lamé’s differential
equation of order n when n is half of an odd integer. If n =m + 4,
where m is an integer, Lamé’s equation in algebraic form is

d?u . du
4z (x — 1) (x — a)a—?z +2{322—2(a + 1)z +a}a;
—{(m+Hm+PNr+hu=0 (1.1)
and there is no loss of generality in taking the finite singularities as
0, 1 and a.

Writing r=(22—a)/4z(z— 1) (z —a)
and . u(z) ={z(z — 1) (z — a)} 2"+ Vity (2),

we have the transformed equation considered by Halphen and others:*

z(z—1)(z—a)g-:§—m{szz_2(a+1)z+a}%’
F{m+Hm+De—h—(m+pi@+Dv=0.  (L2)

If & has one of a set of m + 1 characteristic values this equation has
two solutions which are polynomials in z. I shall denote them by

m
v,(2)= X camtt-rz,
y=0
m
v(z2) = X ¢ 2mt1-y, (1.3)
,-o

1 G. H. Halphen, Traité des Fonctions Ellipliques (Paris, 1888), t.2, p. 471.
Whittaker and Watson, Modern Analysis (Cambridge, 1920, 3rd ed.), §§23-7.
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the coefficients ¢, being the same in the two solutions and ¢, = 1.
Substitution of either of these solutions in (1 2) leads to the recurrence
relations

v—m)(v+ 1o s —{+(m+i—v?(a+
+am+1—vy(2m+2—v)c,.,=0 (1.4)
forv=0,1, ..., m.

The first m relations determine the coefficients ¢, to ¢,, the
coefficient ¢, being a polynomial of degree vin %; and putting v=m
we have

~{h+ (a+1)/4} e+ (m + 2)ac, _, =0. (1.5)
The expression in (1.5) is a polynomial of degree m + 1 in & deter-

mining m + 1 characteristic values of » which are real and distinct.
Wo have also

z2m+l m+1
vy (2) = an T (a/2), v (2) = Pl (afz). (1.6)

2. Types of integral equation.

The differential equation (1.2) in Riemannian form is

[ 0 1 a ®©
v(z)=P 0 0 0 —m z . (2.1)
lm—}—l m+1 m+1 —2m—1

A general theorem! on integral equations associated with differential
equations of- this type shows that characteristic and certain other
solutions of (1.2) satisfy an integral equation whose nucleus is the
hypergeometric function

0 1 @ ]
P 0 0 —m ztla :*
m+1 2m + 1 —2m —1 J

We may take this function as being (1'— zt/a)?»*1 and consider
integrals of the type

s _aANmHl o (e
u(z)_%ijc(] ) fe—1 @E—ayn+t (22

where C is a closed curve encircling one or more of the singularities
t=0,t=1,t=a.

1 C. G. Lambé and D. R. Ward, Quart. J. of Math. (Oxford), 5 (1934), 81 and
A. Erdélyi, Quart. J. Math. (Oxford), 13 (1942), 107.
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The general theorem shows that if v(z) is a solution of (1.2)
corresponding to a characteristic value A, of k, then u(z) is also &
solution of (1.2) for the same value of A.

From the relations (1.6) it follows that if z is replaced by a/z,

u(ajz) =am+iz=m -1y (2),
where w (z) is a solution of (1.2). Hence integrals of the type

v (t)dt

A 2m+1
T e S

are also solutions of (1.2).

3. Contours enclosing one singularity.

If C is a contour enclosing only the singularity ¢ = 0, the value
of the integral (2.2) is the residue at ¢t = 0. Hence % (#) must be of
degree m in z and therefore must be a multiple of v, (2).

If C encloses only the singularity ¢ = 1, then, since powers of
(¢t — 1) higher than the m” in the expansion of

(1 —ztja)™™+1 = {(1 — z/a) — (¢ — 1) zja}om 1
give zero residue at {=1, it follows that (z —a)**! is a factor of
% (2) and hence
u(2) = A {v, (@) v, (2) — v (a) v (2)}
where 4 is a constant.
If C encloses the singularity ¢ = a, then, since
(1 — ztja)m+1 = {(1 — 2) — (t — a)zfa}m + 1,
it follows that (z — 1) * ! is a factor of u (z) and hence
u(2) = B{v; (1) v, (2) — v, (1) v, (2)}
where B is a constant.

Hence for these contours, if the equation (2.2) is to be an integral]
equation the function »(f) in the integrand must be the same function
of t as the corresponding u(z) is of z. Using the relations (1.6) we
have, therefore, solutions of the integral equation.

N om t) dt
o(2) =2—ch RN 10)((2— aprt

(3.1)

for contours encircling one singularity only as:
around ¢ = 0, V(z) = v, (0) v, (z) — v, (0) v, (2),
»o =1, Vi(2) =v,(1)v5(2) — v, (1) v, (2), (3.2)

” t=a, V,(2) =vs(a) v, (z) — v (a) v, (2)
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4. Value of A.

The constant A involves the characteristic value of & for any
solution of the integral equation (3.1) and may be evaluated in terms
of the coefficient c,, of 2" in v, (z). Let A, A, A, denote the values of A
for the three contours considered.

Substituting V,(z) in (3.1) and comparing coefficients of 2™
we have

—vl(O)a&cm=ﬁj (2m + 1)! (_})m V,(2) de

zmi Jgpymi(m + DI\ &) [@— 1)+ 1({ —ay" 1

_y, 2wt 1! (_a> Y, (0)

T U ml(m + 1)! a”““’
Ve(0) = — v,2(0) = — a™ +t v, (0),
n L (@) (m4+ 10
and hence A0=(_) m)a +lcm. (4.1)

We have seen that V,(z) contains the factor (z — a)"+1, and hence
V,(@#)/(t — ay»*+1is a polynomial in (¢t — 1) of which the first term is
vy (1) (¢ — 1)™.  Substituting ¥V, (¢) in (3.1) and comparing coefficients
of z»+1, we have

A (2m + 1)! W"+lo, (1) (¢ =™ 4 ...
vl em =355 (H,ﬁ{!'(m-;—l)!(_ ) (¢t = N)ym+1 dt.
(2m + 1)! 1ym+t
‘n‘z!(m+1)!<—a) va(1):
Hence A, = —A,. .

Similarly, substituting V, (z) in (3.1) and comparing coefficients of
z*+1, we find that A, = — A,.

Therefore

Aa,—":Al: —A°=(—)m+1 I‘(%)(m-}—l)! am+1 Cpy (4.2)
22m+11‘(,’n+ %i

5. Contour enclosing two singularities.

Since V, () has the factor (¢ —a)™+1andV, () the factor (t—1)m+1,
we have

=50 2”‘“AV AVi(@) + BV, (%),
47V f(l_,_)( {t(t—-l) (t —a)ym+? d
_am+l AV (1) + BV, ()
BV (z)""fw @) {u—ne—aprr®

where A and B are any constants.
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Hence

AV, (2) + BV,{2) =

_A,_,‘ zt)2'"+1 AV,(t) + BV,(¢)
21ri_(1+,a+)< T a ft (

dt.

E— 1) (L —apm+?

It follows that any solution of the differential equation (1.2) when 4

has a characteristic value satisfies the integral equation

_ A o mt v(t)dt
v = '—[(1+,4z+>(l "') @ — 1)t~ a)m* 1 .

6. Nucleus (z — t)*m+1,
Substituting a/z for z in (3.1), we have
v (t)dt
{tE—1) (¢ —apm+1’
Hence for contours around one singularity we have, using (1.6),

zm+ly(afz) = )\j (z—t)2m+1
o .

A -" vy () dt
m+} = -9 —f)2myr_ 1A
a vy (2 i © +)(z t) {tit—1) (¢t —a)ym+1
A Vi(t)de
__.Vaz=__1.j z_t?m—f-] 1
&)= g a +>( : {tt — 1) (t — a)}m+1
A j V,(t)dt
—am+1 =_‘L. _t2m+1 a
e = ) E T Sem D — e
Combining these results as before, we have
A vy (t) dt
z=a—m—§__1;j 2 —t)m+1 9t
0, (2) ) R S S oy ey Lo
v, (¢) dt

A
v,(2) =a~-m—} l.j (z—t)y2m+1
' 278 ) (14,0 4)

ge—1)(¢=ayt

Hence the solution of the integral equation

S ol __pyem+1 v (1) dt
v =35 (,MH(Z e {t(t—1)( — a)jmtt
is v (2) = vy (2) £ v, (2)
P@m+ 1,

a.nd' #=ﬂ:(—)"1+1§—2ﬁm e
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