
Compositio Math. 141 (2005) 1374–1404
doi:10.1112/S0010437X05001508

Products of degenerate quadratic forms

Paul Balmer

Abstract

We challenge the classical belief that products of degenerate quadratic forms must remain
degenerate and we show that this fails in general, e.g. over tensor triangulated categories
with duality. This opens new ways of constructing non-degenerate quadratic forms and
hence classes in Witt groups. In addition, we encapsulate in a Leibniz-type formula the
behavior of the product with respect to the symmetric cone construction. We illustrate
these ideas by computing the total Witt group of regular projective spaces.
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Introduction

Perpetuation of degeneracy is the following well-known phenomenon. Given a degenerate symmetric
form α1 on a finite-dimensional vector space V1 and any symmetric form α2 on a space V2, the tensor
product symmetric form α1 ⊗ α2 on V1 ⊗ V2 is again degenerate, except, of course, in the trivial
case where the space V2 is zero, i.e. when V1 ⊗ V2 = 0. Perpetuation of degeneracy is not specific to
vector spaces and holds similarly in all classical frameworks, such as for finitely generated projective
modules over rings with involution or for vector bundles over schemes.

The present work builds on the surprising observation that perpetuation of degeneracy does not
hold in more flexible frameworks, such as in triangulated categories with duality [Bal00, Bal01a]. To
formalize this observation, we introduce a topological invariant of the forms α1 and α2, called the
consanguinity of α1 and α2, which captures their inclination for a degenerate product. In particular,
we prove the following.

Theorem. If α1 and α2 have no consanguinity then α1 ⊗ α2 is non-degenerate.

This is Corollary 4.6. The definition of consanguinity is given in § 4.
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Products of degenerate quadratic forms

We want to interpret the above theorem in terms of Witt groups, so let us briefly sketch the
definition of triangular Witt groups. To do this, we need a notion introduced in [Bal00], namely the
symmetric cone of a possibly degenerate symmetric form α. This symmetric cone is a non-degenerate
symmetric form associated to α, that we denote by d(α) in the present paper. Symmetric spaces
of the form d(α) are precisely the metabolic spaces and a symmetric form α is non-degenerate
if and only if d(α) = 0. In particular d(d(α)) = 0, which means that d behaves as a differen-
tial: d ◦ d = 0. So, triangular Witt groups, which classify non-degenerate symmetric forms modulo
metabolic ones, can be remembered as the homology of the complex defined by this symmetric cone
construction α �→ d α. This is explained in § 2. We have established in [Bal01a] that all classical
Witt groups can be recovered as some triangular Witt groups, for suitable derived categories, at
least if 2 is invertible in the original setting. The reader can find in the survey [Bal05] basic notions
and motivations for the theory of classical and triangular Witt groups, in particular in algebraic
geometry.

We now translate into Witt group language the appearance of non-degenerate symmetric forms
as products of forms with no consanguinity. Indeed, this method allows us to construct Witt classes
[α1 ⊗ α2] out of two symmetric forms α1 and α2 which might be degenerate and hence might not
define Witt classes themselves. In the form of a slogan, this reads

�[α1] or �[α2] but still ∃[α1 ⊗ α2]. (1)

Before moving towards geometric applications, let us make a second general observation. Namely,
assume that one of the forms, say α2, is metabolic, then it may happen that not only the product
α1 ⊗ α2 is non-degenerate, as explained above, but is quite surprisingly non-metabolic. In some
sense, the degeneracy of the form α1 can compensate the metabolicity of the form α2. Sloganized,
this becomes

�[α1] and [α2] = 0 but [α1 ⊗ α2] �= 0. (2)

These two observations (1) and (2) will be illustrated by geometric examples. They both imply that
the Witt class of the product should not be understood as the product of the classes, at least in
this generality: [α1 ⊗ α2] �= [α1] · [α2].

In the presence of a differential α �→ d(α) and of a product (α1, α2) �→ α1⊗α2, it is legitimate to
wonder if these structures satisfy some type of Leibniz formula: d(α1⊗α2)

?= d(α1)⊗α2±α1⊗d(α2).
For symmetric forms, this is not true in general because the left-hand side d(α1⊗α2) is always non-
degenerate, as is d(α) for all α, whereas the right-hand side is only conditionally non-degenerate.
Here again, the consanguinity obstruction can be used for d(α1) and α2, or, for α1 and d(α2). Indeed,
the consanguinity of d(α1) and α2 is exactly equal to the consanguinity α1 and d(α2) and coincides
with the locus of common degeneracy of α1 and α2 (Proposition 5.1). When this obstruction is
empty, we have the following.

Theorem (Leibniz-type formula). Let α and β be symmetric forms whose degeneracy loci do not
intersect. Then, we have an isometry

d(α⊗ β) = d(α) ⊗ β + α⊗ d(β)

up to signs which are made precise in § 5.

This is Theorem 5.2, where + of course means the orthogonal sum. Unfortunately, the signs are
not as easy as in the usual Leibniz formula.

We now want to see these abstract considerations at work in algebraic geometry.
In the last few years, triangular Witt theory [Bal00, Bal01a] led to a certain number of appli-

cations (see a survey in [Bal05]), among which the recent computation of the total Witt group
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of projective bundles by Walter [Wal03], who considerably generalized Arason’s famous theorem
W(Pn

k ) = W(k), see [Ara80], where k was a field. The total Witt group of a scheme X

WTot(X) =
⊕

i∈Z/4

⊕
L∈Pic(X)/2

Wi(X,L)

is the graded ring of all (derived) Witt groups for all possible shifts i and all possible twists L of
the duality. Walter’s computation constitutes a real tour de force, involving a precise description
of derived categories of projective bundles. Over regular schemes though, this level of technicality
is not always necessary and Witt groups can sometimes be computed by means of more geometric
results such as Mayer–Vietoris, homotopy invariance and the like, as developed in [Bal01b]. Such a
geometric strategy would typically consist in guessing the answer, in constructing a homomorphism
globally, between this conjectured answer and the Witt groups under study, and in proving it
an isomorphism locally. The crucial step, namely the construction of the custom-tailored global
homomorphism, is where consanguinity might be used. We illustrate these ideas in § 7 where we
give a very simple geometric proof of Walter’s theorem [Wal03] in the special but emblematic case
of Pn

X with X regular.

Theorem. LetX be a regular Z[12 ]-scheme. Then the total graded Witt ring WTot(Pn
X) is canonically

a free WTot(X)-module of rank 2 generated by the unit 〈1〉 ∈ W(Pn
X) and one other class [β(n)

X ] ∈
Wn(Pn

X ,O(n+ 1)), whose square is zero.

This is Theorem 7.4 and we now explain how to construct the symmetric space β(n)

X defining the
crucial generator [β(n)

X ] by means of products of symmetric forms with no consanguinity. Indeed, our
method is not specific to projective bundles and does not use regularity. (The regularity assumption
comes from the geometric theorems of [Bal01b] mentioned above.) The general method goes as
follows.

Let X be a scheme. Consider L ∈ Pic(X) a line bundle over X and s ∈ Γ(X,L) a global section.
This can be seen as a one-dimensional ‘diagonal’ symmetric form α(s;L) on the vector bundle OX

with respect to the L-twisted (unshifted) duality

α(s;L) := (OX ,OX
s−→L).

Such a symmetric form α(s;L) is usually degenerate, unless s yields a trivialization of the line
bundle L. The product of a finite number of such symmetric forms α(s1;L1) ⊗ · · · ⊗ α(sm;Lm)
= α(s1 ⊗ · · ·⊗ sm;L1 ⊗ · · ·⊗Lm) still has the same nature and degeneracy clearly tends to increase
in this process. So, this cannot lead us to a non-degenerate symmetric space unless we are simply
considering a good old one-dimensional form 〈u〉 for a global unit u ∈ Γ(X,OX )×, and this would
not be worth the trouble. However, we can also consider mixed products involving one diagonal
form α(s0;L0) as well as symmetric cones d α(si;Li) for i = 1, . . . , n. Orthogonal sums of such
mixed products are the pseudo-diagonal forms of § 6. Pseudo-diagonal forms may be non-degenerate
without necessarily being mere diagonal forms 〈u1, . . . , un〉 for global units u1, . . . , un. Indeed, using
consanguinity methods, we establish in Corollary 6.13 the following result.

Theorem. Let n � 0, let L0, . . . ,Ln be n+ 1 line bundles over a scheme X and let si ∈ Γ(X,Li),
for i = 0, . . . , n, be global sections which do not vanish simultaneously:

⋂n
i=0 Z(si) = ∅. Then

α(s0;L0) ⊗ dα(s1;L1) ⊗ · · · ⊗ dα(sn;Ln)

is a non-degenerate symmetric space and defines a class in the Witt group Wn(X,L) where L =
L0 ⊗ · · · ⊗ Ln.
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Products of degenerate quadratic forms

It is an interesting open question to know for which schemes the total Witt group is generated
by such pseudo-diagonal spaces. This would be a global version of the well-known diagonalization
theorems over fields and local rings.

In any case, if we apply this to the scheme Pn
X , to L0 = · · · = Ln = O(1) and to si = Ti

(the homogeneous coordinates), then it is clear that
⋂n

i=0{Ti = 0} = ∅ and that the above result
provides us with a non-degenerate space. This is nothing but the announced generator of the total
Witt group of Pn

X :

β(n)

X = α(T0;O(1)) ⊗ d α(T1;O(1)) ⊗ · · · ⊗ d α(Tn;O(1)).

This quite non-trivial application illustrates the strength of the abstract machinery of con-
sanguinity. It also provides examples of the above ‘surprises’ (1) and (2). Let us also stress that
consanguinity does not need to be applied only to diagonal forms but is a very general concept.

Although slightly beside the point of this article, let us briefly comment on the various projective
bundle theorems for Witt groups. This is easy to summarize: only Walter [Wal03] reaches maximal
generality. Note that for non-trivial projective bundles P(E), Walter’s description is not always as
simple as above and can involve a non-split exact sequence of Witt groups. As already mentioned,
Walter does not use regularity of the ground scheme. For the history between Arason and Walter,
we refer to [Wal03]. For the very recent post-Walter times, let us mention Nenashev’s current series
of articles (see [Nen04] and more references therein), which also provide a geometric approach to
Witt groups of projective bundles over a regular basis, using non-oriented cohomology theories and
deformation to the normal cone techniques. Note that Nenashev also considers P(E) for some vector
bundles E .

However, the goal of the present article is certainly not the projective bundle theorem itself.
This only appears as a nice by-product of our main theme: the study of non-degenerate products
of possibly degenerate symmetric forms.

Let us briefly review the part of the material not mentioned so far.

Our natural language is that of algebraic geometry, that is, the reader could have in mind his
favorite scheme X and various derived categories over X. Although everything could be expressed at
this level of generality, we introduce a more abstract language, namely that of a triangulated category
defined over a topological space X, see § 1. This has the following advantages. First, even in the
above algebro-geometric examples, it will avoid making a different story for each type of derived
category we can associate to X (of vector bundles, of coherent modules, of perfect complexes, etc.)
and it also makes clear which geometric properties are really needed. Moreover, of course, our
general formalism can possibly serve outside this algebro-geometric context.

The short §§ 2 and 3 contain basic notions about symmetric forms, such as degeneracy, support,
symmetric cones, Witt groups and the like. Although not revolutionary, the presentation of Witt
groups as the homology groups of the graded semiring of possibly degenerate symmetric forms, see
Proposition 2.5, ideally prepares the reader’s mind for the Leibniz formula of § 5.

Section 4 deals with products and consanguinity. We essentially use, in triangular Witt theory,
the product of Gille and Nenashev [GN03], except for the simplifying trick they introduced in their
main definition, a trick which only works if the forms are non-degenerate, that is precisely what we
cannot afford to assume here. We use instead a more natural construction, but in the same frame-
work, namely that of ‘triangulated categories with product and duality’ or TPD-categories, recalled
in Appendix A for the reader’s convenience. In order to prove the above Leibniz formula in § 5, we
also need to control the behaviour of the tensor product with respect to the triangulation in a more
precise way than just requiring the product be exact in each variable. For this, we need May’s recent
axiomatization [May01], revamped à la Keller–Neeman [KN02] and also transcripted in Appendix A.
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Preliminaries and conventions
Remark 0.1. In mathematics, some things must be made explicit, some other things must absolutely
not. This circumspection applies, in particular, to natural isomorphisms. Here, our rule is to
label those natural isomorphisms which are relevant to the current argument and to consider as
identities those which are not.

Convention 0.2. We assume without mention that 2 is invertible, i.e. our schemes are Z[12 ]-schemes
and our categories with duality are Z[12 ]-categories.

Convention 0.3. A scheme is called regular if it is noetherian, separated and locally regular.

Notation 0.4. Grothendieck–Verdier’s notion of triangulated category is defined in [Ver96]. We
usually assume that our triangulated categories are essentially small. We denote by T : K−→K
the translation functor in the triangulated category K (also known as the ‘suspension’ in topology
or the ‘shift’ in homological algebra).

Definition 0.5. Let u : A→ B be a morphism in a triangulated category. We call the cone of u any
object C, or more precisely any triple (C, u1, u2), such that the triangle A

u �� B
u1 �� C

u2 �� TA
is distinguished. For a fixed morphism u, its cone is unique up to non-unique isomorphism and we
denote it by cone(u).

1. Triangulated categories defined over a topological space

Definition 1.1. Let X be a topological space. A triangulated category defined over X is a pair
(K, supp) where K is a triangulated category and supp assigns to each object A ∈ K a closed subset
of X

supp(A) ⊂ X

called the support of A and subject to the following four elementary rules.

(S1) Only the support of zero is empty: supp(A) = ∅ ⇔ A ∼= 0.
(S2) The support respects direct sums: supp(A⊕B) = supp(A) ∪ supp(B).
(S3) The support respects translation: supp(A) = supp(TA).
(S4) The support respects distinguished triangles: if A �� B �� C �� TA is a distinguished

triangle then supp(C) ⊂ supp(A) ∪ supp(B).

Remark 1.2. By the rotation axiom and by (S3), we can equivalently say in (S4) that supp(A) ⊂
supp(B) ∪ supp(C) or that supp(B) ⊂ supp(A) ∪ supp(C). It follows from this and from (S1) that
the support respects isomorphisms A � B ⇒ supp(A) = supp(B).

Example 1.3. Let X be a scheme. The following are triangulated categories over the underlying
topological space of X. In all cases below, the support is the homological support, that is, the usual
support of the total homology OX -module.

(a) Let K = Db(VBX) be the derived category of bounded complexes of vector bundles over X.
(We use D so as not to confuse with the D of dualities below.)

(b) Assume that X is noetherian and let K = Db(CohX) be the derived category of bounded
complexes of coherent OX -modules.

(c) Let K = Dperf(X) be the derived category of perfect complexes over X.

In all derived categories, for shifts and mapping cones, we follow the (homological) sign conventions
of Weibel [Wei94].
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Products of degenerate quadratic forms

Definition 1.4. Let (K, supp) be a triangulated category defined over X as in Definition 1.1.
Assume that K carries a structure (K,D, δ,�) of triangulated category with duality as recalled in
Definition A.2. We say that K is a triangulated category with duality defined over X if:

(S5) the support respects the duality: supp(DA) = supp(A).

Definition 1.5. Let (K, suppK), (L, suppL) and (M, suppM) be triangulated categories defined
over X as in Definition 1.1. Assume that � : K ×L → M is a pairing of triangulated categories as
recalled in Definition A.1. We say that the pairing � is defined over X if:

(S6) the support respects the product: suppM(A�B) = suppK(A) ∩ suppL(B).

Indeed, in most of what follows, we only use the inclusion suppM(A�B) ⊂ suppK(A)∩ suppL(B).
In the interesting examples, especially the geometric examples, equality does hold.

Definition 1.6. A pairing of triangulated categories with duality defined over X is the data of three
triangulated categories K, L and M, all equipped with a duality, all defined over X, and of a pairing
� : K×L → M of triangulated categories with duality in the sense of [GN03] (see Definition A.4),
such that both axioms (S5) and (S6) are satisfied.

In the special case where K = L = M, we say that K is a TPD-category defined over X, or
longer: a triangulated category with product and duality, defined over X.

Example 1.7. In Example 1.3(a) and (c), the categories are equipped with product and duality
without further assumptions, by simply deriving the usual ones on vector bundles. They define
TPD-categories over X in the sense of Definition 1.6. We shall also consider dualities twisted by
line bundles, as usual. In Example 1.3(b), it is recommended to assume X be Gorenstein of finite
Krull dimension to get a duality (see [Gil02]). The author does not know of a good condition
for the existence of a reasonable tensor product on Db(CohX) itself. More common is the pairing
Db(VBX) × Db(CohX) → Db(CohX) which is defined over X in the above sense. This external
pairing turns Db(CohX) into a module over Db(VBX) and illustrates why external pairings are
really necessary.

Remark 1.8. It is clear from Proposition A.7 and from axiom (S3) that shifting the dualities on
K, L and coherently on M still produces a pairing of triangulated categories with duality defined
over X.

Remark 1.9. A naive misconception would be to think that the cone of a morphism of the form
u � u′ simply is the product � of the cones of u and u′. The situation is more complicated, as
explained in Appendix A. The following statement gives some control on supports of such cones.

Lemma 1.10. Let � : K × L−→M be a pairing of triangulated categories over X. Consider two
morphisms u : A → B in K and u′ : A′ → B′ in L. Let us denote their cones by C := cone(u) ∈ K
and C ′ := cone(u′) ∈ L. Then the support of the cone of u � u′ is contained in the following
four-term union:

suppM(cone(u� u′)) ⊂ suppK(A) ∩ suppK(B) ∩ suppL(C ′)
∪ suppL(A′) ∩ suppL(B′) ∩ suppK(C)
∪ suppK(A) ∩ suppL(A′) ∩ suppK(C) ∩ suppL(C ′)
∪ suppK(B) ∩ suppL(B′) ∩ suppK(C) ∩ suppK(C ′).

If, moreover, � is a pairing of triangulated categories with duality over X and if B = DKA and
B′ = DLA

′, then the above reduces to

suppM(cone(u� u′)) ⊂ suppK(A) ∩ suppL(C ′) ∪ suppL(A′) ∩ suppK(C).
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Proof. Let us abbreviate C ′′ := cone(u� u′) ∈ M. We have by definition two distinguished triangles
in K and L as follows:

A
u �� B �� C �� TA and A′ u′

�� B′ �� C ′ �� T (A′).

From the relation
u� u′ = (u� idB′) ◦ (idA �u′),

the octahedron axiom guarantees the existence of a distinguished triangle relating the cones of these
three morphisms. The cone of u � u′ is our object C ′′ by definition and the cones of u � idB′ and
idA �u′ are simply obtained from the above distinguished triangles by applying the exact functors
−�B′ and A�−, respectively. So, we have from the octahedron a distinguished triangle as follows:

A� C ′ �� C ′′ �� C �B′ �� T (A� C ′).

By axiom (S4), we deduce suppM(C ′′) ⊂ suppM(A � C ′) ∪ suppM(C � B′)
(S6)
= suppK(A) ∩

suppL(C ′)∪ suppK(C)∩ suppL(B′). Using the other decomposition u� u′ = (idB �u′) ◦ (u� idA′),
we establish similarly the inclusion suppM(C ′′) ⊂ suppK(B) ∩ suppL(C ′) ∪ suppK(C) ∩ suppL(A′).
Hence, suppM(C ′′) is contained in the intersection of the two sets we just found, which gives the
set of the statement.

For the last part, it suffices to use (S5) to replace suppK(B) by suppK(A) and similarly with
B′ and A′. In this case, the above four-term union boils down to the announced one, as is easily
checked.

2. Symmetric forms, cones and Witt groups

For this section, (K,D, δ,�) is a triangulated category with duality as recalled in Definition A.2.
Although quite standard, we fix the following terminology since the distinction between degenerate
and non-degenerate forms is essential here.

Definition 2.1. We define a symmetric pair to be a couple (A, a) formed by an object A ∈ K and
a symmetric morphism a : A → DA. As usual, symmetry means D(a) ◦�A = a. Note that we do
not require a to be an isomorphism. The morphism a is referred to as the form of the symmetric
pair (A, a).

When a is, moreover, an isomorphism, we say that the form a : A→ DA is non-degenerate and
that the symmetric pair (A, a) is a symmetric space.

Let i ∈ Z be an integer. A symmetric i-pair, a symmetric i-space, an i-form, with respect to
the duality D, respectively mean a symmetric pair, a symmetric space, a form for the ith shifted
duality (D(i), δ(i),�(i)) over K, as recalled in Definition A.3.

Notations 2.2. We define isometries of symmetric pairs as usual and denote by

Symm(K) or Symm(K,D, δ,�)

the monoid of isometry classes of symmetric forms over the considered category with duality. Our
assumption about essential smallness of K implies that Symm(K) is a set. It is a monoid with the
usual orthogonal sum. We shall not adopt a new notation for the class of a symmetric pair (A, a)
in Symm(K) and simply write it as (A, a). For an integer i ∈ Z, we denote by

Symm(i)(K) := Symm(K,D(i), δ(i),�(i))

the corresponding monoid for the ith shifted duality.

Definition 2.3. We now recall from [Bal00, § 2] the notion of symmetric cone of a symmetric
form. The cone of a morphism a : A → B is recalled in Definition 0.5. If B = DA and if the
morphism a is symmetric, then its cone C = cone(a) also becomes symmetric, in the sense that
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it carries a non-degenerate symmetric form, but for the 1-shifted duality D(1). Namely there exists
a symmetric 1-space (C,Φ), unique up to isometry [Bal00, Theorem 2.6], such that the following
triangle is distinguished:

A
a �� DA

a1 �� C
a2 �� TA (3)

and is symmetric in the sense that the following equation holds

Φ ◦ a1 = −T (D(a2)). (4)

It is equivalent to say that (C,Φ) is a 1-space such that the following diagram with distinguished
rows commutes:

A
a ��

δ·�A ∼=
��

DA
a1 �� C

a2 ��

Φ �
��

T (A)

δ·T (�A)∼=
��

D(DA)
δ·D(a)

�� DA −T (D(a2))
�� T (D(C))

T (D(a1))
�� T (D(DA))

in which the second row is the dual of the first.
The symmetry of Φ : C−→D(1)(C) for the 1-shifted duality D(1) = T ◦D reads by definition:

D(1)(Φ) ◦ �(1)

C = Φ. Unfolding Definition A.3 gives −δ · T (D(Φ)) ◦ �C = Φ. This new symmetric
space is denoted by

Cone(A, a) := (C,Φ)

and is the symmetric cone of the symmetric pair (A, a). See example 3.5.

Remark 2.4. In the next statement, we use freely the language of triangular Witt groups (TWG)
[Bal00, § 2]. The reader unfamiliar with TWG can consider the following as (quite conceptual)
definitions for the monoids MWi(K), NWi(K) and the groups Wi(K).

Proposition 2.5. Let (K,D, δ,�) be a triangulated category with duality. The symmetric cone
construction (see Definition 2.3) induces for all i ∈ Z a well-defined homomorphism of monoids:

d : Symm(i)(K) −→ Symm(i+1)(K)
(A, a) �−→ Cone(A, a)

which enjoys the following properties.

(a) The homomorphism d is a differential: d ◦ d = 0.

· · · d−→ Symm(i−1)(K) d−→ Symm(i)(K) d−→ Symm(i+1)(K) d−→ · · ·
(b) Its kernel coincides exactly with the submonoid of Symm(i)(K) made of symmetric i-spaces:

MWi(K) = ker(d) := d−1(0).

(c) Its image coincides exactly with the submonoid of Symm(i+1)(K) made of metabolic or neutral
(i+ 1)-spaces:

NWi+1(K) = im(d) := d (Symm(i)(K)).

(d) Its homology is the ith triangular Witt group of K:

Wi(K) = MWi(K)/NWi(K) = ker(d)/ im(d).

Proof. The fact that the isometry class of Cone(A, a) only depends on the isometry class of (A, a)
is immediate from the definition, see Definition 2.3, and the fact that the symmetric space (C,Φ)
constructed there is unique up to isometry [Bal00, Theorem 2.6].
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Part (a) is clear since Cone(A, a) is a space, so it has a trivial symmetric cone. (In the above nota-
tion, we have cone(Φ) = 0.) Conversely, Cone(A, a) = 0 implies that the form a is an isomorphism,
which proves part (b). Parts (c) and (d) are transcriptions of the definitions, see [Bal00, § 2].

Remark 2.6. Observe that the ‘homology’ of a complex of monoids is probably as slippery a notion
as that of ‘exact sequence’ of monoids. We do not know if there is a reasonable version of the above
complex Symm(•)(K) made of abelian groups (its group completion, for instance) whose homology
coincides with the above Witt groups. Although elements in Symm(i)(K) do not admit an opposite,
we can define −α := (A,−a) for any symmetric pair α = (A, a) in Symm(i)(K) and we have
d(−α) = −d(α). This does provide the opposite in the Witt group.

Remark 2.7. We have 4-periodicity of Witt groups, which is already visible on the level of Symm(i)(K)
and is simply induced by the translation

Symm(i)(K) ∼−→ Symm(i+4)(K)

(A, a) �−→ (T 2(A), T 2(a))

using that TD = DT−1 which gives, in particular, T 2 ◦ D = D(4) ◦ T 2. Note also that the signs
involved in δ(i) and �(i) are 4-periodic, as recalled in Definition A.3.

Example 2.8. Returning to our geometric Examples 1.3 and 1.7, we can now define Witt groups
of the respective derived categories with duality associated to the scheme X. In case (a), that is
for Db(VBX), and for any line bundle L ∈ Pic(X), we obtain the so-called (derived) Witt groups
Wi(X,L) := Wi(Db(VBX),DL), with i-shifted and L-twisted duality, whereDL is the derived duality
twisted by L:

DL(−) = HomOX
(−,OX ) ⊗ L.

The same duality applies in case (c), that is on Dperf(X), yielding what could be called perfect
(derived) Witt groups of X. In case (b), that is for Db(CohX), and under the assumptions insuring
the existence of the duality, we obtain the coherent (derived) Witt groups of X, see [Gil02, § 2.5].
We shall not use here the latter two examples but only derived Witt groups (of vector bundles).

3. Support and degeneracy locus

Let K be a triangulated category with duality defined over a topological space X (Definition 1.4).
We have the following concepts.

Definition 3.1. We define the support of a symmetric pair α = (A, a) as the support of the object A

Supp(α) := supp(A) ⊂ X.

Definition 3.2. We define the degeneracy locus of a symmetric pair α = (A, a) to be the support
of the cone of the morphism a:

DegLoc(α) := supp(cone(a)).

Combined with Proposition 2.5 and Definition 3.1, this gives

DegLoc (α) = Supp (d(α)). (5)

Proposition 3.3. The degeneracy locus of a symmetric form is always contained in its support:
DegLoc(α) ⊂ Supp(α).

Proof. Write α = (A, a) and use the distinguished triangle (3) of Definition 2.3. Then

DegLoc(α) def= supp(C)
(S4)⊂ supp(A) ∪ supp(DA)

(S5)
= supp(A) def= Supp(α).
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Proposition 3.4. A symmetric pair is a symmetric space if and only if its degeneracy locus is empty.

Proof. In a triangulated category, a morphism is an isomorphism if and only if its cone is zero. The
statement follows from (S1) of Definition 1.1.

Example 3.5. Let X be a scheme and let s ∈ Γ(X,OX ) be a global section of the structure sheaf OX .
Let α(s) = (OX , s) be the obvious symmetric pair for the unshifted untwisted duality on Db(VBX),
i.e. consider OX as a complex concentrated in degree 0 and s as a morphism from OX to its
dual, which is OX again. Then the support of α is the support of OX , that is, the whole of X.
The degeneracy locus of α is the zero set Z(s) of s. The symmetric cone (Definition 2.3) of α(s) is
the following symmetric 1-space (C,Φ):

d α(s) =




C :=

Φ :=
��

· · · 0 ��

��

OX
−s ��

−1

��

OX
��

+1

��

0 ��

��

0 · · ·

��
TD(C) = · · · 0 �� OX s

�� OX
�� 0 �� 0 · · ·




with the objects OX in homological degrees 1 and 0. This metabolic space has support Z(s),
compare with (5), and its degeneracy locus is empty, as for any space. We shall generalize this
example in § 6; see Definition 6.4 and Proposition 6.5.

4. Product and consanguinity

In this section, � : K×L → M is a pairing of triangulated categories with duality defined over X as
in Definition 1.6. We write supp for the three support-assignments, independently of the category
K, L or M.

Let α = (A, a) and β = (B, b) be two symmetric pairs in K and L, respectively.

Definition 4.1. We define the product of the symmetric pairs α and β to be the symmetric pair
α � β := (A�B, µA,B ◦ (a� b)). The same notation � also applies to the form itself. So, we have

(A, a) � (B, b) = (A�B, a � b)

where we use µ to identify the product of the duals with the dual of the product:

A�B
a� b ��

a�b

��
DKA � DLB

µA,B

∼=
�� DM(A�B)

Remark 4.2. See Definition A.6 for how to define µ(i,j) so that (�, µ(i,j)) is again a pairing of
triangulated categories with duality, when using the i-shifted duality (K,D(i), δ(i),�(i)) on K, the
j-shifted duality (L,D(j), δ(j),�(j)) on L and (i+ j)-shifted duality (M,D(i+j), δ(i+j),�(i+j)) on M.
With this in mind, Definition 4.1 also applies to the shifted dualities. So, for all i, j ∈ Z, we have a
bi-additive pairing of monoids:

� : Symm(i)(K) × Symm(j)(L) → Symm(i+j)(M).

(Distributivity with respect to orthogonal sum, is obvious.) It is clear that this pairing respects
4-periodicity, see Remark 2.7. We shall see in Theorem 5.2 how this pairing behaves with respect
to the differential d : Symm(i) → Symm(i+1).

Definition 4.3. We define the consanguinity of the symmetric pairs α and β to be the following
closed subset of X:

Cons(α, β) := (Supp(α) ∩ DegLoc(β)) ∪ (DegLoc(α) ∩ Supp(β)).
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With α = (A, a), β = (B, b) and Definitions 3.1 and 3.2, the above subset of X is

Cons(α, β) = (supp(A) ∩ supp(cone(b))) ∪ (supp(cone(a)) ∩ supp(B)).

We say that the symmetric pairs α and β have no consanguinity if Cons(α, β) = ∅.

Proposition 4.4. We have DegLoc(α � β) ⊂ Cons(α, β).

Proof. This is the last statement of Lemma 1.10.

Remark 4.5. In algebraic geometry, we have, in fact, the equality DegLoc(α�β) = Cons(α, β). This
can be seen locally via minimal resolutions and we leave it to the interested reader. We do not know
whether this can be proved for all triangulated categories defined over a topological space without
further assumptions. Anyway, we only need the inclusion of Proposition 4.4 to apply Proposition 3.4
and obtain the following.

Corollary 4.6. If the symmetric pairs α and β have no consanguinity then α � β is a symmetric
space.

Remark 4.7. We now want to extend the above considerations to products of several symmetric pairs
α1�· · ·�αn. We find it too cumbersome to consider a multiple-entry product � : K1×· · ·×Kn −→M
and to unfold all the relevant natural isomorphisms. Therefore, we now restrict attention to TPD-
categories (K,⊗) defined over X in the sense of Definition 1.6, that is, to the case where all the
categories involved coincide. We do not assume the tensor product to be associative, although it will
be so in the geometric examples, for the reason that the sign conventions hidden in associativity
isomorphisms would overburden the presentation.

Definition 4.8. We extend the definition of the product α � β given in Definition 4.1 to several
symmetric pairs by induction over n � 2:

α1 � · · · � αn := (α1 � · · · � αn−1) � αn.

Definition 4.9. Let α1, . . . , αn be symmetric forms in our TPD-category K defined over the
topological space X. We define the consanguinity of α1, . . . , αn to be the following closed subset
of X:

Cons(α1, . . . , αn) :=
n⋂

i=1

Supp(αi) ∩
( n⋃

j=1

DegLoc(αj)
)
.

Observe that this definition is symmetric in α1, . . . , αn. We say that the forms α1, . . . , αn have no
consanguinity if this set is empty: Cons(α1, . . . , αn) = ∅.

Lemma 4.10. Let α1, . . . , αn be symmetric pairs.

(a) For n = 1, we have Cons(α1) = DegLoc(α1).
(b) For n � 2, we have the following inductive formula:

Cons(α1, . . . , αn) = (Supp(α1 � · · · � αn−1) ∩ Cons(αn)) ∪ (Cons(α1, . . . , αn−1) ∩ Supp(αn))

which, by statement (a), coincides with Definition 4.3 when n = 2.

Proof. Statement (a) is immediate from the definition and from Proposition 3.3. Let us compute
directly the right-hand side of statement (b):

Supp(α1 � · · · � αn−1) ∩ Cons(αn) ∪ Cons(α1, . . . , αn−1) ∩ Supp(αn)

(S6)
=

n−1⋂
j=1

Supp(αj) ∩ Cons(αn) ∪ Cons(α1, . . . , αn−1) ∩ Supp(αn)

(a) &4.9
=

n−1⋂
j=1

Supp(αj) ∩ DegLoc(αn) ∪
n⋂

j=1

Supp(αj) ∩
(n−1⋃

i=1

DegLoc(αi)
)
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3.3=
n⋂

j=1

Supp(αj) ∩ DegLoc(αn) ∪
n⋂

j=1

Supp(αj) ∩
(n−1⋃

i=1

DegLoc(αi)
)

4.9= Cons(α1, . . . , αn).

Proposition 4.11. Let α1, . . . , αn be symmetric forms. Then, we have

DegLoc(α1 � · · · � αn) ⊂ Cons(α1, . . . , αn).

Proof. By induction over n. For n = 1 both sides are equal to DegLoc(α1) by Lemma 4.10(a).
Assume that n � 2 and that the result holds for n− 1. We have

DegLoc(α1 � · · · � αn)
4.4⊂ Cons((α1 � · · · � αn−1), αn)

4.3= Supp(α1 � · · · � αn−1) ∩ DegLoc(αn) ∪ DegLoc(α1 � · · · � αn−1) ∩ Supp(αn)
I.H.⊂ Supp(α1 � · · · � αn−1) ∩ DegLoc(αn) ∪ Cons(α1, . . . , αn−1) ∩ Supp(αn)
4.10= Cons(α1, . . . , αn),

where the inclusion labelled ‘I.H.’ holds by the induction hypothesis.

Remark 4.12. The above proof shows that if equality holds in Proposition 4.4 then it holds
in Proposition 4.11 as well. This is, in particular, the case in algebraic geometry as mentioned in
Remark 4.5. Still, we only need the above inclusion for the following.

Corollary 4.13. Let α1, . . . , αn be symmetric forms with no consanguinity. Then α1 � · · · � αn is
non-degenerate.

5. Leibniz formula

We return to the general situation of a pairing � : K × L−→M of triangulated categories with
duality, defined over a topological space X, as in Definition 1.6.

Proposition 5.1. Let α and β be symmetric forms. Then the following are equivalent.

(a) The degeneracy loci of the forms α and β do not intersect.

(b) The forms d(α) and β have no consanguinity.

(c) The forms α and d(β) have no consanguinity.

In this case, we say that α and β have no common degeneracy, which implies, in particular, that
d(α) � β and α � d(β) are non-degenerate.

Proof. We have DegLoc(d(α)) = ∅ and Supp(d(α)) = DegLoc(α), see (5). By Definition 4.3, it
follows that Cons(d(α), β) = DegLoc(α)∩DegLoc(β) = Cons(α, d(β)). This proves the equivalence
of the three conditions. The conclusion about the non-degeneracy of the products comes from
Corollary 4.6.

For the next result, we need to assume that the pairing � : K × L−→M is compatible with
the octahedron axiom, as recalled in Definition A.11. This axiomatization follows May [May01] and
holds of course for any pairing observable in nature.

Theorem 5.2 (Leibniz-type formula for symmetric spaces). Let α and β be symmetric forms with
no common degeneracy (see Proposition 5.1). Then, we have an isometry

δM · d(α � β) � δK · d(α) � β + δL · α � d(β),

where we recall that the signs δK , δL , δM = ±1 express the exactness of the three dualities involved
DK ,DL and DM .
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Proof. Write the symmetric forms α = (A, a) and β = (B, b) and consider distinguished triangles
in K and L, respectively,

A
a �� DA

a1 �� C
a2 �� TA (6)

B
b �� DB

b1 �� C ′ b2 �� TB (7)

as well as the cone symmetric forms Φ : C ∼→ D(1)

K (C) and Φ′ : C ′ ∼→ D(1)

L (C ′) which satisfy the
following equations (see (4) in Definition 2.3 if necessary):

Φ ◦ a1 = −D(1)

K (a2) and Φ′ ◦ b1 = −D(1)

L (b2). (8)

From now on, we shall write D for DK , DL and DM since it is always clear which duality is meant
from the object or the morphism it is applied to.

The proof will consist of finding a distinguished triangle over the morphism a� b and of showing
that the symmetric form Φ′′ on its cone satisfying an equation of type (8) can be chosen to be
Φ′′ = δKδM · (Φ � b)⊥ δLδM · (a � Φ′) as announced in the statement. This will be the symmetric
cone d(α � β) by uniqueness of the construction, see Definition 2.3. Indeed, it would not be hard to
prove directly that the cone of a � b, which is the cone of a� b, is isomorphic to the direct sum of
C � B and A � C ′ as predicted by the Theorem. What is harder is to get the right morphisms in
this distinguished triangle in order to check the equation of type (4) for Φ′′ and such a triangle is
what we are now going to establish.

The assumption ∅ = DegLoc(α) ∩ DegLoc(β) = supp(C) ∩ supp(C ′)
(S6)
= supp(C � C ′) implies

by (S1) the vanishing of the product C � C ′ = 0. We use this in the next diagram. Applying
the bi-exact functor − � − to the above distinguished triangles (6) and (7), we obtain a diagram
with distinguished rows and columns, which commutes except for the lower-right square which
anti-commutes:

A�B
a�id ��

id�b

��

DA�B
a1�id ��

id�b

��

C �B
λ·(a2�id) ��

id�b

��

T (A�B)

T (id�b)

��
A�DB

a�id ��

id�b1

��

DA�DB
a1�id ��

id�b1

��

C �DB
λ·(a2�id) ��

id�b1

��

T (A�DB)

T (id�b1)

��
A� C ′ a�id ��

ρ·(id�b2)

��

DA�C ′ a1�id ��

ρ·(id�b2)

��

C �C ′ λ·(a2�id) ��

ρ·(id�b2)

��

(−1)

T (A� C ′)

−T (ρ·(id�b2))

��
T (A�B)

T (a�id)
�� T (DA�B)

T (a1�id)
�� T (C �B)−T (λ·(a2�id))

�� T 2(A�B)

(9)

Plugging C � C ′ = 0 in this diagram, we immediately deduce the following:

ā := a� idC′ : A� C ′ ∼−→ DA� C ′ is an isomorphism (10)

b̄ := idC � b : C �B
∼−→ C �DB is an isomorphism (11)

from exactness of the third rows and columns, whereas commutativity of the squares ‘(2,3)’ and
‘(3,2)’ gives

a2 � b1 = 0 and a1 � b2 = 0. (12)
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From compatibility of the pairing � with the octahedron axiom (Definition A.11) there exist in
M three distinguished octahedra:

DA�DB

c

����
���

���
��

��
���

���
��

��
���

���
��

��

idDA� b1
��

��
��

��
��

�����
�

��

a�b

DA�B

idDA� b

�������������������������������

a1�idB

���
��

��
��

��
��

��
��

��
��

��
��

��
��

� DA� C ′ρ◦(idDA� b2)
·		

0

·

��

A�B

a�idB ������������



�����������������

a�b

��

(C �B) ⊕ (DA� C ′)d·		

(0 1)

������������������������������������

C �B

λ◦(a2�idB)��������

·���

�����

(
1
0

)



�����������������������������������

DA�DB

c

���
��

��
��

��
��

���
��

��
��

��
��

��
��

��
��

a1�idDB
���������

�����
�

��

a�b

A�DB

a�idDB

�������������������������������

idA� b1

���
��

��
��

��
��

��
��

��
��

��
��

��
��

� C �DB
λ◦(a2�idDB)

·		

0

·

��

A�B

idA� b ������������



�����������������

a�b

��

(C �B) ⊕ (DA� C ′)d·		

h

������������������������������������

A� C ′

ρ◦(idA� b2)�������

·���

�����

g



�����������������������������������

A� C ′

g

��	
		

		
		

		
		

		
		

		
		

		
		

		
		

		
		

	

ā���
�������

����
��

��

0

0

��






























���
��

��
��

��
��

��
��

��
��

��
��

��
� DA� C ′·		

0

·

��

T−1(C �DB)

�����������

������������������

0

��

(C �B) ⊕ (DA� C ′)h·		

(0 1)
������������������������������������

C �B

b̄���������

·����

����

(
1
0

)



�����������������������������������

These three octahedra are simply (37), (38) and (39) of Definition A.11 applied to the dis-
tinguished triangles (6) and (7), in which we used the above information C � C ′ = 0, as well as
a2 � b1 = 0 and a1 � b2 = 0. As explained in Remark A.13, we also allowed ourselves to choose one
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of the distinguished triangles (34), (35), (36), namely (35), that over a1 � b2 = 0, which we chose
to be

C �B

e:=

(
1
0

)
�� (C �B) ⊕ (DA� C ′)

f :=(0 1)
�� DA�C ′ 0 �� T (C �B).

This is also how we know that the object E of Definition A.11 is here (C �B) ⊕ (DA� C ′).
From the commutativity in the third octahedron, we immediately compute one entry, in matrix

notation, of each of the morphisms g and h. Since h ◦ g = 0 and since ā and b̄ are isomorphisms, we
deduce that there exists a morphism

k : A� C ′ → C �B such that g =
(
k
ā

)
and h =

(
b̄ −b̄ k ā−1

)
. (13)

We are now going to use the trick of Remark A.13 again, namely that explained in the second
part of Remark A.13, carefully keeping our two morphisms e =

(
1
0

)
and f =

(
0 1

)
. For this,

consider the automorphism

� :=
(

1 −kā−1

0 1

)
: (C �B) ⊕ (DA� C ′) ∼−→ (C �B) ⊕ (DA�C ′).

Composing the above octahedra with this isomorphism � gives three new octahedra, which are of
course as distinguished as the above octahedra. Let us see what happens to the morphisms involved
in this composition, namely the six morphisms having source or target equal to the modified object.
They become

� ◦
(

1
0

)
,
(
0 1

) ◦ �−1, � ◦ c, d ◦ �−1, � ◦ g and h ◦ �−1.

Now, by choice of the automorphism � and by (13) these six morphisms simply are(
1
0

)
,
(
0 1

)
, � ◦ c, d ◦ �−1,

(
0
ā

)
and

(
b̄ 0

)
.

Let us rebaptise the last four morphisms c, d, g and h, respectively. So, we now have three octahedra
exactly as above, with, in addition,

g =
(

0
ā

)
and h =

(
b̄ 0

)
.

Using this in the second octahedron it follows that

c =
(
b̄−1 ◦ (a1 � idDB)

?

)
and d =

(
?? ρ ◦ (idA � b2) ◦ ā−1

)
(14)

whereas the first octahedron gives us

c =
(

???
idDA � b1

)
and d =

(
λ ◦ (a2 � idB) ????

)
. (15)

Since it is the same c and the same d in both octahedra (this is the whole point of this proof !), we
can put (14) and (15) together and obtain

c =
(
b̄−1 ◦ (a1 � idDB)

idDA � b1

)
and d =

(
λ ◦ (a2 � idB) ρ ◦ (idA � b2) ◦ ā−1

)
, (16)

that is, we have the complete description of a distinguished triangle over a� b:

A�B
a�b �� DA�DB

c �� (C �B) ⊕ (DA� C ′) d �� T (A�B).
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From this we deduce the distinguished triangle over a � b = µA,B ◦ a � b in the obvious way, since
µA,B : DA�DB

∼→ D(A�B) is an isomorphism

A�B
a�b �� D(A�B)

m1 �� (C �B) ⊕ (A� C ′)
m2 �� T (A�B), (17)

in which we also replaced DA � C ′ by the isomorphic A � C ′, using the isomorphism ā. The
morphisms m1 and m2 are explicitly given by

m1 =
(

id 0
0 ā−1

)
◦ c ◦ µ−1 (16)

=
(
b̄−1 ◦ (a1 � idDB)
ā−1 ◦ (idDA � b1)

)
◦ µ−1, (18)

and

m2 = d ◦
(

id 0
0 ā

)
(16)
= (λ ◦ (a2 � idB) ρ ◦ (idA � b2)). (19)

Consider now the two symmetric 1-forms:

Φ � b : C �B
∼−→ D(1)(C �B) and a �Φ′ : A� C ′ ∼−→ D(1)(A� C ′)

which are non-degenerate by Proposition 5.1. The claim of the Theorem is that their orthogonal
sum Φ′′ (up to the signs δK , δL , δM announced in the statement)

Φ′′ := δKδM · (Φ � b)⊥ δLδM · (a �Φ′)

Φ′′ : (C �B) ⊕ (A� C ′) ∼−→ D(1)((C �B) ⊕ (A� C ′))
(20)

is isomorphic to Cone(a � b). To check this, using the definition of the symmetric cone in Defini-
tion 2.3, we have to find a distinguished triangle over a � b, which we indeed already have in (17),
and we then have to establish the analogue of (4), namely

Φ′′ ◦m1 = −D(1)(m2)

or, equivalently, since µA,B : DA�DB
∼−→ D(A�B) is an isomorphism,

Φ′′ ◦m1 ◦ µ = −D(1)(m2) ◦ µ. (21)

To show this, first observe that

Φ � b
def= µ ◦ (Φ � b) = µ ◦ (Φ � idDB) ◦ (idC � b)

(11)
= µ ◦ (Φ � idDB) ◦ b̄. (22)

Similarly, using (10), we get that

a � Φ′ = µ ◦ (idDA � Φ′) ◦ ā. (23)

Hence, the left-hand side of (21) becomes, in matrix notation,

Φ′′ ◦m1 ◦ µ (20)
= (δKδM · Φ � b⊥ δLδM · a � Φ′) ◦m1 ◦ µ

(18)
=

(
δKδM · Φ � b 0

0 δLδM · a � Φ′

)
·
(
b̄−1 ◦ (a1 � idDB)

ā−1 ◦ (idDA � b1)

)

(22),(23)
=

(
δKδM · µ ◦ (Φ � idDB) ◦ (a1 � idDB)

δLδM · µ ◦ (idDA � Φ′) ◦ (idDA � b1)

)

(8)
= −

(
δKδM · µ ◦ (D(1)(a2) � idDB)

δLδM · µ ◦ (idDA �D(1)(b2))

)
.

We are almost done except that we need to move the natural isomorphism µ around. At this
stage, it is necessary to add decorations µ(i,j) to specify the considered natural isomorphism
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between D(i)(−) �D(j)(−) and D(i+j)(− � −), induced by µ(0,0) = µ as defined in Definition A.6.
Otherwise, it is impossible to understand the appearance of the signs. We have indeed established

Φ′′ ◦m1 ◦ µ = −
(
δKδM · µ(1,0) ◦ (D(1)(a2) � idDB)

δLδM · µ(0,1) ◦ (idDA �D(1)(b2))

)
. (24)

Using naturality of the transformation µ(i,j) our left-hand side of (21) becomes

Φ′′ ◦m1 ◦ µ = −

δKδM ·D(1)(a2 � idB) ◦ µ(1,0)

TA,B

δLδM ·D(1)(idA � b2) ◦ µ(0,1)
A,TB




A.6= −
(
D(1)(a2 � idB) ◦ δKδM · T (µTA,B) ◦ λDTA,DB

D(1)(idA � b2) ◦ δLδM · T (µA,TB) ◦ ρDA,DTB

)

(PD2) in A.4
= −

(
D(1)(a2 � idB) ◦D(1)(λA,B) ◦ µA,B

D(1)(idA � b2) ◦D(1)(ρA,B) ◦ µA,B

)

= −
(
D(1)(λA,B ◦ (a2 � idB))

D(1)(ρA,B ◦ (idA � b2))

)
◦ µA,B

(19)
= −D(1)(m2) ◦ µA,B.

This establishes the wanted equation (21) and finishes the proof.

Corollary 5.3. Suppose that α and β have no common degeneracy (Proposition 5.1). Then the
two symmetric spaces d(α) � β and α � d(β) define, up to a sign, the same Witt class

[d(α) � β] = −δKδL · [α � d(β)]

in the suitable Witt group of M.

Remark 5.4. Of course, if we choose β to be non-degenerate in Theorem 5.2, the formula simply
says

d(α � β) = ± d(α) � β.

This also proves that d(α) � β is metabolic for any non-degenerate symmetric form β, i.e. that �
induces a well-defined product � on Witt groups, as already established in [GN03]. The linearity
of the connecting homomorphism in the localization long exact sequences follows from this same
equation. The verification of the details is left to the reader, simplifying slightly [GN03, § 2.3].

6. Pseudo-diagonal forms

Notation 6.1. In this section, we move towards geometric applications. So, we fix a Z[12 ]-scheme X
and, as explained in Examples 1.3(a), 1.7 and 2.8, we consider the bounded derived category
Db(VBX) of vector bundles over X as a TPD-category (Definition A.5) with the usual product ⊗OX

.
Here, support, degeneracy locus and consanguinity are closed subsets of the underlying topological
space of X. We shall consider dualities twisted by various line bundles L ∈ Pic(X). Recall that
the whole theory is 2-periodic in the twists, exactly as for classical dualities, and 4-periodic in the
shifts, see Remark 2.7. So, if we abbreviate the monoid of symmetric pairs (Definition 2.2) for
the triangulated category with L-twisted duality (Db(VBX),DL) by

Symm(i)(X,L) := Symm(i)(Db(VBX), DL),
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we obtain a bi-graded monoid

SymmTot(X) :=
⊕

i∈Z/4

⊕
L∈Pic(X)/2

Symm(i)(X,L)

and the product of symmetric pairs of Definition 4.1 defines a product

� : Symm(i)(X,L1) × Symm(j)(X,L2)−→Symm(i+j)(X,L1 ⊗ L2)
(α, β) �−→ α � β.

Recall from Definition 4.8 that the product of several symmetric pairs is α1 � · · · � αn = (α1 � · · · �
αn−1) � αn, with shifts and twists adding up as above.

Remark 6.2. It might be useful to think of SymmTot(X), equipped with orthogonal sum and prod-
uct, as a graded semiring, i.e. almost a graded ring but with no opposite for the addition. Note
that, although it comes equipped with a differential (the symmetric cone d of Proposition 2.5),
SymmTot(X) is not a differential graded semiring since the Leibniz rule only holds conditionally,
by Theorem 5.2.

We do not formalize commutativity and associativity of ⊗ in the abstract triangular framework,
but they hold in this geometric situation for ⊗OX

. Note, however, that signs might be involved in the
associativity of the product, depending on conventions. We renounce these rather arid considerations
here, since we can moreover circumvent them in applications, see Remark 7.8. So, we leave the proof
of the following rather obvious statement to the careful reader. For 〈1〉, recall that it is the symmetric
pair (OX , 1) which is clearly a unit for �.

Lemma 6.3. Up to signs (in the sense of Remark 2.6), the product on SymmTot(X) is commutative
and associative. Moreover, it admits a unit 〈1〉 ∈ Symm(0)(X,OX ).

We generalize Example 3.5 as follows.

Definition 6.4. Let L be a line bundle and let s : OX → L be a global section.

(a) We denote by Z(s) ⊂ X the zero locus of s, that is, the smallest closed subset of X outside of
which s is an isomorphism:

s|X�Z(s) : OX�Z(s)
∼−→ L|X�Z(s).

(b) We denote by α(s;L) := (OX , s) ∈ Symm(0)(X,L) the symmetric pair

α(s;L) =




· · · 0 ��

��

0 ��

��

OX
��

s

��

0 ��

��

0 · · ·

��
· · · 0 �� 0 �� L �� 0 �� 0 · · ·




formed by the object OX , considered in Db(VBX) as a complex concentrated in degree 0, and
by the form s : OX → DL(OX) = L. For simplicity, we might write α(s) instead of α(s;L).

(c) We call diagonal symmetric pair any (orthogonal) sum of symmetric pairs as above
α(s1;L1) + · · · + α(sn;Ln) ∈ SymmTot(X).

Proposition 6.5. With the above notation, the symmetric cone of α(s;L) is

d(α(s;L)) =



· · · 0 ��

��

OX
−s ��

−1
��

L ��

+1

��

0 ��

��

0 · · ·

��
· · · 0 �� OX s

�� L �� 0 �� 0 · · ·


 ∈ Symm(1)(X,L)
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with L in degree 0. (The object is the complex in the first row, its D(1)

L -dual the object in the second
row and the symmetric 1-form the vertical morphism of complexes.) Therefore,

Supp(α(s)) = X DegLoc(α(s)) = Z(s)
Supp(d α(s)) = Z(s) DegLoc(d α(s)) = ∅.

Proof. By definition, the cone C of the morphism s is the complex depicted in the first row,
see [Wei94, § 1.5]. One has to check that the vertical morphism defines the form Φ : C → TDL(C)
of formula (4) in Definition 2.3. This is easy since the morphism a1 is idL in degree zero and 0
elsewhere, whereas a2 is −idOX

in degree 1 and zero elsewhere, with the same convention [Wei94,
1.5.2].

Therefore, Supp(α(s;L)) 3.1= supp(OX) = X. The next two equalities of the statement come from

DegLoc(α(s;L))
(5)
= Supp(d α(s;L)) 3.1= supp(cone(s))

6.4(a)
= Z(s). Finally, d(α) is non-degenerate

for any symmetric pair α.

Definition 6.6. We denote by

PDiagTot(X) =
⊕

i∈Z/4

⊕
L∈Pic(X)/2

PDiag(i)(X,L)

the graded sub-semiring of SymmTot(X) generated by all symmetric pairs α(s;L) for all global
sections s : OX → L of line bundles and by all their cones d(α(s;L)). We call it the total sub-
semiring of pseudo-diagonal symmetric pairs.

We now give some examples.
Notation 6.7. Let n � 0. Consider n + 1 line bundles L0, . . . ,Ln ∈ Pic(X) and consider global
sections sj : OX → Lj for j = 0, . . . , n. Consider the following pseudo-diagonal pair involving one
symmetric pair and n symmetric cones:

β(s0, . . . , sn;L0, . . . ,Ln) := α(s0;L0) � d α(s1;L1) � · · · � d α(sn;Ln).

This symmetric pair, sometimes only written β(s0, . . . , sn), defines an element of PDiag(n)(X,L) ⊂
Symm(n)(X,L) where L := L0 ⊗ · · · ⊗ Ln ∈ Pic(X)/2 since all factors contribute to a twist by Li

but only the last n factors contribute to a shift by 1. For n = 0, we simply have β(s0) = α(s0).
For instance, β(1;OX ) = 〈1〉.
Remark 6.8. By Proposition 6.5, the support Supp(β(s0, . . . , sn;L0, . . . ,Ln)) of such a form is
equal to Supp(α(s0;L0)) ∩

⋂n
i=1 Supp(d α(si;Li)) =

⋂n
i=1 Z(si). We consider its degeneracy locus

in Proposition 6.11.

Proposition 6.9. Let i ∈ Z/4 and L ∈ Pic(X)/2. Then, any element of the monoid of pseudo-
diagonal L-twisted symmetric i-pairs PDiag(i)(X,L), as defined in Definition 6.6, is an orthogonal
sum of symmetric pairs β(s0, . . . , sn;L0, . . . ,Ln) as defined in Notation 6.7, for various
integers n ≡ i modulo 4 and for various families of n line bundles L0, . . . ,Ln ∈ Pic(X) such that
L0 ⊗ · · · ⊗ Ln ≡ L modulo 2Pic(X).

Proof. Observe the following two properties:

(a) −α(s0;L0) = α(−s0;L0) by definition of −α, see Remark 2.6;
(b) α(s1;L1) � α(s2;L2) = α(s1 ⊗ s2;L1 ⊗ L2) by definition of the product.

Now, by construction, PDiag(i)(X,L) is the (i,L)-graded part of PDiagTot(X) and the latter is the
sub-semiring of SymmTot(X) generated by diagonal symmetric pairs α(sj ;Lj), see Definition 6.4,
and by their cones d α(sj ;Lj). So, a priori, an element of PDiag(i)(X,L) is a sum of products of
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such pairs. Using commutativity and associativity up to signs (Lemma 6.3), we can regroup such a
product as

±α(s1;L1) � · · · � α(sm;Lm) � d α(sm+1;Lm+1) � · · · � d α(sm+n;Lm+n).

Using properties (a) and (b), we can regroup the m factors with no ‘d ’ into only one and we can even
incorporate the possible sign into it. Such a product is a symmetric pair β as in the statement.

Remark 6.10. This says that the symmetric forms β(s0, . . . , sn;L0, . . . ,Ln) of Notation 6.7 essen-
tially describe all pseudo-diagonal forms, in the sense of Definition 6.6. These pseudo-diagonal forms
constitute a natural generalization to arbitrary schemes of the usual diagonal forms over fields (where
no ‘d ’ intervenes). It would be interesting to know the answer to the following two open questions.

Question 1. When (i.e. over which schemes) is any symmetric space pseudo-diagonal?

Question 2. When is any symmetric space Witt-equivalent to a pseudo-diagonal space?

We only know that the answer to the weaker Question 2 is unaltered by passing from X to A1
X or

to Pn
X when X is regular (see § 7). We now decide when such a pseudo-diagonal form β(s0, . . . , sn)

is non-degenerate.

Proposition 6.11. We have DegLoc(β(s0, . . . , sn)) ⊂ ⋂n
i=0 Z(si).

Proof. By Proposition 6.5, Supp(α(s0))∩ Supp(d α(s1))∩ · · · ∩ Supp(d α(sn)) = Z(s1)∩ · · · ∩Z(sn)
whereas DegLoc(α(s0))∪DegLoc(d α(s1))∪· · ·∪DegLoc(d α(sn)) = Z(s0). So, by Definition 4.9, we
obtain Cons(α(s0), d α(s1), . . . , d α(sn)) =

⋂n
i=0 Z(si). Since the form β(s0, . . . , sn) is equal to the

product α(s0)�d α(s1)� · · ·�d α(sn) by definition, the result now follows from Proposition 4.11.

Remark 6.12. Continuing Remarks 4.5 and 4.12, observe that equality holds in this statement.
However, the above inclusion suffices to apply Proposition 3.4 and to obtain the following.

Corollary 6.13. For each n � 0, for each collection of n+ 1 line bundles L0, . . . ,Ln and for each
family of global sections si ∈ Γ(X,Li) such that

⋂n
i=0 Z(si) = ∅, the pseudo-diagonal symmetric

pair

β(s0, . . . , sn) = α(s0) � d α(s1) � · · · � d α(sn)
is non-degenerate and hence defines a class in the Witt group Wn(X,L) where L = L0 ⊗ · · · ⊗ Ln.

Remark 6.14. Observe that Corollary 6.13 allows us to determine all non-degenerate pseudo-diagonal
forms MWi(X,L) ∩ PDiag(i)(X,L) by means of Proposition 6.9. They will be sums of pseudo-
diagonal spaces as in the corollary.

Remark 6.15. In Corollary 6.13, we do not say that α(s0)� · · · �α(sn) is non-degenerate since this is
completely wrong. Indeed, the consanguinity of the forms α(s0), . . . , α(sn) is the union of the Z(si)
for i = 0, . . . , n and so this product is non-degenerate only if every si is an isomorphism. We do
not consider d α(s0) � · · · � d α(sn) either, which is always non-degenerate, without assumption on
the Z(si), but is also always metabolic and hence of little interest for Witt groups, although they
may define useful non-zero classes in Witt groups with support.

Let us draw the attention of the hurried reader to the asymmetry of the definition of β(s0, . . . , sn)
in s0, . . . , sn. The choice of having no d only in front of α(s0) is not so important up to Witt
equivalence though. Indeed, suppose that

⋂n
i=0 Z(si) = ∅, then it follows from commutativity and

associativity of � (Lemma 6.3) and from the Leibniz formula (Corollary 5.3) that, up to signs, the
Witt class of the symmetric space β(s0, . . . , sn) in Wn(X,L) does not depend on the order of the si,
that is, for every permutation σ of {0, . . . , n}, we have

[β(s0, . . . , sn;L0, . . . ,Ln)] = ±[β(sσ(0), . . . , sσ(n);Lσ(0), . . . ,Lσ(n))].
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Remark 6.16. It is clear that our graded semirings SymmTot(X), PDiagTot(X), and so on, are
functorial in X, in a contravariant way. Both definitions of α(s;L) and of β(s0, . . . , sn;L0, . . . ,Ln)
are natural in the obvious sense.

Proposition 6.17. For n � 1, under the condition that
⋂n

i=0 Z(si) = ∅, the symmetric space
β(s0, . . . , sn;L0, . . . ,Ln) is locally trivial in the Witt group, namely each point of X has a neigh-
borhood on which this space is metabolic.

Proof. We have by assumption a covering of X by the complements of the Z(si). On the first open
U0 := X � Z(s0) the space becomes a product of a space α(s0;L0)|U0 with the metabolic space
d(α(s1;L1))� · · · �d(α(sn;Ln))|U0 and the product is therefore metabolic since n � 1. On the other
open subsets X � Z(si) for i = 1, . . . , n the object supporting the space is indeed zero since one of
the factors is zero d α(si;Li)|X�Z(si) = 0. Hence, the result follows.

7. Explicit examples over projective spaces

In this section, X is a scheme. Recall Conventions 0.2 and 0.3.

Notation 7.1. Recall that Pn
X = Pn

Z
×Spec(Z)X where Pn

Z
= Proj(Z[T0, . . . , Tn]). For each i = 0, . . . , n,

we also denote by Ti the corresponding global section of O(1) over Pn
Z

and over Pn
X as well. We denote

by

Zi := Z(Ti) ⊂ Pn
X and Ui := Pn

X � Zi ⊂ Pn
X

the closed subscheme Zi � Pn−1
X corresponding to ‘Ti = 0’ and its open complement Ui � An

X .
We shall also consider the closed subset

Y := Z1 ∩ · · · ∩ Zn = {T1 = 0, . . . , Tn = 0} ⊂ U0 ⊂ Pn
X

corresponding to the point [1 : 0 : · · · : 0] of Pn and its open complement

V := Pn
X � Y ⊂ Pn

X .

For simplicity we denote by the same letter π all projection morphisms to X:

An
X

π
����������������������		

�
Ui

π

��













� � �� Pn

X

π

��

V

π
������

��
��

��
� �		

X

and even π : Pn−1
X → X. It is always clear from the context which projection is meant. For n � 2,

we have a morphism over X

η : V −→Pn−1
X

[t0 : · · · : tn] �−→ [t1 : · · · : tn]
(25)

which is obtained by base change to X from the morphism over Spec(Z) described in the second
line. For n = 1 we make the convention that η : V → P0

X = X is the structure morphism π.

Remark 7.2. We adopt the following notation to drop unnecessary mentions of π∗.

(a) For M ∈ Pic(X), we simply write Wi(Pn
X ,M) to mean Wi(Pn

X , π
∗M).

(b) For any class w ∈ WTot(Pn
X), the homomorphism WTot(X)−→WTot(Pn

X) consisting in π∗

followed by multiplication by w will simply be denoted by ·w and will be called multiplication
by w (say, on the right).
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Definition 7.3. We apply the constructions of the previous sections.

(a) For any i = 0, . . . , n, following Definition 6.4, we define the symmetric pair

αi := α(Ti;O(1)) ∈ Symm(0)(Pn
X ,O(1)).

(b) In Notation 6.7, we define the symmetric pair

β(n)

X := β(T0, . . . , Tn;O(1), . . . ,O(1))
= α0 � d α1 � · · · � d αn ∈ Symm(n)(Pn

X ,O(n + 1)).

Observing that
⋂n

i=0 Zi = ∅ we know from Corollary 6.13 that the above β(n)

X is non-degenerate
and therefore defines a Witt class

[β(n)

X ] ∈ Wn(Pn
X ,O(n + 1)).

(c) Using the short notation of Remark 7.2(b), we define a homomorphism

(1 [β(n)

X ]) : WTot(X) ⊕ WTot(X)−→WTot(Pn
X)

(φ,ψ) �−→ π∗(φ) + π∗(ψ) � [β(n)

X ].

Theorem 7.4. Let X be a regular scheme and n � 1. The above homomorphism

(1 [β(n)

X ]) : WTot(X) ⊕ WTot(X)−→WTot(Pn
X)

is an isomorphism. The ring structure is determined by the property that

[β(n)

X ] � [β(n)

X ] = 0

in W2n(Pn
X) and by the fact that π∗ : WTot(X) → WTot(Pn

X) is a ring homomorphism.

Proof. We proceed by induction on n � 1, the case n = 1 being treated at the very end of the
proof. For any line bundle L ∈ Pic(Pn

X), we have a localization long exact sequence (see [Bal00,
Theorems 6.2 and 6.8] or [Bal01b, Theorem 1.6])

· · · −→Wi
Y (Pn

X ,L)−→Wi(Pn
X ,L)−→Wi(V,L|V ) ∂L−→Wi+1

Y (Pn
X ,L)−→· · · (26)

where the connecting homomorphism ∂L : Wi(V,L|V )−→Wi+1
Y (Pn

X ,L) is induced by the cone con-
struction, see [Bal00, § 5]. Before proceeding to a term-by-term analysis of (26), we recall, for
those readers who might fear the loss of some twists in the following, that we have an isomorphism
Pic(X) ⊕ Z

∼−→ Pic(Pn
X) given by (M,m) �→ π∗(M)(m) = π∗(M) ⊗O(m). Also observe that the

global section Ti : OPn
X
→ OPn

X
(1) is an isomorphism outside Zi = Z(Ti), that is, on Ui � An

X . So, we
have the following situation for Picard groups (written additively).

Pic(X)/2

�π∗
��

Pic(X)/2 ⊕ Z/2

�(π∗ O(1))
��

(id 0)
		 �� Pic(Pn−1

X )/2

η∗�
��

Pic(Ui)/2 Pic(Pn
X)/2 resV

��
resUi

		 Pic(V )/2

(27)

Note that, for n = 1, the right-hand groups are isomorphic to Pic(X)/2 whereas for n � 2, we
have codimPn

X
(Pn

X � V ) = codimPn
X

(Y ) = n � 2 so the restriction resV : Pic(Pn
X) → Pic(V ) is an

isomorphism, see [Har77, § II.6]. Therefore, when n � 2, all morphisms in the right-hand square
of (27) are isomorphisms.

Lemma 7.5. Consider the metabolic symmetric space γ := d α1 � · · · � d αn in Symm(n)(Pn
X ,O(n)).

Let M ∈ Pic(X)/2. Then, we have two isomorphisms

Wi−n(X,M)
·[γ]

� �� Wi
Y (Pn

X ,M(n))

1395

https://doi.org/10.1112/S0010437X05001508 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001508


P. Balmer

and

Wi−n(X,M)
·[β(n)

X ]

� �� Wi
Y (Pn

X ,M(n+ 1))

given by multiplication by the classes of γ and of β(n)

X , respectively.

Proof. First observe that Supp(γ) =
⋂n

i=1 Zi = Y and that therefore the first homomorphism is
well-defined. Similarly we have Supp(β(n)

X ) = Y , see Remark 6.8. Indeed, in Notation 6.7, we have
γ = β(1, T1, . . . , Tn;O,O(1), . . . ,O(1)).

On An
X := Spec(Z[T ′

1, . . . , T
′
n]) × X, consider the Koszul symmetric space κ := d α′

1 � · · · �
d α′

n, where α′
i := α(T ′

i ,O) following the notation of Definition 6.4. Gille has proved in [Gil03b,
Theorem 9.3] that

Wi−n(X,M)
·[κ]−→WY ′(An

X ,M).
is an isomorphism where Y ′ = {T ′

1 = 0, . . . , T ′
n = 0}, at least in the case of X affine and regular and

of M = OX . The global case is an immediate corollary of Gille’s result by applying Mayer–Vietoris
on the base X. Consider the morphisms

Wi−n(X,M)
·[κ]

� �� Wi
Y ′(An

X ,M) � �� Wi
Y (U0,M) Wi

Y (Pn
X ,M(m)).�

resU0		

The first is an isomorphism by the above result of Gille. The second is an isomorphism since
U0 � An

X . The last isomorphism follows by Zariski excision (which is only a question of underlying
categories, not of dualities), see [Bal01b, Corollary 2.3]. Note that O(1)|U0 � OU0 and so the
m ∈ Z/2 disappears on U0.

We are left to show that the two following diagrams commute, one for γ (with m = n) and one
for β(n)

X (with m = n+ 1).

Wi−n(X,M)
·[γ] ��

·[β(n)
X ]

��

·[κ] �
��

Wn
Y (Pn

X ,M(m))

resU0�
��

Wi
Y ′(An

X ,M) � �� Wi
Y (U0,M)

To see this, recall that the classical isomorphism U0
∼→ An

X corresponds to T ′
i �→ Ti/T0 and that we

use multiplication with T0 to identify OU0 � O(1)|U0 . Therefore, this isomorphism U0
∼→ An

X , which
of course sends Y to Y ′, also sends the symmetric pair α′

i to αi for i = 1, . . . , n. Via this isomorphism,
we have a fortiori [κ] �−→ [γ|U0 ] = [β(n)

X |U0 ]. This last equality follows from (α0)|U0 = 〈1〉. This is
the claimed commutativity and the lemma follows.

Lemma 7.6. Let M ∈ Pic(X)/2, m ∈ Z/2. Suppose that n � 2. Then we have an isomorphism

η∗ : Wi(Pn−1
X ,M(m)) ∼−→ Wi(V,M(m)).

For n = 1, we simply have an isomorphism η∗ : Wi(X,M) ∼→ Wi
(
V,M)

.

Proof. The morphism η : V → Pn−1
X is a vector bundle and the result follows by (generalized)

homotopy invariance, see [Bal01b] or [Gil03a, Corollary 4.2].

Lemma 7.7. Suppose that n � 2. Recall γ = d α1 � · · · � d αn from Lemma 7.5. The image of the
class [β(n−1)

X ] ∈ Wn−1(Pn−1
X ,O(n)) via the composition

Wn−1(Pn−1
X ,O(n))

η∗
�� Wn−1(V,O(n)) ∂ �� Wn

Y (Pn
X ,O(n))

is given by ∂(η∗[β(n−1)

X ]) = ± [γ]. Here, of course, ∂ = ∂O(n).
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Proof. The definition of the connecting homomorphism ∂ is as follows. To compute ∂
(
[η∗(β(n−1)

X )]
)

we need to find a symmetric pair on Pn
X whose restriction to V is the symmetric space η∗(β(n−1)

X ) and
then apply the symmetric cone construction d to this ‘lift’. See details in [Bal00, 5.16]. In formula,
it means that we have

∂([η∗(β(n−1)

X )]) = [d(α1 � d α2 � · · · � d αn)]

as soon as we observe that α1 � d α2 � · · · � d αn is a symmetric pair on Pn
X whose restriction to

V is η∗(β(n−1)

X ). The latter is obvious by definition of η, see (25), and by definition of β(n−1)

X , see
Definition 7.3. Finally, we have

[d(α1 � d α2 � · · · � d αn)] 5.4= ±[d α1 � d α2 � · · · � d αn] = ±[γ]

which gives the lemma.

End of the proof of Theorem 7.4. For n � 2, consider the diagram

WTot
Y (Pn

X) �� WTot(Pn
X)

resV �� WTot(V ) ∂ �� WTot
Y (Pn

X)

WTot(Pn−1
X )

�η∗

��

WTot(X)2

�([γ] [β(n)
X ])

��

(
0 0
0 1

) �� WTot(X)2

(1 [β(n)
X ])

��

(
1 0
0 0

) �� WTot(X)2

�(1 [β(n−1)
X ])

��

(
0 ± 1
0 0

) �� WTot(X)2

�([γ] [β(n)
X ])

��

(28)

where WTot(X)2 = WTot(X) ⊕ WTot(X) and where we of course use the notation WTot
Y (Pn

X) to
mean

⊕
i∈Z/4

⊕
L∈Pic(Pn

X)/2 Wi
Y (Pn

X ,L).

Exactness of the first row is a compact form of the localization exact sequence (26). The second
row is trivially exact.

The first (and last) vertical morphism is an isomorphism by Lemma 7.5. The vertical
morphisms in the third column are isomorphisms by the induction hypothesis and by Lemma 7.6
for η∗.

To see commutativity of the first square it suffices to prove that [γ] = 0 in WTot(Pn
X), which is

obvious since γ = d α1�· · ·�d αn is a product of metabolic forms. To see commutativity of the second
square, it suffices to see that resV ([β(n)

X ]) = 0 in WTot(V ) which is obvious since [β(n)

X ] comes from
WTot

Y (Pn
X), that is, β(n)

X is supported on
⋂n

i=1 Zi = Y as we already checked in Remark 6.8. To see
commutativity of the third square it suffices to prove ∂(η∗([β(n−1)

X ])) = ±[γ], which is Lemma 7.7;
indeed, the vanishing of the other component, i.e. ∂ ◦ η∗ = 0, is formal since η∗ factors via resV :
WTot(Pn

X) → WTot(V ) by commutativity of the second square.

We get the wanted isomorphism by the 5-Lemma, since diagram (28) is periodic.
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For n = 1, we have V = U1 and hence α1 is non-degenerate on V and defines a class in
W0(V,O(1)|V ). Consider the diagram

WTot
Y (P1

X) �� WTot(P1
X) �� WTot′(V )

∂ �� WTot
Y (P1

X)

WTot(X)2

�([γ] [β(1)
X ])

��

(
0 0
0 1

) �� WTot(X)2

(1 [β(1)
X ])

��

(
1 0
0 0

) �� WTot(X)2

�(η∗ [α1])

��

(
0 1
0 0

) �� WTot(X)2

�([γ] [β(1)
X ])

��

(29)

where we use WTot′(V ) to mean
⊕

i∈Z/4

⊕
L∈Pic(P1X)/2 Wi(V,L|V ), which is not WTot(V ) but rather

two copies of it, since O(1)|V ∼= OV ; see also (27). We need WTot′(V ) because the first line of (29)
is the sum over all shifts and all possible twists over Pn

X (not over V !) of the localization exact
sequence (26). Note also that the connecting homomorphism ∂L of the localization exact sequence
(26) depends on the ‘ambient’ category with duality, here (Db(Pn

X),DL)(i). So, although [α1] = 〈1〉
if we identify W0(V,O(1)|V ) with W0(V ), the connecting homomorphism which applies to α1 is
the connecting homomorphism ∂O(1) with respect to the twisted duality DO(1). So, we get ∂(α1) =
[d α1] = [γ] as wanted. The rest of the proof is as above: the diagram commutes and has two
isomorphisms out of three by the previous lemmas.

To prove that [β(n)

X ]2 = 0 observe that α0 � d α1 � · · · � d αn � α0 is non-degenerate since
α0, d α1, . . . , d αn have no consanguinity and since consanguinity does not change if we repeat some
of the symmetric pairs (here α0) as can be verified directly on the definition, see Definition 4.9. There-
fore, we are allowed to consider the Witt class of this space [α0�d α1�· · ·�d αn�α0] ∈ Wn(Pn

X ,O(n))
and to make the following computation in WTot(Pn

X):

[β(n)

X ]2 = [α0 � d α1 � · · · � d αn � α0 � d α1 � · · · � d αn]
= [α0 � d α1 � · · · � d αn � α0] � [d α1 � · · · � d αn]︸ ︷︷ ︸

=0

= 0.

The latter class vanishes since the spaces d αi are metabolic (and since n � 1).

Remark 7.8. In order to prove (1 [βn
X ]) an isomorphism, we can as well replace [β(n)

X ] by its opposite
−[β(n)

X ]. Therefore, any variation in the definitions leading to a sign change of β(n)

X does not really
affect the presentation of the total Witt group of Pn

X .

Remark 7.9. It is also immediate from the general considerations of Proposition 6.17 that the
generator [β(n)

X ] of WTot(Pn
X) is locally trivial on Pn

X .
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Appendix A. Recalling products, dualities and octahedra

Definition A.1. Consider three triangulated categories K, L and M. A pairing of triangulated
categories is a triple (�, λ, ρ) formed by a bifunctor

� : K × L−→M
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which is exact in each variables with the natural isomorphisms

ρA,B : A� (TLB) ∼→ TM(A�B) and λA,B : (TKA) �B
∼→ TM(A�B)

expressing compatibility with translation for the exact functors A � − and − � B. The following
square is moreover assumed to be skew-commutative.

(TKA) � (TLB)

ρT A,B

��

λA,TB ��

(−1)

TM(A� (TLB))

T(ρA,B)

��
TM((TKA) �B)

T(λA,B)
�� T 2

M(A�B)

(30)

Definition A.2. A duality on a triangulated category K is a triple (D, δ,�) where we have the
following.

• D : Kop → K is a ±1-exact contravariant functor (the duality); exactness means, in particular,
that D ◦ T = T−1 ◦D.

• δ = ±1 gives the exactness of D. So, 1-exact means exact and −1-exact means that distin-
guished triangles are sent to skew-distinguished triangles (those which are distinguished after
changing the sign of the three morphisms).

• � : IdK → D ◦ D is an isomorphism of functors, such that D(�A) ◦ �D(A) = idD(A) and
T (�A) = �T (A) for all A ∈ K.

A triangulated category with duality is a quadruple (K,D, δ,�). See details in [Bal00].

Definition A.3. Given a triangulated category with duality (K,D, δ,�) and an integer i ∈ Z, the
ith shifted duality

(D, δ,�)(i) = (D(i), δ(i),�(i))

on the same category K is defined by

D(i) := T i ◦D, δ(i) := (−1)i · δ and �(i) := (−1)i(i+1)/2 · δi ·�.
It is easy to see that (D, δ,�)(i+j) = ((D, δ,�)(i))(j) for all i, j ∈ Z.

Definition A.4 (Gille–Nenashev). Consider (K,DK , δK ,�K), (L,DL , δL ,�L) and (M,DM , δM ,�M)
three triangulated categories with duality. Following [GN03, Defenition 1.11], a pairing of triangu-
lated categories with dualities between the three considered categories is a pair (�, µ) where:

• � : K× L−→M is a pairing of triangulated categories (Definition A.1);

• µ is a natural isomorphism

µA,B : DKA�DLB
∼−→ DM(A�B)

such that the following two properties are satisfied.
(PD1) The following diagram commutes.

A�B

�A�B

��

�A��B �� D2
K(A) �D2

L (B)

µ DA,DB

��
D2

M(A�B)
DM (µA,B)

�� DM((DKA) � (DLB))
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(PD2) The following diagram commutes up to signs (given in the center).

TM(DKTKA � DLB)

TM (µT A,B)

��

(δK ·δM )

DKA � DLB
λDTA,DB		

ρDA,DTB ��

µA,B

��

(δL ·δM )

TM(DKA � DLTLB)

TM (µA,T B)

��
TMDM(TKA � B) DM(A � B)

TMDM (λA,B)
		

TMDM(ρA,B)
�� TMDM(A � TLB)

In the special case where K = L = M, this gives the following.

Definition A.5. A triangulated category with product and duality, or in short a TPD-category
is a triple

(K, (D, δ,�), (⊗, µ)
)

where (K,D, δ,�) is a triangulated category with duality (Defini-
tion A.2) and (⊗, µ) with

⊗ : K ×K → K
is a pairing compatible with the duality as in Definition A.4.

Definition A.6. Consider a pairing (�, µ) of triangulated categories with duality � : K×L−→M
as in Definition A.4. Let i, j ∈ Z be two integers. Define a new pairing (�, µ)(i,j) := (�, µ(i,j)) by
the formula

µ
(i,j)
A,B := T i+j

M (µA,B) ◦ T i
M(ρ(j)

DA,DB) ◦ λ(i)

DA,D(j)B

where λ(i)

A,B : (T i
KA) � B

∼→ T i
M(A � B) and ρ(j)

A,B : A � (T j
KB) ∼→ T j

M(A � B) are the obvious
iterations of λ and ρ. More explicitly,

(D(i)

K A) � (D(j)

L B) =

µ
(i,j)
A,B

:=

��

(T i
KDKA) � (T j

LDLB)

λ
(i)

DA,TjDB��
T i

M((DKA) � (T j
LDLB))

T i
M(ρ

(j)
DA,DB)

��
T i+j

M (DKA � DLB)

T i+j
M (µA,B)

��
D(i+j)

M (A�B) = T i+j
M DM(A�B)

Proposition A.7. With notation of Definition A.6, the pairing � : K×L → M is also compatible
with the shifted dualities of K, L and M in the sense that the above (�, µ(i,j)) is again a pairing
of triangulated categories with duality from the pair (K,D(i), δ(i),�(i)), (L,D(j), δ(j),�(j)) and with
values in (M,D(i+j), δ(i+j),�(i+j)).

Proof. We do not give all of the details, but a pattern the cautious reader can follow.
First, we prove that µ(1,0) turns � into a pairing of triangulated categories with duality between

(K,D(1), δ(1),�(1)) × (L,D(0), δ(0),�(0)) and (M,D(1), δ(1),�(1)).
To check the new (PD1), proceed as follows: first write it down; then replace µ(1,0) by its definition

(write this inside the diagram); then the central diagram is the juxtaposition of the old (PD1) and
of the old (PD2) for (DA,DB) instead of (A,B); use also that �(1) = (−δ) ·�.

To check the new (PD 2), proceed as follows: first write it down; then replace µ(1,0) by its
definition (write this inside the diagram); then the left-hand diagram is the translation TM of the
left square of the old (PD2) plus the fact that TDT = D, whereas the right-hand diagram is obtained
by the juxtaposition of the translation TM of the right square of the old (PD2) with diagram (30).

The similar statement for µ(0,1) can be established by following the mirror argument. Then, by
induction, the statement holds for µ(i,0) and µ(0,j). Finally, we use that µ(i,j) = (µ(0,j))(i,0).
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Remark A.8. Two words of caution about the definition of µ(i,j): there is no sign choice hidden in
the definitions of λ(i) and ρ(j). They can be given explicitly as in [GN03, Remark 1.1]. There are sign
choices in the definition of µ(i,j) coming from the order in which we apply the natural isomorphism
λ, ρ and µ. This roots back to the possible skew-commutativity of diagrams (30) and (PD 2), which
roughly say that these natural isomorphisms only commute up to signs. With this in mind, there
is not really a distinction between a left and a right product as in [GN03] but rather lots of choices
for the order of stage appearance of λ, ρ and µ in the definition of the natural isomorphism µ(i,j),
all choices giving the same result up to sign.

We now turn to the compatibility of product and triangulation. First, recall the following.

Definition A.9. In a triangulated category, an octahedron is a diagram as follows

Z

w1

���
��

��
��

��
��

��
��

��
��

��

v1
��

��
��

����

��

w

Y

v

����������������������������

u1

���
��

��
��

��
��

��
��

��
��

��
V

v2·		

h

·

��

X

u ��������



����������������

w

��

W
w2·		

g



��������������������������

U

u2�����

·��
��

f

����������������������������

(31)

in which the four morphisms pictured with a broken arrow · �� are of degree one; they are
u2 : U → TX, v2 : V → TY , w2 : W → TX and h : V → TU . This octahedron is called
distinguished if the following conditions hold:

(Oct1) the four triangles which can commute (
����� ��

����� ) do commute;

(Oct2) the four triangles which can be distinguished ( ·���� ��
����� ) are distinguished;

(Oct3) both ways from Y to W coincide: w1 v = f u1;

(Oct4) both ways from W to T (Y ) coincide: T (u)w2 = v2 g.

If, moreover, to close the ring, the following two triangles containing the morphisms of (Oct3) and
(Oct4) are distinguished:

(Oct5) Y
s �� W

(
g

w2

)
�� V ⊕ TX

(v2 − Tu)
�� TY where s := w1 v

Oct3= f u1;

(Oct6) Y

(
u1

v

)
�� U ⊕ Z

(−f w1)
�� W

t �� TY where t := T (u)w2
Oct4= v2 g;

then we say that (31) is a very distinguished octahedron. In this case, all morphisms extractable
from octahedron (31) have an explicit distinguished triangle to live in.

In a triangulated category,

Z

Y

v
������������

X
u

������������

w

��
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the octahedron axiom (TR4), or composition axiom, asserts that any commutative triangle as above
can be completed into a distinguished octahedron (31). The enriched octahedron axiom (TR4+)
asserts the same with a very distinguished octahedron. Our triangulated categories are assumed to
satisfy (TR4+), as all known triangulated categories do. This enrichment is due to Beilinson et al.
[BBD82].

Remark A.10. The following axiomatization of tensor triangulated categories comes from May
[May01] and Keller and Neeman [KN02]. Consider a pairing of triangulated categories � : K ×
L−→M as in Definition A.1 and two distinguished triangles in K and L, respectively:

A
a �� A′ a1 �� A′′ a2 �� TA, (32)

B
b �� B′ b1 �� B′′ b2 �� TB. (33)

Choose one morphism in each triangle, say a and b, and write their product as

a� b = (idA′ � b) ◦ (a� idB).

This produces an octahedron. Note, however, that the above product can also be decomposed as
a� b = (a� idB′) ◦ (idA � b), yielding another octahedron. In good logic, since there are nine such
pairs of morphisms, we can a priori produce 18 octahedra. As the reader would expect, there is
some redundancy in this way of axiomatizing the relation between � and octahedra. Minimizing
the redundancy is precisely the point of the following definition.

Definition A.11. We say that a pairing of triangulated categories � : K × L−→M as in Defini-
tion A.1 is compatible with the octahedron axiom if for any two distinguished triangles (32) and (33)
in K and L, respectively, there exists an object E in M and distinguished triangles in M:

A�B
a�b �� A′ �B′ c �� E

d �� T (A�B), (34)

A′′ �B
e �� E

f �� A′ �B′′ ρ◦(a1�b2) �� T (A′′ �B), (35)

A�B′′ g �� E
h �� A′′ �B′ λ◦(a2�b1) �� T (A�B′′), (36)

involving the same object E and six morphisms c, d, e, f , g and h, such that the following three
octahedra are (very) distinguished.

A′ �B′

c

���
��

��
��

��
��

��
��

��
��

��
��

��
��

�

idA′ � b1
���������

�����
�

��

a�b

A′ �B

idA′ � b

����������������������������������

a1�idB

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
A′ �B′′ρ◦(idA′ � b2)

·		

ρ◦(a1�b2)

·

��

A�B

a�idB ������������



��������������������

a�b

��

E
d·		

f



�������������������������������

A′′ �B

λ◦(a2�idB)�������

·���

�����

e

����������������������������������

(37)
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A′ �B′

c

���
��

��
��

��
��

��
��

��
��

��
��

��
��

�

a1�idB′
���������

�����
�

��

a�b

A�B′

a�idB′

����������������������������������

idA� b1

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
A′′ �B′λ◦(a2�idB′ )

·		

λ◦(a2�b1)

·

��

A�B

idA� b ������������



��������������������

a�b

��

E
d·		

h



�������������������������������

A�B′′

ρ◦(idA� b2)�������

·���

�����

g

����������������������������������

(38)

A�B′′

g

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��

a�idB′′
��

��
��

��
��

�����
�

��

−T−1(λ◦(a2�b1))

T−1(A′′ �B′′)

−T−1(λ◦(a2�idB′′ ))

������������������������������������

T−1(ρ◦(idA′′ �b2))

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

� A′ �B′′a1�idB′′
·		

ρ◦(a1�b2)

·

��

T−1(A′′ �B′)

T−1(idA′′ �b1) �����������



���������������������

−T−1(λ◦(a2�b1))

��

E
h·		

f



���������������������������������

A′′ �B

idA′′ �b
��������

·���

����

e

�����������������������������������

(39)

Remark A.12. The information encapsulated in the (very) distinction of those three octahedra is
exactly equivalent to May’s axiom (TC3′) of [May01]. (Easier to check with May’s (TC3′) of [May01,
Lemma 4.7].) For more on tensor triangulated categories, see Keller and Neeman [KN02]. Note that
distinguished octahedra with objects exactly as above always exist without any extra compatibility
axiom. The real point of Definition A.11 is that these three octahedra can be built with the same
six morphisms c, d, e, f , g and h, each of them staging in two different octahedra.

Remark A.13. We can always replace the object E obtained in Definition A.11 via an isomorphism
� : E ∼→ E′, changing accordingly the morphisms c, d, e, f , g and h having source or target equal
to E, into the six morphisms

� ◦ c, d ◦ �−1, � ◦ e, f ◦ �−1, � ◦ g and h ◦ �−1.

This allows us to choose one distinguished triangle among (34), (35) and (36). Moreover, once one
of these triangles is chosen, say the second (35) (that is, if we want to keep e and f as they are),
then we can still apply the above procedure a second time to modify the four other morphisms c,
d, g and h, but only with an automorphism � : E → E such that � ◦ e = e and f ◦ �−1 = f . This is
what we do in the proof of Theorem 5.2. The new octahedra are again (very) distinguished, since
this property is preserved by isomorphism of octahedra.
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Gil02 S. Gille, On Witt groups with support, Math. Ann. 322 (2002), 103–137.
Gil03a S. Gille, Homotopy invariance of coherent Witt groups, Math. Z. 244 (2003), 211–233.
Gil03b S. Gille, A transfer morphism for Witt groups, J. reine angew. Math. 564 (2003), 215–233.
GN03 S. Gille and A. Nenashev, Pairings in triangular Witt theory, J. Algebra 261 (2003), 292–309.
Har77 R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, Berlin,

1977).
KN02 B. Keller and A. Neeman, The connection between May’s axioms for a triangulated tensor product

and Happel’s description of the derived category of the Quiver D4, Doc. Math. 7 (2002), 535–560.
May01 P. May, The additivity of traces in triangulated categories, Adv. Math. 163 (2001), 34–73.
Nen04 A. Nenashev, On the Witt groups of projective bundles and split quadrics: geometric reasoning,

Preprint (2004), available online at http://www.math.uiuc.edu/K-theory/0696/.
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