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This work studies two-dimensional fixed-flux Rayleigh–Bénard convection with periodic
boundary conditions in both horizontal and vertical directions and analyses its dynamics
using numerical continuation, secondary instability analysis and direct numerical
simulation. The fixed-flux constraint leads to time-independent elevator modes with a
well-defined amplitude. Secondary instability of these modes leads to tilted elevator modes
accompanied by horizontal shear flow. For Pr = 1, where Pr is the Prandtl number, a
subsequent subcritical Hopf bifurcation leads to hysteresis behaviour between this state
and a time-dependent direction-reversing state, followed by a global bifurcation leading to
modulated travelling waves without flow reversal. Single-mode equations reproduce this
moderate Rayleigh number behaviour well. At high Rayleigh numbers, chaotic behaviour
dominated by modulated travelling waves appears. These transitions are characteristic
of high wavenumber elevator modes since the vertical wavenumber of the secondary
instability is linearly proportional to the horizontal wavenumber of the elevator mode. At a
low Pr, relaxation oscillations between the conduction state and the elevator mode appear,
followed by quasi-periodic and chaotic behaviour as the Rayleigh number increases.
In the high Pr regime, the large-scale shear weakens, and the flow shows bursting
behaviour that can lead to significantly increased heat transport or even intermittent stable
stratification.

Key words: buoyancy-driven instability, Bénard convection

1. Introduction

Fixed-flux temperature boundary conditions describing adiabatic boundaries appear in
a wide range of geophysical and astrophysical applications, including convection in the
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Earth’s mantle (McKenzie, Roberts & Weiss 1974; Chapman, Childress & Proctor 1980;
Hewitt, McKenzie & Weiss 1980; Sakuraba & Roberts 2009; Long et al. 2020) and models
of solar supergranulation (Vieweg, Scheel & Schumacher 2021; Vieweg et al. 2022; Käufer
et al. 2023). Such boundary conditions also model Rayleigh–Bénard convection (RBC)
between poorly conducting horizontal plates, suggesting an explanation for discrepancies
between experimentally measured heat transport and numerical simulations (Verzicco
2004; Verzicco & Sreenivasan 2008). Fixed-flux temperature or mass boundary conditions
are also used to model the free surface in ocean circulation models (Huck, de Verdière
& Weaver 1999; Abernathey, Marshall & Ferreira 2011) and for understanding nutrient
productivity in the oceans (Pasquero, Bracco & Provenzale 2005). A low enough constant
injection rate of CO2 concentration in saline aquifers can also be modelled as a fixed-flux
problem (Amooie, Soltanian & Moortgat 2018). Moreover, fixed-flux boundary conditions
are also relevant for concentration transport within an enclosure with impermeable
boundaries (Mamou, Vasseur & Bilgen 1998; Mamou & Vasseur 1999).

Rayleigh–Bénard convection provides a canonical set-up for understanding the effect
of fixed-flux conditions; see e.g. the monograph by Goluskin (2016). With fixed flux
at both the top and bottom boundaries, the critical horizontal wavenumber at the onset
of convective instability vanishes (Sparrow, Goldstein & Jonsson 1964; Hurle, Jakeman
& Pike 1967; Chapman & Proctor 1980), and the resulting near-onset evolution is
described by the Cahn–Hilliard equation (Novick-Cohen 2008; Miranville 2019). In the
weakly supercritical Rayleigh number regime, each convection cell is thus unstable to
perturbations with ever longer wavelength in a process referred to as coarsening (Chapman
& Proctor 1980; Chapman et al. 1980). This large scale manifests itself in the turbulent
regime of three-dimensional (3-D) fixed-flux RBC, and organizes the resulting flow.
For example, recent 3-D direct numerical simulations (DNS) with aspect ratio Γ = 60
show that convection cells aggregate gradually into a single large cell that eventually
fills the whole domain, thereby providing insight into the aggregation of granules into
a supergranule in the solar convection zone (Vieweg et al. 2021, 2022), a process also
confirmed in experiments (Käufer et al. 2023). There is also evidence that fixed-flux
boundary conditions influence the generation and reversals of large-scale shear. For
example, experimental studies found that a configuration with constant flux at the bottom
and constant temperature at the top exhibits less frequent reversals of the large-scale
circulation than in a configuration with constant temperature on both surfaces (Huang
et al. 2015).

Heat transport in fixed-flux RBC has also been analysed widely. In two-dimensional
(2-D) domains of modest aspect ratio, fixed-flux and fixed-temperature RBC display
essentially identical heat transport, overall flow dynamics and mean temperature profiles
at Rayleigh number RaT = 1010 based on temperature difference (Johnston & Doering
2009), despite possible differences in the dominant scale. In 3-D cylindrical geometry,
Stevens, Lohse & Verzicco (2011) investigated the difference in heat transport introduced
by replacing the bottom plate by a fixed-flux condition, and showed that this difference
decreases with increasing Rayleigh number. Different heat transport scaling predictions
may be realized depending on the details of the thermal forcing (Lepot, Aumaître & Gallet
2018; Bouillaut et al. 2019), as shown in experiments using radiative heating in a thermally
insulating container to control the heat flux. However, the current upper bound on the
Nusselt number with fixed-flux boundary conditions displays the same scaling law with the
Rayleigh number based on temperature difference as the fixed-temperature configuration
with either no-slip (Otero et al. 2002; Wittenberg 2010) or stress-free velocity boundary
conditions (Fantuzzi 2018).
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Fixed-flux temperature boundary conditions are also studied in related set-ups. For
example, the difference between Neumann and Dirichlet boundary conditions on the
buoyancy field in moist convection decreases as the Rayleigh number increases (Weidauer
& Schumacher 2012), while fixed-heat-flux and fixed-temperature boundary conditions
are shown to be asymptotically equivalent in rapidly rotating convection (Calkins et al.
2015). For rotating convection with no-slip boundaries, the Nusselt number increases
significantly when a fixed heat flux is imposed instead of a fixed temperature difference
(Kolhey, Stellmach & Heyner 2022).

The top and bottom boundaries are often absent in geophysical applications, suggesting
that periodic boundary conditions in the vertical are more appropriate. The resulting
homogeneous RBC problem driven by a constant temperature gradient has been employed
to understand bulk RBC (Borue & Orszag 1997; Lohse & Toschi 2003; Calzavarini
et al. 2005, 2006; Ng et al. 2018; Pratt, Busse & Müller 2020; Barral & Dubrulle
2023). Similar homogeneous configurations are also commonly employed to analyse
double-diffusive convection (Stellmach et al. 2011; Radko 2013; Garaud 2018) and
different shear flows (Rogers & Moin 1987; Sekimoto, Dong & Jiménez 2016). Periodic
boundary conditions in the vertical within these homogeneous set-ups have the benefit of
eliminating inessential but computationally expensive thermal or viscous boundary layers.
Within homogeneous RBC, the Nusselt number Nu scales with the Rayleigh number Ra
according to the ultimate regime prediction (Lohse & Toschi 2003; Calzavarini et al.
2005), a prediction supported by experimental evidence from a cylindrical cell (Schmidt
et al. 2012). Moreover, Calzavarini et al. (2005) showed that Nu scales with the Prandtl
number Pr according to mixing length theory (Spiegel 1963), and attributed this fact
to more frequent appearances of elevator modes at high Pr. An exponentially growing
elevator mode is an exact nonlinear solution of the homogeneous RBC problem, whose
growth in DNS is arrested only by secondary numerical noise with a resolution-dependent
instability ultimately leading to statistically steady transport (Calzavarini et al. 2006).
The appearance of elevator modes also leads to high intermittency in the heat transport
(Borue & Orszag 1997; Calzavarini et al. 2005, 2006; Barral & Dubrulle 2023), thereby
affecting the flow statistics adversely, by increasing the sensitivity to round-off noise and
discretization error (Calzavarini et al. 2006). In DNS, these polluting elevator modes can
be suppressed by removing explicitly the mean flow parallel to gravity at each time step
(Pratt et al. 2020), or by introducing an artificial horizontal buoyancy field (Xie & Huang
2022) or large-scale friction (Barral & Dubrulle 2023), but the modes remain a major
source of contention.

This work formulates a fixed-flux homogeneous RBC problem that is not only relevant
to a wide range of geophysical and astrophysical applications but also avoids the
exponentially growing elevator modes that plague homogeneous RBC driven by a constant
temperature gradient. Our study is motivated by a recent formulation imposing fixed-flux
salinity conditions on homogeneous inertia-free salt-finger convection (IFSC) (Xie, Julien
& Knobloch 2020). This fixed-flux constraint saturates the elevator mode in IFSC, and
it does so in the present case as well. In both cases, the resulting formulation leads to
differential–integral equations with time-varying mean salinity or temperature gradients
that adjust the system response. Moreover, fixed-flux conditions result in a more potent
restoring mechanism towards the statistically steady state that can be used as a diagnostic
to determine whether in situ salt-finger convection is flux-driven or gradient-driven (Xie
et al. 2020).

This work thus focuses on the underlying dynamics of fixed-flux homogeneous
RBC using numerical continuation, secondary instability analysis, and DNS.
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Secondary instabilities of the elevator mode lead to tilted elevator modes accompanied
by horizontal jet formation. At Pr = 1, this state is in turn unstable to a subcritical
Hopf bifurcation displaying hysteresis behaviour between this state and the resulting
direction-reversing state. A subsequent global bifurcation of Shilnikov type (Shilnikov &
Shilnikov 2007) leads to modulated travelling waves without flow reversal. Single-mode
equations that severely truncate the horizontal flow structure reproduce this moderate
Rayleigh number behaviour rather well.

At high Rayleigh numbers, chaotic flow dominated by modulated travelling waves
appears, and resembles no-slip instead of stress-free boundary conditions in RBC with
fixed temperature. The vertical wavenumber of the secondary instability of steady elevator
modes leading to these transitions is linearly proportional to the horizontal wavenumber
of the elevator mode, leading to its suppression when the vertical extent of the domain
precludes its presence. Thus the domain aspect ratio requires adjustment as the parameters
are varied.

At low Prandtl numbers, relaxation oscillations between the conduction state and the
elevator mode appear, followed by quasi-periodic and chaotic behaviour as the Rayleigh
number increases. Since the secondary and Hopf bifurcation points shift closer to the
primary instability as Pr decreases, the single-mode description works well in this regime.
In contrast, at high Pr the large-scale shear weakens, and the flow exhibits bursting
behaviour resembling that in homogeneous RBC driven by a constant temperature gradient
(Borue & Orszag 1997; Calzavarini et al. 2005, 2006) and resulting in significantly
increased heat transport or even intermittent stable stratification.

The remainder of this paper is organized as follows. Section 2 formulates the
fixed-flux homogeneous RBC problem. Bifurcation analysis at moderate Rayleigh
numbers performed via numerical continuation is described in § 3 and confirmed by
DNS. Section 4 analyses the high Rayleigh number dynamics arising from the secondary
instability of the elevator modes. The effects of changing the Prandtl number are discussed
in § 5. The paper concludes with a summary and suggestions for future work in § 6.

2. Fixed-flux homogeneous RBC

We consider a layer of fluid of depth h with a constant upward heat flux −kq through
it, where k is thermal conductivity, and q < 0 is the associated vertical temperature
gradient. The equation of state (ρ∗ − ρr∗)/ρr∗ = −α(T∗ − Tr∗) is linear in the Boussinesq
approximation, with constant expansion coefficient α, constant reference density ρr∗, and
constant reference temperature Tr∗. The subscript ∗ denotes a dimensional variable. In
the following, we non-dimensionalize the temperature T∗ by the temperature gradient
|q| associated with imposed constant heat flux, T = T∗/|hq|. Spatial variables are
normalized by the depth h of the layer, while time and velocity are normalized using
the thermal diffusion time h2/κT and the corresponding speed κT/h, respectively. Here,
κT = k/(ρr∗cp) is the thermal diffusivity, with cp denoting specific heat capacity. In
homogeneous double-diffusive convection, lengths are usually normalized by the expected
finger width (Stellmach et al. 2011; Radko 2013), while here we normalize lengths by the
layer depth h for consistency with the usual procedure for RBC.

We introduce the velocity field u := (u, v, w) in Cartesian coordinates (x, y, z) with z in
the upward vertical direction. Under the Boussinesq approximation, the system is governed
by

∂u
∂t

+ u · ∇u = −∇p + Pr RaT,qTez + Pr ∇2u, (2.1a)
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∇ · u = 0, (2.1b)

∂T
∂t

+ u · ∇T = ∇2T, (2.1c)

where ez is the unit vector in the vertical. The governing parameters are the flux Rayleigh
number RaT,q and the Prandtl number Pr:

RaT,q := αg |q| h4

νκT
, Pr := ν

κT
. (2.2a,b)

A similar flux Rayleigh number is also employed by Otero et al. (2002), Johnston &
Doering (2007, 2009), Verzicco & Sreenivasan (2008) and Goluskin (2016).

We decompose the total temperature T(x, y, z, t) as

T(x, y, z, t) = 1 + T̄z,qz + T(x, y, z, t), (2.3)

where T̄z,q is a spatially and temporally averaged temperature gradient. This decomposition
allows us to impose vertically periodic boundary conditions on T . The velocity is taken
as periodic in the vertical, and periodic conditions in the horizontal are imposed on all
variables. We then define the volume-averaged heat flux

Q(t) := 〈(uT − ∇T) · ez〉h,v (2.4a)

= 〈wT〉h,v − T̄z,q, (2.4b)

where 〈·〉h,v is the horizontal and vertical average. The equality in (2.4b) is obtained on
assuming a vanishing homogeneous mode, 〈w〉h,v(t) = 〈T〉h,v(t) = 0. We further assume
that the instantaneous heat flux Q(t) recovers the imposed value Qc exponentially rapidly
at a rate β:

dQ
dt

+ β(Q − Qc) = 0. (2.5)

Here, Qc = 1 because the temperature is normalized based on the imposed heat flux.
We can now write (2.1c) in terms of T that is periodic in all spatial directions. This is

obtained by substituting the decomposition (2.3) and (2.4) into (2.1c):

∂T
∂t

+ u · ∇T − Qw + w〈wT〉h,v = ∇2T, (2.6)

where Q(t) is governed by (2.5). Note that (2.5) is taken to be independent of (u, T, p).
Thus setting Q(t = 0) = Qc leads to Q(t) = Qc = 1. This corresponds to the β → ∞ limit
in which Q(t) recovers the reference value Qc instantaneously. We show, moreover, that
for β = 104 and a random Q(t = 0), the results display the same behaviour as those for
β = ∞ (see Appendix). Setting Q(t) = Qc = 1 and eliminating the hydrostatic pressure,
we obtain the governing equations in the form

∂u
∂t

+ u · ∇u = −∇p + Pr RaT,q Tez + Pr ∇2u, (2.7a)

∇ · u = 0, (2.7b)

∂T
∂t

+ u · ∇T − w + w〈wT〉h,v = ∇2T. (2.7c)

The integral term w〈wT〉h,v in (2.7c) is the new flux feedback term that does not appear in
earlier formulations of the homogeneous RBC problem driven by a constant temperature
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gradient (Borue & Orszag 1997; Lohse & Toschi 2003; Calzavarini et al. 2005, 2006; Ng
et al. 2018; Pratt et al. 2020; Xie & Huang 2022; Barral & Dubrulle 2023).

The response parameter is the instantaneous Nusselt number, which measures the ratio
of the total convective transport to the conductive heat transport in the vertical:

nu(t) := 〈(uT − ∇T) · ez〉h,v

〈(−∇T) · ez〉h,v

= 1
1 − 〈wT〉h,v(t)

. (2.8)

We also define a Nusselt number measuring the time-averaged heat transport as

Nu := 1
1 − 〈wT〉h,v,t

, (2.9)

where 〈·〉h,v,t denotes spatio-temporal averaging. We can also obtain the mean temperature
gradient by time-averaging (2.4):

T̄z,q = 〈wT〉h,v,t − 〈Q〉t (2.10)

= 〈wT〉h,v,t − 1, (2.11)

where we assume 〈Q〉t = Qc = 1, as appropriate for long-time averages. The Rayleigh
number based on the mean temperature gradient is

RaT := αg |T̄z,q∗| h4

νκT
= αg |q| h4

νκT
(−T̄z,q) = RaT,q

Nu
, (2.12)

where T̄z,q∗ = qT̄z,q is the dimensional mean temperature gradient. A relation similar to
(2.10) was also noted in RBC with a fixed imposed flux (Otero et al. 2002; Johnston &
Doering 2007, 2009; Verzicco & Sreenivasan 2008; Goluskin 2016). As a result, a scaling
law Nu ∼ Ra1/3

T,q based on imposed flux corresponds to Nu ∼ Ra1/2
T based on the mean

temperature gradient, a relation similar to that between fixed-flux and fixed-temperature
RBC (Otero et al. 2002).

3. Bifurcation analysis at moderate Rayleigh number

In this section, we analyse flow structures originating from the primary instability at
moderate Rayleigh numbers and their subsequent destabilization by means of analytical
calculation and numerical continuation as well as DNS. The nonlinear solutions and their
stability determined from this analysis provide the pathway towards chaotic behaviour or
even fully developed turbulent states, which generally visit neighbourhoods of (unstable)
steady, periodic or travelling wave solutions, and these visits leave an imprint on the flow
statistics; see e.g. Kawahara & Kida (2001), van Veen, Kida & Kawahara (2006) and the
reviews by Kawahara, Uhlmann & Van Veen (2012) and Graham & Floryan (2021). We
keep our analytical calculation general as appropriate for three dimensions, although our
numerical results are confined to 2-D (x, z) configurations.

3.1. Primary instability and the steady elevator mode
We start from the primary instability and the steady elevator mode that originates from
this instability, which allows analytical progress. We linearize (2.7) around the conduction
base state (u = 0, T = 0) by dropping the nonlinear terms. After eliminating the pressure
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in the vertical momentum equation by applying −ez · ∇ × [∇ × (·)] to the momentum
equation, we obtain

∂∇2w
∂t

= Pr ∇4w + Pr RaT,q ∇2
⊥T, (3.1a)

∂T
∂t

= w + ∇2T, (3.1b)

where ∇2
⊥ := ∂2

x + ∂2
y . We use the normal mode assumption φ(x, y, z, t) = φ̂ exp[i(kxx +

kyy + kzz) + λt] + c.c., where φ = w, T , and kx, ky and kz are the wavenumbers in the
corresponding directions, and λ is the (necessarily real) growth rate. Here, i is the
imaginary unit, and c.c. denotes the complex conjugate. This normal mode assumption
yields

λŵ = −Pr K2ŵ + Pr RaT,q
k2
⊥

K2 T̂, (3.2a)

λT̂ = ŵ − K2T̂, (3.2b)

where K2 := k2
x + k2

y + k2
z , and k2

⊥ := k2
x + k2

y . Solving this eigenvalue problem gives
growth rate

λ = −1
2

(Pr + 1)K2 ± 1
2

√√√√(Pr + 1)2K4 + 4 Pr

(
RaT,q

k2
⊥

K2 − K4

)
. (3.3)

When kz = 0, this growth rate is the same as that associated with the elevator mode in
homogeneous RBC driven by a constant temperature gradient (Calzavarini et al. 2006, Eq.
(9)).

The growth rate λ vanishes at the onset of a steady bifurcation, leading to the neutral
curve RaT,q = K6/k2

⊥. For a given RaT,q, the most unstable mode corresponds to kz = 0,
i.e. to an elevator mode. The corresponding neutral curve then simplifies:

RaT,q = k4
⊥, (3.4)

again as for the case of constant temperature gradient forcing (Calzavarini et al. 2006).
As a result, the critical horizontal wavenumber is k⊥,c = 0, as in RBC with fixed-flux
boundary conditions; see e.g. Sparrow et al. (1964) and Chapman & Proctor (1980).

The resulting steady elevator mode (kz = 0) plays an important role in the subsequent
behaviour of the system. The amplitude of the elevator mode is obtained by substituting

w(x, y, z, t) = ŵe exp[i(kxx + kyy)] + c.c., (3.5a)

T(x, y, z, t) = T̂e exp[i(kxx + kyy)] + c.c. (3.5b)

into (2.7), which gives

ŵe =
√

RaT,q

2k2
⊥

− k2
⊥
2

, T̂e = k2
⊥ŵe

RaT,q
. (3.6a,b)

Note that this is an exact solution of the nonlinear governing equation (2.7) and
corresponds to the Nusselt number

Nu = RaT,q

k4
⊥

. (3.7)
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The steady elevator mode within the fixed-flux formulation thus has a unique
time-independent amplitude (3.6a,b) for each Rayleigh number. In contrast, within
homogeneous RBC driven by a constant temperature gradient, the steady elevator mode
bifurcates from Ra( p)

T,q with arbitrary amplitude, and grows exponentially for RaT,q >

Ra( p)
T,q, leading to intermittent heat transport in DNS (Borue & Orszag 1997; Lohse &

Toschi 2003; Calzavarini et al. 2005, 2006).

3.2. Numerical methods
For solution branches beyond the steady elevator mode, numerical computations are
required. We compute each solution branch and associated bifurcation points by numerical
continuation using pde2path (Uecker, Wetzel & Rademacher 2014; Uecker 2021a)
with horizontal and vertical directions discretized by the Fourier collocation method
(Weideman & Reddy 2000) following the implementation in Uecker (2021b). We use
a streamfunction formulation of the full 2-D equations in (2.7) to reduce the number
of variables, thereby facilitating computation. The horizontal and vertical directions use
Nx = Nz = 32 grid points, and doubling the number of grid points in each direction
does not influence the results. The tolerance of the maximum absolute value of the
residual at each vertical location (L∞ norm) is set to 10−6. We implement the phase
condition associated with horizontal translation symmetry for elevator modes, and the
phase conditions corresponding to both horizontal and vertical translations for all other
2-D solution branches (Rademacher & Uecker 2017). The stability of each branch is
determined by computing a subset of the eigenvalues, and this subset is enlarged as
necessary to ensure that instability and bifurcation points are identified correctly.

We also analyse time-dependent states through DNS in Dedalus (Burns et al. 2020)
using a Fourier spectral method in both horizontal and vertical directions. We set
the spatial homogeneous mode associated with kx = kz = 0 to zero, which can be
implemented by adding the constraint 〈T〉h,v(t) = 0. The quantity 〈w〉h,v(t) is conserved
over time, and all of the results here are for 〈w〉h,v(t) = 0. A non-zero 〈w〉h,v(t) leads to
vertically advected structures whose behaviour in the comoving frame is identical to that
described below. We use Nx = Nz = 128 grid points for moderate RaT,q, and set Pr = 1.

3.3. Flow structures beyond elevator mode
Here, we choose the domain size Lx = 0.2π, unless otherwise mentioned, selected
to accommodate the secondary instability of the elevator mode. With this domain
size, the horizontal wavenumber of a domain-filling elevator mode corresponds to
k⊥ = 2π/Lx = 10, thus the critical Rayleigh number is RaT,q = 104 according to (3.4).
A larger domain will instead display a stable finite-amplitude elevator mode up to
RaT,q = 108 at Pr = 1, as demonstrated below through secondary instability analysis
(figure 12) and DNS (figure 13).

Figure 1 shows the resulting bifurcation diagram using thick (thin) lines for stable
(unstable) states obtained from numerical continuation. The markers in figure 1
correspond to the final stable state as obtained from DNS. Figure 1(a) shows that
the elevator mode (EM, black) bifurcates from the primary instability at Ra( p)

T,q = 104,
consistent with (3.4), and that the Nusselt number of this mode displays a linear relation
with RaT,q according to (3.7). The secondary instability of the elevator mode at Ra(s)

T,q =
19576.3 leads to a branch of steady tilted elevator modes (TEMs, blue) accompanied by
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Figure 1. (a) Bifurcation diagram with elevator mode (EM, black line), tilted elevator mode (TEM, blue line),
direction-reversing state (DRS, magenta square) and modulated travelling waves (MTW, green cross). The
bifurcation points include the primary bifurcation Ra( p)

T,q, the secondary bifurcation Ra(s)
T,q, the Hopf bifurcation

Ra(h)
T,q, and a global bifurcation at Ra(g)

T,q. (b) Hysteresis diagram near the Hopf bifurcation point Ra(h)
T,q with

TEM initial condition and increasing RaT,q (blue star) or DRS initial conditions and decreasing RaT,q (magenta
square).
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Figure 2. (a) Large-scale shear 〈u〉h(z, t) and (b) temperature deviation T(x, z, t) at t = 10 for the steady
TEM at RaT,q = 3 × 104, Pr = 1 and Lx = 0.2π.

large-scale shear. Figure 2(a) shows the evolution of this shear from DNS at RaT,q =
3 × 104, starting from an unstable elevator mode at this Rayleigh number. The figure
shows that the large-scale shear 〈u〉h(z, t) becomes non-zero at t ≈ 2 and then saturates
in a horizontal flow with an approximately sinusoidal profile in the vertical. Figure 2(b)
shows that the associated temperature deviation T(x, z, t) at t = 10 is tilted in the direction
corresponding to the generated large-scale shear. This secondary bifurcation resembles the
behaviour observed in RBC between fixed temperature boundaries, whereby a secondary
bifurcation of steady convection rolls leads to tilted rolls accompanied by large-scale
shear (Howard & Krishnamurti 1986; Rucklidge & Matthews 1996), as also observed
in both experiments (Krishnamurti & Howard 1981) and DNS (Matthews et al. 1996;
Goluskin et al. 2014; Von Hardenberg et al. 2015; Wang et al. 2020). This TEM branch
terminates in another unstable steady state (red) that bifurcates from the conduction state
without large-scale shear generation and resembles the two-layer (S2) solutions identified
in salt-finger convection (Liu, Julien & Knobloch 2022).

The steady TEM loses stability at a Hopf bifurcation at Ra(h)
T,q = 32085.1 leading

to oscillations about the TEM state with frequency ωh = 43.1. This Hopf bifurcation
is subcritical, however, implying that the tilted oscillations are unstable. Computations
indicate that the system instead evolves into a symmetric direction-reversing state (DRS)
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Figure 3. (a) Large-scale shear 〈u〉h(z, t) and (b) instantaneous Nusselt number nu(t) at RaT,q = 3.21 × 104,
Pr = 1 and Lx = 0.2π with a TEM initial condition (supplementary movie 1, available at https://doi.org/10.
1017/jfm.2023.1057, shows the corresponding temperature deviation T(x, z, t)).

with associated hysteresis near Ra(h)
T,q as shown in figure 1(b). Here, we use 〈nu(t)〉t to

distinguish the TEM state from the DRS, reached from TEM initial conditions upon
increasing RaT,q (blue star) or from DRS initial conditions upon decreasing RaT,q

(magenta square). When RaT,q < Ra(h)
T,q, the DNS with TEM initial conditions show

excellent agreement with numerical continuation results (thick blue line), while DNS with
TEM initial conditions at RaT,q > Ra(h)

T,q evolve into DRS. Figure 3 shows 〈u〉h(z, t) and

nu(t) at RaT,q = 32 100, a value slightly larger than Ra(h)
T,q, with a TEM initial condition

from a lower RaT,q. The large-scale flow oscillates with frequency ω ≈ 43.0 in t ∈ [0, 10]
(not shown in figure 3) that is close to the Hopf frequency ωh = 43.1 but does not reverse.
At t ≈ 74, the flow abruptly transitions to a DRS as shown in figure 3(a). Figure 3(b) shows
the corresponding instantaneous Nusselt number nu(t). Similar DRS are also observed in
RBC (Sugiyama et al. 2010; Chandra & Verma 2013; Winchester, Dallas & Howell 2021),
magnetoconvection (Matthews et al. 1993; Proctor et al. 1994) as well as in salt-finger
convection (Liu et al. 2022).

At higher Rayleigh numbers, this DRS spends more time displaying flow structures
close to an elevator mode. Figure 4 shows three snapshots of the temperature deviation
T(x, z, t) at RaT,q = 4.6 × 104. At t = 2.21 and t = 2.37, the temperature deviation tilts
in opposite directions. At t = 2.29, T(x, z, t) displays flow structures close to an elevator
mode, followed at t = 2.37 by a restored and approximately reflected tilted state. At yet
higher Rayleigh numbers, the DRS collides with the unstable steady elevator mode leading
to a global bifurcation at Ra(g)

T,q ≈ 46892.03, as indicated in figure 1(a). At this global
bifurcation, the DRS transitions to modulated travelling waves (MTW, green) that do
not reverse direction. Figure 5(a) shows the corresponding large-scale shear 〈u〉h(z, t) at
RaT,q = 6 × 104. Figure 5(b) displays the corresponding temperature deviation T(x, z, t)
at z = 0.1, including the MTW that sets in at t ≈ 0.8. This global bifurcation is illustrated
in the phase diagram shown in figure 6 near Ra(g)

T,q, revealing an abrupt change in topology
before and after this global bifurcation. Note that both states pass through 〈T〉h(zp, t) =
〈u〉h(zp, t) = 0 corresponding to the elevator mode. A similar global bifurcation must take
place on the subcritical DRS branch in order to generate the DRS from the oscillating
TEM state, but is inaccessible to DNS. Such gluing bifurcations are also seen in RBC,
where oscillatory tilted convection rolls originating from a Hopf bifurcation of steady
tilted convection rolls may collide with steady convection rolls and glue together in a
global bifurcation; see e.g. Rucklidge & Matthews (1996).
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Fixed-flux Rayleigh–Bénard convection in periodic domains
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Figure 4. Temperature deviation T(x, z, t) associated with the DRS at three different times when
RaT,q = 4.6 × 104, Pr = 1 and Lx = 0.2π: (a) t = 2.21, (b) t = 2.29, and (c) t = 2.37.
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Figure 5. (a) Large-scale shear 〈u〉h(z, t) and (b) temperature deviation T(x, z, t) at z = 0.1 for MTWs at
RaT,q = 6 × 104, Pr = 1 and Lx = 0.2π.
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Figure 6. Phase diagram showing 〈T〉h(zp, t) as a function of 〈u〉h(zp, t) at (a) RaT,q = 46 892.0 and
(b) RaT,q = 46 892.1, with zp := arg maxz〈T〉h(z, t = 10). The global bifurcation takes place in between.

3.4. Single-mode equations
The previous results show that the flow in the horizontal direction is dominated by a
domain-filling mode. Moreover, in fixed-flux RBC, any long box will eventually contain a
single pair of rolls (Chapman & Proctor 1980), and domain-filling modes also organize
the flow in the turbulent regime at high Rayleigh number (Vieweg et al. 2021, 2022;
Käufer et al. 2023). This motivates us to derive single-mode equations that have been
used successfully in a wide range of convection problems (Herring 1963; Toomre, Gough
& Spiegel 1977; Gough & Toomre 1982; Paparella & Spiegel 1999), especially for
well-organized columnar structures in the presence of strong restraining body forces,
including rapid rotation and strong magnetic field (Julien & Knobloch 2007), or large-scale
damping in salt-finger convection (Liu et al. 2022), or convection in a porous medium (Liu
& Knobloch 2022).
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Single-mode equations are obtained from a severely truncated Fourier expansion in
the horizontal, which reduces the governing equations from three spatial dimensions
to equations for the vertical solutions profile associated with a prescribed horizontal
planform. Here, we derive the single-mode equations by decomposing variables into a
mean mode in the horizontal and horizontal harmonics:

T(x, y, z, t) = T̄0(z, t) + T̂(z, t) exp(i(kxx + kyy)) + c.c., (3.8a)

u(x, y, z, t) = Ū0(z, t) ex + û(z, t) exp(i(kxx + kyy)) + c.c., (3.8b)

p(x, y, z, t) = P̄0(z, t) + p̂(z, t) exp(i(kxx + kyy)) + c.c. (3.8c)

We truncate the resulting equations at these harmonics to obtain the single-mode
equations:

∂tû + Ū0ikxû + ŵ ∂zŪ0 = −ikxp̂ + Pr ∇̂2û, (3.9a)

∂tv̂ + Ū0ikxv̂ = −ikyp̂ + Pr ∇̂2v̂, (3.9b)

∂tŵ + Ū0ikxŵ = −∂zp̂ + Pr ∇̂2ŵ + Pr RaT,q T̂, (3.9c)

ikxû + ikyv̂ + ∂zŵ = 0, (3.9d)

∂tT̂ + Ū0ikxT̂ + ŵ ∂zT̄0 − ŵ + ŵ
∫ 1

0

(
ŵ∗T̂ + ŵT̂∗

)
dz = ∇̂2T̂, (3.9e)

∂tŪ0 + ∂z
(
ŵ∗û + ŵû∗) = Pr ∂2

z Ū0, (3.9f )

∂tT̄0 + ∂z

(
ŵ∗T̂ + ŵT̂∗

)
= ∂2

z T̄0. (3.9g)

Here, the integral term in (3.9e) represents the fixed-flux constraint originating from
w〈wT〉h,v in (2.7c). The horizontal wavenumber is chosen as kx = 10 and ky = 0
corresponding to a domain-filling mode within a 2-D domain with Lx = 0.2π. Numerical
continuation of the single-mode equations (3.9) is performed using pde2path (Uecker et al.
2014; Uecker 2021a) with Nz = 128, while DNS of (3.9) are conducted using Dedalus
(Burns et al. 2020) with Nz = 128.

Figure 7(a) shows the bifurcation diagram, while figure 7(b) shows the hysteresis
diagram obtained from the single-mode equations in (3.9). Here, we can see that the
single-mode equations reproduce the bifurcation and hysteresis diagrams obtained from
the full equations in two dimensions, shown in figure 1. The hysteresis behaviour in
figure 7(b) is present in a similar Rayleigh number range, �RaT,q ≈ 200, as in figure 1(b).
Nevertheless, the bifurcation points are shifted slightly in the single-mode equations
compared with the full equations, as shown in table 1. The success of the single-mode
equations in predicting the Hopf frequency is perhaps in the same spirit as the real zero
imaginary frequency (RZIF) ansatz that has shown success in predicting the oscillation
frequency in nonlinear thermosolutal convection and shear flow (Turton, Tuckerman &
Barkley 2015; Bengana et al. 2019; Bengana & Tuckerman 2021). Within the RZIF
framework, the eigenvalues are computed based on dynamics linearized around a mean
flow that can deviate from the laminar base flow, much as here the single-mode equations
employ the large-scale modes T̄0 and Ū0 with superposed harmonics; see (3.9f ) and (3.9g).

We further leverage the computational efficiency of single-mode equations to analyse
the frequency scaling near the global bifurcation. We perform a bisection over RaT,q using
DNS of the single-mode equations in (3.9) to identify the global bifurcation point with
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Fixed-flux Rayleigh–Bénard convection in periodic domains
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Figure 7. Same as figure 1 but obtained from the single-mode equations in (3.9).

Ra( p)
T,q Ra(s)

T,q Ra(h)
T,q ωh Ra(g)

T,q

2-D full equations in (2.7) 104 19 576.3 32 085.1 43.1 46 892.0
Single-mode equations in (3.9) 104 19 291.3 32 254.8 43.5 46 761.1

Table 1. Comparison of the bifurcation points between the full 2-D equations in (2.7) with Lx = 0.2π, and the
single-mode equations in (3.9) with kx = 10, including the primary bifurcation Ra( p)

T,q, the secondary bifurcation

Ra(s)
T,q, the Hopf bifurcation Ra(h)

T,q with Hopf frequency ωh, and the global bifurcation Ra(g)
T,q, all at Pr = 1.

1.5 100

0

–100

1.0

0.5
0 5

DNS
Tp = –0.0448 ln(RaT,q – RaT,q) + 0.6118

10 15 20 –150 –100 –50 0 50

–ln(RaT,q – RaT,q) Re(λ)

Im
(λ

)

Tp

(g)

(g)

(b)(a)

Figure 8. (a) The reversal period Tp as a function of RaT,q near the global bifurcation Ra(g)
T,q obtained from

the single-mode equations in (3.9) at Pr = 1 and kx = 10. The black dashed line is Tp = −0.0448 ln(Ra(g)
T,q −

RaT,q) + 0.6118 and fits the DNS data with a relative residue of 0.4 %, where Ra(g)
T,q = 46 761.0819762429.

(b) The leading eigenvalues of the (unstable) elevator mode at Ra(g)
T,q within the single-mode equations (3.9).

more significant digits, Ra(g)
T,q = 46 761.0819762429, than possible from the full equations.

Figure 8 shows that the period Tp of the direction reversals near Ra(g)
T,q diverges as

Tp = −0.0448 ln(Ra(g)
T,q − RaT,q) + 0.6118; cf. Knobloch & Proctor (1981) and Knobloch

(1986).
Since the DRS collides with an unstable elevator mode at the global bifurcation

Ra(g)
T,q, as indicated in figure 7(a), it is instructive to compute the eigenvalues of the
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elevator mode at this point within the single-mode equations (3.9). Figure 8(b) shows
that the unstable eigenvalue λ1 = 43.69 is real, and that the least stable eigenvalues
are complex, with λ2,3 = −ρ ± iω = −49.27 ± i117.11. Thus this global bifurcation is
associated with a saddle-focus equilibrium with δ ≡ ρ/λ1 = 1.13 > 1, i.e. the tame
version of the Shilnikov bifurcation (Shilnikov 1965; Shilnikov & Shilnikov 2007). Here,
we report these eigenvalues from the single-mode equations (3.9) to facilitate direct
comparison of the logarithmic scaling law in figure 8(a) with theory. For the 2-D full
equations, the corresponding eigenvalues of the elevator mode at the corresponding Ra(g)

T,q
are λ1 = 41.11, λ2,3 = −ρ ± iω = −56.67 ± i114.67, leading to a Shilnikov bifurcation
with δ = 1.38.

The logarithmic scaling law and associated coefficient can be predicted by constructing
a Poincaré map near the global bifurcation point Ra(g)

T,q and the saddle-focus equilibrium
(here the steady elevator mode) by composing a local map near this saddle focus and a
global map (Shilnikov & Shilnikov 2007), as done by Glendinning & Sparrow (1984).
For the local map, we consider the flow linearized around this elevator mode with μ :=
Ra(g)

T,q − RaT,q  1:

ζ̇ = λ1ζ + h.o.t., (3.10a)

θ̇ = ω + h.o.t., (3.10b)

ṙ = −ρr + h.o.t., (3.10c)

where ζ is the coordinate corresponding to the unstable eigenvalue, (r, θ) are the polar
coordinates associated with the least stable eigenvalues, and h.o.t. refers to higher-order
terms. We consider the Poincaré section Σ in := {θ = 0} and Σout := {ζ = H}, and
construct the local map Πloc : Σ in → Σout according to the linearized dynamics in (3.10):

H = ζ(Tf ) = ζ0 eλ1Tf , (3.11a)

r(Tf ) = r0 e−ρTf , (3.11b)

θ(Tf ) = ωTf . (3.11c)

From (3.11a), the time of flight Σ in := {θ = 0} → Σout := {ζ = H} is

Tf = − 1
λ1

ln
(

ζ0

H

)
. (3.12)

Substituting (3.12) into (3.11), we obtain the local map:

Πloc : (r, θ, ζ ) →
(

r0

(
ζ0

H

)δ

,
ω

λ1
ln
(

H
ζ0

)
, H
)

. (3.13)

The global map Πglobal : Σout → Σ in is obtained from a Taylor series around the
homoclinic orbit assumed to be present at μ = 0:

Πglobal : (r, θ, h) → (r̄ + aμ + br cos θ + cr sin θ, 0, dμ + er cos θ + fr sin θ) + h.o.t.,
(3.14)

where a, b, c, d, e and f are constants. By composing the local and global maps (Π :
Σ in → Σ in = Πglobal ◦ Πloc), we obtain the Poincaré map

Π :
[

r
ζ

]
→
[

r̄
0

]
+
[

a
d

]
μ +

[
c1rζ δ cos(k1 ln ζ + φ1)

c2rζ δ cos(k2 ln ζ + φ2)

]
+ h.o.t., (3.15)
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Fixed-flux Rayleigh–Bénard convection in periodic domains

where ci, ki and φi (i = 1, 2) are constants. We may now search for a fixed point of the
Poincaré map Π that corresponds to the periodic orbit near Ra(g)

T,q in the original system.
This point is approximated by the fixed point of the one-dimensional map

ζ − dμ = Φ(ζ) ≡ c2rζ δ cos(k2 ln ζ + φ2) + h.o.t. (3.16)

When δ > 1, there is a unique fixed point of (3.16), which scales as ζ ∼ dμ near the global
bifurcation μ → 0. Thus based on (3.12) and the assumption that the global return is much
faster than the local passage past the fixed point, the period of the reversing orbit just before
the global bifurcation scales as

Tp = − 2
λ1

ln μ + const. = − 2
λ1

ln
(

Ra(g)
T,q − RaT,q

)
+ const. (3.17)

Here, the factor 2 arises because the orbit makes two passes near the fixed point in each
reversal period. Using λ1 from figure 8(b), this calculation predicts that 2/λ1 = 0.04578,
a coefficient that is almost exactly that obtained from the fit to the simulation data in
figure 8(a).

4. Dynamics at high Rayleigh numbers

In this section, we study the dynamics at higher Rayleigh numbers, where chaotic
behaviour appears. We first analyse the secondary instability of the elevator mode, which
continues to play an important role in the high Rayleigh number regime. We focus on the
2-D elevator mode with a horizontal wavenumber kx = ke in the x direction,

W̄e(x) = ŵe exp(ikex) + c.c., T̄e(x) = T̂e exp(ikex) + c.c., (4.1a,b)

and solution amplitude given by (3.6a,b). The decomposition

u = W̄eez + u′, T = T̄e + T ′ (4.2a,b)

leads to the linearized equations

∂u′

∂t
+ u′ dW̄e

dx
ez + W̄e ∂zu′ = −∇p′ + Pr RaT,q T ′ez + Pr ∇2u′, (4.3a)

∇ · u′ = 0, (4.3b)

∂T ′

∂t
+ u′ dT̄e

dx
+ W̄e ∂zT ′ − w′ + w′〈W̄eT̄e〉h,v = ∇2T ′. (4.3c)

The cubic flux-feedback nonlinearity w〈wT〉h,v in (2.7c) generates three linearized terms:

w′〈W̄eT̄e〉h,v + W̄e〈w′T̄e〉h,v + W̄e〈W̄eT ′〉h,v, (4.4)

with the latter two terms in (4.4) vanishing for kz /= 0. As a result, only the term
w′〈W̄eT̄e〉h,v originating from flux feedback appears in the linearized equation in (4.3c).
The normal mode assumption in general 3-D form

u′ = ũ(x) exp[i(kyy + kzz) + λt] + c.c., (4.5a)

T ′ = T̃(x) exp[i(kyy + kzz) + λt] + c.c. (4.5b)

contains the coefficients ũ(x) and T̃(x) that depend on x because the base flow (elevator
mode) also depends on x. In terms of the horizontal vorticity ω̃x := ikyw̃ − ikzṽ, we have
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the linear eigenvalue problem

λ

⎡
⎣ ũ

ω̃x
T̃

⎤
⎦ =

⎡
⎣A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤
⎦
⎡
⎣ ũ

ω̃x
T̃

⎤
⎦ =: A

⎡
⎣ ũ

ω̃x
T̃

⎤
⎦ , (4.6)

where

A11 = ∇̃−2
(

−ikzW̄e ∇̃2 + ikz
d2W̄e

dx2 + Pr ∇̃4
)

, (4.7a)

A12 = 0, (4.7b)

A13 = ∇̃−2 Pr RaT,q (−ikz ∂x), (4.7c)

A21 = −iky
dW̄e

dx
, (4.7d)

A22 = −ikzW̄e + Pr ∇̃2, (4.7e)

A23 = Pr RaT,q iky, (4.7f )

A31 = −dT̄e

dx
+ [1 − 〈W̄eT̄e〉h,v]

ikz ∂x

k2
y + k2

z
, (4.7g)

A32 = [1 − 〈W̄eT̄e〉h,v]
−iky

k2
y + k2

z
, (4.7h)

A33 = −ikzW̄e + ∇̃2, (4.7i)

with ∇̃2 := ∂2
x − k2

y − k2
z , and ∇̃4 := ∂4

x − 2(k2
y + k2

z ) ∂2
x + (k2

y + k2
z )

2.
We compare the above formulation with that without the flux feedback, corresponding

to setting the integral flux-feedback terms 〈W̄eT̄e〉h,v in (4.7g)–(4.7h) to zero, leading to a
modified eigenvalue problem with A in (4.6) replaced by

A :=
⎡
⎣A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤
⎦ , (4.8)

where

A31 := −dT̄e

dx
+ ikz ∂x

k2
y + k2

z
, A32 := −iky

k2
y + k2

z
. (4.9a,b)

The horizontal direction is discretized using a Fourier collocation method with the
horizontal derivative computed using a Fourier differentiation matrix (Weideman & Reddy
2000). The numerical implementation is validated against Floquet-based linear stability
analysis (Holyer 1984; Garaud, Gallet & Bischoff 2015; Radko 2016; Garaud, Kumar &
Sridhar 2019). We choose the horizontal domain Lx to contain one or more wavelengths
of the elevator wavelength 2π/ke. For all the results reported here, we take ky = 0
corresponding to a 2-D configuration.

Figure 9(a) shows the growth rate max[Re(λ)], comparing the fixed-flux case computed
from A in (4.6) with the case without flux feedback computed from A in (4.8). The flux
feedback leads to λ = 0 at kz = 0, and the instability is limited to a small range of kz,
a feature observed widely in systems with a conservation law (Matthews & Cox 2000).

979 A19-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
57

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1057


Fixed-flux Rayleigh–Bénard convection in periodic domains

10 000 10

8

6

4

104 105 106 107 108

5000

With flux feedback
No flux feedback

m
ax

[R
e(
λ

)]

0

0 5 10 15

kz RaT,q

kz,max

kz,max

kz,0
kz,0

(b)(a)

Figure 9. (a) The growth rate max[Re(λ)] at RaT,q = 108, Pr = 1, Lx = 0.2π and ke = 10, with flux feedback
computed from A in (4.6), and without flux feedback as computed from A in (4.8). (b) The wavenumbers kz,0
and kz,max as functions of RaT,q at Pr = 1, Lx = 0.2π and ke = 10. The red dashed line corresponds to kz = 2π.

For the case without flux feedback, its growth rate is larger and decays to zero only at much
higher wavenumbers kz (not shown in figure 9a). We further identify the wavenumbers
kz,0 and kz,max indicated in figure 9(a) corresponding, respectively, to zero growth rate and
maximum growth rate:

λ(kz,0) = 0 with kz,0 /= 0, (4.10a)

kz,max := arg max
kz

Re(λ). (4.10b)

Figure 9(b) displays kz,0 and kz,max, both of which increase as RaT,q increases, with
kz,max < kz,0. Here, we also plot kz = 2π, which is the smallest non-trivial vertical
wavenumber that fits in the Lz = 1 domain. The secondary instability wavelength is not
required to lie within Lz = 1, thus a comparison of kz,0 with kz = 2π determines whether
the secondary instability can occur within the domain, or whether it is suppressed by its
finite size. Figure 9(b) shows that kz,0 > 2π when Lx = 0.2π and RaT,q ≥ 3 × 104, a result
consistent with the presence of a secondary instability in an Lz = 1 domain identified in
§ 3.

The secondary instability of the elevator mode and the MTWs generated through
the sequence of bifurcations examined in § 3 continue to play an important role at
larger Rayleigh numbers. Figure 10 displays DNS results at RaT,q = 108 obtained with
Nx = Nz = 256 grid points (Nx = Nz = 512 grid points generate the same behaviour).
The large-scale shear 〈u〉h(z, t) in figure 10(a) is now dominated by MTWs, but displays
chaotic behaviour. In addition, it slowly migrates in the vertical direction, behaviour that
is permitted by the periodic boundary conditions in the vertical.

The mean total temperature averaged over t ∈ [0.275, 0.465] in figure 10(b) exhibits a
deviation from a linear profile similar to canonical RBC. Moreover, in the region where the
mean temperature deviation 〈T〉h,t(z) is close to zero, the corresponding large-scale shear
〈u〉h(z, t) also vanishes (white regions in figure 10a) and the root mean square (r.m.s.)
vertical velocity

√〈ww〉h,t displays local minima with a zero vertical derivative, as shown
in figure 10(c). The local maxima of the r.m.s. vertical velocity

√〈ww〉h,t correspond
instead to the mixed mean temperature regions in figure 10(b). This behaviour resembles
that of RBC in a bounded domain with constant temperature boundaries and no-slip
instead of stress-free velocity boundary conditions at the top and bottom (van der Poel
et al. 2014). The figure shows that the fixed-flux constraint suppresses bursting behaviour
compared with homogeneous RBC driven by a constant temperature gradient (Borue &
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Figure 10. (a) Large-scale shear 〈u〉h(z, t), (b) total temperature 1 + T̄z,qz + 〈T〉h,t(z) (solid black line)
compared with the linear profile 1 + T̄z,qz (dashed blue line), and (c) root mean square vertical velocity√〈ww〉h,t, the latter two averaged over t ∈ [0.275, 0.465], at RaT,q = 108, Pr = 1 and Lx = 0.2π.
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Nu = 0.189 RaT,q
0.217
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15
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RaT,q

Figure 11. Plot of Nu as a function of RaT,q from DNS with Lx = 0.2π and Pr = 1.

Orszag 1997; Lohse & Toschi 2003; Calzavarini et al. 2005, 2006). Figure 11 shows
the Nusselt number scaling within RaT,q ∈ [108, 1010] computed with Nx = Nz = 512
grid points and Lx = 0.2π, Pr = 1. Here, the fitted scaling law Nu = 0.189 Ra0.217

T,q is

associated with an exponent lower than Nu ∼ Ra1/3
T,q corresponding to ultimate regime

scaling Nu ∼ Ra1/2
T . However, the flow structures associated with figure 11 are dominated

by large-scale shear with a 〈u〉h(z, t) profile similar to that in figure 10(a), potentially
reducing heat transport.

The impact of the domain size and of the horizontal wavenumber of the elevator mode
within the domain is analysed further in figure 12(a), which shows kz,0 and kz,max as
functions of Lx when ke = 2π/Lx, RaT,q = 108 and Pr = 1. As the horizontal domain and
wavelength increase, both kz,0 and kz,max decrease, suggesting a small vertical wavenumber
of the secondary instability. With Lz fixed at Lz = 1, this requires that we choose a small
enough horizontal domain such that kz,0 ≥ 2π. A similar requirement applies for mean
flow generation in canonical RBC (Rucklidge & Matthews 1996; Fitzgerald & Farrell 2014;
Wang et al. 2020) and is the reason for choosing Lx = 0.2π for most of the results in this
paper. Figure 12(b) then fixes Lx at Lx = 0.4π, but varies ke, allowing multiple elevator
modes within the domain. Evidently, both kz,0 and kz,max increase as ke increases, and
both are fitted well by a linear scaling law. This trend can be confirmed also in DNS.
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Figure 12. The wavenumbers kz,0 and kz,max as functions of (a) Lx when ke = 2π/Lx, and (b) ke with
Lx = 0.4π. The linear fit is kz,0 = 0.98ke + 0.10 (black dash-dotted line) and kz,max = 0.57ke + 0.20 (blue
dash-dotted line). The dashed red lines indicate kz = 2π. Instability requires that kz,0 > 2π. Other parameters
are RaT,q = 108 and Pr = 1.
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Figure 13. Large-scale shear 〈u〉h(z, t) with initial elevator mode wavenumber (a) ke = 20 and (b) ke = 30,
both at RaT,q = 108, Pr = 1 and Lx = 0.4π.

The associated large-scale shear 〈u〉h(z, t) in figure 13(a) shows that kz = 4π for an initial
elevator mode wavenumber ke = 20, while 〈u〉h(z, t) in figure 13(b) displays a kz = 6π
instability associated with ke = 30. This observation corresponds directly to the kz,max
value at ke = 20 and 30 predicted by the secondary instability analysis in figure 12(b).

In a domain of horizontal size Lx = 0.4π, the final state is a stable domain-filling
elevator mode with ke = 5 corresponding to the white region in figure 13 at RaT,q = 108.
A similar transition to a larger horizontal scale is also observed in fixed-flux RBC within
both the weakly nonlinear regime (Chapman & Proctor 1980) and the turbulent regime
(Vieweg et al. 2021, 2022; Käufer et al. 2023). The stable elevator mode that results
suggests that vertical jets (i.e. elevator modes) are favoured in wide domains, while
horizontal jets are found in narrow domains. This behaviour resembles that in rapidly
rotating convection where jets parallel to the short side of an anisotropic domain are found
(Julien, Knobloch & Plumley 2018), or in 2-D turbulence driven by stochastic forcing
(Bouchet & Simonnet 2009). At higher Rayleigh numbers, the flow in wider domains
does become turbulent despite the absence of a shear-generating instability. For example,
when Lx = 0.4π, this instability is absent since kz,0 < 2π. However, when the Rayleigh
number is increased to RaT,q = 1010, the flow nonetheless becomes turbulent or at least
chaotic. Figure 14 shows two snapshots of a solution with Nx = Nz = 512 grid points
at these parameter values, displaying intermittent layering and vortex dipole generation.
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Figure 14. Snapshots of the temperature deviation T(x, z, t) at (a) t = 0.03 and (b) t = 0.032. Parameters are
RaT,q = 1010, Lx = 0.4π and Pr = 1.

The mechanism responsible for destabilizing the stationary elevator state at these large
Rayleigh numbers remains to be studied.

5. Prandtl number effect

In this section, we investigate the effect of the Prandtl number using the full 2-D
equations. A low Prandtl number is of interest in astrophysical applications, where the heat
transport is dominated by photon diffusion (Garaud 2018, 2021). Prandtl number Pr = 7
corresponds to thermal diffusivity in water appropriate to oceanographic applications.
When the temperature field is exchanged for a concentration such as salinity, the
corresponding thermal diffusivity is replaced by molecular diffusivity, leading to Prandtl
numbers as large as Pr = 700.

Figure 15 shows a bifurcation diagram similar to figure 1(a) but with Pr = 0.1 and
Pr = 7 in figures 15(a,b), respectively. The onset of the primary instability Ra( p)

T,q and
the amplitude of the resulting elevator mode branch are not affected by Pr, consistent
with the analytical results in § 3.1. At low Prandtl numbers, the secondary bifurcation
point Ra(s)

T,q and the Hopf bifurcation point Ra(h)
T,q are both shifted to much lower Rayleigh

numbers, while increasing Pr shifts these bifurcation points to a higher Rayleigh number.
These bifurcation points and the associated Hopf frequency ωh are listed in table 2. The
Hopf frequency in table 2 obtained from numerical continuation is also very close to
the oscillation frequency obtained from DNS at a parameter close to Ra(h)

T,q (not shown).
Table 2 compares the bifurcation points computed from the full 2-D equations in (2.7) with
the corresponding results from the single-mode equations in (3.9). The latter are in closer
agreement with the full 2-D equations at Pr = 0.1 than at Pr = 7 because a low Prandtl
number shifts these bifurcation points closer to the onset of primary instability at Ra( p)

T,q.
A related phenomenon is found in RBC, where at low Pr, a steady convection roll becomes
immediately unstable to a large-scale (zonal) mode (Winchester, Howell & Dallas 2022).
The orange markers in figure 15 show the Nusselt number of the time-dependent states
obtained from DNS, where the low Prandtl number case follows closely that of the TEM
branch.

Figure 16(a) displays the large-scale shear 〈u〉h(z, t) found at RaT,q = 10 800
and Pr = 0.1. The instantaneous Nusselt number grows exponentially from Nu ≈ 1
corresponding to the conduction state, and saturates at Nu ≈ 1.08 associated with the
elevator mode based on (3.7). The Nusselt number then decreases rapidly to Nu ≈ 1 as
a result of shear generation. Four different snapshots corresponding to the four different
markers in figure 16(b) are shown in figure 17. Here, the elevator mode grows from t = 160
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Figure 15. Bifurcation diagram with an elevator mode (EM, black line), tilted elevator mode (TEM, blue)
and time-dependent states (orange circles) at (a) Pr = 0.1 and (b) Pr = 7. The bifurcation points include the
primary bifurcation Ra( p)

T,q, the secondary bifurcation Ra(s)
T,q, and a Hopf bifurcation Ra(h)

T,q. The horizontal
domain size is Lx = 0.2π.

Ra( p)
T,q Ra(s)

T,q Ra(h)
T,q ωh

Pr = 0.1 Full 2-D equations in (2.7) 104 10 185.4 10 607.6 2.0
Single-mode equations in (3.9) 104 10 181.5 10 608.8 2.0

Pr = 7 Full 2-D equations in (2.7) 104 155 671.7 168 463.5 247.5
Single-mode equations in (3.9) 104 117 033.7 157 801.8 250.1

Table 2. Comparison of bifurcation points between the full 2-D equations in (2.7) with Lx = 0.2π, and the
single-mode equations in (3.9) with kx = 10, including the primary bifurcation Ra( p)

T,q, the secondary bifurcation

Ra(s)
T,q, the Hopf bifurcation Ra(h)

T,q, and the Hopf frequency ωh at Pr = 0.1 and Pr = 7.

to t = 166 and then tilts at t = 166.5, followed by rapid decay back towards the conduction
state at t = 167. This behaviour resembles a relaxation oscillation between the conduction
base state and the steady elevator mode associated with different time scales between the
growth and decay of the elevator mode. A similar oscillation cycle between a sheared state
and convection rolls is also observed in RBC (Matthews et al. 1996; Goluskin et al. 2014)
and magnetoconvection (Matthews, Proctor & Weiss 1995). More generally, relaxation
oscillations associated with disparate time scales are also observed widely in binary
fluid convection (Batiste et al. 2006), double-diffusive convection (Beaume, Bergeon &
Knobloch 2018) and convection in a rapidly rotating sphere (Busse 2002). Burst behaviour
similar to the relaxation oscillation cycle observed here can be described by a 2-D ordinary
differential equation model, where a burst is triggered by a symmetry-breaking instability
of a growing symmetric state when it reaches a certain amplitude (Batiste et al. 2001;
Bergeon & Knobloch 2002). The prevalence of large-scale shear at low Pr is known to
lead to suppression of convection, an effect observed widely in the low-Pr regime of RBC;
see e.g. Schumacher & Sreenivasan (2020, figure 9). The suppression of convection by
large-scale shear resembles the suppression of turbulence by self-generated mean flows
(Shats et al. 2007).

Figure 18(a) shows nu(t) at a higher Rayleigh number, RaT,q = 11 900. This time
series no longer displays visible periodic behaviour, but its power spectrum density
in figure 18(b) shows multiple peaks corresponding to frequencies m f1 + n f2 with
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Figure 16. (a) Large-scale shear 〈u〉h(z, t) and (b) instantaneous Nusselt number nu(t) displaying relaxation
oscillations at RaT,q = 10 800, Pr = 0.1 and Lx = 0.2π.
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Figure 17. Evolution of the temperature deviation T(x, z, t) during a burst corresponding to the four times
indicated in figure 16(b): (a) t = 160 (black star), (b) t = 166 (blue circle), (c) t = 166.5 (magenta square), and
(d) t = 167 (red cross). Parameters are RaT,q = 10 800, Pr = 0.1 and Lx = 0.2π (see supplementary movie 2).
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Figure 18. (a) The instantaneous Nusselt number nu(t) and (b) its power spectrum density (PSD) within t ∈
[200, 450], displaying spectral peaks at frequencies mf1 + nf2, where f1 = 0.1483, f2 = 0.2044 and m, n ∈ Z

+,
indicating quasi-periodic dynamics at RaT,q = 11 900, Pr = 0.1 and Lx = 0.2π.

f1 = 0.1483, f2 = 0.2044 and m, n ∈ Z
+. We conclude that the state in figure 18(a)

is quasi-periodic, and likely generated by a torus bifurcation (equivalently, a Hopf
bifurcation of a periodic orbit). Quasi-periodic orbits are also observed prior to the onset
of non-periodic motion in RBC (Ahlers & Behringer 1978; Yahata 1982). At yet higher
Rayleigh numbers, chaotic behaviour appears as shown in figure 19 for RaT,q = 13 000.
The broad power spectrum density (PSD) is indicative of a chaotic state. The instantaneous
Nusselt number does not reach the amplitude corresponding to the saturated steady
elevator mode with Nu = 1.3, as shown in figure 19(a). This is because the growing
elevator modes are disrupted before they are able to saturate.

We next move on to the case Pr = 7. Figure 20 displays 〈u〉h(z, t) and nu(t) at
RaT,q = 2.4 × 105 and Pr = 7. Here, MTWs are present, similar to those at Pr = 1 in
figure 5(a). The instantaneous Nusselt number shows irregular behaviour. At the higher
Rayleigh number RaT,q = 3 × 105, the large-scale shear can reverse its direction, as shown
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Figure 19. (a) The instantaneous Nusselt number nu(t) and (b) its PSD at parameters RaT,q = 13 000,
Pr = 0.1 and Lx = 0.2π.
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Figure 20. (a) The mean horizontal flow 〈u〉h(z, t) and (b) instantaneous Nusselt number nu(t) at
RaT,q = 2.4 × 105, Pr = 7 and Lx = 0.2π.
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Figure 21. (a) The mean horizontal flow 〈u〉h(z, t) and (b) instantaneous Nusselt number nu(t) at
RaT,q = 3 × 105, Pr = 7 and Lx = 0.2π.

in figure 21(a). At this Rayleigh number, the instantaneous Nusselt number displays
intermittent behaviour that can be temporarily much larger than that of the elevator mode
(Nu ≈ 30), as shown in figure 21(b). Similar intermittency in the heat transport is also
observed in homogeneous RBC driven by a constant temperature gradient (Borue &
Orszag 1997; Calzavarini et al. 2005, 2006) owing to the intermittent appearance of an
elevator mode. Here, a larger Prandtl number suppresses the large-scale shear that disrupts
elevator modes, leading to the observed intermittent bursting behaviour resembling that in
homogeneous RBC driven by a constant temperature gradient.

Figure 22 shows four snapshots of the temperature deviation T(x, z, t) close to the burst
event in figure 21(b) at the four times indicated in the figure. Here, the local minima
in the Nusselt number correspond to tilted states that can be associated with direction
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Figure 22. Evolution of the temperature deviation T(x, z, t) during a burst corresponding to the four times
indicated in figure 21(b): (a) t = 3.62 (black star), (b) t = 3.67 (blue circle), (c) t = 3.68 (magenta square), and
(d) t = 3.69 (red cross). Parameters are RaT,q = 3 × 105, Pr = 7 and Lx = 0.2π.
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Figure 23. The wavenumbers kz,0 and kz,max as functions of Pr at RaT,q = 108, Lx = 0.2π and ke = 10. The
red dashed line corresponds to kz = 2π.

reversals, as shown in figure 22(a) at t = 3.62 and figure 22(b) at t = 3.67. The local
maximum of the Nusselt number at t = 3.68 (figure 22c) corresponds to a burst state with
hot fluid moving upwards and cold fluid moving downwards without impediment. This
burst significantly reduces the absolute value of the temperature gradient, which leads
to a large Nusselt number based on their reciprocal relation in (2.8). This behaviour is
similar to homogeneous RBC in the high Prandtl number regime, where the temperature
field often leads to vertical jet formation associated with a strong influence on the vertical
temperature gradient (Calzavarini et al. 2005).

We next move on to Pr = 700, corresponding to the molecular diffusivity of salt in
water. At this parameter, the elevator mode remains ‘stable’ within DNS with Lx = 0.2π
up to RaT,q = 108. This can be understood from the secondary instability of elevator mode
as shown in figure 23, where the onset vertical wavenumber kz,0 at Pr = 700 is lower than
kz = 2π, which is the minimum wavenumber for the presence of a secondary instability
in a domain with Lz = 1. In order to incorporate the secondary instability of the elevator
mode, we change the horizontal domain size to Lx = 0.1π, associated with domain-filling
wavenumber kx = 2π/Lx = 20, and increase the Rayleigh number to RaT,q = 8 × 108.

Figure 24(a) displays the mean horizontal flow 〈u〉h(z, t) at RaT,q = 8 × 108, Lx = 0.1π
and Pr = 700. This large-scale shear begins to drift vertically at t ≈ 0.3, although its
magnitude is in fact much reduced from that at Pr = 1 (figure 10a). Moreover, as shown in
figure 24(b), the mean temperature profile averaged over t ∈ [0.02, 0.26] exhibits apparent
layer formation and several narrow regions displaying a stably stratified temperature
profile. Such stably stratified regions are also present in extended domain DNS of
RBC with Pr = 7, but disappear when the Prandtl number decreases (Schumacher &
Sreenivasan 2020, figure 9g). Related locally stably stratified regions are also observed
in potential vorticity staircases (Read et al. 2006, figure 5) and rotating double-diffusive
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Figure 24. (a) The mean horizontal flow 〈u〉h(z, t), and (b,c) the mean temperature 1 + T̄z,qz + 〈T〉h,t(z) (solid
black line) compared with the linear profile 1 + T̄z,qz (dashed blue line) averaged, respectively, over (b) t ∈
[0.02, 0.26] and (c) t ∈ [0.5, 1]. The parameters are RaT,q = 8 × 108, Pr = 700 and Lx = 0.1π.
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Figure 25. Temperature deviation T(x, z, t) at (a) t = 0.456 with nu(t) = 1165.5, (b) t = 0.457 with T̄z,q(t) =
1.75 × 10−5, (c) t = 0.459 with nu(t) = 4784.7, and (d) t = 0.461 with nu(t) = 961.5, at RaT,q = 8 ×
108, Pr = 700 and Lx = 0.1π, showing the generation of momentary stable stratification in case (b) (see
supplementary movie 3).

convection (Moll & Garaud 2016, figures 6–8). Note that due to the vertical drift, the mean
temperature profile is close to a linear profile if averaged over longer times, as shown in
figure 24(c).

Figure 25 shows four snapshots of the temperature deviation T(x, z, t) at Pr = 700
and RaT,q = 8 × 108. The temperature deviation in figures 25(a) and 25(d) displays
tilted states associated with different tilting directions, with Nusselt numbers that are
smaller than that of the elevator mode. Figure 25(b) shows a burst associated with
the temporary creation of a positive or stable instantaneous mean temperature gradient
T̄z,q(t) := 〈wT〉h,v − 1. At a slightly later instant, shown in figure 25(c), the temperature
deviation is slightly tilted but still close to an elevator mode with an instantaneous Nusselt
number close to that of an elevator mode (Nu = RaT,q/k4

x = 5000). In homogeneous RBC
driven by a constant temperature gradient, elevator modes appear more frequently at high
Prandtl numbers (Calzavarini et al. 2005), which is also the case here in the fixed-flux
set-up, potentially due to a weaker large-scale shear that plays such an important role in
the secondary instability of elevator modes.

6. Conclusions and future work

This work formulated a fixed-flux problem for homogeneous Rayleigh–Bénard convection
(RBC) and analysed its underlying dynamics in detail using numerical continuation,
secondary instability analysis and direct numerical simulations. The fixed-flux formulation
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leads to steady elevator mode solutions with a well-defined amplitude, something
that is not the case in homogeneous RBC driven by a constant temperature gradient.
The secondary instability of this elevator mode leads to tilted elevator modes (TEMs)
accompanied by the generation of a horizontal shear flow or jet, provided that the elevator
mode is sufficiently slender. We have chosen to admit this secondary instability by
increasing the wavenumber ke of the elevator modes while keeping the vertical extent
of the domain fixed. This procedure is equivalent to keeping ke fixed and increasing the
domain height, provided that the Rayleigh number is adjusted accordingly. Thus narrow
domains favour generation of horizontal jets, while wider domains favour stable elevator
modes or equivalently vertical jets.

At Pr = 1, a further increase in the Rayleigh number destabilizes the TEM state via
a subcritical Hopf bifurcation leading to an interval of coexistence between the steady
TEM state and a time-dependent state that we have called a direction-reversing state. With
increasing Rayleigh number, this direction-reversing state encounters a global bifurcation
of Shilnikov type (Shilnikov & Shilnikov 2007), leading to a modulated travelling wave
state without flow reversal. Single-mode equations that severely truncate the horizontal
structure reproduce this moderate Rayleigh number behaviour well, and confirm the tame
(non-chaotic) nature of the Shilnikov bifurcation for the parameter values used. At higher
Rayleigh numbers, chaotic behaviour appears but is dominated by modulated travelling
waves in narrow domains, while in wider domains, simulations with RaT,q = 1010 display
intermittent layering and vortex dipole generation. The correspondence between mean
temperature and velocity profiles resembles behaviour encountered with no-slip instead
of stress-free boundary conditions in RBC with fixed temperature. In contrast, the low
Prandtl number regime displays relaxation oscillations between the conduction state
and the elevator mode, and exhibits quasi-periodic and then chaotic behaviour as the
Rayleigh number increases. At high Prandtl numbers, the large-scale shear generated
by the secondary instability is much weaker, and the flow exhibits bursting behaviour
resembling that in homogeneous RBC driven by a constant temperature gradient (Borue &
Orszag 1997; Calzavarini et al. 2005, 2006). These bursts are associated with a significant
increase in heat transport or even intermittent stable temperature stratification. Secondary
bifurcation points are shifted closer to the primary instability at lower Prandtl numbers,
leading to greater fidelity of our single-mode description. The relaxation rate β of the heat
flux does not influence the late-time flow behaviour of the system.

This work opens up several directions for future work. In particular, it is crucial
to analyse the corresponding dynamics in three dimensions, where large-scale shears
may form in an arbitrary horizontal direction or result from the excitation of the
vertical vorticity mode. Inevitably, high Rayleigh number convection generates multiple
scales, and the resulting interaction between different scales in the turbulent regime
represents a continuing challenge to theory. Of particular interest is the recent discovery
that temperature boundary conditions play a significant role in the multiscale structure
of convection even in the turbulent regime (Vieweg et al. 2021, 2022) through a
mechanism that remains elusive. The details of such high Rayleigh number flows in
our configuration are beyond the scope of the present investigation, but a systematic
study of the Nusselt number scaling with RaT,q and Pr for this case is clearly desirable.
Moreover, the fixed-flux formulation can be extended naturally to double-diffusive
convection or rotating convection set-ups, and to reduced equations valid in the low
Prandtl number limit (Spiegel 1962; Thual 1992; Lignières 1999; Garaud 2021) or in the
high Prandtl number limit (Constantin & Doering 1999; Wang 2004). The usefulness of
these approaches for studying finite Prandtl number dynamics in fixed-flux systems merits
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Figure 26. Same as figure 2 but obtained with β = 104 and a random Q(t = 0): (a) 〈u〉h(z, t), and
(b) T(x, z, t = 10).

detailed investigation. Moreover, a systematic comparison between single-mode equations
and the full 2-D equations at different Prandtl numbers will provide further quantification
of the validity of the single-mode description, and potentially provide further reduction in
the low Prandtl number limit.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.1057.
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Appendix. Effect of finite β in (2.5)

In this appendix, we present selected results obtained for a finite flux adjustment rate
β in (2.5) for comparison with the β = ∞ case studied in §§ 3–5. Figure 26 displays a
TEM with β = 104 and a random Q(t = 0) at RaT,q = 3 × 104, revealing no substantial
difference when compared with figure 2 for β = ∞. The only difference is in the length of
the initial transient state (white region in figure 26a) and a shift in the vertical. Similarly,
figure 27 displays MTWs at RaT,q = 6 × 104, β = 104 that resemble, except for a vertical
shift, those in figure 5 for β = ∞. This is so also for RaT,q = 108 as figure 28 displays the
same behaviour as figure 10.

We have also explored smaller values of β when its effect will be more apparent.
Figure 29 shows nu(t) for different β associated with Q(t = 0) = 0 at RaT,q = 6 × 104.
For β = 1, nu(t) is reduced initially but then recovers to the level of the other β cases at
t ≈ 7. A similar reduced Nusselt number also appears for β = 10, but earlier. For β = 100
and 1000 in figure 29(b), nu(t) recovers quickly to the value nu(t) = 6 associated with
elevator mode, then starts to oscillate. The late-time flow structures for these β values
display MTWs just as for β = ∞ (figure 5) except for a vertical shift.
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Figure 27. Same as figure 5 but obtained with β = 104 and a random Q(t = 0): (a) 〈u〉h(z, t), and
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Figure 29. The instantaneous Nusselt number nu(t) at RaT,q = 6 × 104, Pr = 1, Lx = 0.2π and
Q(t = 0) = 0, with (a) β = 1, 10, and (b) β = 100, 1000.

We conclude that different values of the relaxation rate β play no significant role in the
late-time dynamics of the system.
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