
PASCAL OVALS IN PROJECTIVE PLANES 

J. F. RIGBY 

1. Introduction. A projective plane consists of a set of points and a set of 
lines, together with a relation of incidence between points and lines, such that 

(i) any two distinct points P, Q are incident with a unique line PQ, 
(ii) any two distinct lines p, q are incident with a unique point p C\ q, 

(iii) there exist four points, no three of which are incident with the same line. 
We shall use the usual geometrical terminology. 
An oval ^ in a projective plane IT is a set of points of IT such that: 
(i) no three points of *$ are collinear; this means that a line of TT is either a 

secant of fé7, containing two points of ^ , or a tangent of ^ , containing just one 
point of ^ , or a non-secant of ^ , containing no point of *$ ; 

(ii) through any point P C ^ there passes just one tangent of *% ; this 
tangent is called the tangent at P to & ; P is the point of contact of the tangent ; 
it follows from (i) that every other line through P is a secant of &. 

A hexagon ABCDEF in TT is a Pascal hexagon if the three points of inter­
section of opposite sides of the hexagon are collinear. The oval ^ is a Pascal 
oval if every hexagon inscribed in ^ is a Pascal hexagon. (This définition will 
be made more precise in § 2.) 

In 1966, Buekenhout (2) proved that if a projective plane -K contains a 
Pascal oval **f, then -K is a Pappian plane (i.e., TT satisfies the axiom of Pappus 
and can therefore be coordinatized by a field). In his proof he makes use of a 
theorem of Tits (5) on transitive permutation groups. More recently, Artzy (1) 
has given a simpler proof of Buekenhout's result, using coordinates on ^ , 
but in his proof he imposes extra conditions on *$. These conditions have the 
effect of ensuring that the characteristic of the coordinatizing field is not 2. 

My aims in this paper are (a) to show that, with slight modifications, 
Artzy's proof is valid without his extra conditions, (b) to emphasize from the 
start the distinction between planes of characteristic 2 and other planes, and 
(c) to prove as much as possible about *io by synthetic methods, as a step 
towards a possible synthetic proof of the main theorem in the future, and as a 
means of providing alternative proofs of some of Artzy's lemmas. Included in 
(c) are alternative (and, I think, simpler) proofs of some of Buekenhout's 
lemmas. 

2. Pascal ovals. If P G ^ , w e shall denote the tangent at P by PP\ since 
we shall be dealing with only one oval, this notation is unambiguous. 
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A hexagon ABCDEF inscribed in ^ is a cyclically ordered set of six points 
of ^, not necessarily distinct. The sides of this hexagon are AB, BC, CD, DE, 
EF, and FA. (If A = B, then the side AB is AA, the tangent at A, etc.) 
A hexagon inscribed in *$ is degenerate if two non-adjacent vertices coincide. 
Thus, for instance, if A, B, C, D, E, and F are distinct points of ^, then 
ABADEF is degenerate but ABCDEF and AACDDF are not. 

If a hexagon ABCDEF inscribed in ^ is non-degenerate, then its six sides 
are distinct, and the three points of intersection of its pairs of opposite sides, 
viz. P = AB P DE, Q = BCC\EF,R = CD P FA, are distinct. If P, Q, and 
R are collinear, then the hexagon is a Pascal hexagon, with Pascal line PQR. 
The oval ^ is a Pascal oval if every non-degenerate hexagon inscribed in ^ is a 
Pascal hexagon. 

It is not difficult to show that, if every hexagon with six distinct vertices 
inscribed in 'if is a Pascal hexagon, then & is a Pascal oval. 

In order to deal with degenerate hexagons as well, let us say that ABCDEF 
is a Pascal hexagon with Pascal line I if AB, DE, and / have a common point, 
BC, EF, and / have a common point, and CD, FA, and I have a common point. 
Then it is easily verified that every degenerate hexagon has a Pascal line, 
which may not be unique. 

From now on, *$ will denote a Pascal oval. We shall use the notation 
"LM C\ XY £ l" to mean that LM, XY, and / have a common point; thus 
we include in this notation the case where the lines LM and X Y coincide. The 
following lemma will enable us to avoid the repeated discussion of degenerate 
hexagons in subsequent proofs. 

2.1. / / ABCDEF is a hexagon inscribed in &, if I is a line not through any 
vertex of the hexagon, and if AB P DE £ landBCC\EF £ /, then CD P FA el. 

Proof. If ABCDEF is non-degenerate, then it is a Pascal hexagon, from 
which the result follows. If ABCDEF is degenerate, we simply have to enumer­
ate and test the various possible cases. 

By considering the hexagon ABCDBF and a line I through B but not through 
CD P FA, we see that 2.1 is false if I passes through a vertex. 

If A and B are distinct points of ^, and if C lies on the secant AB, C ^ A, 
then "AC C\ <£" will denote the point B. Thus AC P <é is the second point 
of intersection of the secant AC with *io . If AC is the tangent at A, then 
"AC P ^ " will denote the point A. In particular, AA P ^ = A. 

The terms "tangent", "secant", "non-secant" will mean "tangent to ^ " , 
"secant of ^ " , "non-secant of ^ " . 

In some of the subsequent proofs we shall indicate the positions of certain 
points in the figure rather than in the text. In the proof of 2.2, for instance, 
there is no need to say "let X = AD P BC\ Some of the figures illustrate 
general cases rather than degenerate cases that may occur. 

2.2 (Figure 1). If PA and PB are distinct tangents through P, and if PCD 
is a secant, then CC P DD £ AB. 
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FIGURE 1 

Proof. From hexagon ABBCCD, we have X, P, and CC C\ AB collinear. 
From hexagon AABCDD, we have X, P, and DD Pi AB collinear. Hence the 
result since X and P are distinct and XP ^ AB. 

Cf. (1, Lemma 1) ; the present proof is similar but shorter. 

2.3. Either (i) all the tangents to *$ are concurrent, or (ii) through any point of 
any tangent other than the point of contact there passes just one more tangent. 

Proof, (i) Suppose that three tangents to fé7, at A, B, and C say, meet at 0. 
Let L be any other point of *$ ; suppose that OL is not a tangent, and let 
LO P <% = M ?* L. Then the tangents at L and M meet on BC, CA, and AB 
by 2.2, a contradiction since A, B and, C are not collinear. Hence OL is the 
tangent at L. 

(ii) Suppose that no three tangents are concurrent. Let P ^ A lie on the 
tangent at A. Let C € ^ , C ^ ^4. If PC is a tangent, there is nothing more 
to prove. If not, let CP H ^ = D j* C (Figure 1). Let CC C\ DD = Q. Then 
QA is not a tangent. Let AQ C\ <% = B ^ A. Then .4,4 C\ BB G CD (2.2), 
hence A A C\ BB = P and PB is the second tangent through P. 

If case (i) of 2.3 holds, the point of concurrence of the tangents is the centre 
of ^f, which we shall always denote by 0, and *$ is a central oval. In a finite 
plane it is easy to show that every line through the centre of a central oval is a 
tangent, but in an infinite plane some of these lines may be non-secants. 
Artzy's extra condition on *$ (see § 1) is that case {\\} of 2.3 holds, so that *% is 
not a central oval. 

https://doi.org/10.4153/CJM-1969-160-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-160-4


PASCAL OVALS 1465 

COROLLARY TO 2.3. If *$ is not a central oval, and if P £ ^ , then through P 
there pass either two tangents or none. 

If ^ is not a central oval, a point P not on ^ is an exterior or interior point 
according as the number of tangents passing through P is two or none. 

Even if ^ is not a Pascal oval, we can prove 2.3 if x is a finite plane 
(4, Theorems 3, 5). The next two lemmas are also t rue even if ^f is not a Pascal 
oval. By considering the tangent and secants through a point of ^ , we can 
easily prove the following result. 

2.4. If -K is a finite plane of order n, then *$ contains n + 1 points. If T is an 
infinite plane, then *€ contains an infinite number of points. 

If 7r is a finite plane, if P is not the centre of ^ , and if P (? fé7, it follows from 
2.3 t h a t there passes a t least one secant through P. Using a simple counting 
argument , we can now prove the following result. 

2.5. If ir is a finite plane, if P is not the centre of fâ, and if P Q ^ , then there 
exists a non-secant through P. 

W e shall use this result in the proof of 4.2. 

3. Axial m a p p i n g s . Let P be a point not on ^ . The mapping L —> LP C\ ^ 
(where L £ cé>) is a one-to-one mapping of *$ onto itself, called the involution 
(on cé) with centre P, denoted by P . If P is not the centre of ^ , then P has 
period 2. If P is the centre of ^ , then P is the identi ty mapping on ^ , bu t we 
shall still call P an involution in this case. {Note. If ^ is a non-central oval, 
then the identi ty mapping on ^f is not an involution.) 

Le t / be a line. If a: is a one-to-one mapping of ^ onto itself, not the identity, 
such t h a t L(Ma) P\ M (La) £ I for all L, M £ ^ , then a is an axial mapping 
(on (iû) with axis /. 

3.1. Let a be an axial mapping with axis I. Then 
(i) any fixed point of a lies on I, 

(ii) there exists F £ ^ , F $ /, such that Fa & I, 
(iii) the points of intersection of I with *$ (if any) are fixed points of a. 

Proof, (i) Let A be a fixed point of a, L a non-fixed point. Then 

A = A(La)r\L(Aa) £ /. 

(ii) If I is a non-secant, then we can choose any point of *& for F. If / is a 
secant, let F be any point of ^ , F g /. (Such a point exists since ^ contains a t 
least three points.) Suppose tha t Fa = A Ç /. Then A a ^ A since a is one-to-
one. Hence A(Fa) Pi F(Aa) = ^4^4 P F(Aa) (? /, a contradiction. This argu­
ment fails if / is a tangent , since we then have ^4^4 = /. If / is the tangent a t A, 
there exist two distinct points F, F' Ç *io , F,Ff ^ A. Since Fa ^ F'a, we 
may suppose without loss of generality t ha t Fa 9e A, so t h a t Fa (? /. 
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(iii) Let P be defined as in (ii), and let A be a point of intersection of / with 
&. If A a 7* A, then A (Fa) H F (A a) g /, a contradiction. 

COROLLARY. The fixed points of a are precisely the points of intersection of I 
and *io , hence a has at most two fixed points. 

3.2. Let Q and R be distinct points not on &. Then QR is an axial mapping 
with axis QR. 

Proof. Let L, M 6 <£. If L 6 QR (so that LQR = L) or if M Ç QR, then 
trivially L(MQR) C\ M(LQR) 6 /. 

Otherwise (Figure 2), applying 2.1 to hexagon L(LQ)(LQR)M(MQ)(MQR), 
we have L(MQR) H M(LQR) G QR. 

FIGURE 2 

3.3. If a is an axial mapping with axis /, a^J if P Ç /, P $ fé7, /Aerc /Aere 
exw/5 a unique S Ç /, 5 g fé7, s^c/z /&a£ a = PS. 

Proo/ (Figure 3). Let F be defined as in 3.1(h). Let FP Pi <% = G; then 
G g /. Let G(Pa) H / = 5 ; then S g %?'. 

LetLG 9 7 . I f i e Z , t h e n L a = L ( 3 . 1 ( i i i ) ) = LPS. IfL g / , l e t L P = ilL. Then 
FÇLa) r\ L(Fa) 6 / and FGC\LM £ /, thus from hexagon FG(Fa)LM{La) we 
have G(Fa) H ilL(La) 6 Z; therefore 5 G Af(La) and MS = La. Hence 
La = MS = LPS. 

Hence a = PS. The uniqueness of 5 is trivial. 

3.4. Given a line /, and distinct points P, LT £ fé7, WGJ on /, /^ere existe a unique 
axial mapping a with axis I such that Fa = H. 

Proof (Figure 3). Let P G /, P g &. Let FP = G (G Z I), GHHit = S 
(S (? cé>). Then S ^ P, hence PS is an axial mapping with the required proper­
ties (3.2). Any other axial mapping with the required properties can be 
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expressed as PS' for some S' £ I (3.3). Since we require FPS' = H, we see that 
S' = GH r\ I = S, thus the mapping is unique. 

FIGURE 3 

3.5. If A, Bt C and A', Bf', C are triples of distinct points of ^, then there 
exists a unique axial mapping a such that Aa = A', Ba — B', Ca = C , unless 
A = A',B = B\C = C. 

Proof (Figure 4). Suppose without loss of generality that C T* C. Then 
AC C\ CA' and BC C\ CBr are well-defined and distinct. Let I be their join. 
Neither C nor C lies on /. If the required mapping exists, then / must be its 
axis and it must map C onto C . By 3.4, there exists a unique axial mapping a 
with these two properties; clearly Aa = A1', Ba = B' from our definition of /. 

FIGURE 4 
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4. Involutions. 

4.1 (cf. 2, théorème 3, lemme 4.1). / / P, Q, R are collinear points not on ^, 
then there exists S (? ^, collinear with P, Q, R, such that PQR = S. 

Proof. This is trivial if Q = R. If Q 9e R, then QR is an axial mapping with 
axis QR (3.2), and P 6 QR. Hence there exists S £ QR such that QR = PS 
(3.3). Hence PQR = PPS = S. 

4.2. If P,Q,R, S i <g and if P ^ Q 9* R 9* S, then either PQRS = 1 or 
PQRS has at most two fixed points. (HP = Q or Q = R or R = S, the conclusion 
follows immediately from 3.2 and 3.1, Corollary, but we do not require the 
lemma in these special cases.) 

Proof. If PQRS has more than two fixed points, let A, B, and C be three 
fixed points, and let (A, B, QPQ = (A', B', C). Then (A', B', C')RS = 
(A, B, C), thus (A, B, C)SR = (A', B', C). Now PQ and SR are axial map­
pings, therefore we cannot have A = A', B = B', C = C (3.1, Corollary). 
Hence PQ = SR (3.5), thus PQRS = 1. 

4.3 (cf. 2, lemme 4.4). If P , Q,R,S£ ^, then there exist U, V & & such that 
PQRS = UV. 

Proof. If P = Q or Q = R or R = 5, the proof is trivial. If P 7* Q ^ R 7* 5, 
the basic idea of the proof is as follows: if the lines PQ and RS have a common 
point T $ Çf, then PQRS = (PQT)(TRS) = UV for suitable U, V (4.1). The 
proof below deals also wTith the possibility that PQ and RS may be distinct 
lines meeting on ^f. 

FIGURE 5 
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FIGURE 6 

If PQRS = 1, then PQRS = UU for any U £ <€. Otherwise, PQRS has 
at most two fixed points A, B, say (4.2) and QR meets ^ in at most two points 
C, D, say (Figure 5). / / there exist more than eight points on *$ then there exists 
a secant or tangent PLM, distinct from PA, PB, PC, PD. Let PLM r\QR = Q!. 
Then Q' $ <% and L, M are not fixed points of PQRS. There exists R' G QR 
such that QR = Q'R' (3.2, 3.3). If PQ' C\ R'S G ^, then PQf C\R'S = L or 
M. Hence either LPQRS = L P Q R S = LR'S = L, or MPQRS = ikf, a 
contradiction. Hence PQ' f\ R'S = V (say) € ^ . Hence PQRS = PQ'R'S = 
(PQT'XT'R'S) = UV for suitable U, V (4.1). 

We deal with the case where there are not more than eight points on *$ by 
giving a proof that is valid for all finite planes. Suppose that -K is finite. If P 
is not the centre of f̂, then there exists a non-sectant I through P (2.5). 
Let/ H QR = Q' (Figure 6). Then Q' (? <*f. There exists i?' G QR, R' £ ^ , s u c h 
that QR = Q'R' (3.2, 3.3). Let T' = PQ' H R'S. Then V £ / hence V g <£\ 
We now complete the proof as in the previous paragraph. If P is the centre of 
*$ but 5 is not, we can give a similar proof using a non-secant through S. If 
P and 5 are both at the centre of ^, then PQRS = QR. 

COROLLARY (cf. 2, lemme 4.5). The axial mappings on ^, together with the 
identity mapping, form a strictly triply transitive group G. 

This follows from 4.3, 3.2, 3.3, 3.5. 

4.4. Every involution (except the identity in the case of a central oval) is an axial 
mapping. 

Proof, (a) Let ^ be a central oval, and P a point not on fé7 distinct from the 
centre 0. Then P = PO, which is an axial mapping by 3.2; the axis is PO. 

(b) Let *$ be a non-central conic, and P an exterior point. Let PA and PB 
be the tangents from P, and let PCC and PDD' be distinct secants throughP 
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(supposing that there exists more than one secant through P) (Figure 7). 
Let p = AB. The points W and X are distinct and W, X G P (2.2), thus 
WX = p. From hexagon CCD'C'C'D, we have W, Z, Fcollinear. From hexa­
gon CITD'C'DD, we have X, Z, Y collinear. But Z je F, thus W,X e ZY. 
Hence Z, Y € WX = p. 

Since P maps C, D onto C , Df and 4 , 5 onto A, B, it follows that P is an 
axial mapping with axis p. 

If there exists only one secant through P , the result follows directly from 2.2. 

FIGURE 7 

(c) Let ^ be a non-central oval, and P an interior point (Figure 8). Let 
PAB be a secant through P, and let the tangents at A, B meet at Q. By (b), 0 
is an axial mapping with axis AB. Hence there exists R Ç AB such that 
0 = PR (3.3). Hence P = QR, thus P is an axial mapping (3.2). 

COROLLARY. The strictly triply transitive group G of axial mappings 
(4.3, Corollary) contains all the involutions and is generated by them. 

We shall now call the elements of G projectivities (on cé>). Every non-identical 
projectivity is an axial mapping. 

These results are sufficient for the proof of Buekenhout's theorem using 
coordinates in § 6, but it is interesting to see how we can now develop the 
theory of poles and polars for non-central ovals. 

5. Poles and polars. We shall suppose in this section that ^ is not a 
central oval. If P (? ^ , we define the polar of P to be the axis of P, denoted by 
p. If L 6 ^ , we define the polar of L to be the tangent at L, denoted by /. 
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FIGURE 8 

5.1. If P lies on the polar of Q, then Q lies on the polar of P. 

Proof, (a) If Q Ç ^ , the result is trivial. 
(b) If Q g <é but P 6 # \ then P is a fixed point of Q (3.1 (hi)), thus PQ is 

the tangent at P , from which the result follows. 
(c) If Q £ ? , P ? ^ , then P lies on the axis of Q, thus there exists R on the 

axis of Q, R $ &, such that Q = PR (3.3). Hence P = QR, thus QP is the 
axis of P (3.2). 

5.2. IfPGV, thenP £ p. 

Proof. If P Ç £, the axis of P, then there exists Q £ p such that P = PQ 
(3.3). Hence Q = 1, a contradiction. 

5.3. The polar of P is a secant, tangent or non-secant according as P is an 
exterior point, a point of *$ or an interior point. 

Proof. It follows from the proof of 4.4 that the polar of an exterior point is a 
secant. Let P be an interior point, and suppose that p meets *$ at Q. Then 
Q Ç p and thus P G q, the tangent at Q. Hence P is not an interior point. 

5.4. Distinct points have distinct polars. 

Proof. Since the tangents at distinct points of *$ are distinct, we have only 
to exclude the possibility that two points P , Q £ *% have the same polar p. 
Suppose this is the case. Then P, Q @ p (5.2), thus the lines PQ and p are 
distinct. Let R = PQ P\ p, and let S be another point of p. Then R lies on the 
polars of P , Q, thus r = PQ. Similarly s = PQ. Hence R lies on the polars of 
R and S, hence r = RS = p, a contradiction. 

5.5. Given a line p, there exists a unique point P such that p is the polar of P. 

Proof. Let Q, R Ç p, Q ^ R. Then q ^ r (5.4). Let P = q H r. Then p 
is the polar of P (5.1). The uniqueness of P follows from 5.4. 

We call P (in 5.5) the £tf/e of p. 
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As an immediate consequence of the preceding lemmas, we have the follow­
ing result. 

5.6. The mapping P <-» p is a one-to-one mapping of the sets of points and 
lines of w onto each other, of period 2 ; the mapping preserves incidence. 

Such a mapping is called a polarity, and the mapping in 5.6 is the polarity 
determined by ^ . A polarity maps collinear points onto concurrent lines and 
vice-versa. 

Let us call an oval as defined in § 1 a point oval, and its tangents tangent 
lines. Using the dual definition we can define a line oval, each line of which 
contains just one tangent point (i.e., a point lying on no other line of the line 
oval). 

From 2.3 we easily deduce the following result. 

5.7. The tangents of *$ form a line oval cé'*, whose tangent points are the points 

We can call the dual of a Pascal point oval a Pascal line oval. 

5.8. c£* is a Pascal line oval. 

Proof. Let abcdef be a non-degenerate hexagon of lines of ^ * (i.e., tangents 
of cé?) and let A be the pole of a with respect to ^ , etc. We use 5.6 in the follow­
ing argument. The vertices of abcdef are the poles of the sides of ABCDEF. 
(If, say, a = b, then the vertex a C\ b must be interpreted as A.) The three 
lines p, q, r joining opposite vertices of abcdef are the polars of the three points 
of intersection P, Q, R of opposite sides of ABCDEF. But P, Q, R are collinear, 
thus p, q, r are concurrent. 

In accordance with the usual nomenclature, we can therefore say that *$ is 
a Brianchon oval. 

6. Coordinates. Our method of introducing coordinates is basically the 
same as Artzy's (1). Most of Artzy's proofs are valid for central conies also, 
but we give here alternative proofs of some of the results, based on the theorems 
of the previous sections. In order to understand the method more easily, 
consider first the hyperbola in a Euclidean plane whose equation is xy = 1 
(Figure 9). The coordinate axes ZX, ZY are the asymptotes, where Z is the 
origin and X, Y are the points at infinity on the axes, i.e., ZX and Z Y are the 
tangents to the hyperbola at X and Y. Any point A ^ X, F on the hyperbola 
has coordinates of the form (a-1, a), where a ^ 0. We can label A by means 
of its parameter a in brackets: A = (a). To X, Y we give the labels (0), (co). 
It is easily verified that the lines (a)(6) and (0)(a + b) meet on ZY, and that 
the lines (a)(b) and (l)(ab) meet on X Y (Figure 9). 

We therefore choose three distinct points X, Y, I Ç *$ and let 

XX C\ YY = Z 

(Figure 10). To each point of *$ we assign a parameter. These parameters are 
just symbols associated with the points; distinct points must have distinct 
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FIGURE 9 

parameters. To X, Y, I we assign the special parameters 0, oo, 1. If A has 
parameter a, we write A = (a). Let Ĵ ~ denote the set of all parameters except oo . 

If a, 6 G #~, let (a)(6) H Z F = P , and let (a)(6) H I F = Q. We define 
a + b to be the parameter of the point ( 0 ) P H ^ , and we define a • b, usually 
written as ab, to be the parameter of the point ( l )ÇPl ^ \ Then a + b and a& 
both belong to &~ (Figure 10). 

FIGURE 10 
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6.1. For alla,b G ^~, (i) a + b = b + a, (ii) a + 0 = 0 + a = a, (iii) there 
exists a unique —a £ &~ such that a + ( — a) = — a + a = 0, (iv) a& = fra, 
(v) a l = la = a, (vi) aO = Oa = 0, (vii) if a ^ 0, /feew //^re cxis/s a unique 
a-i ç. J T 5WC/j }foat aa-i = a-ia = i^ (viii) i / ^ is a central oval, then Z is the 
centre, and —a = a; if' ^f is not a central oval, then —a^a unless a = 0. 

These results follow immediately from the definitions of addition and 
multiplication. 

6.2 (1, Lemma 2). For all a, b, c G f , (a + b) + c = a + (b + c) and 
(ab)c — a(bc). 

This result follows immediately from 2.1. 

It is convenient and reasonable to extend the definitions of addition and 
multiplication to the larger set f U {oo}, as follows: 

a -{- <x> = co + a = oo i f a ^ o o , 
aoo = oo a = oo if a 9e 0, 0 - 1 = oo , oo _ 1 = 0. 

Note that oo + oo , Ooo and ooO are not defined. 

6.3. (i) The mapping (x) —> ( — x) is the involution on *$ with centre Z. 
(ii) The mapping (x) —•> (x_1) is the involution with centre II C\ XY. 
(iii) The mapping (x) —> (ax), where a ^ 0, oo, is either the projectivity with 

axis X Y that maps (1) onto (a), or the identity mapping if a = 1. 
(iv) The mapping (x) —> (a + x), where a ^ oo, is either the projectivity 

with axis ZY that maps (0) onto (a), or the identity mapping if a = 0. 

These results follow immediately from the definitions of addition and 
multiplication, and from the lemmas in §§ 3, 4. 

6.4 (cf. 1, Lemma 3). For all a, c G J^", a( — c) = — (ac). 

Proof. If c = 0, the result is trivial. If c 9e 0, the mappings (x) —» (x( — c)) 
and (x) —» (— (xc)), being products of projectivities on ^ (6.3(i)(iii)), are 
themselves projectivities (4.3, Corollary). These two projectivities both map 
(0), (1), (oo) onto (0), ( — c), (oo), and hence the projectivities are equal 
(by 3.5 if— c ^ 1 ; if — c = 1, then both projectivities are the identity mapping 
by 3.1, Corollary). Hence, putting x = a, we have a( — c) = —(ac). 

6.5. For all a, b, c G ^ , a(b + c) = ab + ac. 

Proof (cf. 1, Lemma 5). If a = 0 or c = 0, the result is trivial. If a 7^ 0, 
c ^ O , then the mappings (x) —> (a(x + c)) and (x) —» (ax + ac), being 
products of projectivities on ^ (6.3(iii)(iv)), are themselves projectivities 
(4.3, Corollary). These two projectivities both map (0), ( — c), (00) onto (ac), 
(0), (00) (6.4), and hence the projectivities are equal (3.5). Hence, putting 
x = b, we have a(b + c) — ab + ac 
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From 6.1, 6.2, 6.5 we deduce the following result. 

6.6. («F; + , •) is afield. 

We now define coordinates for points of T not on X Y by analogy with the 
Euclidean situation for the hyperbola xy = 1. If P Q XY, let YP C\ <£ = (a"1) 
and let XP Pi <% = (b). Then a, b j£ oo . We define the coordinates of P to be 
(a, b). Then distinct points have distinct coordinates and every ordered pair 
(a, 6), where a, b G *F, is the pair of coordinates of some point P QXY. 
The point (a), where a ^ 0, has coordinates (a-1, a). Any point on ZX has 
coordinates of the form (a, 0) ; any point on ZY has coordinates of the form 
(0, b). 

6.7. In the plane ir, 
(i) any line through Y, other than X F, has an equation of the form x = a, 

(ii) any line not through Y has an equation of the form y = mx + b. 

Proof, (i) Any point on the line (a-1) Y has, by definition, a as its first 
coordinate, thus this line has equation x = a. 

(ii) Any point on the line (b)X has, by definition, b as its second coordinate, 
so this line has equation y = b, i.e., y = Ox + b. 

Let / be a line not through X or K, meeting YZ at (0, b) and meeting the 
line x = 1 at (1, m + &), where m F^ 0. We shall show that / has the equation 
y = mx + &. 

If x £ #" , let (x, x0) be the point of I whose first coordinate is x (Figure 11) ; 
then 6 is a one-to-one mapping of «F onto itself, and 0d = b, Id = m -{- b. The 

FIGURE 11 
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mapping a: (x~l) —> (xd) is the projectivity on *$ with axis / that maps X onto 
Y, if we define oo0 = oo . Hence the mapping /3: (x) —> (xd), being the product 
of (x) —•> (x-1) and a, is a projectivity on ^ (6.3(h), 4.3, Corollary), and 
(0)0 = (6), (1)13 = (m + 6), (oo)jS = (oo). But the mapping 7: (x) -> (mx+i) 
is a projectivity (6.3(iii)(iv), 4.3, Corollary), and (0)7 = (b), (1)7 = (m + b), 
(00)7 = (00). Hence fi = 7 (by 3.5 unless & = 0 and m = 1 ; if b = 0 and 
m = 1, then 0 = 7 = 1 by 3.1, Corollary). Hence x0 = mx + b, thus the 
equation of / is y = mx + 6. 

We call m the gradient of /. Now Ĵ ~ is a field, thus the simultaneous equations 
y = mix + &i, y = w2x + &2 (wi ^ m 2) have a solution in ^ , but the simul­
taneous equations y = mx + 61, y = mx + &2 (b\ 9^ b2) have no solution in 
0*~. Hence two lines meet on X Y if and only if they have the same gradient. 

Since 71-, or rather the affine plane obtained from w by removing X Y and the 
points on it, can be coordinatized by the field ^ in the manner described above, 
and since the coordinates of the points of ^f satisfy the equation xy — 1, we 
have now proved the following result. 

6.8. T is a Pappian plane, and ^€ is a conic in T. 

For remarks on the history of this method of assigning coordinates to points 
of a conic (in a Papp ian plane) see (3, Chap te r 11). 
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