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Abstract

Prediction of dynamic environmental variables in unmonitored sites remains a long-standing challenge for water
resources science. The majority of the world’s freshwater resources have inadequate monitoring of critical environ-
mental variables needed formanagement.Yet, the need to havewidespread predictions of hydrological variables such as
river flow and water quality has become increasingly urgent due to climate and land use change over the past decades,
and their associated impacts on water resources. Modern machine learning methods increasingly outperform their
process-based and empirical model counterparts for hydrologic time series prediction with their ability to extract
information from large, diverse data sets. We review relevant state-of-the art applications of machine learning for
streamflow, water quality, and other water resources prediction and discuss opportunities to improve the use of machine
learning with emerging methods for incorporating watershed characteristics and process knowledge into classical, deep
learning, and transfer learning methodologies. The analysis here suggests most prior efforts have been focused on deep
learning frameworks built on many sites for predictions at daily time scales in the United States, but that comparisons
between different classes of machine learning methods are few and inadequate. We identify several open questions for
time series predictions in unmonitored sites that include incorporating dynamic inputs and site characteristics,
mechanistic understanding and spatial context, and explainableAI techniques inmodernmachine learning frameworks.

Impact statement

This review addresses a gap that different types ofMLmethods for hydrological time series prediction in unmonitored
sites are often not compared in detail and best practices are unclear.We consolidate and synthesize state-of-the-artML
techniques for researchers and water resources management, where the strengths and limitations of different ML
techniques are described allowing for a more informed selection of existingML frameworks and development of new
ones. Open questions that require further investigation are highlighted to encourage researchers to address specific
issues like training data and input selection, model explainability, and the incorporation of process-based knowledge.

1. Introduction

Environmental data for water resources often does not exist at the appropriate spatiotemporal resolution or
coverage for scientific studies or management decisions. Although advanced sensor networks and remote
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sensing are generating more environmental data (Hubbard et al., 2020; Reichstein et al., 2019; Topp et al.,
2020), the amount of observations available will continue to be inadequate for the foreseeable future,
notably for variables that are only measured at a few locations. For example, the United States Geological
Survey (USGS) streamflow monitoring network covers less than 1% of stream reaches in the United
States, with monitoring sites declining over time (Ahuja, 2016; Konrad et al., 2022), and stream coverage
is significantly lower in many other parts of the world. Similarly, just over 12,000 of the 185,000 lakes
with at least 4 hectares in area in the conterminous US (CONUS) have at least one lake surface
temperature measurement (Willard et al., 2022b), and less than 5% of those have 10 or more days with
temperature measurements (Read et al., 2017). Since observing key variables at scale is prohibitively
costly (Caughlan and Oakley, 2001), models that use existing data and transfer information to unmoni-
tored systems are critical to closing the data gaps. The problem of streamflow andwater quality prediction
in unmonitored basins in particular has been a longstanding area of research in hydrology due to its
importance for infrastructure design, energy production, and management of water resources. The need
for these predictions has grown with changing climate, increased frequency and intensity of extreme
events, andwidespread human impacts onwater resources (Blöschl et al., 2013; Guo et al., 2020b; Salinas
et al., 2013; Sánchez-Gómez et al., 2023; Zounemat-Kermani et al., 2021).

Avariety of models—process-based, machine learning (ML), and statistical models—have been used
to predict key ecosystem variables. These models can be applied to a few categories of applications where
data are unavailable at the spatial and temporal scales needed for environmental decision-making. The
first is based on data completeness, which could occur when (a) a site is not monitored at all; (b) a site is
monitored, but the time series has large chunks ofmissing data or is available for a limited period; (c) a site
is monitored, but the time series has sporadicmissing data. A second is based on data resolutionwhen (a) a
site is monitored but at a lower resolution than desired, or (b) a site is not monitored but data for other
covariates are available. In this paper, we define the problem of predictions in unmonitored sites or the
‘unmonitored’ scenario as specifically the cases where the locations have either no monitoring data at all
for the variable of interest or sufficiently sparse or low-resolution monitoring data where it effectively can
be considered as an unmonitored site. In cases where data need to be gap filled or extended forward or
backward in time, amodel can be trained on a time periodwithin one site and then predictions aremade for
new time periods at the same site. This is often referred to as the monitored prediction scenario or the
gauged scenario in streamflow modeling. While temporal predictions in monitored sites are important,
spatial extrapolation to unmonitored sites is even more crucial, because the vast majority of locations
remain unmonitored for many environmental variables of interest.

Traditionally, water resources modeling in unmonitored sites has relied on the regionalization of
process-basedmodels. Regionalization techniques relate the parameter values of a model calibrated to the
data of a monitored site to the inherent characteristics of the unmonitored site (Razavi and Coulibaly,
2013; Seibert, 1999; Yang et al., 2019b). However, large uncertainties and mixed success have prevented
process-based model regionalization from being widely employed in hydrological analysis and design
(Bastola et al., 2008; Prieto et al., 2019; Wagener andWheater, 2006). A major issue that makes process-
based model calibration and regionalization difficult is the complex relationships between model
parameters (e.g., between soil porosity and soil depth in rainfall-runoff models) (Kratzert et al., 2019a;
Oudin et al., 2008), which leads to the problem of equifinality (Beven and Freer, 2001) where different
parameter values or model structures are equally capable of reproducing a similar hydrological outcome.
Additionally, process models require significant amounts of site-specific data collection and computa-
tional power for calibration and benchmarking, which is expensive to generate across diverse regions of
interest.

On the other hand, ML models built using data from large-scale monitoring networks do regionaliza-
tion implicitly without the dependence on expert knowledge, pre-defined hydrological models, and also
often without any hydrological knowledge at all. Since ML models have significantly more flexibility in
how parameters and connections between parameters are optimized, unlike process-based models where
each parameter represents a specific system component or property, issues relevant to equifinality become
largely irrelevant (S. Razavi et al., 2022). In recent years, numerous ML approaches have been explored
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for environmental variable time series predictions in unmonitored locations that span a variety of methods
and applications in hydrology and water resources engineering. Most of the ML approaches for
predictions in unmonitored regions focus on stream flows, but are rapidly expanding to other variables
like river and lake water quality as data collection andmodeling continue to advance such as soil moisture
(Fang et al., 2018), stream temperature (Rahmani et al., 2021; Weierbach et al., 2022), and lake
temperature (Willard et al., 2022b). The ML models have continually outperformed common process-
based hydrological models in terms of both predictive performance and computational efficiency at large
spatial scales (Kratzert et al., 2019b; Oğuz and Ertuğrul, 2023; Read et al., 2019; Sun et al., 2021a).
Specifically, deep learning architectures like long short-term memory (LSTM) networks have been
increasingly used for time series predictions due to their ability to model systems and variables that have
memory, that is, where past conditions influence present behavior (e.g., snowpack depth; (Lees et al.,
2022)). LSTMs have been shown to outperform both state-of-the-art process-based models and also
classical ML models (e.g., XGBoost, random forests, support vector machines) for applications like lake
temperature (Daw et al., 2020; Jia et al., 2021a; Read et al., 2019), stream temperature (Feigl et al., 2021;
Weierbach et al., 2022), and groundwater dynamics (Jing et al., 2022) predictions among many others.
Other deep learning architectures effective for time series modeling, but seen less often in hydrology,
include the simpler gated recurrent unit (GRU) (Chung et al., 2014) or more recent innovations like the
temporal convolution network (TCN) (Lea et al., 2017), or spatiotemporally aware process-guided deep
learning models (Topp et al., 2023). Recent advancements have also introduced transformer-based
methods (Yin et al., 2022), which are architecturally able to model long-term dependencies more
effectively than LSTM (Wen et al., 2022; Zeyer et al., 2019). Transformers have been recently shown
to occasionally outperform other methods for streamflow prediction (Amanambu et al., 2022; Xu et al.,
2023b; Yin et al., 2023). However, so far, these alternatives to LSTM have primarily focused on temporal
predictions in well-monitored locations.

Understanding how to leverage state-of-the-art MLwith existing observational data for prediction in
unmonitored sites can lend insights into bothmodel selection and training for transfer to new regions, as
well as sampling design for new monitoring paradigms to optimally collect data for modeling and
analysis. However, to date, ML-based approaches have not been sufficiently compared or bench-
marked, making it challenging for researchers to determine which architecture to use for a given
prediction task. In this paper, we provide a comprehensive and systematic review of ML-based
techniques for time series predictions in unmonitored sites and demonstrate their use for different
environmental applications. We also enumerate the gaps and opportunities that exist for advancing
research in this promising direction. The scope of our study is limited to using ML for predictions in
unmonitored scenarios as defined above. We do not cover the many statistical and ML-based efforts in
recent years for regionalizing process-based hydrological models, a topic that is covered extensively in
the recent review Guo et al. (2020b). We also exclude remote sensing applications to estimate variables
at previously unmonitored inland water bodies. This is a different class of problems and there are
significant challenges to increasing the scale and robustness of remote sensing applications including
atmospheric effects, measurement frequency, and insufficient resolution for smaller water bodies like
rivers (Topp et al., 2020), which are detailed in a number of reviews (Gholizadeh et al., 2016; Giardino
et al., 2019; Odermatt et al., 2012; Topp et al., 2020).

We organize the paper as follows. Section 2 first describes different ML and knowledge-guided ML
frameworks that have been applied for water resources time series predictions in unmonitored sites. Then,
Section 3 summarizes and discusses overarching themes between methods, applications, regions, and
datasets. Lastly, Section 3.1 analyzes the gaps in knowledge and lists open questions for future research.

2. Machine learning frameworks for predictions in unmonitored sites

In this section, we describe different ML methodologies that have been used for applications in water
resources time series modeling for unmonitored sites. Generally, the process of developing these ML
models first involves generating predictions for a set of entities (e.g., stream gauge sites, lakes) with
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monitoring data of the target variable (e.g., discharge, water quality). Then, the knowledge, data, or
models developed on those systems are used to predict the target variable on entities with no monitoring
data available. Importantly, for evaluation purposes, thesemodels are often tested on pseudo-unmonitored
sites, where data is withheld until the testing stage to mimic model building for real unmonitored sites.

The most commonly used type of model for this approach is known as an entity-aware model (Ghosh
et al., 2023; Kratzert et al., 2019c, d)1, which attempts to incorporate inherent characteristics of different
entities to improve prediction performance. These characteristics across the literature are also called
attributes, traits, or properties. The concept is similar to trait-based modeling to map characteristics to
function in ecology and other earth sciences (Zakharova et al., 2019). The underlying assumption is that
the input data used for prediction consists of both dynamic physical drivers (e.g., daily meteorology) and
site-specific characteristics of each entity such as their geomorphology, climatology, land cover, or land
use. Varied MLmethodologies have been developed that differ both in how these characteristics are used
to improve performance and also in how entities are selected and used formodeling. These approaches are
described further below and include building a single model using all available entities or subgroups of
entities deemed relevant to the target unmonitored sites (Section 2.1), transfer learning of models from
well-monitored sites to target sites (Section 2.2), and a cross-cutting theme of integratingMLwith domain
knowledge and process-based models (Section 2.3).

2.1. Broad-scale models using all available entities or a subgroup of entities

Typically, process-based models have been applied and calibrated to specific locations, which is
fundamentally different from theML approach of building a single regionalized model on a large number
of sites (hence referred to as a broad-scale model) that inherently differentiates between dynamic
behaviors and characteristics of different sites (Golian et al., 2021; Guo et al., 2021). The objective of
broad-scale modeling is to learn and encode these differences such that differences in site characteristics
translate into appropriately heterogeneous hydrologic behavior. Usually, the choice is made to include all
possible sites or entities in building a single broad-scale model. However, using the entirety of available
data is not always optimal. Researchersmay also consider selecting only a subset of entities for training for
a variety of reasons including (1) the entire dataset may be imbalanced such that performance diminishes
on minority system types (Wilson et al., 2020), (2) some types of entities may be noisy, contain erroneous
or outlier data, or have varying amount of input data, or (3) to save on the computational expense of
building a broad-scale model. Traditionally in geoscientific disciplines like hydrology, stratifying a large
domain of entities intomultiple homogeneous subgroups or regions that are “similar” is common practice.
This is based on evidence in process-based modeling that grouping heterogeneous sites for regionaliza-
tion can negatively affect performance when extrapolating to unmonitored sites (Hosking and Wallis,
1997; Lettenmaier et al., 1987). Therefore, it remains an open questionwhether using all the available data
is the optimal approach for building training datasets for predictions in unmonitored sites. Copious
research has been done investigating various homogeneity criteria trying to find the best way to group
sites for these regionalization attempts for process-basedmodeling (Burn, 1990a, b; Guo et al., 2021), and
many recent approaches also leverage ML for clustering sites (e.g., using k-means (Aytac, 2020; Tongal
and Sivakumar, 2017)) prior to parameter regionalization (Guo et al., 2021; Sharghi et al., 2018).

Many studies use subgroups of sites when building broad-scale models usingML. For example, Araza
et al. (2020) demonstrate that a principal components analysis-based clustering of 21 watersheds in the
Luzon region of the Philippines outperforms an entity-aware broad-scale model built on all sites together
for daily streamflow prediction. Furthermore,Weierbach et al. (2022) found that anMLmodel combining
two regions of data in the United States for stream temperature prediction did not perform better than
building models for each individual region. Chen et al. (2020) cluster weather stations by mean climatic
characteristics when building LSTM and temporal convolution network models for predicting

1 In this paper we use the term ““entity-aware”” in the context of a general way of modeling a large number of entities with
inherent characteristics with ML, as opposed to the “entity-aware long short-term memory” architecture in Kratzert et al. (2019c).
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evapotranspiration in out-of-sample sites, claiming models performed better on similar climatic condi-
tions. Additionally for stream water level prediction in unmonitored sites, Corns et al. (2022) group sites
based on the distance to upstream and downstream gauges to include proximity to a monitoring station as
criteria for input data selection. The water levels from the upstream and downstream gauges are also used
as input variables. The peak flood prediction model described in Section 2.1 divides the models and data
across the 18 hydrological regions in the conterminous US as defined by USGS (U.S. Geological Survey,
2016).

However, it remains to be seen how selecting a subgroup of entities as opposed to using all available
data fairs in different prediction applications because much of this work does not compare the perform-
ances of both these cases. When viewed through the lens of modern data-driven modeling, evidence
suggests deep learning methods in particular may benefit from pooling large amounts of heterogeneous
training data. Fang et al. (2022) demonstrate this effect of “data synergy” on both streamflow and soil
moisture modeling in gauged basins showing that deep learningmodels perform better when fed a diverse
training dataset spanning multiple regions as opposed to homogeneous dataset on a single region even
when the homogeneous data is more relevant to the testing dataset and the training datasets are the same
size. A recent opinion piece Kratzert et al. (2024) also make an argument against building deep learning
models, specifically LSTM models, on streamflow data from small homogeneous sets of watersheds,
especially for predicting unmonitored areas and for extreme events. Moreover inWillard (2023), regional
LSTMmodels of stream temperature in theUnited States performworse than the LSTMmodel built on all
sites in the CONUS for 15 out of 17 regions, and single-site trained models transferred to the testing sites
generally performed worse except when pre-trained on the global model.

Overall across broad-scale modeling efforts, studies differ in how theML framework leverages the site
characteristics. The following subsections describe different approaches of incorporating site character-
istics into broad-scale models that use all available entities or a subgroup, covering direct concatenation of
site characteristics and dynamic features, encoding of characteristics using ML, and the use of graph
neural networks to encode dependencies between sites.

2.1.1. Direct concatenation broad-scale model
When aggregating data across many sites for an entity-aware broad-scale model, it is common to append
site characteristics directly with the input forcing data directly before feeding it to the ML model. Shown
visually in Figure 1, this is a simple approach that does not require novel ML architecture and is therefore
very accessible for researchers. Although some characteristics can change over time, many applications
treat these characteristics as static values over each timestep through this concatenation process, even
though commonly used recurrent neural network-based approaches like LSTMare not built to incorporate
static inputs (Li et al., 2021a; Lin et al., 2018; Rahman et al., 2020). In a landmark result for temporal
streamflow predictions, Kratzert et al. (2019c, 2019d) used an LSTM with directly concatenated site
characteristics and dynamic inputs built on 531 geographically diverse catchments within the Catchment
Attributes and Meteorology for Large-sample Studies (CAMELS) dataset, and were able to predict more

Figure 1. Example of an LSTM network model with directly concatenated site characteristics and
dynamic inputs.
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accurately on unseen data on the same 531 test sites than state-of-the-art process-based models calibrated
to each basin individually. Given the success of the model, that study was expanded to the scenario of
predicting unmonitored stream sites (Kratzert et al., 2019a), where they found the accuracy of the broad-
scale LSTM with concatenated features in ungauged basins was comparable to calibrated process-based
models in gauged basins. Arsenault et al. (2023) and Jiang et al. (2020) further show a similar broad-scale
LSTM can outperform the state-of-the-art regionalization of process-based models for predictions in
ungauged basins in the United States, and similar results are seen in Russian (Ayzel et al., 2020), Brazilian
(Nogueira Filho et al., 2022), and Korean (Choi et al., 2022) watersheds. More recently, attention-based
transformer models have been used in Yin et al. (2023) for streamflow prediction on the CAMELS dataset
showing improved performance over multiple kinds of LSTM models for both prediction in individual
ungauged sites and entire ungauged regions. Broad-scale models have also been used for the prediction of
other environmental variables like continental-scale snow pack dynamics (Wang et al., 2022), monthly
baseflow (Xie et al., 2022), dissolved oxygen in streams (Zhi et al., 2021), and lake surface temperature
(Willard et al., 2022b).

The previously mentioned approaches in most cases focus on predicting mean daily values, but
accurate predictions of extremes (e.g., very high flow events or droughts) remain an outstanding and
challenging problem in complex spatiotemporal systems (J. Jiang et al., 2022). This is a longstanding
fundamental challenge in catchment hydrology (Salinas et al., 2013), where typically the approach has
been to subdivide the study area into fixed, contiguous regions that are used to regionalize predictions for
floods or low flows from process-based models for all catchments in a given area. At least for process-
based models, this has been shown to be more successful than global regionalizations (Salinas et al.,
2013). As recent ML and statistical methods are shown to outperform process-based models for the
prediction of extremes (Frame et al., 2022; Viglione et al., 2013), opportunities exist to apply broad-scale
entity-aware methods in the same way as daily averaged predictions. Challenges facing ML models for
extreme prediction include replacing common loss functions like mean squared error which tend to
prioritize average behavior and may not adequately capture rare and extreme events (Mudigonda et al.,
2021), and dealing with the common scenario of extreme data being sparse (Zhang et al., 2011). Initial
studies using broad-scale models with concatenated inputs for peak flood prediction show that these
methods can also be used to predict extremes. For instance, Rasheed et al. (2022) built a peak flow
prediction model that combines a “detector” LSTM that determines if the meteorological conditions pose
a flood risk, with an entity-aware ML model for peak flow prediction to be applied if there is a risk. They
show that building a model only on peak flows and combining it with a detector model improves
performance over the broad-scale LSTM model trained to predict mean daily flows (e.g., Kratzert et al.
(2019b)). Though initial studies like this show promise, further research is required to compare techniques
that deal with the imbalanced data, that is, extreme events are often rare outliers, different loss functions
and evaluation metrics for extremes, and different ML architectures.

Based on these results, it appears as though site characteristics can contain sufficient information to
differentiate between site-specific dynamic behaviors for a variety of prediction tasks. This challenges a
longstanding hydrological perspective that transferring models and knowledge from one basin to another
requires that they must be functionally similar (Fang et al., 2022; Guo et al., 2021; Razavi and Coulibaly,
2013 since these broad-scale models are built on a large number of heterogeneous sites. A recent study Li
et al. (2022) also substitutes random values as a substitute for site characteristics in a direct concatenation
broad-scale LSTM to improve performance and promote entity-awareness in the case of missing or
uncertain characteristics.

2.1.2. Concatenation of encoded site characteristics for broad-scale models
Though recurrent neural networkmodels like the LSTMhave been usedwith direct concatenation of static
and dynamic features, other methods have been developed that encode watershed characteristics as static
features to improve accuracy or increase efficiency. As shown in Figure 2, one approach is to use two
separate neural networks, where the first learns a representation of the “static” characteristics using an
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encoding neural network (e.g., an autoencoder), and the second takes that encoded representation at each
time-step along with dynamic time-series inputs to predict the target using a time series ML framework
(e.g., LSTM). This has been shown to be effective mostly in healthcare data applications (Esteban et al.,
2016; Li et al., 2021a; Lin et al., 2018), but also in lake temperature prediction in Tayal et al. (2022). The
idea is to extract the information from characteristics that account for data heterogeneity across multiple
entities. This extraction process is independent of the LSTM or similar time series model handing the
dynamic input and therefore can be flexible in how the two components are connected. Examples to
improve efficiency include, (1) static information may not be needed at every time step and be applied
only at the time step of interest (Lin et al., 2018), or (2) the encoding network can be used to reduce the
dimension of static features prior to connecting with the ML framework doing the dynamic prediction
(Kao et al., 2021). In terms of performance, works from multiple disciplines have found these types of
approaches improve accuracy over the previously described direct concatenation approach (Lin et al.,
2018; Rahman et al., 2020; Tayal et al., 2022).

In water resources applications, Tayal et al. (2022) demonstrate this in lake temperature prediction
using an invertible neural network in the encoding step, showing slight improvement over the static and
dynamic concatenation approach. Invertible neural networks have the ability to model forward and
backward processes within a single network in order to solve inverse problems. For example, their model
uses lake characteristics andmeteorological data to predict lake temperature, but can also attempt to derive
lake characteristics from lake temperature data. It has also been shown in streamflow prediction that this
type of encoder network can be used either on the site characteristics (S. Jiang et al., 2020) or also on
partially available soft data like soil moisture or flow duration curves (Feng et al., 2021). In Jiang et al.
(2020), they include a feed-forward neural network to process static catchment-specific attributes
separately from dynamic meteorological data prior to predicting with a physics-informed neural network
model. However, it is not directly compared with a model using the static features without any processing
in a separate neural network so the added benefit is unclear. Feng et al. (2021) further show an encoder
network to encode soil moisture data if it is available prior to predicting streamflow with an LSTMmodel
but show limited benefit over not including the soil moisture data.

2.1.3. Broad-scale graph neural networks
The majority of works in this study treat entities as systems that exist independently from each other
(e.g., different lakes and different stream networks). However, many environmental and geospatial
modeling applications exhibit strong dependencies and coherence between systems (Reichstein et al.,
2019). These dependencies can be real, interactive physical connections, or a coherence in dynamics
due to certain similarities regardless of whether the entities interact. For example, water temperature in
streams is affected by a combination of natural and human-involved processes including meteorology,
interactions between connected stream segments within stream networks, and the process of water
management and timed-release reservoirs. Similar watersheds, basins, or lakes may also exhibit
dependencies and coherence based on characteristics or climatic factors (George et al., 2000; Hun-
tington et al., 2003; Kingston et al., 2006; Magnuson et al., 1990). Popular methods like the previously
described broad-scale models using direct concatenation of inputs (Section 2.1.1) offer no intuitive way

Figure 2. Example of a combination static feature encoder neural network with an LSTM network model.
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to encode interdependencies between entities (e.g., in a connected stream network) and often ignore
these effects. Researchers are beginning to explore different ways to encode these dependencies
explicitly by using graph neural networks (GNNs) for broad-scale modeling of many entities. The
use of GNNs can allow the modeling of complex relationships and interdependencies between entities,
something traditional feed-forward or recurrent neural networks cannot do (Wu et al., 2020). GNNs
have seen a surge in popularity in recent years for many scientific applications and several extensive
surveys of GNNs are available in the literature (Battaglia et al., 2018; Bronstein et al., 2017; Wu et al.,
2020; Zhou et al., 2020). Hydrological processes naturally have both spatial and temporal components,
and GNNs attempt to exploit the spatial connections, causative relations, or dependencies between
similar entities analogous to the way that the LSTM architecture exploits temporal patterns and
dependencies. Recent work has attempted to encode stream network structure within GNNs to capture
spatial and hydrological dependencies for applications like drainage pattern recognition (Yu et al.,
2022), groundwater level prediction (Bai and Tahmasebi, 2022), rainfall-runoff or streamflow predic-
tion (Feng et al., 2022c; Kazadi et al., 2022; Kratzert et al., 2021; Sit et al., 2021; Sun et al., 2021a; Zhao
et al., 2020), lake temperature prediction (Stalder et al., 2021), and stream temperature prediction (Bao
et al., 2021; Chen et al., 2021a, 2022).

In hydrology, there are three intuitive methods for the construction of the graph itself. The first is
geared towards non-interacting entities, building the graph in the form of pair-wise similarity between
entities, whether that be between site characteristics (Sun et al., 2021a), spatial locations (Sun et al.,
2021b; Zhang et al., 2021) (e.g., latitude/longitude) or both (Xiang and Demir, 2021). The second type
is geared more toward physically interacting entities, for example, the upstream and downstream
connections between different stream segments in a river network (Jia et al., 2021b) or connections
between reservoirs with timed water releases to downstream segments (Chen et al., 2021a). The third
type starts with an a priori connectivity matrix like the previous type but lets the GNN learn an
adaptive connectivity matrix during training based on the sites’ dynamic inputs, attributes, or location
(Sun et al., 2022). Relying solely on the characteristics or location for graph construction in the non-
interacting case more easily allows for broad-scale modeling because it can model spatially discon-
nected entities, however, it introduces no new information (e.g., physical connectivity) beyond what
the previously described direct concatenation-based methods use since the static characteristics would
be the same. However, performance could still improve and interpretations of encodings within a
graph framework could yield new scientific discoveries since pairwise encodings between entities can
be directly extracted. Graphs built using real physical connections between entities (e.g., stream
segments in a stream graph), on the other hand, allow for the capability to learn how information is
routed through the graph and how different entities physically interact with each other. So far, this has
only been seen in stream modeling using stream network graphs (Bindas et al., 2020; Jia et al., 2021b;
Kratzert et al., 2021; Topp et al., 2023). The third type is useful when combining the physical
connectivity between sites with similarity in inputs, and also in cases where the inputs are at a
different scale than the target variable, for example, when meteorological variables are at kilometer
scale and streamflow is at point scale.

There are two different classes of GNNmodels, transductive and inductive, which differ in how the
graph is incorporated into the learning process. Depending on how the graphs are constructed, one of
these is more natural than the other. A conceptual depiction of both is shown in Figure 3. The key
aspect of transductive GNNs is that both training and testing entities must be present in the graph
during training. A prerequisite for this approach is that the test data (e.g., input features in unmonitored
sites) is available during model training, and one key aspect is that the model would need to be
completely re-trained upon the introduction of new test data. Even if the training data is unchanged
prior to re-training, introducing new test nodes in the graph can affect how information is diffused to
each training node during optimization (Ciano et al., 2021). This type of approach is generally
preferred for river network modeling given the often unchanging spatial topology of the sub-basin
structure which is known a priori (Jia et al., 2021b; Moshe et al., 2020; Sit et al., 2021). Graph
connections from the test nodes to the training nodes in a transductive setting can be used either in the
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training or prediction phase, or both (Rossi et al., 2018). Inductive GNNs on the other hand, are built
using only training entities and allow for new entity nodes to be integrated during testing. For
applications that continuously need to predict on new test data, inductive approaches are much
more preferred. New entity nodes are able to be incorporated because inductive frameworks also
learn an information aggregator that transfers the necessary information from similar or nearby nodes
to predict at nodes unseen during training. However, this also means connections between nodes
are only present in the test data and those in the training data are unseen during model training as
opposed to transductive approaches where they are included. As shown in Figure 3, inductive graph
learning can either be done on nodes that connect with training set nodes in the graph or those that are
disconnected. Inductive GNNs can be understood as being in the same class as more standard
supervised ML models like LSTM or feed-forward neural networks, where they are able to continu-
ously predict on new test data without the need for re-training.

A few studies use GNNs for prediction in unmonitored sites for water resources applications. Sun et al.
(2021a) use different types of spatiotemporal GNNs including three transductive GNN methods, two
variants of the ChebNet-LSTM (Yan et al., 2021) and a Graph Convolutional Network LSTM (GCN-
LSTM) (Seo et al., 2018), compared with a GNN that can used as either transductive or inductive,
GraphWaveNet (Wu et al., 2019). In all cases, the graph is initially constructed as an adjacency matrix
containing the pairwise Euclidean distance between stream sites using site characteristics. Importantly, all
four models simplify to direct concatenation-based models described in Section 2.1 if the graph
convolution-based components are removed (See Figure S2 in Sun et al. (2021a) for a visualization).
For ChebNet-LSTM and GCN-LSTM, the direct concatenation-approach would effectively simplify the
architecture to a traditional LSTM, and for GraphWaveNet, it would simplify to a gated temporal
convolution network (TCN). They found that for the transductive case, both ChebNet-LSTMs and
GCN-LSTM performed worse in terms of median performance across basins than the standard LSTM

Figure 3.Conceptual example of transductive and inductive graph learning. In both left and right panels,
F is a model learned during training. Blue and red nodes represent entities with data for use in training
and test entities without any data respectively. In transductive graph learning, the model has access to
nodes and edges associated with test entities during training, but no new nodes can be introduced during
testing. In inductive graph learning, the model is trained on an initial graph without any knowledge of the
test entities, but the model can generalize to any new nodes during testing.
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andGraphWaveNetwas the only one that performed better. GraphWaveNet, the onlyGNNalso capable of
doing inductive learning, also performed better in the inductive case than standard LSTM. Jia et al.
(2021b) take a different spatiotemporal GNN approach for stream temperature temporal predictions,
where they construct their graph by using stream reach lengths with upstream and downstream connec-
tions to construct aweighted adjacencymatrix. They found their GNNpre-trained on simulation data from
the PRMS-SNTemp process-based model (Markstrom, 2012) outperformed both a non-pre-trained GNN
and a baseline LSTM model. Based on these results, we see that encoding dependencies based on site
characteristics as well as physical interaction and stream connections within GNNs, can improve
performance over existing deep learning models like the feed-forward artificial neural network (ANN)
or LSTM.

Some studies have explored different ways of constructing the adjacency matrix based on the
application and available data. An example of a domain-informed method for graph construction can
be seen in Bao et al. (2021) for stream temperature predictions in unmonitored sites, where they leverage
partial differential equations of underlying heat transfer processes to estimate the graph structure
dynamically. This graph structure is combined with temporal recurrent layers to improve prediction
performance beyond existing process-based andML approaches. Dynamic temporal graph structures like
this are common in other disciplines like social media analysis and recommender systems but have not
been widely used in geosciences (Longa et al., 2023).

2.2. Transfer learning

Transfer learning is a powerful technique for applying knowledge learned from one problem domain to
another, typically to compensate for missing, non-existent, or unrepresentative data in the new problem
domain. The idea is to transfer knowledge from an auxiliary task, that is, the source system, where
adequate data is available, to a new but related task, that is, the target system, often where data is scarce or
absent (Pan and Yang, 2009;Weiss et al., 2016). Situations where transfer learning may bemore desirable
than broad-scale modeling include when (1) a set of highly tuned and reliable source models (ML,
process-based or hybrid) may already be available, (2) local source models are more feasible computa-
tionally or more accurate than broad-scale models when applied to unmonitored systems, or (3) broad-
scale models may need to be transferred and fine-tuned to a given region or system typemore similar to an
unmonitored system. In the context of geoscientific modeling, transfer learning for ML is analogous to
calibrating process-based models in well-monitored systems and transferring the calibrated parameters to
models for unmonitored systems, which has shown success in hydrological applications (Kumar et al.,
2013; Roth et al., 2016). Deep learning is particularly amenable to transfer learning because it can make
use of massive datasets from related problems and alleviate data paucity issues common in applying data-
hungry deep neural networks to environmental applications (Naeini and Uwaifo, 2019; Shen, 2018).
Transfer learning using deep learning has shown recent success in water applications such as flood
prediction (Kimura et al., 2019; Zhao et al., 2021), soil moisture (Li et al., 2021b), and lake and estuary
water quality(Tian et al., 2019; Willard et al., 2021a).

Transfer learning can also be a capable tool for predictions in unmonitored sites (Tabas and Samadi,
2021), although most applications typically assume that some data is available in the target system for
fine-tuning a model, which is often referred to as few shot learning with sparse data (Weiss et al., 2016;
Zhuang et al., 2020). The specific case of transferring to a system or task without any training data is also
known as “zero-shot learning” (Romera-Paredes and Torr, 2015), where only the inputs or a high-level
descriptionmay be available for the testing domain that does not contain any target variable values. This is
a significantly more challenging problem because taking a pre-trained model from a data-rich source
system and fine-tuning it on the target system is not possible, and instead other contextual data about the
source and target systems must be used. In the case of unmonitored prediction, we often only have the
dynamic forcing data and the characteristics of the target system (site) available. The following
subsections cover different ways researchers have addressed the zero-shot transfer learning problem
for water resources prediction.
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2.2.1. Choosing which model to transfer
A central challenge in zero-shot transfer learning is determining which model to transfer from
a related known task or how to build a transferable model. Previous work on streamflow prediction
has based this purely on expert knowledge. For example, Singh et al. (2022) operate under the
assumption that the model must be trained on other basins in the same climatic zone, and at least
some of the source basin’s geographical area must have similar meteorological conditions to the
target basin. Other work has transferred models from data-rich regions to data-poor regions without
any analysis of the similarity between the source and target regions. For example, Le et al. (2022)
transfer ML streamflow models built on North America (987 catchments), South America
(813 catchments), and Western Europe (457 catchments); to data-poor South Africa and Central
Asian regions. They transfer these models as-is and do not take into account any of the sparse data in
the data-poor region or the similarity between regions and find that the local models trained on
minimal data outperform the models from data-rich regions. Attempts have also been made to use
simple expert-created distance-based metrics (e.g., Burn and Boorman (1993)) using the site
characteristic values (Vaheddoost et al., 2023). However, it is reasonable to think that a data-
driven way to inform model building based on both the entity’s characteristics and past modeling
experiences would be possible.

The idea of building or selecting a model by leveraging preexisting models is a type of meta-
learning (Brazdil, 2009; Lemke et al., 2015). More broadly meta-learning is the concept of algorithms
learning from other algorithms, often in the task of selecting a model or learning how to best combine
predictions from different models in the context of ensemble learning. One meta-learning strategy for
model selection is to build a metamodel to learn from both the model parameters of known tasks (with
ground truth observations) and the correlation of known tasks to zero-shot tasks (Pal and Balasu-
bramanian, 2019). For example, in lake temperature modeling, Willard et al. (2021b) use meta-
learning for a model selection framework where a metamodel learns to predict the error of transferring
a model built on a data-rich source lake to an unmonitored target lake. A diagram of the approach is
shown in Figure 4. A variety of contextual data is used to make this prediction, including
(1) characteristics of the lake (e.g., maximum depth, surface area, clarity, etc., (2) meteorological
statistics (e.g., average and standard deviation of air temperature, wind speed, humidity, etc.,
(3) simulation statistics from an uncalibrated process-based model applied to both the source and
target (e.g., differences in simulated lake stratification frequency), and (4) general observation
statistics (e.g., number of training data points available on the source, average lake depth of measured
temperature, etc). They show significantly improved performance predicting temperatures in 305
target lakes treated as unmonitored in the Upper Midwestern United States relative to the uncalibrated
process-based General Lake Model (Hipsey et al., 2019), the previous state-of-the-art for broad-scale
lake thermodynamic modeling. This was expanded to a streamflow application by Ghosh et al. (2022)
with numerous methodological adaptations. First, instead of using the site characteristics as is, they
use a sequence autoencoder to create embeddings for all the stream locations by combining input time
series data and simulated data generated by a process-based model. This adaptation alleviated a known
issue in the dataset where the site characteristics were commonly incomplete and inaccurate. They also
use a clustering loss function term in the sequence autoencoder to guide the model transfer, where
source systems are selected based on available source systems within a given cluster of sites as
opposed to building an ensemble with a set number of source sites. The clustering loss function term
allows the model to learn a latent space that can correctly cluster river streams that can accurately
transfer to one another. They show on streams within the Delaware River Basin that this outperforms
the aforementioned simpler meta-transfer learning frameworks on sites based on Willard et al.
(2021b). Willard (2023), expand on Willard et al. (2021b) by also building a meta-transfer learning
framework that pre-trains each source model on CONUS-scale data, aiming to combine the benefits of
broad-scale modeling and site-specific transfer learning for the task of stream temperature prediction.
They find a small performance improvement over the existing direct concatenation approach building
a single model on all stream entities in the CONUS.
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2.2.2. Fine-tuning models with sparse data
A common hydrologic prediction scenario is one in which broad-scale data andmodels are available but a
target site has inadequate or sparse data. This is especially seen in remote, inaccessible, or under-
monitored regions. Given a pre-trained model on broad-scale data or simulated process-based model
outputs, fine-tuning ML models by adjusting parameters during a second training instance has the
potential to improve the accuracy and relevance of the model for specific local conditions. Pre-training
on process-based model outputs and fine-tuning on minimal sparse data has shown to be effective in lake
temperature (Jia et al., 2021a; Willard et al., 2021b) and stream temperature (Jia et al., 2021a) prediction
for as little as 0.1% of available data to simulate a common prediction scenario where only a few
measurements of the target variable may be available and show substantial increase in performance over
an uncalibrated process-based model. Furthermore, in soil moisture prediction Li et al. (2021b) show an
effective pre-training on the large-scale process-based reanalysis ERA5-Land dataset (Muñoz-Sabater
et al., 2021) and fine-tuning on the smaller SMAP data (O’Neill et al., 2010) showing increased explained
variation of over 20% compared to the non-fine-tuned version.

Another transfer learning with fine-tuning strategy in geoscientific modeling that can also be based on
pre-training is to localize a larger-scale or more data-rich regional or global model to a specific location or
subregion. This variant of transfer learning has seen success in deep learning models for applications like
soil spectroscopy (Padarian et al., 2019; Shen et al., 2022) and snow cover prediction (Guo et al., 2020a;
Wang et al., 2020a). However, these strategies have seenmixed success in hydrological applications. Wang
et al. (2022) show that localizing an LSTM predicting continental-scale snowpack dynamics to individual
regions across the United States had insignificant benefits over the continental-scale LSTM. Xiong et al.
(2022) show a similar result for the prediction of stream nitrogen export, where the individualmodels for the

Figure 4. Process diagram of the Meta Transfer Learning framework. Models are first built from data-
rich source domains. Themetamodel is trained using characteristics extracted from the source domains to
predict the performance metrics from transferring models between source domains. Then given a target
system or domain, the metamodel is able to output a prediction of how well each of the source models will
perform on the target system. Adapted from Willard, et al. (2021a).
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7 distinct regions across the conterminous United States transferred to each other did not outperform the
continental-scale model using all the data. Also, Lotsberg (2021) showed that streamflowmodels trained on
CAMELS-US (United States) transfer to CAMELS-GB (Great Britain) about as well as a model trained on
the combined data from US and GB, and models trained on CAMELS-GB transfer to CAMELS-US about
as well as a model using the combined data. They also show that the addition of site characteristics is not
beneficial in transfer learning tasks, but acknowledge this could be due to theway data is normalized prior to
training. Based on these results, it is possible that the entity-aware broad-scalemodel using all available data
is already learning to differentiate between different regions or types of sites on its own, and fine-tuning to
more similar sites based on expert knowledgemay be less useful. However, this remains to be demonstrated
for most hydrological andwater resources prediction tasks. Other studies have also continued the practice of
pre-training amodel on a data-dense region like theUnited States and fine-tuning on data-sparse regions like
China (Ma et al., 2021; Xu et al., 2023b) or Kenya (Oruche et al., 2021).

2.2.3. Unsupervised domain adaptation
Domain adaptation methods are a subset of transfer learning algorithms that attempt to answer the
question, how can a model both learn from a source domain and learn to generalize to a target domain?
Often domain adaptation seeks tominimize the risk ofmaking errors on the target data, and not necessarily
on the source data as in traditional supervised learning. Unsupervised domain adaptation (UDA), in
particular, focuses on the zero-shot learning case of the target domain being void of target data. Similar to
the types of graph neural networks mentioned in Section 2.1.3, review papers have divided transfer
learning algorithms into the categories, (1) inductive transfer learningwhere the source and target tasks are
different and at least some labeled data from the target task is required to induce a model, (2) transductive
transfer learning where the source and target tasks are the same but from different feature space domains
and zero labeled data is available from the target domain, and (3) unsupervised transfer learning where no
labeled data is available in both the source and target domains (S. Niu et al., 2020; Pan and Yang, 2009).
UDA specifically lies in the transductive transfer learning scenario and usually involves using the input
data from the target or testing task during the training process, in addition to the source data. This aspect
differentiates UDA from the previously described methods in this section. Researchers can employ
different UDA methods when attempting to account for differences in the source and target tasks and
datasets. Commonly UDA methods attempt to account for the difference in input feature distribution
shifts between the source and task, but other methods attempt to account for the difference in distributions
of labeled data. This differs from previous approaches we havementioned like the broad-scale models that
generally ignore input data from testing sites, meta-transfer learning that uses test data inputs during
model selection but not during training, and localizing regional models that uses available data from
regions containing the test sites but not any data from the test sites themselves. UDA has seen success in
many disciplines including computer vision (Csurka, 2017; Patel et al., 2015), robotics (Bousmalis et al.,
2018; Hoffman et al., 2016), natural language processing (Blitzer et al., 2007), and fault diagnostics (Shi
et al., 2022) but applications of UDA in hydrology are limited. In the only current hydrological example,
Zhou and Pan (2022) introduce a UDA framework for unmonitored flood forecasting that involves a two-
stage adversarial learning approach. The model is first pre-trained on a large sample source dataset, then
they perform adversarial domain adaptation using an encoder to map the source and target inputs to the
same feature space and learn the difference between the source and target datasets. They show this method
is effective in flood forecasting across the Tunxi and Changhua flood datasets spanning Eastern China and
Taiwan. Currently, UDA that accounts for a shift in label distribution (real or synthetic) has not been
attempted in hydrological prediction, and future research on UDA in hydrology will need to consider
whether to account for either input or label distribution shift between entities and systems.

2.3. Cross-cutting theme: knowledge-guided machine learning

There is a growing consensus that solutions to complex non-linear environmental and engineering
problems will require novel methodologies that are able to integrate traditional process-based modeling
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approaches with state-of-the-art ML techniques, known as Knowledge-guided machine learning
(KGML) (Karpatne et al., 2022) (also known as Physics-guided machine learning or Physics-informed
machine learning (Karpatne et al., 2017a; Muther et al., 2022; Willard et al., 2022a)). These techniques
have been demonstrated to improve prediction in many applications including lake temperature (Jia et al.,
2021a; Read et al., 2019), streamflow (Bhasme et al., 2022; Herath et al., 2021; Hoedt et al., 2021),
groundwater contamination (Soriano et al., 2021), and water cycle dynamics (Ng et al., 2021) among
others. Willard et al. (2022a) divide KGML methodologies into four classes; (i) physics-guided2 loss
function, (ii) physics-guided initialization, (iii) physics-guided design of architecture, and (iv) hybrid
physics-ML modeling. Many of these methods are helpful for prediction in unmonitored sites since
known physics or existing models can exist in the absence of observed target data. Note that KGML is a
cross-cutting theme, as its principles can be integrated into either of the previously described broad-scale
modeling and transfer learning approaches. The benefits we see from KGML as a class of standalone
techniques can also help address resource efficiency issues in building both broad-scale entire-aware
models and source models in transfer learning while maintaining high predictive performance, training
data efficiency, and interpretability relative to traditional ML approaches (Willard et al., 2022a).

The field of KGML is rapidly advancing, and given the numerous applications we see for its use in
hydrology, we include the following discussion on the different ways of harnessing KGML techniques in
a given physical problem that has traditionally been simulated using process-basedmodels. The following
three subsections are divided based on how KGML techniques are used to either replace, augment, or
recreate an existing process-based model. Section 3.1.4 further expands on this discussion by addressing
the role of KGML in the future of unmonitored prediction and open questions that exist.

2.3.1. Guiding ML with domain knowledge: KGML loss functions, architecture, and initialization
Traditional process-based models for simulating environmental variables in complex systems do not
capture all the processes involvedwhich can lead to incompletemodel structure (e.g., from simplified or
missing physics). Though a key benefit of pure ML is the flexibility to literally fit any dataset as well as
not being beholden to the causal structure that process-based models are, its inability to make use of
process-based knowledge can lead to negative effects like sample inefficiency, inability to generalize to
out-of-sample scenarios, and physically inconsistent solutions. When building an ML model as a
replacement for a process-based model, there are at least three considerations to guide the ML model
with domain knowledge for improved predictive performance; KGML loss function terms, architec-
ture, and initialization.

KGML loss function terms can constrain model outputs such that they conform to existing physical
laws or governing equations. In dynamical systemsmodeling and solving partial differentiable equations,
this technique is known as physics-informed neural networks (PINNs) pioneered by Raissi et al. (2019).
SteeringML predictions towards physically consistent outputs have numerous benefits. For prediction in
unmonitored or data-sparse scenarios, the major benefit of informed loss function terms is that often the
computation requires little to no observation data. Therefore, optimizing for that term allows for the
inclusion of unlabeled data in training, which is often the only data available. Other benefits include that
the regularization by physical constraints can reduce the possible search space of parameters, and also
potentially learningwith fewer labeled data, while also ensuring the consistencywith physical laws during
optimization. KGML loss function terms have also shown that models following desired physical
properties are more likely to be generalizable to out-of-sample scenarios (Read et al., 2019), and thus
become acceptable for use by domain scientists and stakeholders in water resources applications. Loss
function terms corresponding to physical constraints are applicable across many different types of ML
frameworks and objectives, however, most of these applications have been in the monitored prediction
scenario (e.g., lake temperature (Jia et al., 2021b; Karpatne et al., 2017b; Read et al., 2019), lake

2 In this paper, we use the term “knowledge-guided” as opposed to “physics-guided” but they are used interchangeably in the
literature.
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phosphorous (Hanson et al., 2020), subsurface flow (Wang et al., 2020b)). We also see applications of
PINNs in hydrology for solving PDEs for transmissivity (Guo et al., 2023), solute transport (Niu et al.,
2023), soil moisture (Bandai and Ghezzehei, 2022), groundwater flow (Cuomo et al., 2023), and shallow
water equations (D. Feng et al., 2023; Nazari et al., 2022). In this survey, we find only one work using
informed loss function terms within a meta-transfer learning framework for lake temperature modeling
(Willard et al., 2021a, 2021b) incorporating conservation of energy relating to the ingoing and outgoing
thermal fluxes into the lake.

Another direction is to use domain knowledge to directly alter a neural network’s architecture to
implicitly encode physical consistency or other desired physical properties. However, KGML-driven
architecture optimizing for physical consistency is usually understood as a hard constraint since the
consistency is hardcoded into the model, whereas KGML loss function terms are a soft constraint that can
depend on optimization and weights within the loss function. Other benefits from KGML loss function
terms are also experienced by KGML-driven model architecture, including reducing the search space and
allowing for better out-of-sample generalizability. KGML-driven model architectures have shown
success in hydrology, however, it has been limited to temporal predictions for monitored sites. Examples
include S. Jiang et al. (2020) where they show a rainfall-runoff process model can be embedded as special
recurrent neural layers in a deep learning architecture, Daw and Karpatne (2019) where they show a
physical intermediate neural network node as part of an monotonicity-preserving structure in the LSTM
architecture for lake temperature, and more examples in the Willard et al. (2022a) KGML survey.
However, there is nothing preventing these approaches from being applied in the unmonitored scenario.

Lastly, if process-based model output is already available, such as the National Water Model
streamflow outputs (NOAA, 2016), FLake model lake surface temperature outputs within ERA5
(Muñoz-Sabater et al., 2021), or PRMS-SNTemp simulated stream temperature (Markstrom, 2012), this
data can be used to help pre-train an ML model, which is known as KGML initialization. In the
unmonitored prediction scenario, pre-training can be done on process-based model simulations of sites
with no monitoring data. This is arguably the most accessible KGML method since there is no direct
alteration of the ML approaches. By pre-training, the ML model can learn to emulate the process-based
model prior to seeing training data in order to accelerate or improve the primary training. Numerous
studies in water resources perform KGML-based model initialization by making use of process-based
model output to inform ML model building, either to create site-specific embeddings used for similarity
calculation in meta transfer learning (Ghosh et al., 2022), as a pre-training stage for source models in meta
transfer learning (Willard et al., 2021a, 2021b), or as a pre-training stage for entity-aware broad-scale
models (Koch and Schneider, 2022; Noori et al., 2020).

Beyond these traditional KGML approaches, there is also the concept of neural operators, which have
emerged as a powerful class of ML capable of generalizing across different scenarios and scales. Unlike
traditional neural networks that learn mappings between inputs and outputs with fixed dimensions, neural
operators map between infinite-dimensional functional spaces (Li et al., 2020). While neural operators
have not yet been directly applied to ungauged or unmonitored hydrologic time series prediction, recent
studies demonstrate their potential in surrogate modeling of dynamical systems modeling for flood
inundation (Sun et al., 2023), geological carbon storage (Tang et al., 2024), and groundwater flow (Taccari
et al., 2023). They also have the capability to increase computational efficiency within transformer
architectures for scaling to high resolution or high dimensional data, specifically for vision transformers in
Guibas et al. (2021) and Pathak et al. (2022).

2.3.2. Augmenting process models with ML using hybrid process-ML models
In many cases, certain aspects of process-based models may be sufficient but researchers seek to use ML
in conjunction with an operating process-based to address key issues. Examples include where
(1) process-based model outputs or intermediate variables are useful inputs to the ML model, (2) a
process-based model may model certain intermediate variables better than others that could utilize the
benefits of ML, or (3) optimal performance involves choosing between process-based models and ML
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models, based on prediction circumstances in real-time. Using both the ML model and a process-based
model simultaneously is known as a hybrid process-ML model and is the most commonly used KGML
technique for unmonitored prediction. In theWillard et al. (2022a) survey of KGMLmethods, they define
hybridmodels as either process andMLmodels working together for a prediction task, or a subcomponent
of a process-based model being replaced by an ML model. This type of KGML method is also very
accessible for domain scientists since it requires no alterations to existing ML frameworks. In this work,
we do not cover the large body of work of ML predictions of process-based model parameters since
these methods have been outpaced by ML for predictive performance and tend to extrapolate to new
locations poorly (Nearing et al., 2021), but summaries can be found in Reichstein et al. (2019) or Xu and
Liang (2021).

The most common form of hybrid process-ML models in hydrological and water resources engineer-
ing is known as residual modeling. In residual modeling, a data-driven model is trained to predict a
corrective term to the biased output of a process-based or mechanistic model. This concept goes by other
names such as error-correction modeling, model post-processing, error prediction, compensation predic-
tion, and others. Correcting these residual errors and biases has been shown to improve the skill and
reliability of streamflow forecasting (Cho and Kim, 2022; Regonda et al., 2013), water level prediction
(López López et al., 2014), and groundwater prediction (Xu andValocchi, 2015).When applying residual
modeling to unmonitored prediction, the bias-correcting ML model must be trained on either a large
number of sites or sites similar to the target site. Hales et al. (2022) demonstrate a framework to build a
residual model for stream discharge prediction with the GEOGloWS ECMWF Streamflow Model that
selects similar sites based on the dynamic time warping and euclidean distance time series similarity
metrics. For unmonitored sites, they substitute simulated data instead of the observed data and show a
substantial reduction in model bias in ungauged subbasins.

A slight alteration to the residualmodel is a hybrid process-MLmodel that takes anMLmodel and adds
the output of a process-based model as an additional input. This adds a degree of flexibility to the
modeling process compared to the standard residual model as the residual error is not modeled explicitly,
andmultiple process-basedmodel outputs can be used at once. Karpatne et al. (2017b) showed that adding
the simulated output of a process-based model as one input to anMLmodel along with input drivers used
to drive the physics-based model for lake temperature modeling can improve predictions, and a similar
result was seen in Yang et al. (2019a) augmenting flood simulation model based on prior global flood
predictionmodels. This hybridmodeling approach has recently been applied to unmonitored prediction as
well, with Noori et al. (2020) using the output of SWAT (Soil & Water Assessment Tool (Arnold et al.,
1998)) as an input to a feed-forward neural network for predicting monthly nutrient load prediction in
unmonitored watersheds. They find that the hybrid process-ML model has greater prediction skills in
unmonitored sites than the SWAT model calibrated at each individual site.

Another simple way to combine process-based models with ML models is through multi-model
ensemble approaches that combine the predictions of two or more types of models. Ensembles can both
provide more robust prediction and allow quantification and reduction of uncertainty. Multiple studies in
hydrology have shown that using two or more process-based models with different structures improves
performance and reduces prediction uncertainty in ungauged basins (Cibin et al., 2014; Waseem et al.,
2015). Razavi and Coulibaly (2016) show an ensemble of both MLmodels and process-based models for
streamflow prediction, which further reduced prediction uncertainty and outperformed individualmodels.
However, this study is limited to building a model for an ungauged stream site using only the three most
similar and closely located watersheds, as opposed to more comprehensive datasets like CAMELS.

Comparisons between different types of hybrid models are not commonly seen, as most studies tend to
use only onemethod. In one study highlighting different hybridmodels, Frame et al. (2021) compare three
approaches, (1) LSTM residual models correcting the National Water Model (NWM), (2) a hybrid
process-ML model using an LSTM that takes the output of the NWM as an additional input, and (3) a
broad-scale entity-aware LSTM like we have described in Section 2.1. They find that in the unmonitored
scenario, the third approach performed the best, which leads to the conclusion that the output from the
NWM actually impairs the model and prevents it from learning generalizable hydrological relationships.
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In many KGML applications, the underlying assumption is that the process-based model is capable of
reasonably good predictions and adds value to the ML approaches. Additional research is required to
address when hybrid modeling is beneficial for unmonitored prediction since there are often numerous
process-based models and different ways to hybridize modeling for a given environmental variable.

2.3.3. Building differentiable and learnable process-based models
Numerous efforts have been made to build KGML models that have equal or greater accuracy than
existing ML approaches but with increased interpretability, transparency, and explainability using the
principles of differentiable process-based (DPB) modeling (Feng et al., 2022b; Khandelwal et al., 2020;
Shen et al., 2023). The main idea of DPBmodels is to keep an existing geoscientific model’s structure but
replace the entirety of its components with differentiable units (e.g., ML). From an ML point of view, it
can be viewed as a domain-informed structural prior resulting in amodular neural networkwith physically
meaningful components. This differs from the previously described hybrid process-ML methods that
include non-differentiable process-based models or components. One recent example is shown in
hydrological flow prediction by Feng et al. (2022b), though similar models have been used in other
applications like earth system models (Gelbrecht et al., 2022) and molecular dynamics (AlQuraishi and
Sorger, 2021). The DPB model proposed by Feng et al. (2022b) starts with a simple backbone
hydrological model (Hydrologiska Byråns Vattenbalansavdelning model (Bergström, 1976)), replaces
parts of themodelwith neural networks, and couples it with a differentiable parameter learning framework
(see Figure 1 in Feng et al. (2022b) for a visualization). Specifically, the process model structure is
implemented as a custom neural network architecture that connects units in a way that encodes the key
domain process descriptions, and an additional neural network is appended to the aforementioned
process-based neural network model to learn the physical parameters. The key concept is that the entire
framework is differentiable from end to end, and the authors further show that the model has nearly
identical performance in gauged flow prediction to the record-holding entity-aware LSTM while
exhibiting interpretable physical processes and adherence to physical laws like conservation of mass.
A simpler implementation is seen in Khandelwal et al. (2020), also for streamflow, where intermediate
RNN models are used to predict important process model intermediate variables (e.g., snowpack,
evapotranspiration) prior to the final output layer. In both of these implementations, we see a major
advantage of the DPB model is the ability to output an entire suite of environmental variables in addition
to the target streamflow variable, including baseflow, evapotranspiration, water storage, and soil mois-
ture. The DPB approach has been further demonstrated in the unmonitored prediction of hydrological
flow in Feng et al. (2022a), showing better performance than the entity-aware LSTM for mean flow and
high flow predictions but slightly worse for low flow. The results of DPBmodels in both unmonitored and
monitored scenarios challenge the notion that process-based model structure rigidness is undesirable as
opposed to the highly flexible nature of neural networks and thatmaybe elements of both can be beneficial
when the performance is near-identical in these specific case studies.

3. Summary and discussion

We see that many variations of the three classes of ML methodologies discussed in Section 2 have been
used for predictions in unmonitored sites (Table 1). So far, entity-aware broad-scale modeling through
direct concatenation of features remains the dominant approach for hydrological applications. It remains
to be seen how these different methods stack up against each other when predicting different environ-
mental variables since most of the current studies are on streamflow prediction. The evidence so far
suggests that combining data from heterogeneous regions when available should be strongly considered.
In Section 2.1, we sawmany applications in which using all available data across heterogeneous sites was
the preferred method for training MLmodels as opposed to fitting to individual or a subset of sites. Many
recent studies continue the traditional practice of developing unsupervised, process-based, and data-
driven functional similarity metrics and homogeneity criteria when selecting either specific sites or
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Table 1. Literature table

Work by Variable predicted ML framework demonstrated Type of models compared Region covered

Araza et al. (2020) Streamflow (daily) DCBS, subgroup of entities broad-
scale model

RF Twenty-one watersheds in
Luzon, Philippines

Arsenault et al.
(2023)

Streamflow (daily) DCBS LSTM, 3 different process-
based models (HSAMI,
HMETS, GR4J)

One hundred and forty-eight
catchments in Northeast
North America

Ayzel et al. (2020) Streamflow (daily) DCBS LSTM, process-based models
(GR4J)

Two-hundred catchments in
Northwest Russia

Bao et al. (2021) Streamflow (daily) KGML (PDE-driven graph network) ANN, RNN, recurrent graph
network (2 types), PDE-
driven graph network

Forty-two river segments in
the Delaware River Basin

Chen et al. (2020) Evapo-transpiration (daily) DCBS LSTM, temporal convolution
network, ANN, RF, SVR, 7
different empirical models

Sixteen weather stations in
Northeast plain of China

Choi et al. (2022) Streamflow (daily) DCBS LSTM with different sets of
inputs

Thirteen catchments in South
Korea

Corns et al. (2022) Stream water level (daily) DCBS LSTM ensembles Twenty catchments in
Missouri

Frame et al.
(2021)

Streamflow (daily) DCBS, hybrid process-ML model LSTM, NWM reanalysis,
LSTM + NWM hybrid

Five hundred and thirty-one
catchments in the United
States (CAMELS)

Feng et al. (2021) Streamflow (daily) DCBS LSTM with different sets of
encoded inputs

Six hundred and seventy-one
catchments in US
(CAMELS)

Ghosh et al.
(2022)

Streamflow (daily) TL (meta-transfer learning) LSTM, sequence autoencoder One hundred and ninety-one
river segments in Delaware
River Basin

Jiang et al. (2020) Streamflow (daily) DCBS ANN, LSTM, KGML (custom
network architecture)

Four hundred and fifty basins
in US (CAMELS)

Nogueira Filho
et al. (2022)

Streamflow (monthly) DCBS LSTM, ANN, SMAP
conceptual model

Twenty-five catchments in
Brazil
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Table 1. Continued

Work by Variable predicted ML framework demonstrated Type of models compared Region covered

Kalin et al. (2010) Eight river water quality
variables (daily)

DCBS ANN with varying inputs Eighteen monitoring locations
in west Georgia, USA

Koch and
Schneider
(2022)

Streamflow (daily) DCBS LSTM, DK process model Three hundred and one basins
in Denmark

Kratzert et al.,
(2019a)

Streamflow (daily) DCBS LSTM, SAC-SMA process
model, NWM reanalysis

Five hundred and thirty-one
basins in USA (CAMELS)

Lee et al. (2020) Maximum Streamflow
(annual)

DCBS, hybrid process-ML model ANN, RF, RNN, SVR Sixty-four catchments in
South Korea

Li et al. (2021b) Daily soil moisture TL CNN, LSTM, ConvLSTM Three thousand three hundred
and eighty locations in
China

Ma et al. (2021) Streamflow (daily) DCBS with TL LSTM One thousand three and
eighty-nine catchments in
United States, China, UK,
and Chile

Muhebwa et al.
(2021)

Streamflow (daily) DCBS subgroup of entities broad-
scale model

LSTM (not directly compared) Five classes of catchments in
Canada

Noori et al. (2020) Three water quality nutrient
loads (monthly)

DCBS, hybrid process-ML model ANN, SWAT process model,
hybrid SWAT + ANN

Twenty-nine monitoring
locations in Georgia, USA

Ouyang et al.
(2021)

Streamflow (daily) DCBS, subgroup of entities model LSTM Three thousand five hundred
and fifty-seven basins in
United States

Potdar et al.
(2021)

Maximum streamflow
(annual)

DCBS XGB Three thousand four hundred
and ninety stream gauges in
United States

Rahmani et al.
(2021)

Stream temperature (daily) DCBS LSTM Four hundred and fifty-five
basins in United States
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Table 1. Continued

Work by Variable predicted ML framework demonstrated Type of models compared Region covered

Rasheed et al.
(2022)

Flood peaks (>90% quantile
streamflow) (daily)

DCBS LSTM, RF, gradient boosting Six hundred and seventy
catchments in USA
(CAMELS)

Razavi and
Coulibaly
(2016)

Streamflow (daily) Hybrid process-ML, subgroup of
entities broad-scale model

ANN, 2 process-based models
(MAC-HBVand SAC-
SMA)

Ninety watersheds in Ontario,
Canada

Singh et al. (2022) Streamflow (daily) TL SVR, XGB, SWAT process
model

Six catchments in India

Sun et al. (2021a) Streamflow (daily) DCBS, broad-scale graph ML model 3 GNN architectures, LSTM Five hundred and thirty basins
in USA (CAMELS)

Tayal et al. (2022) Lake temperature at depth
(daily)

DCBS, broad-scale with encoding of
site characteristics

LSTM with varied encoder
networks

Four hundred and fifty lakes in
Midwest USA

Vaheddoost et al.
(2023)

Streamflow (daily) TL, hybrid process-ML RF, MARS, DAR process
model

Ten gauging stations on the
Coruh River in Türkiye

Wang et al. (2022) Snow water equivalent (daily) DCBS, TL LSTM, SN17 process model 30,000 4 km resolution pixels
across United States

Weierbach et al.
(2022)

Stream temperature (monthly) DCBS XGB, MLR, SVR Ninety-three monitoring
stations in Mid-Atlantic and
Pacific Northwest USA

White (2017) Stream temperature (monthly) DCBS RF, MLR, BCM process
model

Sixty-nine basins in
California, USA

Willard et al.
(2021a, 2021b)

Lake temperature at depth
(daily)

TL (meta TL), KGML (informed loss,
simulation pre-train)

LSTM, GLM process model Four hundred and fifty lakes in
the Midwest USA

Willard et al.
(2022b)

Lake surface temperature
(daily)

DCBS LSTM, ERA5 reanalysis,
linear model

185,549 lakes in USA

Willard (2023) Stream temperature (daily) DCBS, TL (meta TL) LSTM, XGBoost, linear
model

One thousand three hundred
and sixty-seven stream sites
in United States

Xiong et al.
(2022)

Riverine nitrogen export
(daily)

DCBS, TL LSTM Seven watersheds across the
world
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Table 1. Continued

Work by Variable predicted ML framework demonstrated Type of models compared Region covered

Xu et al. (2023b) Streamflow (daily) TL Transformer, ANN, LSTM,
TOPMODEL (process-
based)

Eight basins in China

Yin et al. (2021) Streamflow (daily) DCBS LSTM with attribute-
weighting module and
multi-head-attention
module

Five hundred and thirty-one
basins in USA (CAMELS)

Yin et al. (2023) Streamflow (daily) DCBS LSTM, modified transformer
with input transformation
and custom position
embedding

Two hundred and forty-one
basins in USA (CAMELS)

Zhi et al. (2021) Riverine dissolved oxygen
(daily)

DCBS LSTM Two hundred and thirty-six
watersheds in USA
(CAMELS)

Zhou and Pan
(2022)

Flood forecasting (6 hour
scale)

DCBS, TL Unsupervised domain
adaptation with LSTM,
TCN, and GRU

Two watersheds in China and
Taiwan

Abbreviations: DCBS: direct concatenation broad-scale; TL: transfer learning; ANN: artificial neural network (feed-forward multilayer perceptron); GNN: graph neural network; LSTM: long short-term memory neural
network; MARS: multi-adaptive regression splines; MLR: multilinear regression; GBR: gradient boosting regression; GRU: gated recurrent unit; PDE: partial differential equation; RF: random forest; SVR: support vector
regression; TCN: temporal convolution network; XGB: extreme gradient boosting.
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subgroups of sites to build models on to be transferred to unmonitored sites. Notably, some of these works
show models built on subgroups of sites outperform models using all available sites. Additionally, the
results from Frame et al. (2021) suggest that using a broad-scale entity-aware ML model combining data
from all regions is preferable to two different hybrid process-ML frameworks that harness a well-known
process-basedmodel in the NWM. Similarly, the results from Fang et al. (2022) suggest that deep learning
models perform better when fed a diverse training dataset spanning multiple regions as opposed to
homogeneous dataset on a single region even when the homogeneous data is more relevant to the testing
dataset and the training datasets are the same size. This can likely be attributed to the known vulnerability
of ML models that perform better when fed data from a diverse or slightly perturbed dataset (e.g., from
adversarial perturbations), where they are able to learn the distinctions in underlying processes (see Hao
and Tao, 2022 for an example in hydrology).

It is also clear that the LSTMmodel remains by far the most prevalent neural network architecture for
water resources time series prediction due to its natural ability to model sequences, its memory structure,
and its ability to capture cumulative system status.We see that 30 of the 40 reviewed studies in Table 1 use
LSTM. This aligns with existing knowledge and studies that have consistently found that LSTM is better
suited for environmental time series prediction than traditional architectures without explicit cell memory
(Fan et al., 2020; Zhang et al., 2018). Even though we see the traditional ANN sometimes perform nearly
aswell or better (Chen et al., 2020;Nogueira Filho et al., 2022), the LSTMhas the advantage of not having
to consider time-delayed inputs, which is a critical hyperparameter, due to its recurrent structure already
incorporating many previous timesteps. We find that other neural network architectures suitable for
temporal data like transformers (Vaswani et al., 2017) and temporal convolution networks (TCN) (Lea
et al., 2017) are not used much for unmonitored water resources applications compared to other
disciplines doing sequential modeling such as natural language processing and bioinformatic sequence
analysis where these methods have largely replaced LSTM. This is likely due to their recent development
compared to LSTM and also possibly due to their lack of inclusion in major deep-learning software
packages like Pytorch and Keras. One recent study by Yin et al., 2023 seems to suggest that transformers
outperform LSTM for rainfall-runoff prediction in the United States, but still the vast majority of
transformer applications in hydrology are in the context of prediction in monitored sites (Liu et al.,
2022; Liu et al., 2023; Wang and Tang, 2023; Wei et al., 2023; Xu et al., 2023a; Yin et al., 2022). How
transformers are fair in predicting in the unmonitored scenario will be an important research direction
because results have been mixed in the monitored scenario when compared to LSTMwith some showing
improvement (e.g., Liu et al. (2022), Yin et al. (2022), and some not e.g., Liu et al. (2023), Wei et al.
(2023)).

We also find that most studies are focused on daily predictions, although a few studies predict at a
monthly, annual, or hourly time scales based on desired output resolutions, data availability computa-
tional efficiency, or available computational power. For instance, monthly predictions may be desirable
over daily due to the ability to use more interpretable, computationally efficient bootstrap ensembles, and
easy-to-implement classical MLmodels (Weierbach et al., 2022). Increased computational efficiency can
also enable running a large number (e.g., millions) of model trainings or evaluations for parameter
sensitivity or uncertainty analysis.

Spatially, the majority of studies cover the United States at 27 out of 40 studies. Fifteen of these span
the entire conterminous United States, while 10 are specific regions. The remaining studies are specific to
certain countries and span Asia (seven studies), South America (one study), Europe (three studies), other
NorthAmerica (two), and two studies covermultiple continents. The strong focus on theUnited States can
be due to its large land area with rivers alongside the economic capability to have advanced monitoring
stations where data are freely available for study worldwide.

We also see the prevalence of the CAMELS dataset being used in streamflow studies; it is used in 9 out
of the 40 studies in Table 1. CAMELS serves as a transformative continental-scale benchmark dataset for
data-driven catchment science with its combined high-quality streamflow measurements spanning
671 catchments, climate-forcing data, and catchment characteristics like land cover and topography.
However, we note that it is limited to “unimpaired” catchments that are not influenced by human

e7-22 Jared D. Willard et al.

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.14


management via dams. In addition to dam-managed catchments, catchments close to and within urban
areas excluded from CAMELS are more likely to be impacted by roadways or other infrastructure. There
are over 800,000 dammed reservoirs affecting rivers around the world, including over 90,000 in the
United States (International Rivers, 2007; US Army Core of Engineers, 2020). The effect of dammed
reservoirs on downstream temperature is also complicated by variable human-managed depth releases
and changing demands for water and energy that affect decision making (Risley et al., 2010). These
limitations may hamper the ability of current models to extrapolate to real-world scenarios where many
catchments of high economic and societal value are either strongly human-impacted or data-sparse.

3.1. Open questions for further research

Though the works reviewed in this survey encompass many techniques and applications, there are still
many open issues to be addressed as the water resources scientific community increasingly adopts ML
approaches for unmonitored prediction. Here we highlight questions for further research that are widely
applicable and agnostic to any specific target environmental variable and should be considered as the field
moves forward.

3.1.1. Is more data always better?
Wehave seen that deep learningmodels in particular benefit from large datasets of heterogeneous entities,
challenging the longstanding notion transferring models between systems requires that they must be
functionally similar (Guo et al., 2021; Razavi and Coulibaly, 2013). Further research is needed to develop
robust frameworks to discern how many sites need to be selected for training, what similarity needs to be
leveraged to do so, and if excluding sites or regions can benefit broad-scale ML models when given
different environmental variable prediction tasks. We hypothesize that excluding sites deemed dissimilar
often limits the spectrum of hydrological heterogeneity, and the utilization of all available stream sites
ensures a more comprehensive understanding of the system by allowing the model to learn from a wide
range of hydrological behaviors to more effectively generalize to unseen scenarios. This is supported by
work in streamflow modeling that has explicitly analyzed the effect of merging data from heterogeneous
entities on prediction performance. (Fang et al., 2022) is a great example demonstrating one step in
deciding between using all available data versus a subset of functionally similar entities. Furthermore, in
stream temperature modeling,Willard (2023) also finds usingmore data is beneficial for nearly all regions
in the United States, and both regional modeling and single-site modeling can benefit from being pre-
trained on all available data.Moving forward we expect the use of amaximal amount of training data to be
the default approach, especially given the advancements in computational power and hydrology having
comparatively smaller datasets than other fields where deep learning models are also commonly used like
natural language processing, social media, and e-commerce.

3.1.2. How do we select optimal training data and input features for prediction?
If it is not feasible or desirable to use all available data, this further begs the question of how to optimally
select functionally similar entities to construct a training dataset to minimize target site prediction error.
Many approaches exist to derive an unsupervised similarity between sites including using network
science (Ciulla et al., 2022), using meta-learning to select training data (e.g., active learning-based data
selection (Al-Shedivat et al., 2021)), or comparing existing expert-derived metrics like hydrological
signatures (McMillan, 2021). There are also methods to combine training for large-scale entity-aware
modeling while also specifying a target region or class of similar sites exist (further explained in
Section 3.1.3), and this is another example of where functional similarity could be applied.

Approaches also exist to use ML frameworks like neural networks to develop the similarity encodings
themselves, which could be used to select subgroups of sites. Kratzert et al., (2019c, 2019d) demonstrate a
custom LSTM architecture that delineates static and dynamic inputs, feeding the former to the LSTM
input gate and the latter to the remaining gates. The idea is to use the input gate nodes to encode the
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functional similarity between stream gauge locations based on the site characteristics alone, and they
show this to reveal interpretable hydrological similarity that aligns with existing hydrological knowledge.
This framework as-is will not exclude any sites directly but still offers insight into the usefulness of
embedded functional similarity.We also see the static feature encoding from Section 2.1.2, differing from
the previouslymentionedmethod by using a separate ANN for static features as opposed to different gates
in the same LSTM. Future research in developing these similarity encodings can also extend into
adversarial-based ML methods that could discern valuable training entities.

Numerous other factors can be considered in training dataset construction when deciding whether to
include entities other than functional similarity as well. First, the training data should be representative of
all types of entities relevant to the prediction tasks, and not too biased towards a particular region or type of
site which can correspondingly bias results. When building a model to transfer to a particular set of
unmonitored sites, it must be considered whether the training data is representative of those target sites
because environmental monitoring paradigms from the past that make up the dataset may not be in line
with current priorities. Another consideration is the quality of data, where some sites may have higher
quality of data than other sites which may have some highly uncertain characteristics. In cases like these,
uncertainty quantification methods can be used to increase the reliability of predictions (Abdar et al.,
2021), or different weighting can be assigned to different entities based on uncertainty metrics or what the
training dataset needs to be representative. It has also been shown that assigning a vector of randomvalues
as a surrogate for catchment physical descriptors can be sufficient in certain applications (Li et al., 2022).

Furthermore, hydrologic prediction problems often contain a vast array of possible input features and
input feature combinations spanning both dynamic forcing data like daily meteorology and static site
characteristics. The process of feature selection aims to find the optimal subset of input features that
(1) contains sufficient predictive information for an accuracy model, and (2) excludes redundant and
uninformative features for better computational efficiency and model interpretability (Dhal and Azad,
2022). Notably, the majority of works reviewed in this study do not incorporate data-driven or statistical
feature selectionmethods, and instead explicitly or presumably rely on expert domain knowledge to select
inputs. This contrasts with many disciplines applying ML regression where feature selection is normal-
ized and often deemed necessary (e.g., medical imaging (Remeseiro and Bolon-Canedo, 2019), multi-
view learning (R. Zhang et al., 2019), finance (Khan et al., 2020)). However, modern large-sample
hydrology datasets offer a wealth of watershed, catchment, and individual site-specific characteristics and
metrics that could serve as an opportunity to apply feature selection methods. For instance, the StreamCat
dataset (Hill et al., 2016) contains over 600 metrics for 2.65 million stream segments across the United,
and theCaravan dataset (Kratzert et al., 2023) contains 70 catchment attributes for 6830 catchments across
the world.

Feature selection methods span three primary categories. Filter feature selection methods rank
variables based on their statistical properties alongside the target variable without considering the ML
model itself. Popular filter techniques base rankings on correlation coefficients, mutual information,
and information gain per feature. These methods have low computational cost compared to other
methods, however, they contain the drawback of not considering the interaction with the underlyingML
model’s performance. Wrapper feature selection methods, on the other hand, assess the quality of
variables by evaluating the performance of a specific ML model using a subset of features. Common
wrapper methods include forward selection, backward elimination, boruta (Kursa and Rudnicki, 2010),
and recursive feature elimination. These methods have the advantage of considering the interaction
between variables and the model’s performance, however, they are more computationally expensive
due to an often large number of model trainings and evaluations, especially for datasets which a large
number of candidate input features. Embedded (or intrinsic) feature selection methods are models that
automatically already perform feature selection during training. Techniques like Least Absolute
Shrinkage and Selection Operator and Elastic Net regularization automatically penalize the coefficients
of irrelevant features during training, encouraging their removal. Additionally, random forest and
similar decision tree methods also contain embedded feature selection as theywill not include irrelevant
features in the decision trees.
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The size and dimensionality of the hydrological dataset play a significant role in selecting a feature
selection method. For large datasets with hundreds or thousands of possible features, filter methods can
provide a computationally efficient initial screening. In contrast, wrapper methods such as recursive
feature elimination or forward feature selection, are suitable for smaller datasets with fewer predictors, as
they explicitly consider the regression model’s performance. As hydrological modeling increasingly
incorporates deep learning, the use of embedded methods may not be desirable since these methods
generally exist among classical ML models. There is room for the hydrology community to develop
standard processes to select optimal features for a given target variable and set of modeling sites.
Furthermore, there needs to be methods to combine datasets where, for example, site-specific character-
istics that need to be considered in a feature selection framework exist across multiple data sources.

3.1.3. How should site characteristics be used in machine learning models for unmonitored prediction?
We have seen that the generalization of ML models to unmonitored sites requires the availability of site
characteristics (Kratzert et al., 2019a; Xie et al., 2022), but that the science about how to use them is
uncertain. The entity-aware models listed in this study tend to exhibit performance increases when such
characteristics are included. For example, Rasheed et al. (2022) find site characteristics like soil porosity,
forest fraction, and potential evapotranspiration all exhibit significant importance for flood peak predic-
tion, and Xie et al. (2022) find that the combined catchment characteristics make up 20% of the total
feature importances for a continental-scale baseflow prediction model. However, the result from Li et al.
(2022) showing random values substituted for site characteristics still improve performance in the
temporal prediction scenario needs to be further investigated and compared in other applications. Many
methods in this survey use site characteristics in different ways, and an open question remains of how to
best add site characteristics to an ML model in a given task.

Throughout this review, we see several ways to incorporate site characteristics into ML model
architecture and frameworks. The most common way is in an entity-aware model using concatenated
input features as seen in Section 2.1.1, presumably based on landmark results from the streamflow
modeling community. However, it has also been demonstrated that using a graph neural network approach
using these site characteristics to determine the similarity between sites can slightly outperform the
concatenated input approach (Sun et al., 2021a). Site characteristics have also been used to build and
predict with a metamodel the performance of different local models to be transferred to an unmonitored
site (Ghosh et al., 2022; Willard et al., 2021a, 2021b). Other works mentioned in Section 2.1.2
demonstrate the effectiveness of learning ML-based encodings of site characteristics as opposed to using
them as-is (Ghosh et al., 2022; Tayal et al., 2022). However, these approaches have not been tested against
the concatenated input entity-aware approach commonly seen in other works which is needed to assess
their role in modeling unmonitored sites.

Furthermore, water management stakeholders, decision-makers, and forecasters often seek to priori-
tize specific individual locations that are unmonitored but the site characteristics are known. Many of the
broad-scale approaches mentioned in this survey are built without any knowledge of the specific testing
sites they are going to be applied to.While trainingwithout any knowledge of the testing data is a common
practice in supervised machine learning, efforts to predict in unmonitored sites may benefit from
including information on specific test sites during training. For example, characteristics from the test
sites are used in the meta-transfer learning framework described in Section 2.2 to select source models to
apply to the target or test system. Surveys on transfer learning (Niu et al., 2020; Pan and Yang, 2010) have
described this distinction as the difference between inductive transfer learning, where the goal is to find
generalizable rules that apply to completely unseen data, with transductive transfer learning, where the
input data to the target or test system is known and can be used in the transfer learning framework.
Transductive transfer learning methods like meta transfer learning have been proposed, but there is a lack
of transductive methods that can harness the power of the highly successful entity-aware broad-scale
models. In the same way that transfer learning has facilitated the pre-training of MLmodels in hydrology
on data-rich watersheds to be transferred and fine tuned efficiently with little data in a new watershed, for
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example in flood prediction (Kimura et al., 2019), we imagine there could beways to harness to benefits of
large-scale entity-aware modeling and also fine tune those same models to a specific region or class of
sites that have known site characteristics. For example, the entity-aware models using all available data
described in Section 2.1 could be fine-tuned to specific relevant subgroups, or the individual source
models described in transfer learning approaches in Section 2.2 could be pre-trained using all available
data (Willard, 2023).

There is also the issue of the non-stationary nature of many site characteristics. These characteristics
are typically derived from synthesized data products that treat them as static values such as the Geospatial
Attributes of Gages for Evaluating Streamflow (Falcone, 2011) containing basin topography, climate,
land cover, soil, and geology), StreamCat (Hill et al., 2016), and the dataset in Willard et al. (2021a) (lake
characteristics like bathymetry, surface area, stratification indices, and water clarity estimates). Though
this treatment of site characteristics as static is intuitive for properties that do not evolve quickly (e.g.,
geology), in reality, properties such as land cover, land use, or even climate are dynamic in nature and
evolve at different time scales. This can affect prediction performance in cases where the dynamic nature
of certain characteristics treated as static is vital to prediction. For example, land use is a key dynamic
predictor for river water quality in areas undergoing urbanization (Yao et al., 2023), but is treated as static
inmost hydrologicalMLmodels. In lake temperature modeling, water clarity is treated as static inWillard
et al. (2021b) but realistically has a notable dynamic effect on water column temperatures (Rose et al.,
2016). Though this problem exists in both monitored and unmonitored scenarios, characteristics are
particularly important in unmonitored site prediction since often that is the only knowledge available
concerning a location. As data collection from environmental sensors continues to improve, this
highlights a need for new geospatial datasets andmethods to represent dynamic characteristics at multiple
time points (e.g., National Land Cover Database (Homer et al., 2012).

3.1.4. How can we leverage process understanding for prediction in unmonitored sites?
The success of ML models achieving better prediction accuracy across many hydrological and water
resources variables compared to process-based models has led to the question posed by Nearing et al.,
2021 of, “What role will hydrological science play in the age of machine learning?”. Given the relevant
works reviewed in this study showing mixed results comparing KGML approaches using process
understanding with domain-agnostic black box approaches, more research is required to address the role
of domain knowledge in PUB prediction for unmonitored sites. From Section 2.3 we see that using graph
neural networks has the potential to encode spatial context relevant for predictions and improve over
existing methods, but also that hybrid models have not been as effective as domain-agnostic entity-aware
LSTMcounterparts. A key research direction will be findingwhich context is relevant to encode in graphs
or other similarity or distance-based structures, whether that be spatial or based on expert domain
knowledge. A preferable alternative to existing hybrid process-ML models may be the DPB models
explained in Section 2.3.3, which exhibit many side benefits like being able to output accurate inter-
mediate variables and demonstrating interpretability, but the performance achieved remains similar to
existing process-agnostic models like the entity-aware LSTM models. There is potential to further
research and develop these DPB approaches, for instance, they stand to benefit from assimilating multiple
data sources since they simulate numerous additional variables.

KGML modeling techniques, like informed loss functions, informed model architecture, and hybrid
modeling can be considered during method development. For example, knowledge-guided loss function
terms can impose structure on the solution search space in the absence of labeled target data by forcing
model output to conform to physical laws (e.g., conservation of energy or mass). Examples of successful
implementations of knowledge-guided loss functions to improve temporal prediction include the con-
servation of energy-based term to predict lake temperature (Read et al., 2019), power-scaling law-based
term to predict lake phosphorous concentration (Hanson et al., 2020), and advection–dispersion equation-
based terms to predict subsurface transport states (He et al., 2020). These results show that informed loss
functions can improve the physical realism of the predictions, reduce the data required for good prediction
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performance, and also improve generalization to out-of-sample scenarios. Since loss function terms are
generally calculated on the model output and do not require target variable data, they can easily be
transferred from temporal predictions to the unmonitored prediction scenario.

Knowledge-guided architecture can similarly make use of the domain-specific characteristics of the
problem being solved to improve prediction and impose constraints on model prediction but has not been
applied in the unmonitored scenario. As opposed to soft constraints as imposed by a loss function term,
architectural modifications can impose hard constraints. Successful examples of modified neural network
architectures for hydrological prediction include amodified LSTMwithmonotonicity constraints for lake
temperatures at different depths (Daw and Karpatne, 2019), mass-conserving modified LSTMs for
streamflow prediction (Hoedt et al., 2021), and an LSTM architecture that includes auxiliary intermediate
processes that connect weather drivers to streamflow Khandelwal et al., 2020. Many hydrological
prediction tasks involve governing equations such as conservation laws or equations of state that could
be leveraged in similar ways to improve ML performance in unmonitored sites.

We also see from Section 2.3 that hybrid process andMLmodels are also tool to consider for ungauged
and unmonitored prediction. However, comparisons between different types of hybrid models are not
commonly seen, as most studies we noted tend to use only one method. However, different types should
be considered based on the context of the task. For example, if multiple process-based models are
available then a multi-model ensemble or using multiple process-based outputs as inputs to anMLmodel
can be considered. Or, if part of the physical process is well-known and modeled compared to more
uncertain components, researchers can consider replacing only part of the process-based model with an
ML model component.

3.1.5. How do we perform uncertainty quantification for predictions in unmonitored sites?
Uncertainties in ML efforts for prediction in unmonitored sites can arise from various sources,
including model structure and input data quality. Through uncertainty quantification (UQ) techniques,
decision-makers can understand the limitations of the predictions and make informed decisions. UQ
also enables model refinement, identification of data gaps, and prioritization of monitoring efforts in
ungauged basins. Various techniques exist in UQ forML (Abdar et al., 2021), including Bayesian deep
learning (Wang and Yeung, 2020), dropout-based methods (Gal and Ghahramani, 2016), Gaussian
processes, and ensemble techniques. The concept of Bayesian deep learning is to incorporate prior
knowledge and uncertainty by defining a full probability distribution for neural network parameters as
opposed to a point estimate, which allows for the estimation of posterior distributions. These posterior
distributions capture the uncertainty in the predictions and can be used to generate probabilistic
forecasts in time series modeling. Gaussian processes similarly do Bayesian inference but over a
particular function rather than a deep neural network, and dropout methods approximate Bayesian ML
by using a common regularization technique to randomly set a fraction of the parameters to zero,
effectively “dropping them out” for a particular forward pass. This allows for the creation of an
ensemble of models from a single model.

Using ensembles of models for prediction is a longstanding technique in hydrology that spans both
process-based models (Thielen et al., 2008; Troin et al., 2021) and more recently MLmodels (Zounemat-
Kermani et al., 2021). Ensemble learning is a general meta approach to model building that combines the
predictions from multiple models for both UQ and better predictive performance. In traditional water
resources prediction, ideally, models in the ensemblewill differwith respect to eithermeteorological input
dataset (e.g., He et al., 2009), process-based model parameters (e.g., Seibert and Beven, 2009) or multiple
process-based model structures (e.g., Moore et al., 2021). Different types of techniques are seen across
ensemble learning more generally in the ML community, with common techniques such as (1) bagging,
where many models are fit on different samples of the same dataset and averaging the predictions,
(2) stacking, where different models types are fit on the same data and a separate model is used to learn
how to combine the predictions, and (3) boosting, where ensemble members are added sequentially to
correct the predictions made by previous models. Some of the main advantages of model ensembles in
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both cases is that the uncertainty in the predictions can be easily estimated and predictions can become
more robust, leading them to be ubiquitous within many forecasting disciplines. Diversity in models is
key, as model skill generally improves more from model diversity rather than from a larger ensemble
(DelSole et al., 2014).

There are key differences in ensemble techniques in process-based modeling versus ML. For instance,
expert-calibrated parameters have very specificmeanings in process-basedmodels whereas the analogous
parameters in ML (usually known as weights) are more abstract and characteristic of a black box. When
tweaking parameters between models to assemble an ensemble, physical realism is important in the
process-based model case. Parameterization has a rich history in process-based models and the work can
be very domain-specific, whereas ML ensemble techniques are often done using existing code libraries
through a domain-agnostic process. Furthermore, ML ensemble techniques usually do not modify input
datasets, though they could through adding noise (Brownlee, 2018) or by using different data products
(e.g., for meteorology).

We see most ML applications reviewed in this work do not attempt to use UQ techniques even
though the few that do, see positive results (e.g., the use of ensembles for stream temperature
(Weierbach et al., 2022), streamflow (Feng et al., 2021), and water level (Corns et al., 2022)). A recent
survey by Zounemat-Kermani et al., 2021 finds that ensemble ML strategies demonstrate “absolute
superiority” compared to regular (individual) ML model learning in hydrology, and this result has also
been seen in the machine learning community more generally for neural networks (Hansen and
Salamon, 1990). Many opportunities exist to develop ensemble frameworks in water resource predic-
tion that harness numerous diverse ML models. In the same way that the hydrology community often
uses ensembles of different process-based model structures, the many different architectures and
hyperparameters in deep learning networks can achieve a similar diversity. Given the common entity-
aware broad-scale modeling approach seen widely throughout this review, the opportunity exists to use
resampling techniques like bootstrap aggregation (Breiman, 1996) to vary training data while main-
taining broad coverage, as seen in Weierbach et al., 2022 for stream temperature. Other ensemble
methods like in Feng et al., 2021 vary which site characteristics are used as inputs to LSTMs for
streamflow prediction.

3.1.6. What is the role of explainable AI in predictions for unmonitored sites?
Historically, the difference between ML methods and more process-based or mechanistic methods has
been described as a tradeoff between “predictive performance” and “explainability” (Lipton, 2018).
However, there has been a deluge of advances in recent years in the field of explainable AI (XAI) (Arrieta
et al., 2020) and applications of these are increasingly being seen in geosciences (Başağaoğlu et al., 2022;
Mamalakis et al., 2023). For example, recent work has shown how XAI can help to calibrate model trust
and provide meaningful post-hoc interpretations (Toms et al., 2020), identify how to fine-tune poor-
performing models (Ebert-Uphoff and Hilburn, 2020), and also accelerate scientific discovery
(Mamalakis et al., 2022). This has led to a change in the narrative of the performance and explainability
tradeoff as calls are increasingly made for the water resources community to adopt ML as a complemen-
tary or primary avenue toward scientific discovery (Shen et al., 2018). Though the majority of work using
XAI in water resources time series prediction has been seen in the temporal prediction scenario (e.g.,
Kratzert et al., 2019a; Lees et al., 2022), analysis of how ML models are able to learn and transfer
hydrologic understanding for predictions in unmonitored sites can help address one of the most
fundamental problems of “transferability” in hydrology.

We find that manywater resources studies still use classicalMLmodels like random forest or XGBoost
in part due to their ease of interpretability. Initial investigations of the interpretability of deep learning
frameworks have mostly addressed simple questions like feature attribution and sensitivity (e.g., Potdar
et al., 2021; Sun et al., 2021a). The concept of DPB models discussed in Section 2.3.3 shows potential to
take this further andmake an end-to-end interpretablemodelmimicking environmental processes but with
the trainability and flexibility of deep neural networks. DPB models can provide more extensive

e7-28 Jared D. Willard et al.

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.14


interpretability compared to simpler feature attribution methods by being able to represent intermediate
process variables explicitly in the neural network with the capability of extracting their relationship to the
inputs and outputs.

Future work on XAI for unmonitored site prediction can pose research questions in directions that
harness the existing highly successful ML models to both refine theoretical underpinnings and add to the
current hydrologic or other process understandings surrounding regionalizations to unmonitored sites.
For example, methods like layerwise relevance propagation, integrated gradients, or Shapley additive
explanations (SHAP) (Molnar, 2020) could be used to explore causations and attributions of observed
variability in situations where ML predicts more accurately than existing process-based regionalization
approaches. Both temporal and spatial attributes can be considered, for example when using methods like
SHAPwith LSTM the attributions of any inputs along the sequence length can be used to see how far back
in time the LSTM is using its memory to perform predictions, or in GNNs to see where in space the
knowledge is being drawn for prediction (Ying et al., 2019).

4. Conclusion

The use of ML for unmonitored environmental variable prediction is an important research topic in
hydrology and water resources engineering, especially given the urgent need to monitor the effects of
climate change and urbanization on our natural andman-madewater systems. In this article, we review the
latest methodological advances in ML for unmonitored prediction using entity-aware deep learning
models, transfer learning, and knowledge-guided ML models. We summarize the patterns and extent of
these different approaches and enumerate questions for future research. Addressing these questions
sufficiently will likely require the training of interdisciplinary water resources ML scientists and also the
fostering of interdisciplinary collaborations between ML and domain scientists. As the field of ML for
water resources progresses, we see many of these open questions can also augment domain science
understanding in addition to improving prediction performance and advancing ML science. We hope this
survey can provide researchers with state-of-the-art knowledge of ML for unmonitored prediction, offer
the opportunity for cross-fertilization between ML practitioners and domain scientists, and provide
guidelines for the future.

Acronyms/Abbreviations

AI Artificial intelligence
ANN Artificial neural network (feed forward)
CAMELS Catchment Attributes and Meteorology for Large-sample Studies
DCBS Direct concatenation broad-scale
DPB Differentiable process-based
GNN Graph neural network
GRU Gated recurrent unit
KGML Knowledge-guided machine learning
LSTM Long short-term memory
MARS Multi-adaptive regression splines
ML Machine learning
NWM National Water Model
RF Random forest
XGB/XGBoost Extreme gradient boosting
SHAP SHapley Additive exPlanations
SVR Support vector regression
TCN Temporal convolutional network
XAI eXplainable artificial intelligence

Environmental Data Science e7-29

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.14


Acknowledgements. We are grateful for the editorial assistance of Somya Sharma, Kelly Lindsay, and Rahul Ghosh. We also
acknowledge the helpful comments from the anonymous reviewers, which helped improve this manuscript.

Author contributions. Jared Willard: Writing – Original Draft Preparation (lead); Conceptualization (equal); Data (literature)
Curation (lead); Investigation (equal); Methodology (equal). Charuleka Varadharajan: Project Administration (supporting);Writing
– Review & Editing (equal); Supervision (equal); Funding Acquisition (equal). Xiaowei Jia: Conceptualization (supporting);
Writing – Review & Editing (supporting). Vipin Kumar: Conceptualization (equal); Investigation (equal); Project Administration
(lead); Writing – Review & Editing (equal); Supervision (lead); Methodology (equal); Funding Acquisition (equal).

Competing interest. Vipin Kumar is on the advisory board for the Environmental Data Science journal.

Data availability statement. Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Funding statement. This research is funded, in part, by NSF grants numbers 2313174, 2147195, 2239175, 2316305, 1934721
(HDR program), NSF LEAP Science and Technology Center award #2019625, and National AI Research Institutes Competitive
Award no. 2023-67021-39829. Additional support was provided by the U.S. Department of Energy, Office of Science, Biological
and Environmental Research Program for the iNAIADS DOE Early Career Award under contract no. DE-AC02-05CH11231. This
research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-
05CH11231 under the NESAP for Learning program. The U.S. Government retains, and the publisher, by accepting the article for
publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.

Ethical standards. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

References
Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L,Ghavamzadeh M, Fieguth P, Cao X, Khosravi A, Acharya UR,

et al. (2021) A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information
Fusion 76, 243–297.

Ahuja S (2016) Chemistry and Water: The Science behind Sustaining the world’s most Crucial Resource. Elsevier.

AlQuraishi M and Sorger PK (2021) Differentiable biology: Using deep learning for biophysics-based and data-driven modeling
of molecular mechanisms. Nature Methods 18(10), 1169–1180.

Al-Shedivat M, Li L, Xing E and Talwalkar A (2021) On data efficiency of meta-learning. In International Conference on
Artificial Intelligence and Statistics (pp. 1369–1377).

Amanambu AC,Mossa J and Chen Y-H (2022) Hydrological drought forecasting using a deep transformer model.Water 14(22),
3611.

Araza A, Hein L, Duku C, Rawlins MA and Lomboy R (2020) Data-driven streamflow modelling in ungauged basins:
Regionalizing random forest (RF) models. bioRxiv, 2020-11.

Arnold JG, Srinivasan R, Muttiah RS and Williams JR (1998) Large area hydrologic modeling and assessment Part I: Model
development 1. JAWRA Journal of the American Water Resources Association 34(1), 73–89.

Arrieta AB, Diaz-Rodriguez N,Del Ser J, Bennetot A, Tabik S, Barbado A,Garcia S,Gil-Lopez S,Molina D, Benjamins R,
et al (2020) Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.
Information Fusion 58, 82–115.

Arsenault R,Martel J-L, Brunet F, Brissette F and Mai J (2023) Continuous streamflow prediction in ungauged basins: Long
short-term memory neural networks clearly outperform traditional hydrological models. Hydrology and Earth System Sciences
27(1), 139–157.

AytacE (2020) Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means
clustering, a demonstration on western black sea region of Turkey. International Soil and Water Conservation Research 8(3),
321–331.

Ayzel G, Kurochkina L, Kazakov E and Zhuravlev S (2020) Streamflow prediction in ungauged basins: Benchmarking the
efficiency of deep learning. E3S Web of Conferences 163, 01001.

Bai T and Tahmasebi P (2022) Graph neural network for groundwater level forecasting. Journal of Hydrology 616, 128792.

Bandai TandGhezzehei TA (2022) Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic
conductivities using physics-informed neural networks with domain decomposition. Hydrology and Earth System Sciences
26(16), 4469–4495.

Bao T, Jia X,Zwart J, Sadler J,Appling A,Oliver S and Johnson TT (2021) Partial differential equation driven dynamic graph
networks for predicting stream water temperature. In 2021 IEEE International Conference on Data Mining (ICDM) (pp. 11–20).

Başağaoğlu H,Chakraborty D, Lago CD,Gutierrez L, Şahinli MA,Giacomoni M, Furl C,Mirchi A,Moriasi D and Şengor
SS (2022) A review on interpretable and explainable artificial intelligence in hydroclimatic applications. Water 14(8), 1230.

e7-30 Jared D. Willard et al.

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.14


Bastola S, Ishidaira H and Takeuchi K (2008) Regionalisation of hydrological model parameters under parameter uncertainty: A
case study involving topmodel and basins across the globe. Journal of Hydrology 357(3–4), 188–206.

Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V,Malinowski M, Tacchetti A, Raposo D, Santoro A,
Faulkner R, et al (2018). Relational inductive biases, deep learning, and graph networks. Preprint, arXiv:1806.01261.

Bergström S (1976) Development and Application of a Conceptual Runoff Model for Scandinavian Catchments. SMHI Norrköp-
ing, Report RH07.

Beven K and Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex
environmental systems using the glue methodology. Journal of Hydrology 249(1–4), 11–29.

Bhasme P, Vagadiya J and Bhatia U (2022) Enhancing predictive skills in physically-consistent way: Physics informed machine
learning for hydrological processes. Journal of Hydrology 615, 128618. https://doi.org/10.1016/j.jhydrol.2022.128618.

Bindas T, ShenC andBianY (2020) Routing floodwaves through the river network utilizing physics-guidedmachine learning and
the Muskingum-Cunge method. AGU Fall Meeting Abstracts 2020, H224–H204.

Blitzer J, Dredze M and Pereira F (2007) Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment
classification. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics (pp. 440–447).

Blöschl G, Bloschl G, Sivapalan M, Wagener T, Savenije H and Viglione A (2013) Runoff Prediction in Ungauged Basins:
Synthesis Across Processes, Places and Scales. Cambridge University Press.

Bousmalis K, Irpan A,Wohlhart P, Bai Y,Kelcey M,Kalakrishnan M,Downs L, Ibarz J, Pastor P,Konolige K, et al (2018).
Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In 2018 IEEE International Conference
on Robotics and Automation (ICRA) (pp. 4243–4250).

Brazdil PB (ed) (2009) Metalearning: Applications to Data Mining [OCLC: ocn298595059]. Springer.
Breiman L (1996) Bagging predictors. Machine Learning 24, 123–140.
Bronstein MM, Bruna J, LeCun Y, Szlam A and Vandergheynst P (2017) Geometric deep learning: Going beyond Euclidean

data. IEEE Signal Processing Magazine 34(4), 18–42.
Brownlee J (2018) Better Deep Learning: Train faster, Reduce Overfitting, and Make Better Predictions. Machine Learning

Mastery.
Burn DH (1990a) An appraisal of the “region of influence” approach to flood frequency analysis. Hydrological Sciences Journal

35(2), 149–165.
Burn DH (1990b) Evaluation of regional flood frequency analysis with a region of influence approach.Water Resources Research

26(10), 2257–2265.
Burn DH and Boorman DB (1993) Estimation of hydrological parameters at ungauged catchments. Journal of Hydrology 143(3–

4), 429–454.
Caughlan L and Oakley KL (2001) Cost considerations for long-term ecological monitoring [Publisher: Elsevier]. Ecological

Indicators 1(2), 123–134.
Chen Z, Zhu Z, Jiang H and Sun S (2020) Estimating daily reference evapotranspiration based on limited meteorological data

using deep learning and classical machine learning methods. Journal of Hydrology 591, 125286.
Chen S, Appling A, Oliver S, Corson-Dosch H, Read J, Sadler J, Zwart J and Jia X (2021a) Heterogeneous stream-reservoir

graph networks with data assimilation. In 2021 IEEE International Conference on Data Mining (ICDM) (pp. 1024–1029).
Chen S,Zwart JA and JiaX (2022) Physics-guided graphmeta learning for predicting water temperature and streamflow in stream

networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 2752–2761).
ChoK andKimY (2022) Improving streamflow prediction in theWRF-hydro model with LSTM networks. Journal of Hydrology

605, 127297.
Choi J,Lee J andKimS (2022) Utilization of the long short-termmemory network for predicting streamflow in ungauged basins in

Korea. Ecological Engineering 182, 106699.
Chung J, Gulcehre C, Cho K and Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence

modeling. Preprint, arXiv:1412.3555.
Ciano G, Rossi A, Bianchini M and Scarselli F (2021) On inductive–transductive learning with graph neural networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence 44(2), 758–769.
Cibin R,Athira P, Sudheer K and Chaubey I (2014) Application of distributed hydrological models for predictions in ungauged

basins: A method to quantify predictive uncertainty. Hydrological Processes 28(4), 2033–2045.
Ciulla F,Willard J,Weierbach H and Varadharajan C (2022) Interpretable classification of the contiguous United States river

catchments using network science methods. AGU Fall Meeting Abstracts 2022.
Corns SM,Long SK,Hale J,Kanwar B,Vanfossan S, et al. (2022).Deep Learning for Unmonitored Water Level Prediction and

Risk Assessment (Tech. Rep.). Missouri: Department of Transportation. Construction and Materials Division.
CsurkaG (2017) A comprehensive survey on domain adaptation for visual applications. InDomain Adaptation in Computer Vision

Applications (pp. 1–35).
Cuomo S, De Rosa M,Giampaolo F, Izzo S and Di Cola VS (2023) Solving groundwater flow equation using physics-informed

neural networks. Computers & Mathematics with Applications 145, 106–123.
Daw A and Karpatne A (2019) Physics-aware architecture of neural networks for uncertainty quantification: Application in lake

temperature modeling. In FEED Workshop at Knowledge Discovery and Data Mining Conference (SIGKDD) 2019.

Environmental Data Science e7-31

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://arxiv.org/abs/1806.01261
https://doi.org/10.1016/j.jhydrol.2022.128618
https://arxiv.org/abs/1412.3555
https://doi.org/10.1017/eds.2024.14


Daw A, Thomas RQ, Carey CC, Read JS, Appling AP and Karpatne A (2020) Physics-guided architecture (PGA) of neural
networks for quantifying uncertainty in lake temperature modeling. In Proceedings of the 2020 SIAM International Conference
on Data Mining. pp. 532–540.

DelSole T, Nattala J and Tippett MK (2014) Skill improvement from increased ensemble size and model diversity. Geophysical
Research Letters 41(20), 7331–7342.

Dhal P and Azad C (2022) A comprehensive survey on feature selection in the various fields of machine learning. Applied
Intelligence, 1–39.

Ebert-Uphoff I and Hilburn K (2020) Evaluation, tuning, and interpretation of neural networks for working with images in
meteorological applications. Bulletin of the American Meteorological Society 101(12), E2149–E2170.

EstebanC, StaeckO,Baier S,YangYandTrespV (2016) Predicting clinical events by combining static and dynamic information
using recurrent neural networks. In 2016 IEEE International Conference on Healthcare Informatics (ICHI) (pp. 93–101).

Falcone JA (2011) GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow (Tech. Rep.). US Geological Survey.
FanH, JiangM,XuL,ZhuH,Cheng J and Jiang J (2020) Comparison of long short termmemory networks and the hydrological

model in runoff simulation. Water 12(1), 175.
FangK,PanMand ShenC (2018) The value of SMAP for long-term soil moisture estimation with the help of deep learning. IEEE

Transactions on Geoscience and Remote Sensing 57(4), 2221–2233.
Fang K, Kifer D, Lawson K, Feng D and Shen C (2022) The data synergy effects of time-series deep learning models in

hydrology. Water Resources Research 58(4), e2021WR029583.
Feigl M, Lebiedzinski K, Herrnegger M and Schulz K (2021) Machine-learning methods for stream water temperature

prediction. Hydrology and Earth System Sciences 25(5), 2951–2977. https://doi.org/10.5194/hess-25-2951-2021.
Feng D,LawsonK and Shen C (2021) Mitigating prediction error of deep learning streamflowmodels in large data-sparse regions

with ensemble modeling and soft data. Geophysical Research Letters 48(14), e2021GL092999.
Feng D, Beck H, Lawson K and Shen C (2022a) The suitability of differentiable, learnable hydrologic models for ungauged

regions and climate change impact assessment. Hydrology and Earth System Sciences Discussions, 1–28.
Feng D, Liu J, Lawson K and Shen C (2022b) Differentiable, learnable, regionalized process-based models with multiphysical

outputs can approach state-of-the-art hydrologic prediction accuracy. Water Resources Research 58(10), e2022WR032404.
Feng J, Sha H, Ding Y, Yan L and Yu Z (2022c) Graph convolution based spatial-temporal attention LSTM model for flood

forecasting. In 2022 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8).
FengD,TanZandHeQ (2023) Physics-informed neural networks of the saint-venant equations for downscaling a large-scale river

model. Water Resources Research 59(2), e2022WR033168.
Frame JM,Kratzert F, Raney A, RahmanM, Salas FR and Nearing GS (2021) Post-processing the national water model with

long short-term memory networks for streamflow predictions and model diagnostics. JAWRA Journal of the American Water
Resources Association 57(6), 885–905.

Frame JM, Kratzert F, Klotz D, Gauch M, Shelev G,Gilon O, Qualls LM, Gupta HVand Nearing GS (2022) Deep learning
rainfall–runoff predictions of extreme events. Hydrology and Earth System Sciences 26(13), 3377–3392.

Gal Y and Ghahramani Z (2016) Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In
International Conference on Machine Learning (pp. 1050–1059).

Gelbrecht M,White A, Bathiany S and Boers N (2022) Differentiable programming for earth system modeling. Preprint, arXiv:
2208.13825.

George D, Talling J and Rigg E (2000) Factors influencing the temporal coherence of five lakes in the English lake district.
Freshwater Biology 43(3), 449–461.

GholizadehMH,Melesse AM and Reddi L (2016) A comprehensive review on water quality parameters estimation using remote
sensing techniques. Sensors 16(8), 1298.

Ghosh R, Li B, Tayal K, Kumar V and Jia X (2022) Meta-transfer learning: An application to streamflow modeling in river-
streams. In 2022 IEEE International Conference on Data Mining (ICDM) (pp. 161–170).

Ghosh R, Yang H, Khandelwal A, He E, Renganathan A, Sharma S, Jia X and Kumar V (2023) Entity aware modelling: A
survey. Preprint, arXiv:2302.08406.

Giardino C, Brando V, Gege P, Pinnel N, Hochberg E, Knaeps E, Reusen I, Doerffer R, Bresciani M, Braga F, et al (2019)
Imaging spectrometry of inland and coastal waters: State of the art, achievements and perspectives. Surveys in Geophysics 40(3),
401–429.

Golian S,MurphyC andMeresaH (2021) Regionalization of hydrological models for flow estimation in ungauged catchments in
Ireland. Journal of Hydrology: Regional Studies 36, 100859.

Guibas J,MardaniM,Li Z,Tao A,Anandkumar A and Catanzaro B (2021) Adaptive fourier neural operators: Efficient token
mixers for transformers. Preprint, arXiv:2111.13587.

Guo X, Chen Y, Liu X and Zhao Y (2020a) Extraction of snow cover from high-resolution remote sensing imagery using deep
learning on a small dataset. Remote Sensing Letters 11(1), 66–75.

Guo Y,Zhang Y,Zhang L andWang Z (2020b) Regionalization of hydrological modeling for predicting streamflow in ungauged
catchments: A comprehensive review. WIREs Water. https://doi.org/10.1002/wat2.1487.

Guo Y, Zhang Y, Zhang L andWang Z (2021) Regionalization of hydrological modeling for predicting streamflow in ungauged
catchments: A comprehensive review. Wiley Interdisciplinary Reviews: Water 8(1), e1487.

e7-32 Jared D. Willard et al.

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://doi.org/10.5194/hess-25-2951-2021
https://arxiv.org/abs/2208.13825
https://arxiv.org/abs/2208.13825
https://arxiv.org/abs/2302.08406
https://arxiv.org/abs/2111.13587
https://doi.org/10.1002/wat2.1487
https://doi.org/10.1017/eds.2024.14


GuoQ,Zhao Y,LuC and Luo J (2023) High-dimensional inverse modeling of hydraulic tomography by physics informed neural
network (HT-PINN). Journal of Hydrology 616, 128828.

Hales RC, Sowby RB, Williams GP, Nelson EJ, Ames DP, Dundas JB and Ogden J (2022) Saber: A model-agnostic
postprocessor for bias correcting discharge from large hydrologic models. Hydrology 9(7), 113.

Hansen LK and Salamon P (1990) Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence
12(10), 993–1001.

Hanson PC, Stillman AB, Jia X,Karpatne A,Dugan HA,Carey CC, Stachelek J,Ward NK, Zhang Y,Read JS, et al. (2020)
Predicting lake surface water phosphorus dynamics using process-guided machine learning [Publisher: Elsevier]. Ecological
Modelling 430, 109136.

Hao J and Tao Y (2022) Adversarially robust water quality assessment associated with power plants. Energy Reports 8, 37–45.
He Y, Wetterhall F, Cloke H, Pappenberger F,Wilson M, Freer J and McGregor G (2009) Tracking the uncertainty in flood

alerts driven by grand ensemble weather predictions. Meteorological Applications: A Journal of Forecasting, Practical
Applications, Training Techniques and Modelling 16(1), 91–101.

He Q, Barajas-Solano D, Tartakovsky G and Tartakovsky AM (2020) Physics-informed neural networks for multiphysics data
assimilation with application to subsurface transport. Advances in Water Resources 141, 103610.

Herath HMVV,Chadalawada J and Babovic V (2021) Hydrologically informed machine learning for rainfall–runoff modelling:
Towards distributed modelling. Hydrology and Earth System Sciences 25(8), 4373–4401.

Hill RA, Weber MH, Leibowitz SG, Olsen AR and Thornbrugh DJ (2016) The stream-catchment (StreamCat) dataset: A
database of watershed metrics for the conterminous United States. JAWRA Journal of the AmericanWater Resources Association
52(1), 120–128.

HipseyMR,Bruce LC,BoonC,Busch B,CareyCC,Hamilton DP,Hanson PC,Read JS, de Sousa E,WeberM andWinslow
LA (2019) A general lake model (GLM 3.0) for linking with high-frequency sensor data from the global Lake ecological
observatory network (GLEON). Geoscientific Model Development 12(1), 473–523. https://doi.org/10.5194/gmd-12-473-2019.

Hoedt P-J, Kratzert F, Klotz D, Halmich C, Holzleitner M, Nearing G, Hochreiter S and Klambauer G (2021) MCLSTM:
Mass-conserving LSTM. Preprint, arXiv:2101.05186 [CS, STAT]. Retrieved from January 25, 2021.

Hoffman J, Wang D, Yu F and Darrell T (2016) FCNS in the wild: Pixel-level adversarial and constraint-based adaptation.
Preprint, arXiv:1612.02649.

Homer CH, Fry JA, Barnes CA, et al (2012) The national land cover database. US Geological Survey Fact Sheet 3020(4), 1–4.
Hosking JRM and Wallis JR (1997) Regional Frequency Analysis. Cambridge University Press.
Hubbard SS,Varadharajan C,WuY,Wainwright H and Dwivedi D (2020) Emerging technologies and radical collaboration to

advance predictive understanding of watershed hydrobiogeochemistry. Hydrological Processes 34(15).
Huntington TG, Hodgkins G and Dudley R (2003) Historical trend in river ice thickness and coherence in hydroclimatological

trends in Maine. Climatic Change 61(1–2), 217–236.
International Rivers (2007, October) Damming Statistics. https://archive.internationalrivers.org/damming-statistics.
Jia X,Willard JD,Karpatne A, Read JS, Zwart JA, Steinbach M and Kumar V (2021a) Physics-guided machine learning for

scientific discovery: An application in simulating lake temperature profiles [Publisher: ACM New York, NY]. ACM/IMS
Transactions on Data Science 2(3), 1–26.

Jia X, Zwart J, Sadler J,Appling A,Oliver S,Markstrom S,Willard JD,Xu S, SteinbachM,Read J and Kumar V (2021b).
Physics-guided recurrent graph model for predicting flow and temperature in river networks. Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM) 9.

Jiang S, Zheng Yand Solomatine D (2020) Improving AI system awareness of geoscience knowledge: Symbiotic integration of
physical approaches and deep learning. Geophysical Research Letters 47(13). https://doi.org/10.1029/2020GL088229.

Jiang J,Huang Z-G,Grebogi C andLai Y-C (2022) Predicting extreme events from data using deep machine learning:When and
where. Physical Review Research 4(2), 023028.

Jing H,He X,Tian Y,LanciaM,CaoG,Crivellari A,Guo Z and Zheng C (2022) Comparison and interpretation of data-driven
models for simulating site-specific human-impacted groundwater dynamics in the North China plain. Journal of Hydrology 616,
128751.

Kalin L, Isik S, Schoonover JE and Lockaby BG (2010) Predicting water quality in unmonitored watersheds using artificial
neural networks. Journal of Environmental Quality 39(4), 1429–1440.

Kao I-F, Liou J-Y, Lee M-H and Chang F-J (2021) Fusing stacked autoencoder and long short-term memory for regional
multistep-ahead flood inundation forecasts. Journal of Hydrology 598, 126371.

Karpatne A, Atluri G, Faghmous JH, Steinbach M, Banerjee A,Ganguly A, Shekhar S, Samatova N and Kumar V (2017a)
Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data
Engineering 29(10), 2318–2331.

Karpatne A, Watkins W, Read J and Kumar V (2017b) Physics-guided neural networks (PGNN): An application in lake
temperature modeling. Preprint, arXiv:1710.11431.

Karpatne A, Kannan R and Kumar V (2022) Knowledge Guided Machine Learning: Accelerating Discovery Using Scientific
Knowledge and Data. CRC Press.

Kazadi AN, Doss-Gollin J, Sebastian A and Silva A (2022). Flood prediction with graph neural networks. In NeurIPS 2022
Workshop on Tackling Climate Change with Machine Learning. https://www.climatechange.ai/papers/neurips2022/75

Environmental Data Science e7-33

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://doi.org/10.5194/gmd-12-473-2019
https://arxiv.org/abs/2101.05186
https://arxiv.org/abs/1612.02649
https://archive.internationalrivers.org/damming-statistics
https://doi.org/10.1029/2020GL088229
https://arxiv.org/abs/1710.11431
https://www.climatechange.ai/papers/neurips2022/75
https://doi.org/10.1017/eds.2024.14


KhanW,Ghazanfar MA,AzamMA,Karami A,Alyoubi KH and Alfakeeh AS (2020) Stock market prediction using machine
learning classifiers and social media, news. Journal of Ambient Intelligence and Humanized Computing 13(3), 1–24.

Khandelwal A, Xu S, Li X, Jia X, Stienbach M, Duffy C, Nieber J and Kumar V (2020) Physics guided machine learning
methods for hydrology. Preprint, arXiv:2012.02854.

Kimura N,Yoshinaga I, SekijimaK,Azechi I and Baba D (2019) Convolutional neural network coupled with a transfer-learning
approach for time-series flood predictions. Water 12(1), 96.

KingstonDG,McGregorGR,HannahDMandLawlerDM (2006) River flow teleconnections across the northernNorthAtlantic
region. Geophysical Research Letters 33(14).

Koch J and Schneider R (2022) Long short-term memory networks enhance rainfall-runoff modelling at the national scale of
Denmark. GEUS Bulletin 49.

Konrad CP,Anderson SW,Restivo DE andDavid JE (2022)Network Analysis of USGS StreamflowGages (Ver. 2.0, May 2023).
https://doi.org/10.5066/P9C8NYTO

Kratzert F, Herrnegger M, Klotz D, Hochreiter S and Klambauer G (2019a) Neuralhydrology–interpreting LSTMS in
hydrology. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (pp. 347–362). Springer.

Kratzert F, Klotz D, Herrnegger M, Sampson AK, Hochreiter S and Nearing GS (2019b) Toward improved predictions in
ungauged basins: Exploiting the power of machine learning. Water Resources Research 55(12), 11344–11354.

Kratzert F, Klotz D, Shalev G, Klambauer G, Hochreiter S and Nearing G (2019c) Benchmarking a catchment-aware long
short-term memory network (LSTM) for large-scale hydrological modeling. Hydrology and Earth System Sciences Discussions
2019, 1–32.

Kratzert F, Klotz D, Shalev G, Klambauer G, Hochreiter S and Nearing G (2019d) Towards learning universal, regional, and
local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences
23(12), 5089–5110. https://doi.org/10.5194/hess-23-5089-2019.

Kratzert F,Klotz D,GauchM,Klingler C,Nearing G andHochreiter S (2021) Large-scale river network modeling using graph
neural networks. In EGU General Assembly Conference Abstracts, EGU21–13375.

Kratzert F,Nearing G,Addor N,Erickson T,GauchM,Gilon O,Gudmundsson L,Hassidim A,Klotz D,Nevo S, et al (2023)
Caravan-a global community dataset for large-sample hydrology. Scientific Data 10(1), 61.

Kratzert F,GauchM,KlotzD andNearingG (2024) Hess opinions: Never train an LSTMon a single basin.Hydrology and Earth
System Sciences Discussions 2024, 1–19.

Kumar R, Samaniego L and Attinger S (2013) Implications of distributed hydrologic model parameterization on water fluxes at
multiple scales and locations. Water Resources Research 49(1), 360–379.

Kursa MB and Rudnicki WR (2010) Feature selection with the boruta package. Journal of Statistical Software 36, 1–13.
Le M-H, Kim H, Adam S, Do HX, Beling P and Lakshmi V (2022) Streamflow estimation in ungauged regions using machine

learning: Quantifying uncertainties in geographic extrapolation. Hydrology and Earth System Sciences Discussions, 1–24.
Lea C, Flynn MD, Vidal R, Reiter A and Hager GD(2017) Temporal convolutional networks for action segmentation and

detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 156–165).
Lee J-Y, Choi C,Kang D,Kim BS and Kim T-W (2020) Estimating design floods at ungauged watersheds in South Korea using

machine learning models. Water 12(11), 3022.
Lees T, Reece S, Kratzert F, Klotz D, Gauch M, De Bruijn J, Kumar Sahu R, Greve P, Slater L and Dadson SJ (2022)

Hydrological concept formation inside long short-term memory (lstm) networks. Hydrology and Earth System Sciences 26(12),
3079–3101.

LemkeC,BudkaMandGabrys B (2015)Metalearning: A survey of trends and technologies. Artificial Intelligence Review 44(1),
117–130. https://doi.org/10.1007/s10462-013-9406-y.

Lettenmaier DP,Wallis JR andWoodEF (1987) Effect of regional heterogeneity on flood frequency estimation.Water Resources
Research 23(2), 313–323.

LiZ,Kovachki N,Azizzadenesheli K,LiuB,BhattacharyaK,Stuart A andAnandkumarA (2020). Fourier neural operator for
parametric partial differential equations. Preprint, arXiv:2010.08895.

Li D,Lyons PG,Klaus J,Gage BF,KollefM andLuC (2021a) Integrating static and time-series data in deep recurrent models for
oncology early warning systems. CIKM, 913–936.

Li Q,Wang Z, Shangguan W, Li L, Yao Yand Yu F (2021b) Improved daily smap satellite soil moisture prediction over China
using deep learning model with transfer learning. Journal of Hydrology 600, 126698.

Li X,Khandelwal A, JiaX,Cutler K,GhoshR,RenganathanA,XuS,Tayal K,Nieber J,Duffy C, et al (2022) Regionalization
in a global hydrologic deep learning model: From physical descriptors to random vectors. Water Resources Research 58(8),
e2021WR031794.

LinC,ZhangY, Ivy J,CapanM,ArnoldR,Huddleston JMandChiM (2018) Early diagnosis and prediction of sepsis shock by
combining static and dynamic information using convolutional-LSTM. In 2018 IEEE International Conference on Healthcare
Informatics (ICHI) (pp. 219–228).

Lipton ZC (2018) The mythos of model interpretability: In machine learning, the concept of interpretability is both important and
slippery. Queue 16(3), 31–57.

Liu C, Liu D and Mu L (2022) Improved transformer model for enhanced monthly streamflow predictions of the yangtze river.
IEEE Access 10, 58240–58253.

e7-34 Jared D. Willard et al.

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://arxiv.org/abs/2012.02854
https://doi.org/10.5066/P9C8NYTO
https://doi.org/10.5194/hess-23-5089-2019
https://doi.org/10.1007/s10462-013-9406-y
https://arxiv.org/abs/2010.08895
https://doi.org/10.1017/eds.2024.14


Liu J, Bian Y and Shen C (2023) Probing the limit of hydrologic predictability with the transformer network. Preprint, arXiv:
2306.12384.

LongaA,LachiV,SantinG,BianchiniM,Lepri B,Lio P,Scarselli F andPasserini A (2023)Graph neural networks for temporal
graphs: State of the art, open challenges, and opportunities. Preprint, arXiv:2302.01018.

López López P, Verkade J,Weerts A and Solomatine D (2014) Alternative configurations of quantile regression for estimating
predictive uncertainty in water level forecasts for the upper Severn river: A comparison. Hydrology and Earth System Sciences
18(9), 3411–3428.

Lotsberg BN (2021) LSTM Models Applied on Hydrological Time Series [Master’s thesis, University of Oslo].
Ma K, Feng D, Lawson K, Tsai W-P, Liang C, Huang X, Sharma A and Shen C (2021) Transferring hydrologic data across

continents–leveraging data-rich regions to improve hydrologic prediction in data-sparse regions [Publisher: Wiley Online
Library]. Water Resources Research 57(5), e2020WR028600.

Magnuson J, Benson B and Kratz T (1990) Temporal coherence in the limnology of a suite of lakes in Wisconsin, USA.
Freshwater Biology 23(1), 145–159.

Mamalakis A, Barnes EA and Ebert-Uphoff I (2022) Investigating the fidelity of explainable artificial intelligence methods for
applications of convolutional neural networks in geoscience. Artificial Intelligence for the Earth Systems 1(4), e220012.

Mamalakis A, Barnes EA and Ebert-Uphoff I (2023) Carefully choose the baseline: Lessons learned from applying XAI
attribution methods for regression tasks in geoscience. Artificial Intelligence for the Earth Systems 2(1), e220058.

Markstrom SL (2012) P2s–Coupled Simulation with the Precipitation-Runoff Modeling System (PRMS) and the Stream
Temperature Network (SNTEMP) Models. US Department of the Interior, US Geological Survey.

McMillanHK (2021) A review of hydrologic signatures and their applications.Wiley Interdisciplinary Reviews:Water 8(1), e1499.
Molnar C (2020) Interpretable Machine Learning. Lulu.com.
Moore TN,Mesman JP, Ladwig R, Feldbauer J, Olsson F, Pilla RM, Shatwell T, Venkiteswaran JJ, Delany AD, Dugan H,

et al (2021) Lakeensemblr: An R package that facilitates ensemble modelling of lakes. Environmental Modelling and Software
143, 105101.

Moshe Z,Metzger A,Elidan G,Kratzert F,Nevo S and El-Yaniv R (2020) Hydronets: Leveraging river structure for hydrologic
modeling. Preprint, arXiv:2007.00595.

Mudigonda M, Ram P, Kashinath K, Racah E, Mahesh A, Liu Y, Beckham C, Biard J, Kurth T, Kim S, et al (2021) Deep
learning for detecting extreme weather patterns. InDeep Learning for the Earth Sciences: A Comprehensive Approach to Remote
Sensing, Climate Science, and Geosciences (pp. 161–185).

Muhebwa A, Wi S, Gleason CJ and Taneja J (2021) Towards improved global river discharge prediction in ungauged basins
using machine learning and satellite observations. NeurIPS.

Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S,
Hersbach H, et al (2021) ERA5-Land: A state-of-the-art global reanalysis dataset for land applications [Publisher: Copernicus
GmbH]. Earth System Science Data 13(9), 4349–4383.

Muther T, Dahaghi AK, Syed FI and Van Pham V (2022) Physical laws meet machine intelligence: Current developments and
future directions. Artificial Intelligence Review, 1–67.

Naeini EZ and Uwaifo J (2019) Transfer learning and auto-ml: A geoscience perspective. First Break 37(9), 65–71.
Nazari LF, Camponogara E and Seman LO (2022) Physics-informed neural networks for modeling water flows in a river

channel. In IEEE Transactions on Artificial Intelligence.
Nearing GS, Kratzert F, Sampson AK, Pelissier CS, Klotz D, Frame JM, Prieto C and Gupta HV (2021) What role does

hydrological science play in the age of machine learning?. Water Resources Research 57(3), e2020WR028091.
Ng B, Samadi V,WangC and Bao J (2021) Physics-Informed Deep Learning for Multiscale Water Cycle Prediction (Tech. Rep.).

Livermore: Lawrence Livermore National Lab.(LLNL).
Niu S, Liu Y, Wang J and Song H (2020) A decade survey of transfer learning (2010–2020). IEEE Transactions on Artificial

Intelligence 1(2), 151–166.
Niu J,XuW,Qiu H, Li S and Dong F (2023) 1-d coupled surface flow and transport equations revisited via the physics-informed

neural network approach. Journal of Hydrology 625, 130048.
NOAA (2016) National Water Model. Improving NOAA’s Water Prediction Services.
Nogueira Filho FJM, Souza Filho F d A, Porto VC, Vieira Rocha R, Sousa Estácio ÁB and Martins ESPR (2022) Deep

learning for streamflow regionalization for ungauged basins: Application of long-short-term-memory cells in semiarid regions.
Water 14(9), 1318.

Noori N, Kalin L and Isik S (2020) Water quality prediction using SWAT-ANN coupled approach. Journal of Hydrology 590,
125220.

O’Neill P, Entekhabi D, Njoku E and Kellogg K (2010) The NASA soil moisture active passive (SMAP) mission: Overview. In
2010 IEEE International Geoscience and Remote Sensing Symposium (pp. 3236–3239).

Odermatt D, Gitelson A, Brando VE and Schaepman M (2012) Review of constituent retrieval in optically deep and complex
waters from satellite imagery. Remote Sensing of Environment 118, 116–126.

Oğuz A and Ertuğrul ÖF (2023) A survey on applications of machine learning algorithms in water quality assessment and water
supply and management. Water Science and Technology Water Supply 23(1).

Oruche R, Egede L, Baker Tand O’Donncha F (2021) Transfer learning to improve streamflow forecasts in data sparse regions.
Preprint, arXiv:2112.03088.

Environmental Data Science e7-35

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://arxiv.org/abs/2306.12384
https://arxiv.org/abs/2306.12384
https://arxiv.org/abs/2302.01018
http://Lulu.com
https://arxiv.org/abs/2007.00595
https://arxiv.org/abs/2112.03088
https://doi.org/10.1017/eds.2024.14


Oudin L, Andreassian V, Perrin C, Michel C and Le Moine N (2008) Spatial proximity, physical similarity, regression and
ungaged catchments: A comparison of regionalization approaches based on 913 French catchments.Water Resources Research
44(3).

Ouyang W, Lawson K, Feng D, Ye L, Zhang C and Shen C (2021) Continental-scale streamflow modeling of basins with
reservoirs: Towards a coherent deep-learning-based strategy. Journal of Hydrology 599, 126455.

Padarian J, Minasny B and McBratney A (2019) Transfer learning to localise a continental soil VIS-NIR calibration model.
Geoderma 340, 279–288.

Pal A and Balasubramanian VN (2019) Zero-shot task transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 2189–2198).

Pan SJ and Yang Q (2009) A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10),
1345–1359.

Patel VM, Gopalan R, Li R and Chellappa R (2015) Visual domain adaptation: A survey of recent advances. IEEE Signal
Processing Magazine 32(3), 53–69.

Pathak J, Subramanian S,Harrington P, Raja S, Chattopadhyay A,Mardani M,Kurth T,Hall D, Li Z, Azizzadenesheli K,
et al (2022) Fourcastnet: A global data-driven high-resolution weather model using adaptive Fourier neural operators. Preprint,
arXiv:2202.11214.

Potdar AS,Kirstetter P-E,Woods D and SahariaM (2021) Toward predicting flood event peak discharge in ungauged basins by
learning universal hydrological behaviors with machine learning. Journal of Hydrometeorology 22(11), 2971–2982.

Prieto C, Le Vine N, Kavetski D, Garcia E and Medina R (2019) Flow prediction in ungauged catchments using probabilistic
random forests regionalization and new statistical adequacy tests. Water Resources Research 55(5), 4364–4392.

RahmanMH,Yuan S,Xie C and Sha Z (2020) Predicting human design decisions with deep recurrent neural network combining
static and dynamic data. Design Science 6, e15.

Rahmani F, Shen C, Oliver S, Lawson K and Appling A (2021) Deep learning approaches for improving prediction of daily
stream temperature in data-scarce, unmonitored, and dammed basins. Hydrological Processes 35(11), e14400.

Raissi M, Perdikaris P and Karniadakis GE (2019) Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378,
686–707.

Rasheed Z, Aravamudan A, Sefidmazgi AG, Anagnostopoulos GC and Nikolopoulos EI (2022) Advancing flood warning
procedures in ungauged basins with machine learning. Journal of Hydrology 609, 127736.

Razavi T and Coulibaly P (2013) Streamflow prediction in ungauged basins: Review of regionalization methods. Journal of
Hydrologic Engineering 18(8), 958–975.

Razavi T and Coulibaly P (2016) Improving streamflow estimation in ungauged basins using a multi-modelling approach.
Hydrological Sciences Journal 61(15), 2668–2679.

Razavi S,Hannah DM, Elshorbagy A,Kumar S,Marshall L, Solomatine DP,Dezfuli A, SadeghM and Famiglietti J (2022)
Coevolution of machine learning and process-based modelling to revolutionize earth and environmental sciences: A perspective.
Hydrological Processes 36(6), e14596.

Read EK,Carr L,De Cicco L,Dugan HA,Hanson PC,Hart JA,Kreft J,Read JS andWinslow LA (2017)Water quality data
for national-scale aquatic research: The water quality portal. Water Resources Research 53(2), 1735–1745. https://doi.
org/10.1002/2016WR019993.

Read JS, JiaX,Willard JD,ApplingAP,Zwart JA,Oliver SK,KarpatneA,HansenGJ,Hanson PC,WatkinsW, et al. (2019)
Process-guided deep learning predictions of lake water temperature [Publisher: Wiley Online Library]. Water Resources
Research 55(11), 9173–9190.

Regonda SK, Seo D-J, Lawrence B, Brown JD and Demargne J (2013) Short-term ensemble streamflow forecasting using
operationally-produced single-valued streamflow forecasts–a hydrologic model output statistics (HMOS) approach. Journal of
Hydrology 497, 80–96.

Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, et al. (2019) Deep learning and process
understanding for data-driven earth system science [Publisher: Nature Publishing Group]. Nature 566(7743), 195–204.

Remeseiro B and Bolon-Canedo V (2019) A review of feature selection methods in medical applications. Computers in Biology
and Medicine 112, 103375.

Risley JC, Constantz J, Essaid H and Rounds S (2010) Effects of upstream dams versus groundwater pumping on stream
temperature under varying climate conditions. Water Resources Research 46(6).

Romera-Paredes B and Torr P (2015) An embarrassingly simple approach to zero-shot learning. In International conference on
machine learning (pp. 2152–2161).

Rose KC,Winslow LA,Read JS andHansen GJ (2016) Climate-induced warming of lakes can be either amplified or suppressed
by trends in water clarity. Limnology and Oceanography Letters 1(1), 44–53.

Rossi A, Tiezzi M, Dimitri GM, Bianchini M, Maggini M and Scarselli F (2018) Inductive–transductive learning with graph
neural networks. In Artificial Neural Networks in Pattern Recognition: 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy,
September 19–21, 2018, Proceedings 8 (pp. 201–212).

Roth V, Nigussie TK and Lemann T (2016) Model parameter transfer for streamflow and sediment loss prediction with swat in a
tropical watershed. Environmental Earth Sciences 75(19), 1–13.

e7-36 Jared D. Willard et al.

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://arxiv.org/abs/2202.11214
https://doi.org/10.1002/2016WR019993
https://doi.org/10.1002/2016WR019993
https://doi.org/10.1017/eds.2024.14


Salinas J, Laaha G, Rogger M, Parajka J, Viglione A, Sivapalan M and Blöschl G (2013) Comparative assessment of
predictions in ungauged basins–part 2: Flood and low flow studies. Hydrology and Earth System Sciences 17(7), 2637–2652.

Sánchez-Gómez A,Martínez-Pérez S, Sylvain L, Sastre-Merlín A andMolina-Navarro E (2023) Streamflow components and
climate change: Lessons learnt and energy implications after hydrological modeling experiences in catchments with a
mediterranean climate. Energy Reports 9, 277–291.

Seibert J (1999) Regionalisation of parameters for a conceptual rainfall-runoff model. Agricultural and Forest Meteorology 98,
279–293.

Seibert J and Beven KJ (2009) Gauging the ungauged basin: How many discharge measurements are needed? Hydrology and
Earth System Sciences 13(6), 883–892.

Seo Y,DefferrardM,Vandergheynst P and Bresson X (2018) Structured sequence modeling with graph convolutional recurrent
networks. In Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December
13–16, 2018, Proceedings, Part I 25 (pp. 362–373).

Sharghi E,Nourani V, Soleimani S and Sadikoglu F (2018) Application of different clustering approaches to hydroclimatological
catchment regionalization in mountainous regions, a case study in Utah state. Journal of Mountain Science 15(3), 461–484.

ShenC (2018) A transdisciplinary review of deep learning research and its relevance for water resources scientists.Water Resources
Research 54(11), 8558–8593.

Shen C, Laloy E, Elshorbagy A, Albert A, Bales J, Chang F-J, Ganguly S, Hsu K-L, Kifer D, Fang Z, et al (2018) Hess
opinions: Incubating deep-learning-powered hydrologic science advances as a community. Hydrology and Earth System
Sciences 22(11), 5639–5656.

ShenZ,Ramirez-Lopez L,Behrens T,Cui L,ZhangM,Walden L,Wetterlind J, Shi Z, SudduthKA,Baumann P, et al (2022)
Deep transfer learning of global spectra for local soil carbonmonitoring. ISPRS Journal of Photogrammetry and Remote Sensing
188, 190–200.

Shen C, Appling AP, Gentine P, Bandai T, Gupta H, Tartakovsky A, Baity-Jesi M, Fenicia F, Kifer D, Li L, et al (2023)
Differentiable modeling to unify machine learning and physical models and advance geosciences. Preprint, arXiv:2301.04027.

Shi Y, Ying X and Yang J (2022) Deep unsupervised domain adaptation with time series sensor data: A survey. Sensors 22(15),
5507.

Singh L,Mishra PK, Pingale SM,Khare D and Thakur HP (2022) Streamflow regionalisation of an ungauged catchment with
machine learning approaches. Hydrological Sciences Journal 67(6), 886–897.

SitM,Demiray B andDemir I (2021) Short-term hourly streamflow prediction with graph convolutional GRU networks. Preprint,
arXiv:2107.07039.

Soriano MA, Siegel HG, Johnson NP, Gutchess KM, Xiong B, Li Y, Clark CJ, Plata DL, Deziel NC and Saiers JE (2021)
Assessment of groundwater well vulnerability to contamination through physics-informed machine learning. Environmental
Research Letters 16(8), 084013.

Stalder M, Ozdemir F, Safin A, Sukys J, Bouffard D and Perez-Cruz F (2021) Probabilistic modeling of lake surface water
temperature using a Bayesian spatio-temporal graph convolutional neural network. Preprint, arXiv:2109.13235.

Sun AY, Jiang P,Mudunuru MK and Chen X (2021a) Explore spatio-temporal learning of large sample hydrology using graph
neural networks. Water Resources Research 57(12), e2021WR030394.

Sun Y,Yao X,Bi X,Huang X,Zhao X andQiao B (2021b) Time-series graph network for sea surface temperature prediction. Big
Data Research 25, 100237.

Sun AY, Jiang P, Yang Z-L, Xie Y and Chen X (2022) A graph neural network (GNN) approach to basin-scale river network
learning: The role of physics-based connectivity and data fusion. Hydrology and Earth System Sciences 26(19), 5163–5184.

SunAY,Li Z,LeeW,HuangQ, ScanlonBR andDawsonC (2023) Rapid flood inundation forecast using Fourier neural operator.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3733–3739).

Tabas SS and Samadi V (2021) Structure learning and transfer learning for streamflow prediction across ungauged basins. AGU
Fall Meeting 2021.

TaccariML,WangH,Goswami S,De FlorioM,Nuttall J,ChenX and Jimack PK (2023) Developing a cost-effective emulator
for groundwater flow modeling using deep neural operators. Journal of Hydrology, 130551.

Tang H, Kong Q and Morris JP (2024) Multi-fidelity fourier neural operator for fast modeling of large-scale geological carbon
storage. Journal of Hydrology, 130641.

Tayal K, Jia X,GhoshR,Willard J,Read J andKumarV (2022) Invertibility aware integration of static and time-series data: An
application to lake temperature modeling. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM)
(pp. 702–710).

Thielen J, Schaake J, Hartman R and Buizza R (2008) Aims, challenges and progress of the hydrological ensemble prediction
experiment (HEPEX) following the third HEPEXworkshop held in Stresa 27 to 29 June 2007. Atmospheric Science Letters 9(2),
29–35.

Tian W, Liao Z and Wang X (2019) Transfer learning for neural network model in chlorophyll-a dynamics prediction.
Environmental Science and Pollution Research 26(29), 29857–29871.

Toms BA, Barnes EA and Ebert-Uphoff I (2020) Physically interpretable neural networks for the geosciences: Applications to
earth system variability. Journal of Advances in Modeling Earth Systems 12(9), e2019MS002002.

Tongal H and Sivakumar B (2017) Cross-entropy clustering framework for catchment classification. Journal of Hydrology 552,
433–446.

Environmental Data Science e7-37

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://arxiv.org/abs/2301.04027
https://arxiv.org/abs/2107.07039
https://arxiv.org/abs/2109.13235
https://doi.org/10.1017/eds.2024.14


Topp SN, Pavelsky TM, Jensen D, SimardM and RossMR (2020) Research trends in the use of remote sensing for inland water
quality science: Moving towards multidisciplinary applications. Water 12(1), 169.

Topp SN,Barclay J,Diaz J, SunAY, Jia X,LuD, Sadler JM andAppling AP (2023) Stream temperature prediction in a shifting
environment: Explaining the influence of deep learning architecture. Water Resources Research 59(4), e2022WR033880.

TroinM, Arsenault R,Wood AW, Brissette F andMartel J-L (2021) Generating Ensemble Streamflow Forecasts: A Review of
Methods and Approaches Over the Past 40 Years. US Army Core of Engineers (2020). https://nid.usace.army.mil/#/.

U.S. Geological Survey (2016) U.S. Geological Survey, 2016, National Water Information System. https://waterdata.usgs.gov/
nwis (last accessed on 11 January 2021]. https://doi.org/10.5066/F7P55KJN.

USACE. (2020). National Inventory of Dams. US Army Corps of Engineers.
Vaheddoost B, Safari MJS and Yilmaz MU (2023) Rainfall-runoff simulation in ungauged tributary streams using drainage area

ratio-based multivariate adaptive regression spline and random forest hybrid models. Pure and Applied Geophysics, 1–18.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L and Polosukhin I (2017) Attention is all you

need. Advances in Neural Information Processing Systems 30.
Viglione A, Parajka J, Rogger M, Salinas J, Laaha G, Sivapalan M and Blöschl G (2013) Comparative assessment of

predictions in ungauged basins–part 3: Runoff signatures in Austria. Hydrology and Earth System Sciences 17(6), 2263–2279.
Wagener T and Wheater HS (2006) Parameter estimation and regionalization for continuous rainfall-runoff models including

uncertainty. Journal of Hydrology 320(1–2), 132–154.
WangC andTangW (2023) Temporal fusion transformer-gaussian process for multi-horizon river level prediction and uncertainty

quantification. Journal of Circuits, Systems and Computers.
Wang H and Yeung D-Y (2020) A survey on bayesian deep learning. ACM Computing Surveys (CSUR) 53(5), 1–37.
Wang J,YuanQ, ShenH,Liu T,Li T,Yue L, Shi X and Zhang L (2020a) Estimating snow depth by combining satellite data and

ground-based observations over Alaska: A deep learning approach. Journal of Hydrology 585, 124828.
Wang N, Zhang D, Chang H and Li H (2020b) Deep learning of subsurface flow via theory-guided neural network. Journal of

Hydrology 584, 124700.
Wang Y-H, Gupta HV, Zeng X and Niu G-Y (2022) Exploring the potential of long short-term memory networks for improving

understanding of continental-and regional-scale snowpack dynamics. Water Resources Research 58(3), e2021WR031033.
Waseem M, Ajmal M and Kim T-W (2015) Ensemble hydrological prediction of streamflow percentile at ungauged basins in

Pakistan. Journal of Hydrology 525, 130–137.
Wei X, Wang G, Schmalz B, Hagan DFT and Duan Z (2023) Evaluate transformer model and self-attention mechanism in the

yangtze river basin runoff prediction. Journal of Hydrology: Regional Studies 47, 101438.
Weierbach H, Lima AR, Willard JD, Hendrix VC, Christianson DS, Lubich M and Varadharajan C (2022) Stream

temperature predictions for river basin management in the pacific northwest and mid-Atlantic regions using machine learning.
Water 14(7), 1032.

Weiss K, Khoshgoftaar TM and Wang D (2016) A survey of transfer learning. Journal of Big Data 3(1), 1–40.
Wen Q, Zhou T, Zhang C, Chen W, Ma Z, Yan J and Sun L (2022) Transformers in time series: A survey. Preprint, arXiv:

2202.07125.
White E (2017) Predicting Unimpaired Flow in Ungauged Basins: “Random Forests” Applied to California Streams. Davis:

University of California.
Willard JD (2023) Machine Learning Techniques for Time Series Regression in Unmonitored Environmental Systems [Doctoral

dissertation, University of Minnesota].
Willard JD,Read JS,ApplingAP andOliver SK (2021a)Data release: PredictingWater TemperatureDynamics of Unmonitored

Lakes with Meta Transfer Learning (Provisional Data Release). https://doi.org/10.5066/P9I00WFR.
Willard JD, Read JS, Appling AP, Oliver SK, Jia X and Kumar V (2021b) Predicting water temperature dynamics of

unmonitored Lakes with meta-transfer learning [Publisher: Wiley Online Library]. Water Resources Research 57(7),
e2021WR029579.

Willard JD, Jia X, Xu S, Steinbach M, and Kumar V (2022a) Integrating scientific knowledge with machine learning for
engineering and environmental systems [Place: New York, NY, USA Publisher: Association for Computing Machinery]. ACM
Computing Surveys. https://doi.org/10.1145/3514228.

Willard JD, Read JS, Topp S, Hansen GJ and Kumar V (2022b) Daily surface temperatures for 185,549 lakes in the
conterminous United States estimated using deep learning (1980–2020). Limnology and Oceanography Letters.

Wilson SR,CloseME,Abraham P, Sarris TS,Banasiak L, Stenger R andHadfield J (2020) Achieving unbiased predictions of
national-scale groundwater redox conditions via data oversampling and statistical learning. Science of the Total Environment 705,
135877.

Wu Z, Pan S, Long G, Jiang J and Zhang C (2019) Graph wave net for deep spatial-temporal graph modeling. Preprint, arXiv:
1906.00121.

Wu Z, Pan S, Chen F, Long G, Zhang C and Philip SY (2020) A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems 32(1), 4–24.

Xiang Z and Demir I (2021) High-resolution rainfall-runoff modeling using graph neural network. Preprint, arXiv:2110.10833.
Xie J, Liu X, Tian W, Wang K, Bai P and Liu C (2022) Estimating gridded monthly baseflow from 1981 to 2020 for the

contiguous us using long short-term memory (LSTM) networks. Water Resources Research 58(8), e2021WR031663.

e7-38 Jared D. Willard et al.

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://nid.usace.army.mil/#/
https://waterdata.usgs.gov/nwis
https://waterdata.usgs.gov/nwis
https://doi.org/10.5066/F7P55KJN
https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/2202.07125
https://doi.org/10.5066/P9I00WFR
https://doi.org/10.1145/3514228
https://arxiv.org/abs/1906.00121
https://arxiv.org/abs/1906.00121
https://arxiv.org/abs/2110.10833
https://doi.org/10.1017/eds.2024.14


Xiong R, Zheng Y, Chen N, Tian Q, Liu W, Han F, Jiang S, Lu M and Zheng Y (2022) Predicting dynamic riverine nitrogen
export in unmonitored watersheds: Leveraging insights of AI from data-rich regions. Environmental Science & Technology
56(14), 10530–10542.

Xu Tand Liang F (2021) Machine learning for hydrologic sciences: An introductory overview.Wiley Interdisciplinary Reviews:
Water 8(5), e1533.

XuTandValocchi AJ (2015) Data-drivenmethods to improve baseflow prediction of a regional groundwater model.Computers &
Geosciences 85, 124–136.

Xu J, Fan H, Luo M, Li P, Jeong T and Xu L (2023a) Transformer based water level prediction in Poyang Lake, China. Water
15(3), 576.

XuY,LinK,HuC,WangS,WuQ,ZhangL andRanG (2023b)Deep transfer learning based on transformer for flood forecasting
in data-sparse basins. Journal of Hydrology 625, 129956.

Yan B,Wang G,Yu J, Jin X and Zhang H (2021) Spatial-temporal Chebyshev graph neural network for traffic flow prediction in
IOT-based its. IEEE Internet of Things Journal 9(12), 9266–9279.

Yang T, Sun F, Gentine P, Liu W,Wang H, Yin J, Du M and Liu C (2019a) Evaluation and machine learning improvement of
global hydrological model-based flood simulations. Environmental Research Letters 14(11), 114027.

Yang X, Magnusson J and Xu C-Y (2019b) Transferability of regionalization methods under changing climate. Journal of
Hydrology 568, 67–81.

Yao S,ChenC,HeM,Cui Z,MoK, PangR andChenQ (2023) Land use as an important indicator for water quality prediction in
a region under rapid urbanization. Ecological Indicators 146, 109768.

Yin H, Zhang X, Wang F, Zhang Y, Xia R and Jin J (2021) Rainfall-runoff modeling using LSTM-based multi-state-vector
sequence-to-sequence model. Journal of Hydrology 598, 126378. https://doi.org/10.1016/j.jhydrol.2021.126378.

Yin H, Guo Z, Zhang X, Chen J and Zhang Y (2022) RR-former: Rainfall-runoff modeling based on transformer. Journal of
Hydrology 609, 127781.

Yin H, Zhu W, Zhang X, Xing Y, Xia R, Liu J and Zhang Y (2023) Runoff predictions in new-gauged basins using two
transformer-based models. Journal of Hydrology 622, 129684.

YingZ,Bourgeois D,You J,ZitnikMandLeskovec J (2019) GNNexplainer: Generating explanations for graph neural networks.
Advances in Neural Information Processing Systems 32, 9240–9251.

YuH,AiT,YangM,HuangL andYuan J (2022)A recognitionmethod for drainage patterns using a graph convolutional network.
International Journal of Applied Earth Observation and Geoinformation 107, 102696.

Zakharova L,Meyer K and Seifan M (2019) Trait-based modelling in ecology: A review of two decades of research. Ecological
Modelling 407, 108703.

ZeyerA,BaharP, IrieK,SchlüterR andNeyH (2019)A comparison of transformer and LSTMencoder decodermodels forASR.
In 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) (pp. 8–15).

Zhang X, Alexander L,Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B and Zwiers FW (2011) Indices for monitoring
changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change 2(6),
851–870.

Zhang J,ZhuY,ZhangX,YeMandYang J (2018) Developing a long short-termmemory (lstm) basedmodel for predicting water
table depth in agricultural areas. Journal of Hydrology 561, 918–929.

Zhang R, Nie F, Li X and Wei X (2019) Feature selection with multi-view data: A survey. Information Fusion 50, 158–167.
ZhangX,Li Y, FreryAC andRen P (2021) Sea surface temperature prediction with memory graph convolutional networks. IEEE

Geoscience and Remote Sensing Letters 19, 1–5.
Zhao Q,Zhu Y, ShuK,WanD,YuY, Zhou X and Liu H (2020) Joint spatial and temporal modeling for hydrological prediction.

IEEE Access 8, 78492–78503.
Zhao G, Pang B, Xu Z, Cui L,Wang J, Zuo D and Peng D (2021) Improving urban flood susceptibility mapping using transfer

learning. Journal of Hydrology 602, 126777.
Zhi W, Feng D, Tsai W-P, Sterle G, Harpold A, Shen C and Li L (2021) From hydrometeorology to river water quality: Can a

deep learning model predict dissolved oxygen at the continental scale? Environmental Science & Technology 55(4), 2357–2368.
Zhou R and Pan Y (2022). Flooddan: Unsupervised flood forecasting based on adversarial domain adaptation. In 2022 IEEE 5th

International Conference on Big Data and Artificial Intelligence (BDAI) (pp. 6–12).
Zhou J,CuiG,HuS,ZhangZ,YangC,LiuZ,WangL,LiC and SunM (2020) Graph neural networks: A review ofmethods and

applications. AI Open 1, 57–81.
Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H and He Q (2020) A comprehensive survey on transfer learning.

Proceedings of the IEEE 109(1), 43–76.
Zounemat-KermaniM,Batelaan O, FadaeeM andHinkelmann R (2021) Ensemble machine learning paradigms in hydrology:

A review. Journal of Hydrology 598, 126266.

Cite this article: Willard JD, Varadharajan C, Jia X and Kumar V (2025). Time series predictions in unmonitored sites: a survey
of machine learning techniques in water resources. Environmental Data Science, 4: e7. doi:10.1017/eds.2024.14

Environmental Data Science e7-39

https://doi.org/10.1017/eds.2024.14 Published online by Cambridge University Press

https://doi.org/10.1016/j.jhydrol.2021.126378
https://doi.org/10.1017/eds.2024.14
https://doi.org/10.1017/eds.2024.14

	Time series predictions in unmonitored sites: a survey of machine learning techniques in water resources
	Impact statement
	Introduction
	Machine learning frameworks for predictions in unmonitored sites
	Broad-scale models using all available entities or a subgroup of entities
	Direct concatenation broad-scale model
	Concatenation of encoded site characteristics for broad-scale models
	Broad-scale graph neural networks

	Transfer learning
	Choosing which model to transfer
	Fine-tuning models with sparse data
	Unsupervised domain adaptation

	Cross-cutting theme: knowledge-guided machine learning
	Guiding ML with domain knowledge: KGML loss functions, architecture, and initialization
	Augmenting process models with ML using hybrid process-ML models
	Building differentiable and learnable process-based models


	Summary and discussion
	Open questions for further research
	Is more data always better?
	How do we select optimal training data and input features for prediction?
	How should site characteristics be used in machine learning models for unmonitored prediction?
	How can we leverage process understanding for prediction in unmonitored sites?
	How do we perform uncertainty quantification for predictions in unmonitored sites?
	What is the role of explainable AI in predictions for unmonitored sites?


	Conclusion
	Acknowledgements
	Author contributions
	Competing interest
	Data availability statement
	Funding statement
	Ethical standards


