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Abstract

Actor languages realize concurrency via message passing, which most of the time is easy to use.
Empirical code inspection provides evidence, however, that on occasion, programmers wish to have
an actor share some of its state with others. The dataspace model adds a tightly controlled state-
exchange mechanism, dubbed dataspace, to the actor model for just this purpose. Experience with
dataspaces suggests that this form of sharing calls for linguistic constructs that allow programmers
to state temporal aspects of actor conversations. In response, this paper presents the facet nota-
tion: its theory, its type system, its behavioral type system, and some first experiences with an
implementation.

1 Introduction

Actor languages and libraries support an easy-to-use mechanism for expressing concurrent
computations. The program spawns as many actors as needed, and actors strictly commu-
nicate via messages. Pure message passing eliminates the possibility of race conditions
arising from a lack of mutual exclusion, a major problem in shared-state concurrency.
An investigation (Tasharofi et al., 2013) of actively used actor programming libraries
suggests, however, that programmers often use actors with threads and shared state, if
available. When interviewed, programmers tend to point to the ease of sharing some state
between computational components running in parallel. In short, programmers wish for
some amount of sharing among actors.

The dataspaces actor model supplements the message-exchanges of the actor model
with a space for sharing state in a controlled manner (Garnock-Jones et al., 2014;
Garnock-Jones & Felleisen, 2016; Caldwell et al., 2020). It accepts the actor model’s
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premise that computation is conversation—exchange of messages—but it also embraces
the demand of conversations for context. Roughly speaking, a context consists of the public
information—corresponding to fragments of an actor’s current state—that the participants
remain aware of for a period of time. Such public information, dubbed an assertion, is
placed into a shared dataspace. From a programmer’s perspective, an assertion is a part of
an actor’s state that it wishes to share publicly.

From the dataspace’s point of view, an actor is a function that reacts to changes in
the published states of other actors. Even a message is a change to this shared state: it
shows up and disappears immediately. Indeed, basic message-passing may be expressed
with dataspaces in just this manner. The functional, black-box interface for actors lends
itself to system-level reasoning but, when it comes to expressing the behavior of an
individual actor, a purely functional notation is not a good fit. The core programming
tasks—situationally engaging and disengaging in behavior and managing and reacting to
changes in shared state—are inherently temporal. Hence, the model calls for a novel way
of expressing a concurrent actor in a context-sensitive conversation.

In response, this paper presents the design of a language of facets and a system for rea-
soning about their temporal behavior. From the perspective of this facet language, an actor
consists of several pieces—the facets—each of which represents the actor as a participant
in distinct (parts of) conversations. The concept addresses the central concerns of actors:

• engaging and disengaging in conversations;
• maintaining local state;
• permitting access to shared, public state; and
• reacting to external events.

The benefits of facets are evident in improving the organization of dataspace actor pro-
grams and supporting a conversational style of concurrency. Furthermore, facets directly
enable type-based static reasoning about communication.

Dining Concurrency Researchers. To illustrate our meaning of conversational concur-
rency, imagine a table of dining and conversing attendees at a conference on concurrency
research. Experience suggests a number of common characteristics for such a scenario:

• The conversation is likely to branch into several subconversations as new topics are
broached. Previous topics may be returned to—or not.

• The participants may engage in one subconversation or several simultaneously; they
may leave one conversation to join another, only to return later to the first one.

• The set of participants changes over time. Late-arrivals may join the table after
the conversation commences while early-departers exit the conversation before its
conclusion.

• The conversation is contextual. A newcomer to the conversation is likely to listen
for a while to pick up the context. Alternatively, this newcomer may explicitly state
an interest in the contextual background.

• Finally, these participants identify one another through a number of characteris-
tics, including their presentations at the conference, their interests, their association
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with particular institutions, and so on. They may or may not know each others’
names. Moreover, a particular participant’s identifying characteristic may vary from
conversation to conversation.

While Djikstra’s dining philosophers illustrate how coordination avoids certain pitfalls
of concurrency, namely deadlocked program states, the scenario of dining conference
attendees paints a portrait of how developers desire well-designed concurrent programs
to behave.

The notions of dataspace and facet equip developers with mechanisms to program in this
conversational style: means for representing and sharing context, evolving actor behavior
in the face of shifting demands, and a flexible notion of identity and participation in a
conversation. Sections 2 and 3 return to these ideas.

Roadmap. The presentation proceeds in three steps: Sections 2 through 4 introduce the
ideas via examples; the formal models of facet actors and dataspace programs are the sub-
ject of Sections 5, 6, and 7, respectively; and Section 8 states the key theorem concerning
the temporal type checking of facet actors. Section 9 briefly explains the implementation,
and Section 10 reports the results of evaluating the ability to verify behavioral properties
of realistic programs. The remaining sections are about related and future work.

2 Background: Dataspaces, actors

The dataspace actor model generalizes the publish/subscribe protocol of Linda’s
Tuplespaces (Carriero et al., 1994). When actors wish to share pieces of state with oth-
ers, they deposit those with a dedicated actor, the dataspace. All actors connected to a
dataspace can query this shared space. The dataspace thus controls how published state is
shared within a group of conversing actors.

A simulation of a smart home allows a comprehensive illustration. Let us say the smart
home supports three kinds of devices: smart lights; a presence sensor, which detects how
many people are in a room; and a control hub for accessing and controlling the other
devices. The simulation expresses each of these devices as an actor (Light, Sensor, Hub)
embedded in a common dataspace.

Figure 1 depicts a moment in such a simulation. The connecting dataspace is the large
rectangle. Each actor has deposited aspects of its state pertinent to the others; these are
called assertions.1 For example, the Sensor actor has published the assertion inRoom[3],
denoting the number of people in the room. Published pieces of state—assertions—are
made up from values (e.g., numbers, strings) as well as immutable data structures (lists,
structs).

An actor subscribes to publications of state of others via assertions of interest. In the
simulation, the Light actor turns a bulb on or off based on the occupancy of the room,
meaning it needs to know about the inRoom assertion. To get this information and keep
it up-to-date, it registers ?(inRoom[�]) with the dataspace: inRoom[�] is an assertion

1 The term assertion is inspired by the resemblance to a fact in the database of a Prolog program (Clocksin &
Mellish, 1981).
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Hub

Sensor

?(inRoom[ ])

?(light[ ])

light[ON]

?(inRoom[ ])

inRoom[3]

Routing Light

Fig. 1. Dataspace with actors engaged in a smart home conversation.

pattern where � is a match-anything wildcard and ? turns it into an assertion of interest, or
just interest for short.

Communication in dataspace programs arises from matches between interests and asser-
tions. The dataspace provides a routing mechanism, depicted in Figure 1 as a cloud, for
detecting such matches. Routing tracks changes to the set of assertions matching each
actor’s interests. When this set changes, the dataspace generates an event describing the
change and informs the interested actor(s). In the running example of the smart home,
the presence Sensor actor updates its assertion from inRoom[3] to inRoom[2] if some-
one leaves. In turn, the dataspace informs the Light actor of this change, because of its
interest.

An actor’s response to an event is one of the following actions:

• it may add and/or subtract assertions from its published state;
• it may spawn additional actors; and
• it may exit, by choice or by an uncaught run-time exception.

When an actor exits, the dataspace removes all of its assertions. Since this removal is a
change to the assertion set, it triggers an event for all interested actors. In response, other
actors may react to component failures in a graceful manner. For example, when a light
burns out in the smart home simulation, its corresponding Light actor exits. This triggers
the removal of its light[ON] assertion. In response, the dataspace informs the Hub actor
because it is interested in such assertions. This actor may then take appropriate action, such
as display a notification.

Dataspace communication is anonymous. That is, the model does not provide actors
with an address or process-ID (PID) to serve as a communication handle. Rather, corre-
lation information—that is, data dictating to which actor(s) some data is relevant—must
be included in the exchanged assertions and interests. This allows identifying information
to be encoded in a domain-specific fashion. For example, the Light actor could include
its serial number in its assertion light[serial, ON], allowing future communications
specific to that device to refer to it by its serial number.
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1 (define (light-actor)
2 (start-facet light-facet
3 (field [light-state : Bool ON])
4 (assert (light (! light-state)))
5 (on (asserted (in-room 0)) (:= light-state OFF))
6 (on (retracted (in-room 0)) (:= light-state ON))))
7

8 (spawn (light-actor))

Fig. 2. First faceted actor.

Dining Concurrency Researchers. The dataspace model addresses several needs of the
conversational style introduced in the dining concurrency setting of the introduction:

• Assertions directly represent conversational context.
• Anonymous actors give a flexible notion of identity and conversational participant.
• The notion of a change-in-state as an event merges the means through which a new

participant receives prior context in a conversation with normal communication.
• Similarly, notification of withdrawn assertions is the same—and automatic—

whether via normal behavior or exceptional crashes.

In sum, the dataspace model abstracts over the processing of routing events by actors.
The model requires only that an actor has a functional event–transducer interface:

Event × State → Actions × State

How to express an implementation of this interface is an entirely different question.

3 Facets

With the facet notation, a programmer expresses an individual actor as a tree of facets.
Roughly speaking, a facet groups some of the actor’s state with the behavior related to a
particular conversation. The behavior must specify the contributions (assertions and inter-
ests) to a conversation together with reactions to the utterances of other participants. The
tree structure reflects the tendency of conversations to branch from one another while
accruing context. This section introduces the facet language with the code for some of
the actors from the smart home simulation of the preceding section.

Figure 2 presents the code for the Light actor written in our Racket-based implemen-
tation. The listing includes the spawn expression that launches the actor (line 8). The
actor engages in a single conversation concerning the presence of people in the room and
the state of the light. Hence, it starts a single facet (line 2), named light-facet. The
start-facet form imperatively extends the actor’s facet tree with additional behavior.
The new facet joins the tree as a child of the enclosing facet. The first facet started by the
actor, as is the case for light-facet, becomes the root of the tree.

A facet keeps the actor-relevant state in fields. The light-facet facet creates a single
field, which keeps track of the current state of the light (line 3). This light-state
field holds values of type Bool and is initialized to ON, a constant defined elsewhere in the
program. The expression (! light-state) accesses the current value of the field, while
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(:= light-state OFF) updates it. The type of the light-state field handle itself is
(Field Bool), analogous to the type of a mutable reference cell. A type annotation on a
field is optional; when elided, it defaults to the type of the initialization expression.

A facet interacts with the connected dataspace via endpoints. Endpoints come in
two varieties—assertions and event handlers—corresponding to incoming and outgoing
information. The light-facet facet comes with three endpoints:

• The first one is an assertion endpoint (line 4). It shares information about the state of
the light with the dataspace. The assertion is a struct of type light. The light
assertion carries one value, the contents of the light-state field accessed via !.
The endpoint establishes an assertion in the dataspace while the facet it belongs to
is active. In this case, since the actor boots with the light-facet facet, it initially
makes such an assertion. Moreover, the facet keeps its assertion up to date. When an
assertion endpoint refers to a field, the endpoint and field establish a dataflow link.
The dataflow mechanism propagates field updates in order to keep the actor’s asser-
tions up-to-date with respect to its fields. Thus, every time light-state changes,
the actor automatically withdraws the previous light assertion and replaces it with
a version reflecting the new light-state.

• The other endpoints are on (event) handlers (lines 5-6). Each consists of two pieces:

1. The event specification describes the nature and structure of the event.
The nature of an event is expressed in terms of a keyword—asserted or
retracted—corresponding to the appearance or disappearance of assertions
in the dataspace. The structure of the event is expressed with a pattern, articu-
lating a query for specific structures in the dataspace. The actor automatically
issues an assertion of interest corresponding to the event handler’s pattern.
In the running example, the event handler wishes to know about in-room
assertions in the dataspace; it does so with placing ?(in-room 0) in the
dataspace. An event handler’s assertion of interest is initialized in the same
manner as an assert endpoint. Thus, the actor boots with assertions of inter-
ests corresponding to its initial event handlers. Moreover, if the patterns of the
event handlers reference the values of any fields, the assertions of interest are
kept up to date through the same dataflow mechanism.

2. The body part of the handler is code that executes in response to every
matching event. In the running example, each event handler’s body updates
the facet’s state via the light-state field. Recall that updates to this field
automatically propagate to the facet’s assertion via dataflow.

The light-actor function is effectful. When called from inside an actor spawn state-
ment (line 8), or the body of a facet’s event handler endpoint, it has the effect of starting a
new facet with the described behavior. In our implementation, programmers may mix facet
operations, field creation, and endpoint creation together with definitions and expressions.
With this flexibility, any aspect of an actor’s behavior may be defined inside a procedure.
This can improve the readability of the code as well as facilitate re-use and sharing of code
among different actor definitions.
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light[ON]

?(inRoom[ ])

Light

light-facet

assert(light(!lightState))

lightState = ON

on (asserted(inRoom($count)))

Fig. 3. Visualization of an actor’s facets and facet’s endpoints.

Figure 3 visualizes the light-facet facet of the Light actor. The facet encapsulates
the light-state field and the two endpoints. The solid-blue arrow indicates the dataflow
link between the field and the assertion endpoint; the dotted-blue arrow indicates that a
value flows from the body of the on handler into the field. Finally, the red arrows show the
manifestation of the endpoints in the dataspace as an assertion and an interest for the two
endpoints, respectively.

Let’s equip the smart home simulation with additional features and observe how the
language of facets facilitates the corresponding adaptation of the Light actor:

Wall Switches control the power to lights in a room. When a switch is off, the light must
be off and is unable to communicate with other devices. Flipping the switch on turns
the light on and allows for communication with, and control by, other devices.

Multiple Rooms complicate the simulation, too. Certain interactions are possible only
among devices located within the same room.

Configuration is essential for software systems. Initially, the only devices are the control
hub and the wall switches. The user may install lights and presence sensors. After
installing a device, the user must assign it to a specific room via the hub.

Figure 4 shows how to adapt the implementation of the Light actor to this revised
scenario. An unrelated difference to Figure 2 is the use of spawn inside of the
spawn-light-actor function—a simplification of the presentation. This function is now
called by a UI component when the user installs a light. It takes one String-typed argu-
ment. The argument designates to which wall switch the light is connected; that is, the
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1 (define (spawn-light-actor [wall-switch-id : String])
2 (define my-id (generate-unique-id "light"))
3 (spawn
4 (start-facet light-facet
5 (during (wall-switch wall-switch-id ON)
6 (field [light-state ON])
7 (assert (light my-id (! light-state)))
8 (during (room-assignment my-id $room)
9 (on (asserted (in-room room 0)) (:= light-state OFF))

10 (on (retracted (in-room room 0)) (:= light-state ON))))

Fig. 4. Implementation of the Light actor, draft.

argument represents the inherent connection between elements on a power circuit. Once
the function is called, it generates a unique ID for the light (line 2), akin to a manufacturer
serial number. After that, it spawns the light actor with one initial facet (lines 3-4).

Equipped with a basic understanding of this function, let us look at the revised
light-facet facet. Recall that the actor should not engage in any behavior unless the
connected switch is flipped on. Once it is on, the actor participates in conversation(s) until
the switch is turned off. A basic facet-oriented actor would start a facet in response to the
first kind of event and shut it down when the second kind occurs. This pattern is so com-
mon that the facet language comes with a during expression (line 5), which combines an
assertion pattern that can be used with either asserted or retracted.2

Here the facet operates while the assertion of (wall-switch wall-switch-id ON)
exists in the dataspace—representing the interval of time during which the room’s switch
is in the on position. As the switch is flipped into the on position, the facet announces its
existence and (ON) state using a field and assertion endpoint as before (lines 6-7). This
light assertion allows the Hub actor to detect the installation of a new device. If this is the
first time the Hub actor encounters this device ID, it prompts the user to assign it to a room.
Once the assignment is complete, the Hub actor deposits a room-assignment assertion
(line 8) to inform the Light actor. The subpattern $room binds the corresponding portion
of the room-assignment assertion to the name room. Knowing what room it is in allows
the Light actor to converse with any presence sensor in the same room, turning on and off
accordingly (lines 9-10).

Multifaceted Actors. The revised implementation of the Light actor starts several facets.
Eventually it may run three concurrent facets: light-facet and one per during
expression. Each of these facets corresponds to a particular context within an ongoing
conversation. Furthermore, the facets are nested, just like actor conversations. When one
facet starts another, the first is the parent to the second. Stopping a facet (via stop) means
terminating it and all of its children. In the context of the Light actor, the wall-switch
facet may shut down when the switch is flipped off; in this case, shutting down this facet
also shuts down the nested facets associated with during expressions. A stop form may
optionally specify some continuation behavior, as in (stop orig (start-facet cont
...)). In that case, the cont facet takes the place of orig in the tree. Continuation facets
address the need to transition from one task to another.

2 In Racket, during is just a notational definition (macro); see Section 3.1.
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1 (define-type LightDict (Dictionary String Light))
2

3 (define (launch-hub)
4 (spawn
5 (start-facet hub
6 (field [lights : LightDict (create-dictionary)])
7 (during (light $id )
8 (on start
9 (match (dict-ref (! lights) id #false)

10 [(light room ) (control-light lights id room)]
11 [#false (get-room-from-user id)]))))))
12

13 ;; auxiliary functions:

14 (define (get-room-from-user [id : String])
15 (start-facet get-room
16 (define room ... interact with user to assign a room ...)
17 (stop get-room (control-light lights id room))))
18

19 (define (control-light [lights : (Field LightDict)] [id : String]
20 [room : String])
21 (start-facet control
22 (assert (room-assignment id room))
23 (on (asserted (light id $o?))
24 (set-light-state lights id room o?))
25 (on stop (set-light-state id room OFF))))
26

27 (define (set-light-state [lights : (Field LightDict)] [id : String]
28 [room : String] [on? : Bool])
29 (:= lights (dict-set (! lights) id (light room on?)))))))

Fig. 5. Implementation of the Hub actor.

Wider Facet Trees. While the facets in the Light actor are nested in a linear fashion,
bushy trees are equally common. Consider the Hub actor. A user interacts with the Hub to
configure each light. Once configured, the Hub both monitors and controls these lights. To
accomplish this task, the actor starts a facet for each separate conversation with the various
Light actors.

Figure 5 shows a portion of the actor’s implementation. The actor starts a facet named
hub (line 5), which creates one field (lights, line 6) for storing information about the
lights in the system. The field is a dictionary. For each registered light, this dictionary
associates the light’s ID with a light struct that records its room and its known state. The
auxiliary function set-light-state (lines 27–29) takes a reference to the lights field
as an argument, of type (Field LightDict), and updates the dictionary for a particular
light.

Using during, the actor converses with each individual light. The during reacts in
response to new light assertions.3 Such assertions can mean one of two things: the instal-
lation of a light or the restoration of power to an already installed light. In the first case,
lights does not contain an entry with that ID; in the second case, it does. Each of these
situations calls for different behavior, but no matter what, the reaction should happen only
when the facet starts up.

3 The “don’t care” pattern _ means the during reacts to the initial appearance of a light assertion with a
particular ID, but not to subsequent updates to the on/off state of that light.
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(during (in-room ...))

(during (room-assignment ...))

(during (wall-switch ...))

light-facet

(during (get-room ...))(during (get-room ...))(during (get-room ...))

(during (light ..))(during (light ..))(during (light ..))

hub

Fig. 6. Visualization of the Light and Hub actors’ facet trees.

To express this idea directly, the language enables facets to react to the start and
stop events, respectively. That is, instead of a reaction to a dataspace assertion, a facet’s
endpoints may specify a start or stop specific reaction. Here the during facet uses start
to decide how to act (line 8). In the handler (lines 9–11), it uses lights to look up what
it knows about the light. In the first case and match branch, the facet retrieves the light’s
room assignment and starts another facet to control it via control-light (lines 19–25).
In the second case, the actor calls get-room-from-user, which engages in yet another
dialog with the user to assign the new light to a room. This nested facet stops itself, with
some explicit continuation behavior: a call to control-light.

The control-light function starts a facet to assert the light’s room-assignment and
to react to changes in its state. When the state changes, the facet updates lights. Finally,
when the facet stops—due to termination of the outer during—it records the light as
off. Stop handlers, like exception handlers, enable separation between the decision to dis-
engage in behavior and the definition of how to clean up in that event. In this case, the
decision is implicit in the during on line 7’s retracted event handler. Meanwhile, the
code for cleaning up is in the control-light function (line 24). Crucially, the need to
clean up only arises after an initial provisioning step, so it would not make sense to have
the functionality at the same level as the during. In the case of a crash, an actor does not
run any stop event handlers. Since the state of the actor could be inconsistent, with fields
partially updated, orderly shutdown may not be possible.

Figure 6 visualizes the facets of the Light and Hub actors. In the case of the Light
actor, the tree is deeply nested, as the actor engages in new behaviors as it accumulates
conversational context. By contrast, the Hub actor’s facet tree exhibits breadth, as it starts
a new facet in reaction to each installed light. In turn, each of those facets have sub-trees
either to interact with the user or to control the light. Each sub-tree of the hub facet is
independent of the others, evolving based on its interactions with its controlled light and
the user without needing to know the current state (or existence) of the others.

3.1 Derived forms

Figure 7 displays derived forms for common patterns. One exceedingly common pattern
is for a facet to be constructed in response to the appearance of an assertion and torn down
in response to its disappearance. The Light and Hub actors both fall into this category.
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(during pattern during-body ...)
def≡

(on (asserted pattern)
(start-facet theBody

(on (retracted pattern′)
(stop theBody))

during-body ...))

(during/spawn pattern during-body ...)
def≡

(on (asserted pattern)
(spawn (start-facet theBody

(on (retracted pattern′)
(stop theBody))

during-body ...)))

(define/query-value id expr0 pattern expr)
def≡

(field [id expr0])
(on (asserted pattern)

(:= id expr))
(on (retracted pattern)

(:= id expr0))

(define/query-set id pattern expr)
def≡

(field [id (Set ) empty-set])
(on (asserted pattern)

(:= id (set-add (! id) expr)))
(on (retracted pattern)

(:= id (set-remove (! id) expr)))

Fig. 7. Derived forms.

We abstract this pattern into the during form. Each time the asserted event fires, any
pattern variables bound in pattern are instantiated to yield a concrete assertion, pattern′.
The (on (retracted ...)) endpoint monitors this assertion in the new facet.

Figure 7 also shows a related derived form, during/spawn. In contrast to during,
this form does not create a facet within the actor but spawns an actor in the dataspace.
The critical difference concerns failure. While a failure in during tears down the current
actor, a failure in during/spawn terminates the separate actor but leaves the spawning
one alone.

Both during and during/spawn allow the programmer to directly express matching
of supply to demand. Assertions matched by the pattern are interpreted as demand; the
during-body constitutes the supply. As demand increases via new matching assertions in
the dataspace, the supply expressions are executed to match. As demand decreases again
due to the withdrawal of assertions, (on (retracted ...)) endpoints automatically
terminate the facet or actor in response. Resources are allocated via (on start ...)
clauses and released in (on stop ...) clauses in response to changing needs.

Figure 7 defines a second family of derived forms concerning the integration of newly
arrived assertions into local fields. While actors often just deal with singleton assertions,
other scenarios call for a set, a hash table, or even an aggregate summary of several asser-
tions. To support this idiom, the facet language provides derived constructs called queries.
Queries define and subsequently update fields, making their results available for use in
neighboring facet endpoints.

One such form, define/query-value, is useful for local tracking of an assertion kind
in which there may be zero or one instance in the dataspace. For example, we could extend
the smart home program with persistence, so that the user’s assignments of devices to
rooms are saved between runs of the program. A separate actor would handle persisting
such configurations to the file system or other location and loading them when the program
starts. Then, when the Hub actor boots, it needs to operate based on a reloaded configuration
or start with a default fresh one. It may use

(define/query-value config DC (configuration $lights ...)
(configuration lights ...))
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to create a field that defaults to DC (short for default configuration) value unless there is a
configuration assertion, in which case it uses the value of that assertion.

The second such form, define/query-set, collects information from relevant asser-
tions in a set.4 A user-interface component for the smart home may use it to show the user
all of the lights currently installed in the system:

(define/query-set lights (light $id _) id)

The query scheme directly generalizes to structures such as hash tables, etc., and also
allows aggregations analogous to SQL’s COUNT(*) and GROUP BY.

3.2 The case for facets

Returning to the dining concurrency researchers example, facets support a conversational
style in several ways:

• Engaging in a new conversation is as simple as starting a facet. Likewise, stopping
a facet disengages from a conversation.

• The during form directly connects context to behavior.
• The tree of facets mirrors the way (sub)conversations branch from existing conver-

sations.

Defining actors using facets provides additional advantages over basic functions and
objects, as well. Appendix A provides an implementation of the light actor using a pro-
cedural notation as a concrete basis of comparison, demonstrating and explaining these
benefits.

Generally put, the facet notation combines and extends a number of concepts from other
languages and empowers programmers to use them in a synergistic manner. For exam-
ple, end-point programming may remind the reader of the event-handling and reactive
programming style of Esterel (Berry & Gonthier, 1992) and CRIME (Mostinckx et al.,
2008). Dataflow exists in many forms (Demetrescu et al., 2011). Updates to behavior have
been around as long as the Actor model (Hewitt et al., 1973). The during behavior is the
clearest example of the synergistic use of these features. It precisely describes a tempo-
ral engagement with the dataspace; sets up and tears down local behavior as needed; and
simultaneously takes into account the accumulated conversational context.

4 Static checks: Types and behavior

Programming actors requires the development of protocols. A protocol coordinates the
flow of data among actors in a conversation. Designing the program requires reasoning
about protocols while writing code. An actor language ought to assist programmers with
this reasoning process and ideally with checking it statically.

The language of facets comes with a structural type system and a behavioral one. The
first is somewhat conventional (Section 4.1); also see Caldwell et al. (2020)’s work on

4 The type of the set’s elements is inferred from the provided expr.
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structural types for dataspaces. The second enables programmers to specify an actor’s
dynamic behavior (Section 4.2) and perform some static checking (Section 4.4). The bridge
between the two is an effect-type system (Section 4.3). Section 4.5 applies this checking
to an example specification from the smart home.

4.1 Basic types

The starting point is a structural type system. Base types describe data such as Int, Bool,
etc. A struct-type definition such as (struct light ([on? : Bool])) introduces the
type constructor LightT.5 Thus, (light #true) has type (LightT Bool).

Our previous work on structural types (Caldwell et al., 2020) for purely functional data-
space actors validates that it prevents mistakes involving the shape of assertions. That is,
type checking incorporates knowledge of how a dataspace routes assertions among actors
and uses the types to confirm that assertions cannot upset routing. It is straightforward to
adapt this system and its proof of soundness to facet-oriented dataspace actors.

4.2 Specification

Like for structural properties of routing assertions, programmers need a language for
behavioral—that is, temporal—properties, too. Like structural types give a syntax and
semantics to claims about properties of assertions, behavioral types should allow the pro-
grammer to make claims concerning the behavior of actors in a dataspace. We employ a
form of linear temporal logic (LTL) for this purpose, though of course, its basic propo-
sitions must somehow involve the assertions that actors deposit into and withdraw from
dataspaces. In addition to introducing this language, this section also informally explains
what it means for a facet-based actor program to live up to such a specification.

LTL has a long history as a specification language for concurrent programs and the
basis for mechanized checks (Manna & Pnueli, 1991; Holzmann, 1997; Pnueli, 1977).
When compared to other temporal logics, such as the branching-time computation tree
logic (CTL), LTL is typically considered more intuitive and at least as amenable to
efficient model checking (Vardi, 2001; Rozier, 2011). Moreover, compared to typical pro-
tocol description languages such as choreographies (Carbone & Montesi, 2013) or session
types (Honda et al., 2008), LTL allows the focus to be on what is communicated rather than
who does the communicating, suiting the anonymous style of dataspace programming.

The base LTL predicates are types that describe assertions in the dataspace. For exam-
ple, the formula (LightT Bool) holds at any moment iff some actor has deposited an
assertion (light #true) or (light #false) in the dataspace. Specifications may also
use negation (Not), and (Not (LightT Bool)) means no assertion of this structure type
is in the dataspace.

Other connectives are conjunction (And), disjunction (Or), and logical implication
(Implies). With temporal connectives, a programmer can specify the evolution of data-
space programs. The proposition (Always (LightT Bool)) holds if the dataspace

5 The final “T” is a convention for such type constructors. The struct form defines the plain Light type
name to be an alias for the type constructor fully instantiated with the default type parameters, such as
(LightT Bool).
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contains a light assertion at every moment during execution, regardless of which actor
has deposited it there. Meanwhile,

(Until (LightT Bool) (Not WallSwitchOn))

says that eventually there will not be a (wall-switch-on) assertion in the dataspace, but
until then there is a light assertion. The formula

(Eventually (LightT Bool))

describes an execution state with an assertion matching (LightT Bool) in the dataspace
or the execution arrives at such a state within a finite number of steps.

A dataspace program satisfies a specification if its dataspace evolves according to the
interpretation of the LTL formula. Thus, a program lives up to the just-mentioned formula
if, at some point during execution, an actor makes a matching light assertion. In par-
ticular, any dataspace program that includes the light-facet actor from the preceding
section satisfies this formula, because it makes a light assertion as it boots.

Consider another proposition:

(Always
(Implies

(LightT Bool)
(Until

(LightT Bool)
(Not WallSwitchOn))))

It is always true that, if a light assertion is
in the dataspace, eventually there will not be
a wall-switch-on assertion but until that
time a light assertion will remain in the
dataspace.

It is the strong version of Until, requiring that (Not WallSwitchOn) eventually be true.
Take the dataspace program that runs the two actors on the left:

actor 1 actor 2 dataspace evolution

(start light-facet
(field [state ON])
(assert (light (! state)))
(on (retracted (wall-switch-on))
(:= light OFF)))

(start wall-switch
(assert (wall-switch-on))
(on (asserted (light _))

(stop wall-switch)))

t = assertions

0 ∅
1

{(light ON),
(wall-switch-on)}

2 {(light ON)}
3 {(light OFF)}

The evolution of the dataspace is on the right. It shows which assertions are in the dataspace
for the first four time steps, starting with the boot state.

After booting, actor 1 makes a light assertion and actor 2 adds a (wall-switch-on)
to the dataspace. Hence, the dataspace configuration at that point matches the antecedent of
the implication. Consequently, the Until property must also describe that state so that the
latter models the complete formula. Due to actor 1’s assertion, actor 2 stops its only facet,
leading to the withdrawal of the (wall-switch-on) assertion. Since the light assertion
remains active until that point, the implication still holds. Furthermore, actor 1 notices the
disappearance of the (wall-switch-on), and in response, replaces its own assertion the
dataspace. As a result, the next configurations also match the antecedent of the implication
as does the until property.

While the notion of satisfaction is intuitive, the eventual goal is to mechanize this type-
checking of specifications. In this regard, the sample explanations are also suggestive.
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Actor and Facet Descriptors
Term Type
(spawn t ...) (Spawn T ...)
(start-facet x t ...) (StartFacet x T ...)
(stop x t ...) (Stop x T ...)
(assert t) (Assert T)
(on evt t ...) (On Evt T ...)

Event Descriptors
Term Type
(asserted p) (Asserted P)
(retracted p) (Retracted P)
start Start
stop Stop

Also, $x:T and have types $T and , respectively.

Fig. 8. Effect types.

What is needed is an abstract description of the behavior of the actors and their interaction
with dataspaces via assertions. And again, just like for structural type checking, it is the
shape of exchanges that can serve in this role, not the precise assertions.

4.3 Effect types for facets

The end of the preceding section almost dictates the third step. Historically, type sys-
tems research uses effect-type systems for descriptions of program behavior (Lucassen &
Gifford, 1988). In the setting of facet-oriented actors, the to-be-observed effects are caused
by actors overall, facets, and endpoints. Hence, each corresponding term-level construct
comes with a type-level construct for describing the type of its effects. See Figure 8 for the
actual notation.

Let us illustrate the synthesis of effect types with the code for spawning the simplis-
tic Light actor from Section 3 (without rooms and power switches). Ignoring fields and
expressions, the code describes a single actor and a single facet nested within this actor.
The facet itself comes with three end points: a plain assertion endpoint, an on-asserted
one and an on-retracted one. The behavioral type mirrors this description, including the
ordering of the endpoints within the facet:

(spawn
(start-facet light-facet

(field [light-state ON])
(assert (light (! light-state)))
(on (asserted (in-room 0))

(:= light-state OFF))
(on (retracted (in-room 0))

(:= light-state ON))))

::

(Spawn
(StartFacet light-facet

(Assert (LightT Bool))
(On (Asserted (InRoomT Int)))
(On (Retracted (InRoomT Int)))))

Here is how to read the type in terms of the actor’s communication behavior:

• it makes an assertion of type (LightT Bool);
• it expresses interest to assertions of type (InRoomT Int);
• it reacts to their appearance and disappearance; and
• its reactions do not change its communication behavior.

For this last point, note that the bodies of the On types are empty.
From this perspective, a behavioral type is a simplified actor. This simplified actor com-

municates via types of assertions rather than value assertions. By taking the behavior type
of each actor in a program—say, the smart home program—we get a communication-only
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program, that is, a collection of simplified actors and their types of assertion exchanges
with dataspaces. Accordingly, the number of possible behaviors is much lower—and that
is precisely what enables a mechanical checking of (some) specifications.

4.4 Checking specifications mechanically

The transition of possible interactions from concrete value assertions to types of assertions
enable specification checking. At a rather high level, the checker infers effect types from a
program and compiles them to the language of a model checker. The compilation encodes
effect types as simplified actors. This model-checking program is combined with the pro-
grammer’s LTL formula. If the model-checking attempt fails, the error is reported in terms
of a trace of these simplified actor programs.

The theory behind this idea is presented in Sections 5 and 7. Section 8 verifies why
this approach works. The implementation is sketched in Section 9. Section 10 evaluates
its ability to check behavioral properties of realistic programs. The following subsection
illustrates the working of the model checker with an example.

4.5 Revisiting the smart-home example

To demonstrate the power of the specification language, let us revisit the smart home exam-
ple from Section 3. The code presented in Figure 4 is buggy, and attempting to check it
against a natural specification exposes the bug, Here is the specification of the expected
behavior of the lights:

(Always (And (Implies (InRoomT Room NonZero)
(Implies WallSwitchOn (Eventually LightOn)))

(Implies (InRoomT Room Zero)
(Eventually (Not LightOn)))))

This specification describes the expected outcomes of interactions between the presence
sensor, light, and light-switch actors. It states that the light turns on and off in response to
the sensor actor’s InRoomT assertions, as long as it is powered (WallSwitchOn).

When analyzed with respect to this specification, our implementation of LTL checking
reports the error and provides a counterexample in terms of the involved actors and their
assertions:

...
Process Sensor RETRACTS RoomEmpty
...
Process Switch ASSERTS WallSwitchOn
...

If a presence sensor is installed and configured after the light in the same room is turned
on even though it is empty, the light stays on due to the sensor’s initial reading.

Based on this trace, we can identify the active assertions and thus the active facets
of the Light actor. This assessment provides a starting point for determining where to
locate the bug. A close look reveals that the light-facet facet in Figure 4 reacts only
to the retraction of (in-room room 0) to determine that the room is occupied. If the
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(define (spawn-light wall-switch-id)
(define my-id (generate-unique-id "light"))
(spawn

(start-facet light-facet
(during (wall-switch wall-switch-id ON)

(field [light-state ON])
(assert (light my-id (! light-state)))
(during (room-assignment my-id $room)

(on (asserted (in-room room 0)) (:= light-state OFF))
(on (retracted (in-room room 0)) (:= light-state ON))))
(start-facet init

(on (asserted (in-room room $n))
(:= light-state (not (zero? n)))
(stop init)))

))))

Fig. 9. Implementation of the Light actor, fixed (see Figure 4).

room is occupied when the light regains power, no such retraction will take place. To
fix this problem, we can amend the facet to query the state of in-room assertions on
startup. The boxed code in Figure 9 is all that is needed to make the actor satisfy its LTL
specification.

5 Facets: The semantics

A proper language design should come with a rigorous blueprint, especially if its rationale
includes claims about the reasoning power of its type system. The presented language
consists of two pieces: the facet notation and its connection to dataspaces. The former
deserves a formal semantics; the latter has been presented thoroughly elsewhere (Garnock-
Jones & Felleisen, 2016; Caldwell et al., 2020), but Section 7.1 provides an abbreviated
treatment so that the meta-theorems can be stated in a self-contained manner.

This section presents the formal model of a single facet-based actor (Sections 5.1
and 5.2). It describes how a facet-based actor updates its state in response to an event:
the evolution of the facet tree; the invocation of event handlers; and field maintenance.

5.1 Formal syntax

Figure 10 defines the abstract syntax of facet-oriented actors. Statements Pr imperatively
update the actor’s state in one of several ways:

• start fn −→e (
−−→
D Pr)—starting a facet with name fn, assertions −→e , and event

handlers (
−−→
D Pr);

• stop fn Pr—terminating a facet, along with all of its children, and engaging in
some continuation behavior Pr;

• field x = e in Pr—creating a mutable field for Pr;
• x := e—assigning a new value to a field; and
• spawn Pr—spawning an additional actor.
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Pr ∈ Prog = start fn →e (
−−→
D Pr)

| stop fn Pr
| spawn Pr
| field x = e in Pr
| x := e
| let x = e in Pr
| Pr; Pr
| skip

D ∈ EvtDsc = asserted e
| retracted e
| start
| stop

e ∈ Expr = b
| x
| ! x
| p(→e )
| ? e
| m(→e )
| �
| x :

fn ∈ FName = facet names
x ∈ Var = variables

p ∈ PrimOp = primitive operations
m ∈ MsgCtor = message labels
b ∈ BasicVal = basic values: strings, etc.

Fig. 10. Program syntax.

Statements may introduce local, lexically scoped variables with let x = e in Pr.
Otherwise, they are just like statements in other programming languages that compose
sequentially (Pr; Pr). For technical reasons, the grammar includes no-op (skip).

The set of expressions comprises

• b—basic values;
• p(−→e )—invocations of potentially partial primitive operations;
• x—references to variable names;
• ! x—field access;
• ? e—assertion of interest in e;
• m(−→e )—tuple with tag m;
• �—wildcard assertion patterns/templates; and
• x : τ—binding patterns.

A vector of assertion templates (−→e ) defines the assertions made by a facet. Templates
describe families of assertions built with labels (m), interests (?), wildcards (�), and
expressions (e).

Event handlers consist of an event description (D) and a body (Pr). Events describe
occurrences that are either internal to the actor (start, stop) or particular assertions in the
dataspace (asserted e, retracted e). In the latter case, the description includes a pat-
tern expression e defining the relevant assertions. In order to construct patterns, expressions
additionally include match-anything wildcards (�) and binding variables (x : τ ).

In comparison to the implemented syntax, the model uses some obvious short-hands and
some less obvious simplifications:

• The assertion endpoints of a facet are all declared together.
• The event handlers come as a sequence of description/handler body pairs.
• The fields shared by a facet’s endpoints are declared outside the facet.
• The assertion labels replace struct names.
• Binding variables in patterns require a type annotation.
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M ∈ Machine = 〈FT;
→
I ;

−→
PS; ; 〉

| error

FT ∈ FctTree =
| fn[→e (

−−→
D Pr)].

−→
FT

C ∈ Context =
| fn[→e (

−−→
D Pr)].

−→
FT · C ·−→FT

I ∈ Instr = start fn →e (
−−→
D Pr) @ fid

| stop fn
| spawn Pr

PS ∈ PScript = (fid, Pr)

fid ∈ FacetID = 〈→fn〉

fn ∈ FName = facet names

∈ Store = x
fin→−− v

u ∈ Assertion = b
| m(→u )
| ? u

∈ ASet = P(Assertion)

∈ Patch = +/ −
where + ∩ − =

Evt ∈ Event =
| start
| stop

v ∈ Val = b
| ? v
| m(→v )
| �
| x :

l ∈ Label = •
|
| Pr

Fig. 11. Evaluation syntax.

Here is the basic Light actor from Figure 2 in the model’s syntax:

field state = ON in
start light-facet
light(!state)
(asserted in-room(count : Int)
state := if(equal?(count, 0), OFF, ON))

5.2 Semantics

Since individual actors consume events and produce assertions, we choose to specify the
semantics of facet-oriented actors via a labeled transition system. Each transition acts on a
machine state and constructs the next one. The transition labels l describe either inputs in
the form of event patches (�) or outputs in the form of spawned actors (Pr). An unlabeled
transition relation (•), represents actor-internal work. Patches � comprise two disjoint
assertions sets π , representing added and removed assertions. Assertions u range over
basic values, labeled tuples, and assertions of interest.

The formulation of machines requires syntax for describing the states in addition to the
syntax of programs. Figure 11 defines this syntax and the machine states. The error state
represents an actor that has crashed due to an unhandled error.

An actor machine state consists of five components: 〈FT;
−→
I ;

−→
PS; π ; σ 〉. The

components track different kinds of state and knowledge:

• the activity state of facets
The machine must express which facets are currently active as well as the parent-
child relationship among them. This aspect takes the form of a tree: FT. A node
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〈 l-c[I0] ; ·; · ;0/; { state 	→ ON } 〉
where l-c = light-facet

I0 = [light(!state)
(asserted in-room(count : Int)
state := if(equal?(count, 0), OFF, ON))].

{in-room(0)}/−−−−−−−−−−−−→ (by inject)
〈 l-c[I1] ; ·; PS; {in-room(0)}; {state 	→ ON} 〉
where PS = (〈l-c〉, state := if(equal?(0, 0), OFF, ON))

I1 = [light(!state)
(asserted in-room(count : Int)
state := if(equal?(count, 0), OFF, ON))].

•−−−−−−−−−−−−→ (by transfer)
〈 l-c[I2] ; ·; ·; {in-room(0)}; {state 	→ OFF} 〉
where I2 = [ light(!state)

(asserted in-room(count : Int)
state := if(equal?(count, 0), OFF, ON))].

0/

Fig. 12. The light-facet facet as an initial machine state and its transitions.

fn[−→e (
−−→
D Pr)].

−→
FT in this tree describes an active facet in terms of its name, its asser-

tion and event handler endpoints, and its children, while the empty tree takes the
form ε.

• the instruction stream within the active facets
A machine state identifies a sequence of ready-to-perform instructions I, and it also
maintains a queue of pending scripts PS. A pending script (fid, Pr) is a sequence
of statements to be performed and pertinent context information. The context is a
facet ID 〈−→fn 〉 identifying the facet from which the script originated. A facet ID is a
sequence of facet names forming the path from the root of the tree to that particular
facet. Instructions I can start a new facet at a designated location in the tree; stop
a running one; and spawn an actor.

• the information known to the actor
Specifically, the store σ holds the contents of the fields, while the set of assertions π
keeps track of the actor’s current knowledge of assertions in the dataspace. Newly
booted facets receive these assertions as an event.6

Finally, we need some miscellaneous pieces of syntax. An Evt is either a patch or facet
start/stop. Evaluation reduces expressions to values v.

Figure 12—above the horizontal line—shows the initial machine state M for the
light-facet facet from above. The rest of the figure displays the first two transitions
of the machine.

Transition Relations. Figure 13 defines the transition relation on machine states that
describes the behavior of a single facet-based actor in response to incoming events. For the

6 Due to the particulars of dataspace routing (Section 7), the actor will not receive another event from the
dataspace describing these assertions until they disappear and subsequently reappear. That is, the dataspace
tracks the set of assertions known to an actor, not facet. A new facet of the actor may include an event handler
for which an already-received assertion is relevant.
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Fig. 13. Transition relation.

moment we ignore how such events arrive; Section 7 covers that aspect of the semantics.
We use M −→ M′ as shorthand for M

•−−→ M′.
Generally speaking, the machine works in the following fashion. Initially, the machine

state describes an inert actor, meaning there are no instructions to perform nor pending
scripts to execute. When the machine receives an event patch, it is matched against the
event handlers of the actor’s facets. For each successful match, the body of the event
handler is enqueued as a pending script.

Once the matching process is completed, the machine executes the scripts. It dequeues
the first one and interprets the instructions, one at a time. Some instructions generate inter-
nal events (facet start and stop). For those the machine matches them again against the
facet tree, and this process may enqueue additional scripts. The machine continues in
this manner until it reaches inertness again. At that time, another external event may be
injected.

Here are descriptions of the machine’s five transition rules:

inject —The rule’s purpose is to dispatch an event to an inert actor. Due to dataspace
routing, the event is guaranteed to conform to the actor’s interests. Incorporating
the incoming patch via ⊕ yields a new set π ′ of assertions known by the actor. The
dispatch metafunction matches the event against each handler in the tree of facets,
yielding a pending script for each match.

transfer —The machine transfers the next pending script to the current register and par-
tially evaluates (p-e-s) its internal statements. In doing so, it updates and creates
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fields in the store. The process eliminates expressions and yields a sequence of
instructions that alter the active facet tree (start/stop) or correspond to an out-
put by the actor (spawn). Partially evaluating the script means eval-ing expressions,
which may include applications of partial primitives. In the event that such a primi-
tive fails, the actor crashes. The error state represents a crashed actor without any
behavior.

start —The next instruction demands the start of a facet. The new facet is given a fresh
name; the bodies of each of its event handlers refer to the new name. The dispatch
function is used to create two scripts: one to signal a start event and one to boot
the event handlers that correspond to the known assertions of the actor. These scripts
are enqueued and the new facet is inserted in the tree. The instruction specifies the
location for the new facet in the tree as a path (fid) to the new facet’s parent. The
locate metafunction constructs the appropriate context. It is possible that no such
context exists, which happens when the desired parent, or one of its anscestors, is
terminated via a stop instruction in the time between the script containing this
start statement being enqueued and the instruction executing. In that case, the new
facet is immediately terminated. The dispatch function informs it of the stop event.
The resulting scripts are enqueued, and the facet is never inserted into the tree.

stop —The machine terminates an active facet and its children, dispatch-ing a stop
event to allow these facets to shut down in an orderly manner. The instruction may
designate a facet that is already eliminated. In this case, there is no more.

spawn —The facet wishes to create an actor, which the machine treats as an output
instruction. Formally, the transition comes with a Pr label.

The top-most machine state in Figure 12 transitions to an inert state in two steps. The
first one injects the script, consuming the patch {in-room(0)}/∅ as the label indicates. The
second enqueues the script’s instruction and performs it.

5.2.1 Metafunctions

The transition system of Figure 13 refers to several metafunctions. This section provides
their formal definitions. The definitions make use of secondary metafunctions, which are
defined in Appendix B.

The bootPr function initializes the machine from an actor description. It recognizes only
scripts that create some number of fields and then start a single facet. It creates each field
and then boots the facet as a child of a synthetic root facet with no behavior. The synthetic
root facet allows the initial facet to be replaced by any number of facets via stop:

bootPr : Pr ×σ partial−−−→ M
bootPr(field x = e in Pr, σ ) = bootPr(Pr[x 	→ x′], σ [x′ 	→ v])

if v = eval(e, σ )
where
x′ fresh in σ , Pr

bootPr(let x = e in Pr, σ ) = bootPr(Pr[x 	→ v], σ )
if v = eval(e, σ )

bootPr(start fn −→e (
−−→
D Pr), σ ) = 〈fnroot[·]. FT; ·; −→

PS; ∅; σ 〉
where

FT = fn[−→e (
−−→
D Pr)].ε−→

PS = dispatch(FT, start, ∅, ∅, σ , fnroot)
fnroot free in FT
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The dispatch function matches an event against each handler in a tree of facets,
accumulating the successes as a list of pending scripts:

dispatch : FT × Evt ×π × π × σ × fid −→ −→
PS

dispatch(ε, Evt, π , π ′, σ , fid) = ·
dispatch(fn[−→e (

−−→
D Pr)].

−→
FT, Evt, π , π ′, σ , 〈−−→fnctx〉) =

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
dispatch1(〈−−→fnctx · fn〉, D, Pr, Evt, π , π ′, σ ) ·−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
dispatch(FT, Evt, π , π ′, σ , 〈−−→fnctx · fn〉)

It utilizes a helper function, dispatch1, to instantiate the body of a single event han-
dler with the substitution(s) arising from matching against a single event. Substitutions γ
map variables to values and matching a pattern against a set of assertions yields a set of
substitutions S:

dispatch1 : fid × D × Pr × Evt ×π × π × σ −→ −→
PS

dispatch1(fid, D, Pr, Evt, π , π ′, σ ) =

⎧⎪⎨
⎪⎩

(fid, unroll(m)) if S = matchD(D, Evt, π , π ′, σ ), S 
= ∅
where m = {γ (Pr) | γ ∈ S}

· otherwise

Finally, unroll sequentializes a set of statements using an arbitrary yet fixed ordering:

unroll : P(Pr) −→ Pr
unroll(∅) = skip

unroll({Pr} � m) = Pr; unroll(m)

The p-e function partially evaluates a script, yielding a sequence of instructions and an
updated store:

p-e : Pr ×σ × fid
partial−−−→ −→

I × σ

p-e(skip, σ , fid) = ·
p-e(Pr1; Pr2, σ , fid) = −→

I1 · −→I2 , σ ′′
if−→
I1 , σ ′ = p-e(Pr1, σ , fid)−→
I2 , σ ′′ = p-e(Pr2, σ ′, fid)

p-e(start fn −→e (
−−→
D Pr), σ , fid) = start fn −→e (

−−→
D Pr) @ fid, σ

p-e(stop fn Pr, σ , 〈−→fn′ fn
−→
fn′′〉) = stop fn ·−→I , σ ′

if p-e(Pr, σ , 〈−→fn′〉) = −→
I , σ ′

p-e(spawn Pr, σ , fid) = spawn Pr, σ
p-e(let x = e in Pr, σ , fid) = p-e(Pr[x 	→ v], σ , fid)if v = eval(e, σ )

p-e(field x = e in Pr, σ , fid) = p-e(Pr′, σ ′, fid) if v = eval(e, σ )
where
x′ fresh in σ , Pr
σ ′ = σ [x′ 	→ v]
Pr′ = Pr[x 	→ x′]

p-e(x := e, σ � {x 	→ v}, fid) = ·, σ [x 	→ v′] if v′ = eval(e, σ )

The facet-context function produces the path of facet names (a fid) leading to the hole in
a context:

facet-context : C −→ fid
facet-context(�) = 〈·〉

facet-context(fn[−→e (
−−→
D Pr)].

−→
FT · C ·−→FT′) = 〈fn ·−→fn′〉

where〈−→fn′〉 = facet-context(C)
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Fig. 14. Type syntax.

Meanwhile, locate performs the reverse direction, producing the context for a particular
fid in a tree of facets:

locate : FT × fid
partial−−−→ C

locate(FT, 〈·〉) = �
locate(fn[−→e (

−−→
D Pr)].

−→
FT, 〈fn ·−→fn′〉) = fn[−→e (

−−→
D Pr)].

−→
FT1 · C ·−→

FT2
if

locate(FT′, 〈−→fn′〉) = C−→
FT = −→

FT1 · FT′ ·−→
FT2

6 Types for facets

Facet types (Section 6.1) play two roles. First, they ensure basic type safety in the form
of a standard soundness theorem. Second, they reflect facet operations to the type level
with a type-and-effect style. By lifting the individual actor semantics to the type level
(Section 6.2), and then dataspace programs, type-level programs can be assigned an
operational semantics that enables model checking temporal logic claims.

6.1 Type syntax and judgment

Figure 14 defines the syntax of types. Effect types T directly reflect the core facet syn-
tax (Figure 10), including facet start/stop and spawn operations of Pr. Event descriptor
types DT correspond directly to the term level descriptors D. Types τ summarize the result
of expressions, with base types B describing primitive values. Type environments 	 asso-
ciate variable names from patterns and fields with their types and facet names with the
marker FacetName.

Figure 15 specifies the core type judgment on facets: 	 Pr Pr : T . It ensures
that facet and field names are used appropriately while collecting certain facet opera-
tions as an effect type T. As mentioned, this effect type is used for behavioral analysis.
Auxiliary judgments apply to the different categories of syntax; Appendix D provides their
definitions.

Here are explanations of the key typing rules:

T-START assigns types to a facet-creation instruction. It appeals to an auxiliary judg-
ment for checking the assertion expressions e, which also produces a description of
the assertion types τ . The condition assertable(τ ), defined in Appendix D, ensures
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Fig. 15. Facet typing.

that assertion types do not contain binding patterns or field names. The event descrip-
tors D for each event handler are checked in the same manner, yielding a type DT for
each. The final aspect to check is the body Pr of each event handler. For each such
body, the environment is extended with the name of the facet being started as well
as the binding variables from the pattern in the event descriptor (via the bindingsD

metafunction). Checking each body produces a type level description of its behavior,
T. The product of the rule is a Start effect, combining the types of the assertions
plus each event handler description and its body.

T-STOP is the analogue of T-START for facet termination. It consults the environment
to ensure that the named facet is in context. The prune-up-to function removes the
target facet’s name from the environment, as well as the names of any of its descen-
dants, when checking the continuation Pr. The resulting effect type is to Stop the
same facet with a continuation behavior.

T-FIELD, T-ASSIGN check field creation and assignment, respectively. The judgment
for field creation checks the type of the initial expression and associates the name
with an appropriate type in the environment for the remaining statements. The judg-
ment for field assignment looks up that type in the environment, making sure that
the type of the assigned expression matches. Field updates and references are not
included in effect types. Thus, field creation yields the effect type from its enclosed
statements while field assignment yields a Skip effect.

T-SPAWN concerns the creation of actors. The rule utilizes the prune function
(Appendix D) to remove identifiers associated with fields and facet names from the
running actor, because these names are local. The spawned actor’s behavior Pr is
checked within this restricted context, and it has the (sole) effect of Start-ing a
facet. The effect type of the spawn statement is a Spawn with a type description of
the actor’s initial facet.
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6.2 Machine types and type-level machines

The judgment M M : MT relates a machine M to a machine type MT. A machine type
〈FTT;

−→
IT ;

−→
PST; πτ ; στ 〉 includes a facet tree type (FTT), sequence of instruction types

(
−→
IT ), sequence of pending script types (

−→
PST), set of assertion types (πτ ), and store type

(στ ). Appendix F defines the full judgment and syntax. In brief, the syntax of machine
types reflects the syntax of machines (Figure 11) in the same manner that effect types T
(Figure 14) reflect the syntax of statements Pr (Figure 10).

The statement of soundness for facet-based actors relies on two auxiliary notions. First,
we say M is an inert machine state, inert(M), iff M = 〈FT; ·; ·; π ; σ 〉. That is, it has
neither instructions to perform nor pending scripts to execute. Second, we designate a
set of internal transition labels, l•. Internal labels correspond to the machine processing
instructions and scripts. Thus, they consist of each • and Pr label, but not �.

Theorem 1 (Soundness). If M M : MT and M
�−−→ M′ then either:

• M′ l•−−→∗ M′′ and inert(M′′); or
• M′ l•−−→∗ error

Proof By the standard progress and preservation properties (Wright & Felleisen, 1994).
Appendix G contains the full statement and proof of each property. To show termination of
internal reduction sequences, note the lack of recursive facilities in the language, and that
each event handler in a machine’s facet tree may activate a maximum of one time between
external events. �

If a well-typed single-actor machine configuration can take an inject step, it eventually
transitions to an inert machine state or a state that represents an exceptional state (due to a
misapplication of a partial primitive).

The transition system for machine states operates on machine types with only minor
syntactic adjustments. Appendix F defines the full type-level transition system. Section 8
makes use of this notion for behavioral analysis of actors. Here, we note that transitions on
type machines are well-defined.

Theorem 2 (Well-definedness). Either MT
lτ−−→ M′

T or inert(MT).

Proof Follows that of Theorem 1. �

7 Dataspaces: The semantics of programs

While the preceding section describes the semantics of a single actor, a full understand-
ing necessitates a semantics of entire dataspace programs, that is, programs with many,
dynamically created and terminated, actors. Figure 16 defines the abstract syntax (left) and
the semantics (right) of dataspace programs.

A dataspace configuration consists of a queue of pending patches (
,�), labeled by
the originating actor; a table of assertions (R); and a series of actors (A). The table R is
a set of pairs associating each assertion with the identity 
 of the originating actor. An
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Fig. 16. Dataspace syntax and semantics.

active actor in the dataspace 
 	→� associates an address with an actor state, �. The state
consists of a pending event � and behavior B. The pending event accumulates a patch
for the actor between its turns. An actor behavior (f, v) pairs a behavior function with
a private state. The behavior function f is a total mapping between a pending event and
the private state of the actor to a new state and possibly some actions (act). The model
abstracts over the language for specifying behavior functions so both facet-based code as
well as alternatives work. Actions include actor specifications P and patches �. An actor
specification actor f v π consists of three pieces: a behavior function; its initial state,
which is any value from the language for expressing behavior functions; and its initial
assertions.

The semantics is defined in terms of a transition relation on dataspace configurations.
The relation interprets actor actions and dispatches events in a single rule (step-par). It
starts by interpreting the queue of pending patches. The update metafunction handles a
single queue item, updating the dataspace’s assertion table and dispatching events. The
pending event for each actor aggregates a patch describing relevant updates. Next, the
dispatchDS metafunction applies the behavior of each actor to its pending patch, producing
an updated actor state and some outputs. Any spawn actions are booted, yielding a new
address, actor state, and assertions. Finally, all of the patches and boot assertions are col-
lected into a new queue for the next configuration. It includes the updated assertion table
and freshly booted actors. Appendix E contains the full definition of these metafunctions.

Definition 3 (DS i). A run of a dataspace configuration DS is a potentially infinite
sequence of dataspaces configurations, where each neighboring pair is related by the
transition relation:

DS −→DS DS 1 −→DS DS 2 −→DS . . .

It is a run that represents the temporal behavior of a dataspace program and its individual
actors, and it is thus the foundation for verifying the value of our behavioral types.

Definition 4 (inertDS). A dataspace configuration [
−−−→
(
,�); R;

−→
A ] is inert iff each patch

and pending event is empty.

Theorem 5 (Dataspace Soundness). Either inertDS(DS) or there exists DS′ such that
DS −→DS DS′.

https://doi.org/10.1017/S0956796824000091 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000091


28 S. Caldwell et al.

Proof Garnock-Jones’s dissertation proves the soundness of dataspace systems, as well
as a number of desirable properties (Garnock-Jones, 2017, theorem 4.17).

7.1 Facet dataspace programs

Caldwell et al. (2020) show how to link a semantics for individual actors with the dataspace
semantics and prove the soundness of the composite system. Their semantics coincides
with ours, so that the soundness of the system follows from Theorem 5, because each
actor implements the functional interface of a BehFun. The interpM function is the key
component connecting the semantics of dataspaces with the semantics of facet actors.
It implements the dataspace behavior interface BehFun for facet machine states, and it
applies a pending patch to a machine state via an inject-step, then allows the machine to
continue via internal transitions until reaching either inertness or an error state. The result
of the function is the new machine state together with a patch describing the difference(s) in
assertions between the initial and final states. Furthermore, any Pr transitions are translated
to dataspace specifications P:

interpM : �× M −→ M ×−→
act

interpM(�, error) = (error, ·)
interpM(�, M) =

{
(error, patch(M, error)) if M

�−−→ M′ l•−−→∗ error
(M′′, patch(M, M′′) · −−−−−−−−−−−−→

label-to-action(l•)) if M
�−−→ M′ l•−−→∗ M′′, inert(M′′)

The bootP metafunction translates a facet-level spawn to a dataspace process descrip-
tion:

bootP : Pr −→ P
bootP(Pr) = actor interpM Mboot assertions-ofM(Mboot)

where Mboot =
{

M if bootPr(Pr, ∅) = M
error otherwise

7.2 Type-level dataspace programs

Section 6.2 sketches how to lift the transition system on a facet machine to operate on a
facet machine type. Similarly, the dataspace transition system above naturally lifts to the
type level with only minor adjustments. A type-level dataspace consists of actors com-
municating in terms of assertion types τ . Facet machine types provide behavior to actors
in a type-level dataspace the same way that facet machines give behavior to term-level
dataspace actors. We write DST to refer to a dataspace configuration with type assertions.

7.3 Example

Figure 17 shows a dataspace configuration based on the smart home example and its evo-
lution. For readability, the example employs a notation different from that of Figure 16,
giving each actor a name rather than an address and aggregating various other parts of the
syntax. Each actor is displayed as a triple, as in� � nm � π for an actor with name nm.
The leftmost element is the current pending event for the actor, while on the right are its
current set of assertions. The example treats the behavior and private state of each actor as
a black box, displaying them as a box containing the actor’s name. For brevity, we use two
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[ · � hub � {? light(�, �)}

· � l1 � {light("l1", on),
? assign("l1", �)}

· � ps1 � {empty("bed")} ]

→

[ light("l1", on) � hub � {? light(�, �)}

· � l1 � {light("l1", on),
? assign("l1", �)}

· � ps1 � {empty("bed")} ]

→

[ · � hub � {? light(�, �),
assign("l1", "bed")}

· � l1 � {light("l1", on),
? assign("l1", �)}

· � ps1 � {empty("bed")} ]

→

[ · � hub � {? light(�, �),
assign("l1", "bed")}

assign("l1", "bed") � l1 � {light("l1", on),
? assign("l1", �)}

· � ps1 � {empty("bed")} ]

→

[ · � hub � {? light(�, �),
assign("l1", "bed")}

· � l1 � {light("l1", on),
? assign("l1", �),
? empty("bed")}

· � ps1 � {empty("bed")} ]

→

[ · � hub � {? light(�, �),
assign("l1", "bed")}

empty("bed") � l1 � {light("l1", on),
? assign("l1", �),
? empty("bed")}

· � ps1 � {empty("bed")} ]

→

[ · � hub � {? light(�, �),
assign("l1", "bed")}

· � l1 � {light("l1", off),
? assign("l1", �),
? empty("bed")}

· � ps1 � {empty("bed")} ]

→

[
{ light("l1", off) }
{ light("l1", on) } � hub � {? light(�, �),

assign("l1", "bed")}

· � l1 � {light("l1", off),
? assign("l1", �),
? empty("bed")}

· � ps1 � {empty("bed")} ]

→

[ · � hub � {? light(�, �),
assign("l1", "bed")}

· � l1 � {light("l1", off),
? assign("l1", �),
? empty("bed")}

· � ps1 � {empty("bed")} ]

Fig. 17. Example Dataspace Transitions

additional notational shorthands. As a pending event, · represents the empty patch ∅/∅,
while a single assertion u stands for the patch { u }/∅.

The configuration contains three actors, representing the control hub, a light with the
ID "l1", and a presence sensor with the ID "ps1". Each transition of the relation from
Figure 16 is broken into two steps. The first routes assertions among the actors and updates
pending events when there is relevant information. The second dispatches each actor on its
pending event and updates its current assertions.

The system proceeds in the following manner:

1. Initially, the light actor announces its presence and on/off state, as well as a
subscription to a room assignment.
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[ · � Hub � {? light(�, �)}

· � L1 � {light(Str, Bool),
? assign(Str, �)}

· � PS1 � {empty(Str)} ]

→

[ light(Str, Bool) � Hub � {? light(�, �)}

· � L1 � {light(Str, Bool),
? assign(Str, �)}

· � PS1 � {empty(Str)} ]

→

[ · � Hub � {? light(�, �),
assign(Str, Str)}

· � L1 � {light(Str, Bool),
? assign(Str, �)}

· � PS1 � {empty(Str)} ]

→

[ · � Hub � {? light(�, �),
assign(Str, Str)}

assign(Str, Str) � L1 � {light(Str, Bool),
? assign(Str, �)}

· � PS1 � {empty(Str)} ]

→

[ · � Hub � {? light(�, �),
assign(Str, Str)}

· � L1 � {light(Str, Bool),
? assign(Str, �),
? empty(Str)}

· � PS1 � {empty(Str)} ]

→

[ · � Hub � {? light(�, �),
assign(Str, Str)}

empty(Str) � L1 � {light(Str, Bool),
? assign(Str, �),
? empty(Str)}

· � PS1 � {empty(Str)} ]

→

[ · � Hub � {? light(�, �),
assign(Str, Str)}

· � L1 � {light(Str, Bool),
? assign(Str, �),
? empty(Str)}

· � PS1 � {empty(Str)} ]

Fig. 18. Example type dataspace transitions.

2. The hub actor’s interest in light assertions yields a corresponding event.
3. In response, the hub actor introduces a room assignment to the "bed" room.
4. Routing results in an event informing the light actor of the assignment.
5. The light actor’s reaction is to introduce a subscription for assertions that the "bed"

room is empty.
6. The subscription matches the existing empty assertion, immediately yielding an

event for the light actor.
7. The light actor updates its light assertion to the off state in response to the room

being empty.
8. The hub actor receives a patch describing the change to the light assertion.
9. Finally, the hub actor processes the latest patch without changing its assertions,

yielding an inert system.

Figure 18 shows the corresponding type-level system. The primary difference is that the
assertions in the dataspace are types rather than values; the names of the actors have also
been capitalized to emphasize the difference between the two examples. The transitions
follow the same logic as those of Figure 17, with one exception. The example encodes the
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on/off state of the light as a Bool. Consequently, the types of assertions in the dataspace do
not change when the light switches from on to off in response to an empty assertion (type).
Thus, the type-level system reaches inertness in fewer transitions than the term-level one.

8 The predictive nature of behavioral types

Equipped with a semantics of facets and dataspaces, we are now in a position to verify the
predictive nature of our behavioral types. Specifically, we wish to show that if a program’s
behavioral types satisfy a specification, the program itself does, too. We start with a model-
appropriate definition of our LTL specifications.

Definition 6 (LTL). ψ ∈ LTL = τ | •ψ | ψ U ψ | ¬ψ | ψ ∨ψ

The atomic propositions are types τ of dataspace assertions. Our basic syntax comes
with two temporal operators: •ψ (next) and ψ1 U ψ2 (strong-until). The set of formu-
las includes negation (¬ψ) and disjunction (ψ ∨ψ). Note Standard constructs such as
conjunction (ψ ∧ψ), eventually (�ψ), and always (�ψ) are derived forms.

Formulating the meaning of the LTL specifications takes two steps. The first introduces
the set of atomic propositions of a dataspace.

Definition 7 (AP(DS)).

τ ∈ AP([
−−−→
(
,�); R;

−→
A ]) iff there exists (u, 
) s.t. (u, 
) ∈ R, e u : τ

τ ∈ AP([
−−−−→
(
,�τ ); RT;

−→
A ]) iff there exists 
 s.t. (τ , 
) ∈ RT

That is, an atomic proposition belongs to a dataspace configuration, if its table of assertions
u contains an assertion (by any actor l) that type checks as τ . We overload the notation for
type-level dataspace configurations, AP(DST). At the type level, an atomic proposition τ
belongs to the configuration if such a type is present in the configuration’s assertions (RT).

The second step concerns the notion of satisfaction, that is, when a dataspace
configuration—and its run—satisfies an LTL specification.

Definition 8 (DS |= τ ). For both term and type-level configurations,

DS |= τ iff τ ∈ AP(DS)
DS |= ¬ψ iff DS 
|= ψ

DS |= ψ1 ∨ψ2 iff DS |= ψ1 or DS |= ψ2

DS |= •ψ iff DS 1 |= ψ

DS |= ψ1 U ψ2 iff there exist an i s. t. DS i |= ψ2 and ∀j, 0 ≤ j< i, DS j |= ψ1

At the term level, atomic propositions hold in dataspace configurations where an actor
is making an assertion of that type. At the type level, they hold for configurations where an
actor is asserting that type. The temporal constructor •ψ holds in a dataspace configuration
when ψ holds starting from the next step in the run. Similarly, the other temporal operator,
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Formula Term Meaning Type Meaning

light(Bool) Either light(true) or light(false) is currently
asserted in the dataspace.

light(Bool)
asserted.

¬light(Bool) Neither light(true) nor light(false) is
currently asserted in the dataspace.

light(Bool)
not asserted.


light(Bool) The execution reaches a light(Bool) configuration
in a finite number of steps.

Same as term
meaning.

light(Bool)⇒
(light(Bool)
U
¬wall-switch-on())

Whenever light(Bool) is true, there is eventually
no wall-switch-on() assertion in the dataspace,
and light(Bool) stays true until then.

Same as term
meaning.

Fig. 19. Formal LTL examples.

strong until (ψ1 U ψ2), holds when ψ1 is true for some finite number of steps in a dataspace
run, at which point ψ2 is true. All other syntactic forms have their usual meanings.

At this point, we can define what it means for a program—a description of the initial
facet-based actors in the dataspace, or their types—to satisfy a specification.

Definition 9 (· |= ψ).
−→
Pr |= ψ iff bootDS(

−→
Pr) = DS ∧ DS 1 |= ψ−→

T |= ψ iff bootDST(
−→
T ) = DST ∧ DST 1 |= ψ

Note how the definitions use the first successor of the initial dataspace configuration to
check the desired formula. They ignore the initial one because all of the actors’ initial
assertions are in the pending action queue, waiting to be interpreted. The first transition
step moves these assertions into the configuration’s assertion table.

Figure 19 illustrates how to translate the example specification from Section 4.2 into the
formal syntax. It also indicates what it means at the term and the type level.

The type system and the behavioral type system properly predict the behavior of actors
and programs. Naturally, the first is the basis for the second. That is, all correspondence
between terms and types relies on standard soundness (Theorem 1). The point of sound-
ness is to confirm that there are distinct classes of actor programs: those that live up
to (type) expectations and those that raise exceptions. We collect the first kind in a set
safe(M) for a configuration M that does not error due to the application of a partial prim-
itive, such as division by zero. We write safe(Pr) if bootPr-s evaluates to a safe machine
state.

Next we establish a correspondence between the behavior of a single actor and its
type. Specifically, a term-level actor machine is related to a type-level actor machine
if they make the same assertion types; the type-level machine types the term-level one;
they react to the same (types of) events; and their reactions to those events yield related
states.
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Definition 10. M ≈ MT if and only if:

• π assertions-ofM(M) : assertions-ofMT
(MT)

• ∀l such that M
l−−→ M′, ∃lτ , l l : lτ such that MT

lτ−−→ M′
T and M′ ≈ M′

T

• ∀lτ such that MT
lτ−−→ M′

T, ∃l, l l : lτ such that M
l−−→ M′ and M′ ≈ M′

T

Appendix F provides the straightforward definitions of the π and l judgments.
Assuming the machine belongs to the set of safe ones, typing implies correspondence.

Theorem 11. If M M : MT and safe(M) then M ≈ MT.

Proof The initial machine states for a term and its type are related, as are their asser-
tions. The key meta functions preserve typing, and a suitably related event can always be
constructed. See Appendix G for the full statement of these properties and their proofs.

Theorem 11 establishes a similarity between term and type level machines based on
their inputs (injected events) and output labels (spawned actors).

The point of this theorem is that an actor machine and its type implement the same
interface, up to typing. A dataspace program consisting of actor machines interacts with its
context in the same way as a dataspace program consisting of those actor machines’ types.

Finally, we can state the key theorem, namely, that type-level behavior carries over to
term-level dataspace programs. That is, if a collection of actor terms

−→
Pr have types

−→
T and

boots to exception-free dataspace programs, then LTL properties satisfied by the type-level
dataspace program also hold for the term-level one.

Theorem 12 (LTL Transference). If

• −−−−−−−−→Pr Pr : T
• −−−−−→
safe(Pr)

• −→
T |= ψ

then
−→
Pr |= ψ

Proof Due to the simulation property (Theorem 11), the table of assertions in each step
of the term and type level dataspace runs is related by typing. Therefore, the same atomic
predicates (AP) hold in each, so the same LTL properties apply.

Note The assumption of safety for the single-actor machines is standard for the statement
of partial correctness. In essence, it is equivalent to the conventional assumption “if the
statement terminates properly” in Floyd-Hoare logic (Floyd, 1967; Hoare, 1969).

In detail, our type analysis does not seek to capture the behavior of actors in the case
of uncaught exceptions. While dealing with failures is a core principle of the actor and
dataspace model, the current type system does not capture this notion.

If we were to account for the possibility of unexpected exceptions, every non-trivial
actor would include the behavior of immediately crashing. Every program would then
include the situation where all its actors crash and other such degenerate cases, vastly
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increasing the difficulty of stating LTL properties of the system. Even the addition of
supervision actors would not avoid this collapse in reasoning capability.

We conjecture that by generalizing work on exception analysis via type systems
(Yi & Ryu, 2002) it might be possible to extend our type system to reason about such
cases precisely, at least for some limited class of programs. We leave this problem as
future work.

9 Implementation

An implementation of the theoretical design requires three pieces: the language itself (its
syntax and semantics); a type checker that derives effect types; and a compilation of
these effect types plus the specification to a model-checking system. The following three
subsections sketch these three pieces of our implementation.

9.1 Implementing the behavior of facet-oriented actors

The basic language implementation of facet-oriented actors consists of three layers:

• a syntax layer, which provides the facet notation of the first half of this paper;
• a runtime system, which provides data structures and functions that implement the

behavior of facets and endpoints; and
• an imperative dataflow network for tracking changes to fields and scheduling the

re-evaluation of dependent computations.

These pieces are built atop the existing implementation of the dataspace model. The
dataspace implementation does not require any modifications in order to support these
elements, just as the dataspace model predicts (Garnock-Jones & Felleisen, 2016).

The syntax layer essentially turns the surface forms into calls to functions provided by
the runtime system. It makes use of syntax/parse, Racket’s high-level syntax exten-
sion system (Culpepper & Felleisen, 2010, 2012). Implementing the surface language with
syntax/parse greatly simplifies the addition of actor syntax. Moreover, the resulting
interface can be extended and grown as the language develops, and the implementation
can benefit from any improvements to the underlying dataspace library. It also facilitates
the addition of a type checker.

The run-time system is the most sophisticated of the three layers. The key elements
strongly mirror the data structures of the machine and the meta-functions of the formal
model of Section 5. Technically speaking, the run-time system maintains data structures
corresponding to the different parts of machine states M and defines functions for dealing
with facets, enqueuing scripts, etc. The implementation differs from the model primarily
in its support for efficient re-evaluation of the assertions of an actor as fields are updated.

Finally, the runtime maintains a bipartite, directed dataflow graph for each facet-oriented
actor. A source node represents a field, a target node an endpoint, and edges the dependen-
cies of the endpoints on the fields. Each endpoint representation contains a procedure that is
used to compute the set of assertions to be associated with the endpoint. By recording field
dependencies during the execution of such procedures, the implementation learns which
endpoints must have their assertion sets recomputed in response to a field change.
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9.2 Implementing the type checker

The type checker is implemented with the Turnstile meta-DSL (Chang et al., 2017).
Roughly speaking, Turnstile macros supplement syntax/parse with a mechanism to
check types first and elaborate the given source syntax into target terms later. That is,
each syntactic form is defined as a macro that performs some type checking before elab-
orating to syntax that implements the run-time behavior. Type information is propagated
via metadata on syntax objects.

For example, the define-typed-syntax macro for start-facet looks like this:

(define-typed-syntax (start-facet name:id ep:expr ...+) �
[[name : FacetName]  ep � ep- (⇒ ν effs)] ...
#:fail-unless (all-endpoint-effects? #’(effs ...))

"only endpoint installation effects allowed"
------------------------------------------------------------------------------
[ (install-facet! name (lambda () ep- ...)) (⇒ ν (StartFacet name effs ...))])

Line by line, this definition reads the following way:

• The macro applies to syntax that matches the (start-facet id expr ...+)
pattern.7 The pattern expects an identifier and a nonempty sequence of endpoint
expressions.

• The code between �—pronounced “elaborates to”—and the dashed line analyzes
and checks these endpoint forms:

1. The first clause elaborates each endpoint expression, ep, individually in an
environment extension that records name as the name of a facet. This allows
Turnstile to resolve each identifier reference within each ep to the proper type.

2. The result of a successful8 elaboration is bound to the name ep-, while the
types of effects performed by ep are bound to the name effs.

3. The trailing ellipse dictates that each ep form is analyzed in this manner.

• The #:fail-unless clause enforces the side-condition on the corresponding type-
checking rule. It makes sure that the body has only endpoint installation effects,
such as from the use of on, assert, and field; it disallows the following effect
types: start-facet, stop, and spawn. The actual work is left to a helper function:
all-endpoint-effects?. If the check fails, the checker signals a type error.

• The clause below the dashed line consists of the macro’s two outputs:

1. The first output is the target expression that implements the behavior of
start-facet. The produced expression calls the install-facet! pro-
cedure, which is provided by the run-time support system for facets. The
procedure consumes the name and a thunk that runs the results of elaborat-
ing the endpoint forms—in the specified order. These endpoint forms then
elaborate to calls to other procedures from the run-time system, and so on.

7 For expressions that use the keyword start-facet and don’t match the pattern syntax/parse raises an
error with an informative error message.

8 Any type error discovered while checking an ep is reported as soon as it is discovered, aborting the rest of the
elaboration of start-facet.
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2. The second output attaches a type to the elaboration. Here it describes the effect
type of the form: StartFacet, with endpoint types described by effs ....

Generally speaking, the define-typed-syntax macros are almost verbatim translitera-
tions of the typing rules presented in Figure 15.

9.3 Implementing the model checker

A programmer initiates a system verification with respect to some specification by adding
the following formula to the program:

(verify-actors spec actor-type ...)

In terms of Theorem 12, this formula requests a check of
−→
T |= ψ where the LTL for-

mula ψ corresponds to spec, and T is the series of actor-types, one per actor in the
dataspace program. If the check succeeds, then the actors of these types jointly realize the
specification.

The implementation of verify-actors utilizes the model checker SPIN (Holzmann,
1997) to check such uses. That is, it translates each use of verify-actors into a Promela
program, that is, SPIN’s input forms.

More precisely, the translation turns each actor-type into a Promela process with
a state-machine driven behavior. Each state corresponds to a set of active facets within
the actor. An encoding of the dataspace routing algorithm allows processes to react to
the appearance and disappearance of assertions, while an additionally generated process
performs message dispatching.

SPIN is invoked on this Promela program, plus a translation of the LTLψ . If verification
fails, the trace provided by SPIN is back-translated into the actions of the type-level actors.

Figure 20 displays a sample Promela program. It is the result of translating the Light
actor’s type. The figure annotates the Promela code with in-line explanations. We italicize
the annotations to distinguish them from the actual code and comments, which are enclosed
within /*...*/. The rest of the Promela process follows the same form.

Blocks of code within the actor (lines 15, 23) execute atomically to avoid any unnec-
essary interleaving with other actor’s initialization in the SPIN search space. Additionally,
comments within the code, such as those on lines 16 and 30, embed information from the
Racket source program; this information is used to back-translate counterexamples of the
SPIN model to the source level.

10 Evaluation

The usefulness of this model-checking approach depends on two primary factors:

• Whether the specification language can express important properties of dataspace
communication as they arise in actual programs; and
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1 Declare an enumeration type for the possible combinations of active facets:
2 mtype = {dur_im_lgt_dur, dur_lgt, dur_lgt_dur, lgt, dur_im_lgt}
3 Create a global variable that controls scheduling:
4 bool light_proc_clock = true;
5 Name a Promela process that is active when the program starts:
6 active proctype light_proc() {
7 Use a local variable to track the actor’s currently active facets:
8 mtype current = lgt;
9 Local variables for tracking the assertions known to the actor:

10 bool know_WallSwitchOnT_Symbol = false;
11 bool know_RoomOccupiedT_Symbol = false;
12 bool know_RoomAssignmentT_Symbol_Symbol = false;
13 Issue the actor’s initial assertions:
14 atomic {
15 ASSERT(Obs_WallSwitchOnT_Symbol); /*#s(assert #s(Observe . . . ))*/
16 }
17 Launch an infinite loop for the actor’s ongoing behavior:
18 do
19 Wait until the actor is enabled:
20 :: true ->
21 light_proc_clock == GLOBAL_CLOCK;
22 atomic {
23 light_proc_clock = !light_proc_clock;
24 Dispatch based on which facets are active:
25 do
26 :: current == dur_lgt_dur ->
27 Dispatch to the event handlers within the active facets:
28 if
29 The condition for one of the active event handlers.
30 A retracted event fires if there are no matching assertions:
31 :: RETRACTED(RoomAssignmentT_Symbol_Symbol) && /*#s(Retracted . . . )*/
32 and the actor must have seen such a prior assertion:
33 know_RoomAssignmentT_Symbol_Symbol ->
34 Perform effects dictated by the type of the event handler’s body:
35 stop a facet by updating current:
36 current = dur_lgt;
37 Update the actor’s knowledge of the retracted assertion,
38 and no-longer-relevant ones:
39 know_RoomAssignmentT_Symbol_Symbol = false;
40 know_RoomOccupiedT_Symbol = false;
41 Retract assertions from the stopped facet:
42 RETRACT(Obs_LightOnCmdT_Symbol); /*#s(retract #s(Observe . . . ))*/
43 RETRACT(Obs_RoomOccupiedT_Symbol); /*#s(retract . . . )*/
44 RETRACT(Obs_LightOffCmdT_Symbol); /*#s(retract . . . )*/
45 The beginning of the next event handler:
46 :: ASSERTED(RoomOccupiedT_Symbol) && /*#s(Asserted . . . )*/
47 !know_RoomOccupiedT_Symbol ->
48 . . .
49 }
50 }

Fig. 20. Annotated excerpt of a Promela program for the SPIN model checker

• Whether the implementation can successfully check those properties that are
expressible.

This section presents the results of an analysis of these factors in the context of a corpus of
facet-based dataspace programs implemented in Racket. Inspecting each program yields
a number of behavioral properties important to program correctness. These properties
provide the basis of the evaluation.
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10.1 Corpus

This section describes the programs in the corpus, as well as several behavioral properties
for each program that comprise the subject of the evaluation. One property—deadlock-
freedom—is relevant to several examples and thus factored into its own Section (10.2),
which discusses the topic in the context of dataspace programs and our behavioral checks.
Each program consists of about 500 lines of code, comprising the concurrent core of a
larger system.

Smarthome. This program is an extended version of the earlier examples, including a
text-based user interface and temperature sensors and controls.

• Light Presence. This property describes the desired interaction between presence
sensors and lights in the smarthome program. The specification essentially states
that once a presence sensor and light have been installed in a room, the light turns
on or off as the user moves in or out of the room, respectively.9 Note that while
on the surface this property only talks about light and presence sensor actors, the
behavior of those actors depends on additional interactions from the user interface,
the actor representation of the user, and the hub actor.

• Steady State Temperature. This property specifies the desired behavior of the ther-
mostat in the smarthome: when the user sets a desired temperature, the system
gradually heats or cools the home until the target is reached, before turning off.

Data Processing. This program implements the core of a streaming data processing
framework, inspired by Flink.10 Clients submit jobs consisting of some number of inter-
dependent tasks. Several actors collaborate to manage the underlying computational
resources for executing tasks, tracking intermediate progress, and delivering the end result.

• Task Delegation. This property checks the working of three actors that collaborate
to perform tasks by treating them as a black box: each assigned task is eventually
performed. Performing a task involves delegating it from the job manager to a task
manager, and then from a task manager to a task runner, and finally propagating the
results back in the opposite direction.

• Job Completion. This is another black-box correctness property: when a client sub-
mits a job, the job’s results eventually become available. When a client submits a
job, a job manager actor analyzes the request and computes a directed, acyclic graph
of tasks. It then processes the task graph by assigning tasks as they become ready to
other actors, before finally announcing the results of the job. A weak variant of this
property states that each job either completes or processes tasks in an infinite loop.

• Load Balancing. Task-runner actors are capable of performing one task at a time.
A task manager actor monitors the status of task performers and assigns them tasks
when they are idle. Likewise, each task manager has a capacity based on the number

9 This property is a response to a bug uncovered through manual testing, where a light installed in a room after
a presence sensor sometimes did not properly react to the initial presence information.

10 https://flink.apache.org.
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of task runners it manages. The job manager assigns tasks to task managers based on
their current free capacity. This property states that the task manager never assigns a
task to a busy runner and the job runner never assigns a task to a task manager that is
at capacity. A weak variant of the property pertains to the scenario where each task
manager oversees exactly one task runner actor.

Caucus. This program represents a geographically distributed, iterative election in the
style of a caucus, inspired by the “two-buyer problem” from the behavioral types liter-
ature (Honda et al., 2008). A distinct actor represents each voter and candidate. After a
registration period, voting commences across a collection of regions. Within each region,
voting proceeds in rounds until a single candidate receives a majority share of the vote.
Once every region has reached a decision, the winner of the most regions is pronounced the
winner of the election. In each region, an actor guards against various forms of misbehavior
from voters and candidates, such as voting twice.

• Resolution. The election completes. A weak variant of the property states that either
the election completes or holds infinitely many rounds of voting.

• Candidate (Mis)Behavior. This property is the specification for a well-behaved can-
didate actor in the election. A well-behaved candidate actor announces its candidacy
as an assertion and maintains it until either the election is over or an election agent
informs it that it is no longer in the running.

• Voter (Mis)Behavior. This property is the specification for a well-behaved voter
actor. A well-behaved voter actor registers in exactly one region and then partici-
pates in each round of voting in that region by casting exactly one vote for one of
the eligible candidates. A weak variant of the property states that the voter registers
and always votes at least once in each round.

Windowing System. This program implements a basic graphical windowing system. A
collection of driver actors collaborate to provide the primary interface. A layout-solving
actor powers graphical output by combining requested sizes and layout styles (such as
vertical or tabular) with the actual dimensions of the system window to compute the actual
size and location of each item. Another interface actor provides descriptions of mouse
events, including when the mouse is touching a window, mouse presses, and releases. The
mouse interface allows for an actor mix-in (a function that starts facets or endpoints) to
implement drag-and-drop behavior, which can then be instantiated and reused freely. The
rest of the program consists of actors implementing rudimentary windowed applications
and menus.

• Layout. This property describes the behavior of the layout engine, which spawns
solvers for horizontal, vertical, and tabular layouts on demand. The specifica-
tion is based on a comment in the original, untyped program, describing the
desired behavior; it essentially demands that requests for layouts are answered with
solutions:

;; (Observe LayoutSolution)+ ==>
;; RequestedLayoutSize ==>
;; ComputedLayoutSize ∧ LayoutSolution+
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This comment closely corresponds to the specification language of assertion types
and LTL connectives provided by the implementation.

• Menu Duration. This property checks the lifetime of menu items: that they appear
in response to selecting a menu and that they remain until either a selection is made
or a mouse click occurs, either selecting a menu item or closing the menu.

Web Chat. This program implements the server for a chat service loosely based on Slack.11

It allows a user to connect, sign up for an account, and then create and join conversations.
Connected users may request to follow one another. Accepted follow requests lead to each
user being added to the contact list of the other. Users may join the conversations of their
contacts. The system implements an option for permission delegation, so that if user A
chooses to invite user B to a conversation, user B may then invite user C, and so on.

• Conversation Release. This property is based on a comment in the original, untyped
program, essentially calling for the release of resources in the event that a request is
canceled before the response has materialized:
;; TODO: CHECK THE FOLLOWING: When the ‘invitation‘ vanishes (due
;; to satisfaction or rejection), this should remove the question
;; from all eligible answerers at once
(during (invitation $cid $inviter $invitee)

...)

A weak version of the property relaxes the need for the resources to all be removed
“at once.”

• Contact Release. This property is also based on a similar comment in the code to the
conversation release property, but in the module for managing the contacts list for
users:
;; TODO: CHECK THE FOLLOWING: When the ‘permission-request‘
;; vanishes (due to satisfaction or rejection), this
;; should remove the question from all eligible answerers
;; at once
(during (permission-request $who $grantee ($ p (p:follow _)))

...)

A weak version of the property relaxes the need for the resources to all be removed
“at once.”

10.2 Deadlock freedom

Dataspaces implement a form of asynchronous message-passing, so in a technical sense
every dataspace program is free from deadlocks. However, dataspace programs may reach
a stuck state where each actor waits for further communication before continuing. Such a
situation is sometimes referred to as a soft deadlock. The corpus includes several programs
that feature numerous kinds of actors participating in interwoven conversations, making
freedom from such soft deadlocks a desirable property to check.

Figure 21 demonstrates a simple program simulating two friends attempting to make
plans. One friend actor, once it knows the time of the meeting, is ready to suggest a

11 https://slack.com.
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1 (define (friend1)
2 (spawn
3 (start-facet f1
4 (on (asserted (time $t))
5 (start-facet (assert (place "yours")))))))
6

7 (define (friend2)
8 (spawn
9 (start-facet f2

10 (on (asserted (place $p))
11 (start-facet (assert (time 0)))))))
12

13 (run-dataspace (friend1) (friend2))

Fig. 21. Soft deadlocked actors.

location. Meanwhile, the other friend actor, is ready to suggest a time depending on the
location. The result is no communication at all. Such situations can arise from poorly
designed protocols and buggy implementations. Figure 21 is a case of the former.

One way of describing soft deadlocks is that an actor states an interest, that interest
is never withdrawn (that is, the interest remains relevant to the actor), and no matching
assertion ever arises. The following LTL formula states this property with respect to the
friend1 actor’s interest in Time assertions:

(define-ltl friend1-deadlock
(Always (Implies ?(TimeT �)

(Eventually (Or Time
(Not ?(TimeT �)))))))

Checking this LTL property against the implementations of the friend1 and friend2
actors fails, as should be expected for Figure 21. The resulting trace illustrates the two
actors waiting for one another with active subscriptions but no matching assertions.

A similar property describes the deadlock from the perspective of the friend2 actor’s
interest in Place assertions, which fails a similar check:

(define-ltl friend2-deadlock
(Always (Implies ?(PlaceT �)

(Eventually (Or Place
(Not ?(PlaceT �)))))))

Generalizing, a program may be checked for deadlocks by taking each assertion of
interest ?τ and checking the following LTL formula:

(Always (Implies ?τ
(Eventually (Or τ

(Not ?τ)))))

Such a check succeeds if the model checker can show that the program never deadlocks.
This property may be too strong for the level of type precision. An alternative approach is
to state in LTL that the program definitely deadlocks, and see if model checking produces
a counterexample, implying that the program has some non-deadlocking executions:

(Eventually (And (Always ?τ)
(Not (Eventually τ))))

This section refers to the former property as strong (soft) deadlock freedom and the latter
as weak (soft) deadlock freedom.
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Table 1. Evaluation results

Program Property E
xp

re
ss

ib
le

C
he

ck
ab

le

Smarthome
Light Presence � �

Steady State Temperature � �

Deadlock Freedom � �

Data Processing

Task Delegation � �

Job Completion �

Job Completion (Weak) � �

Load Balancing

Load Balancing (weak) � �

Deadlock Freedom � �

Caucus

Resolution �

Resolution (Weak) � �

Cand. Misbehavior � �

Voter Misbehavior

Voter Misbehavior (weak) � �

Deadlock Freedom � �

Windowing System
Layout � �

Menu Duration � �

Web Chat

Conv. Release

Conv. Release (weak) � �

Cont. Release

Cont. Release (weak) � �

10.3 Results

Table 1 summarizes the results. Each row of the table describes a property from the corre-
sponding program. A � in the “Expressible” column indicates that the implementation can
express the property and a corresponding � in the “Checkable” column indicates that the
implementation successfully checked the property. Otherwise, the process of stating and
checking could not be completed. Section 10.4 discusses these cases.
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Table 2. Running time (seconds) and memory usage (megabytes) of each completed check. The

checks ran on a laptop with an Apple M1 Pro CPU, 32GB of memory, and MacOS Ventura 13.5

installed

Program Property Time (s) Mem. (MB)

Smarthome
Light Presence 4.6 285

Steady State Temperature 14.3 338

Deadlock Freedom 131.2 333

Data Processing

Task Delegation 2.6 382

Job Completion (weak) 2.9 467

Load Balancing (weak) 2.7 467

Deadlock Freedom 11.2 382

Caucus
Resolution (Weak) 1.6 620

Cand. Misbehavior 1.7 626

Voter Misbehavior (weak) 1.8 626

Deadlock Freedom 6.9 624

Windowing System
Layout 11.0 894

Menu Duration 11.1 898

Web Chat
Conv. Release (weak) 8.5 1252

Cont. Release (weak) 1.7 251

10.3.1 Performance

One possibility is that, even if the implementation can express and check a desired prop-
erty, the result may not return within a reasonable amount of time. The potential for a
program’s state space to grow exponentially is unavoidable. Eventually, even the most
optimized checkers will require enormous amounts of memory and face slowdowns.
Determining a threshold for a “reasonable” amount of time is tricky, as different devel-
opers have different conceptions. This evaluation sets the upper bound for a check that
could still be useful at eight hours. That is a long time, but short enough to be a part
of continuous integration (CI) tests that run on a nightly basis, with the results ready for
review the next morning. Table 2 details the running time and peak memory usage for each
successfully checked property.

The performance clears the “integration test” threshold by a wide margin. All of the
properties take seconds or a few minutes rather than hours to check. The property that
takes the longest to check, deadlock freedom for the smarthome program, consists of 22
individual properties, one for each type of subscription in the program. Each sub-property
leads to a separate invocation of the model checker, one for each type of interest in the
program. These results put the performance in the realm of “unit test” acceptability, where
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the checks can be run along with a unit test suite before committing each change to a
project.

10.4 Interpretation and discussion

This section discusses each of the properties that the implementation failed to support and
the primary reason(s). In a few cases, interesting details for successfully checked properties
are provided as well.

Data Processing.

• Job Completion. The implementation is not able to check this property. The checker
is not able to reason about the termination of the task-processing loop in the proto-
col. Even though the loop follows an inductive structure—processing a DAG—this
information is not propagated to the type level. Moreover, since an LTL formula
always talks about all possible executions of a system, the specification language
cannot express that it is at least possible to reach the desired end state.

• Load Balancing. The implementation is unable to state and check the property. For a
task manager with an arbitrary number of associated task runners, stating the speci-
fication requires stating relations between numbers. Checking the property would
similarly require reasoning about arithmetic operations. Moreover, the property
inherently deals with the multiplicity of assertions of a certain types, namely task-
assignment assertions. Violating the property means having more than the expected
number of such assertions.
Checking the weak variant of the specification makes use of a coincidence in the
program for working around the inability to reason about the multiplicity of asser-
tions. Because there happen to exist two distinct types of tasks, a limited form of
multiplicity can be checked—namely, if there are some of one type of task assigned
to a manager, there are none of the other, and vice versa.

Caucus.

• Resolution. Checking this property also encounters difficulty due to the potential
non-termination of a loop in the protocol. The implementation is unable to reason
about the termination of the loop, even though the loop matches a simple inductive
structure (one candidate is removed each round).

• Voter (Mis)Behavior. The implementation lacks the precision to state the full spec-
ification. The primary impediments are the inability to correlate information from
one assertion to another, such as the name of the candidate the voter chooses with
the names of the candidates on the ballot, as well as reason about the multiplicity
of assertions. However, the weak specification is still able to distinguish a correct
implementation of a voter from several malicious ones.

• Deadlock Freedom. While Section 10.2 discusses deadlock freedom, one interesting
point to note is that this check uncovered a bug in the program: at the end of each
round of voting, a region manager actor announces intermediary results that inform
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the candidates of their status in the race, except for the final round of voting, the
manager actor simply announces the winner. Due to an oversight, the original imple-
mentation of the candidate actors only listened for the intermediate results, not the
winner announcement. As a result, they were soft deadlocked waiting for an inter-
mediate update that never materializes. The fix to the bug is to have the candidate
actor listen and react to the final election result.

Web Chat.

• Conversation Release. This property is checkable with the implementation, with one
caveat: the phrase “at once” entails a level of precision that is beyond the implemen-
tation. That is, it can check that the required assertions disappear, but it does not
have a way of expressing that the concerned parties, “all eligible answerers,” all
react within a set timeframe. However, that part of the specification is of dubious
importance when scrutinized: dataspace routing will always dispatch an event to all
interested actors when the question is withdrawn. Each such actor will have the
opportunity to react to the event in due time. Since dataspace scheduling is fair,
there is little reason to worry about such timing details. Thus, the full specification
is beyond the implementation, but the weak version, without the timing constraint,
is checkable.

• Contact Release. Just as with the conversation release property, the “at once”
phrasing creates difficulty but is of questionable importance. So again, the full
specification is not checkable but a weak variant without the timing constraint is.

Threats to Validity. There are several threats to validity of this evaluation. The corpus
comprises a small number of programs, authored by only three individuals. The programs
for the corpus were not selected randomly. Rather, we sought programs whose implemen-
tations involved a high degree of concurrency and communication, as opposed to business
logic or other concerns. Moreover, the identification of properties and subsequent verifica-
tion efforts were conducted by the authors of the tools. We are highly familiar with both
the capabilities and limitations, potentially biasing the search for properties that are a good
match for the current capabilities.

11 Related work

The design of the facet language has two distinct goals. First, the notation greatly facil-
itates the expression of the temporal relationships with respect to—their conversations
with—other actors. See Appendix A for an extended comparison of facets to an imple-
mentation of the same behavior in a functional style. Second, in contrast to higher order
functional programming of actors, the first-order character of the facet language allows
the construction of reasoning tools that assist programmers with the validation of essential
protocol properties. That is, the facet language forms capture the input/output behavior of
an actor without the need for additional data- or control-flow analysis. See Section 10
for a basic illustration. Our results are thus related to two distinct bodies of research:
design of concurrent languages (Section 11.1) and reasoning with automated behavioral
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types (Section 11.2). The dissertations of Garnock-Jones (2017) and Caldwell (2023) also
feature extended discussions of related languages and analysis tools.

11.1 Facets and the design of concurrent languages

Programming languages provide limited support for organizing conversations among
groups of actors and their internals. Garnock-Jones et al. (2014, 2016) compare data-
space communication with related coordination mechanisms such as the Conversation
Calculus (Vieira et al., 2008), the Mobile Ambient Calculus (Cardelli & Gordon, 2000), the
join calculus (Fournet & Gonthier, 2000), and tuplespaces (Carriero et al., 1994; Murphy
et al., 2006), as well as various actor systems and process calculi. Here, we focus on
linguistic features for organizing the code of individual actors.

State-Machine Actors. Actor systems such as Akka (Akka Project, 2022) and
Erlang/OTP (Armstrong, 2003) provide means of organizing actors as state machines.
Erlang’s gen_statem interface exemplifies these mechanisms. The programmer describes
each state in the machine as a procedure mapping an incoming message to the next state
and some actions to carry out. These state transition functions also operate on the actor’s
private store, handled separately from the state of the machine.

Actors organized as event-driven state machines lose access to contextual informa-
tion. Instead, such notations force programmers to encode context into each state and
save related information explicitly in the private store. Such encodings, however, make
it cumbersome to create actors that simultaneously participate in multiple conversations or
alternatively engage and disengage in multiple intertwined behaviors, such as the Hub and
Light actors from Section 3.

The gen_statem interface and its sibling gen_server address only one of the concerns
of facets in a limited fashion: abstracting control state. Language support ends at instan-
tiating the interface with callbacks. An actor that deals with multiple types of messages
in a single state must often manually demultiplex the message to match it with the proper
response. Callbacks use the familiar state-passing style, operating on a monolithic store.
Though callbacks may coordinate startup and shutdown of the actor, initiating and closing
a conversation comes without linguistic support.

Fact Spaces and CRIME. The inspirational fact spaces model (Mostinckx et al.,
2007) shares many similarities with the dataspace model. Fact spaces build on
TOTAM (Scholliers et al., 2009, 2010; González Boix et al., 2014), a form of tuplespace,
to equip actors with a means of moving and sharing state. In fact spaces, programs react
to both the appearance and disappearance of facts from a shared repository. Reactions are
described in a logic coordination language, allowing the computation of new facts based
on current facts via forward-chaining. The language implementation (implicitly) records
the dependencies between facts and invokes application actions specified by logic rules.

The implementation of the fact space model, dubbed CRIME (Mostinckx et al., 2008),
integrates the fact spaces model with the AmbientTalk language (Van Cutsem et al.,
2007, 2014). AmbientTalk is an instance of the Actor model (Agha, 1986; De Koster
et al., 2016) in the mold of E (Miller et al., 2005). In E and AmbientTalk, objects are
organized into vats; each vat runs its own event loop, dispatching incoming messages
to the contained objects. Combining AmbientTalk and CRIME requires bridging the gap
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between the events corresponding to assertion and retraction of facts and the message
exchange of AmbientTalk. The solution incorporates reactive programming, in the mold of
FrTime (Cooper & Krishnamurthi, 2006). The result is that actors may define time-varying
behaviors, with values shifting based on the available facts.

The differences between CRIME and facet-oriented dataspace actors stem from the
absence of a unifying notion of a conversational frame. CRIME comes without any rep-
resentation of a conversation, hence programs lack the conversational structure of (nested)
facets. Time-varying collections do not offer a way of propagating changes to the tuples
in the shared space, unlike the fields and query forms that connect to an actor’s endpoints.
Because CRIME does not group the components of conversational behavior, no automatic
support exists for the release of associated resources. Programmers must carefully reason
about the relationships between components to ensure that the state of the actor and associ-
ated tuples remain consistent. The underlying E language offers object references to denote
specific conversations within the heap of a given actor and employs method dispatch as a
limited pattern matcher over received messages.

Concurrency Within Active Objects. Some Active Objects languages allow for con-
currency within an Actor or Actor-like entity (de Boer et al., 2007; Schäfer & Poetzsch-
Heffter, 2008, 2010). Typically, this concurrency is achieved by allowing multiple message
dispatches to be active within a single active object. This allows for splitting control
and state among numerous objects, resembling the way our facets and fields individually
contribute to the actor’s overall behavior.

Much like with conventional object-oriented programming, communication between
active objects forms a graph structure. Each active object is a node in the graph and
has an edge to each object it communicates with via asynchronous method invocation.
Indeed, many active object languages support both the communication-level graph and the
traditional object-oriented “refers to” relationship with support for passive objects (Boer
et al., 2017). Each active object (node in the communication graph) may implement its
behavior using any number of such passive objects following traditional object-oriented
design (Gamma et al., 1994).

Dataspaces and faceted actors possess the same graph-like communication structure.
Each actor (node) is connected to each other actor that it communicates with via asser-
tions (edge). Thinking in terms of the graph abstracts away the differences between the
message-passing paradigms employed by active objects (point-to-point) and dataspaces
(publish/subscribe). Just as how an active object may implement its behavior using any
number of passive objects with their own fields and method definitions, a facet-based actor
defines its behavior across a collection of facets, fields, and endpoints. The primary dif-
ference is that passive objects form a graph, while facets form a (dynamically changing)
tree. The tree structure of facets enables the ability to program directly to the concerns of
startup and, especially, shutdown (via the stop statement and on stop event handlers).

One interpretation of this analysis is that it may be fruitful to adapt the facet notation to
the domain of active objects. Combining facets for defining behavior with passive objects
for defining state has the potential to synthesize the best of both worlds.

ConGoLog. While communication-by-assertion in dataspaces is inspired by Prolog
fact databases, ConGoLog (De Giacomo et al., 2000) is a more direct adaptation of
logic programming to concurrency. In ConGoLog, a programmer first models a particular
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domain—typical applications include robotic control systems—with a collection of axioms
describing relevant properties and the effects of performing particular actions. The main
program then specifies some number of concurrent agents—as logic programs—emitting
effects, each of which may update the stated properties, and reacting to the truthiness of
such properties.

ConGoLog and dataspaces share a deep connection but also differ in significant ways
with respect to their conceptions of state and agent. As a variant of the actor model, datas-
paces provide each actor with its own isolated memory, while the dataspace itself contains
information shared with the rest of the program. Information shared in the dataspace is tied
to the identity of some particular actor, imposing a rigid structure on updates and a connec-
tion to component failure. Meanwhile, ConGoLog lacks the distinction between local state
of an agent and globally visible state information of the situation. Concurrent ConGoLog
agents come without the structure provided by facets for grouping related behavior and
state, as well as orchestrating startup, shutdown, and component evolution—partly because
these concerns are not a goal of the design.

Sparrow. The Sparrow DSL (Avila et al., 2020) extends Erlang with the ability to react
to complex event patterns. That is, rather than just handling one message at a time from its
mailbox, a programmer may utilize Sparrow to specify an actor’s behavior dependent on
particular combinations of messages, timing constraints, and so on. Reactions to a given
pattern may be dynamically added to and removed from an actor’s behavior. A reaction
is like a facet with a single event-handler endpoint. They lack the other features of our
language, like the hierarchical structure, start-up and shut-down behavior, and grouping of
facets, as well as localized state of fields.

Dataflow. The simple dataflow system described here is most similar to the sim-
ple dependency tracking approach to object-oriented reactive programming described by
Salvaneschi & Mezini (2014, section 2.3) and was in fact directly inspired by the depen-
dency tracking of JavaScript frameworks such as Knockout12 (Sanderson, 2010) and
Meteor.13

11.2 Behavioral type systems

In general, the design and theory of a type system is intimately tied to the underlying
language. This is doubly true of behavioral type systems, which express control-flow
aspects of the program, not just the static relationships found in purely structural type
systems. Consequently, applying ideas around the actor model to dataspaces and facet-
oriented actors poses a serious challenge. Dataspaces provide a form of publish/subscribe
communication (Eugster et al., 2003) that has received little attention in the context of
behavioral type systems. While encoding dataspaces in a traditional message-passing
(or channel-based) setting is possible, the encoding would obscure a program’s com-
munication patterns too much for the targeted behavioral type system to be of use.
Application-specific information could potentially be recovered by utilizing more powerful

12 http://knockoutjs.com/.
13 https://docs.meteor.com/api/tracker.html.

https://doi.org/10.1017/S0956796824000091 Published online by Cambridge University Press

http://knockoutjs.com/
https://docs.meteor.com/api/tracker.html
https://doi.org/10.1017/S0956796824000091


Programming and reasoning about actors that share state 49

type-level reasoning, such as dependent session types (Toninho et al., 2011), but presently
bringing such machinery to bear in a usable programming language remains unsolved.

Our work specifically draws inspiration from studying the approach to type checking
more so than the specifics of the systems. In that sense, our design follows that of Igarashi
& Kobayashi (2001) and Chaki et al. (2002), in which the type checker constructs type-
level processes as abstractions for term-level behavior. The type-level processes serve as
the basis for behavioral analysis. In the case of Igarashi & Kobayashi (2001), the checks are
generic. Subtyping and other parts of the type checker may be instantiated to yield checks
for races, deadlocks, etc. Chaki et al. (2002) use the SPIN model checker for simulation-
based subtyping and analyzing conformance to LTL specifications. In their case, LTL
formulae state properties of channels in the system.

Effpi. The Effpi message-passing framework (Scalas et al., 2019) reflects core pro-
cess and communication operations to the type level and uses dependent function types
to precisely track which channels are used. By model checking these type-level descrip-
tions, it becomes possible to verify certain properties stated in a temporal logic, including
deadlock-freedom and some communication patterns. By contrast, we seek to verify any
LTL formula, allowing application-specific correctness properties. The biggest difference
to our work is the communication paradigm. While Effpi uses message-passing along
channels in a process calculus, our actors share knowledge via a dataspace.

Conversation Types. Conversation types (Caires & Vieira, 2009) add behavioral check-
ing to the Conversation Calculus (Vieira et al., 2008). A conversation type describes
a sequence of message exchanges within a particular context, i.e., conversation. Like
the global types of Honda et al. (2008), a conversation type may be decomposed to
type(s) describing the actions of the individual processes participating in the conversa-
tion. Crucially, the decomposition is flexible. A given conversation type may be realized
as the composition of numerous different combinations of participant types. This flexibility
meshes well with the anonymous communication in the conversation calculus, allowing a
degree of agnosticism with regard to the number of participants in a conversation and their
individual roles when looking from the global perspective. At first glance, this approach
may work for dataspace actors, but because every communication is between a single
sender and a single receiver, the model remains similar to channel-based models rather
than publish/subscribe communication. In addition to structural message safety, their types
ensure a degree of deadlock-freedom.

Active Object Languages. There are several notable behavioral type systems and efforts
to perform static verification on active object languages. Behavioral type systems for
active objects tend to focus on the problem of detecting deadlocks (Henrio et al., 2017).
They employ a similar types-as-processes technique, capturing key information, such as
dependencies between futures, as effect types. Proof rules (i.e., type checking) can then
determine whether the program may deadlock. Our behavioral checks of facet programs
instead treat effect types as abstracted, but still executable, processes, with the goal of both
(model)checking properties of programs and validating the design of the DSL.

The Rebeca modeling language (Sirjani et al., 2004) is the closest to our own behavioral
checking. With Rebeca, a programmer may use communication and abstraction facilities
of active objects to define a modes of their program or system. The Rebeca model checker,
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Modere (Jaghoori et al., 2006), can then verify properties of the model specified as tem-
poral logic formulae. Rebeca has numerous extensions, notably broadcasting (Yousefi
et al., 2015). The goal of our work is to check properties of programs versus models of
programs and to thus validate the design of the facet DSL. It might be possible to tar-
get Rebeca as a backend for the implementation, rather than SPIN, and benefit from its
message-passing-specific optimizations.

ConGoLog. In bounded contexts, it is possible to decide some temporal properties of
ConGoLog programs (De Giacomo et al., 2016). Thus, it ought to be possible to develop a
model checker based on these decision procedures that could express and check temporal
properties similar to the ones that we explore for dataspace programs. No such model-
checker implementation appears in the literature.

Types for the Join Calculus. The join calculus (Fournet & Gonthier, 2000) shares some
similarities with dataspace actors. It has a soup of messages versus the table of assertions in
a dataspace. The event handler endpoints of facets resemble join patterns, especially in the
objective join calculus (Fournet et al., 2000). Recent work (Crafa & Padovani, 2017) has
developed behavioral types for the join calculus around the notion of type state (Strom &
Yemini, 1986). They describe the types of messages understood by an object and use con-
nectives such as conjunction, disjunction, and repetition to determine how a reference to
an object can and must be used. The resulting design is able to elegantly track the dynamic
interface of, e.g., a lock object. Unfortunately, they note the challenge of implementing
such connectives, as well as the necessary substructural support.

Mailbox Types. Similarly to the behavioral type systems for the Join Calculus, mailbox
types (de’Liguoro & Padovani, 2018) use a commutative regular expression of messages to
describe the inputs to an actor. Though the description of messages is unordered, sequenc-
ing is still expressible using mailbox-passing. Following a familiar technique in behavioral
systems, type analysis collects information from the program as the basis for analysis. In
this case, it is a dependency graph among mailboxes. The dependency graphs are vital for
detecting and preventing programs that may deadlock.

Session Types. Type systems for the π -calculus and related process calculi have been
widely studied. Session type systems (Honda et al., 1998) in particular have been utilized
to describe and verify the communication properties of many kinds of systems. Our meth-
ods are closely related to the generic π -calculus type system of Igarashi & Kobayashi
(2001). They relate processes with abstract process types, including the primary process
constructors: channel send and receive, parallel composition, and so on. Their system is
parametric over constraints on process types, allowing different instantiations targeted for
different properties, such as deadlock prevention.

Multiparty session types (Honda et al., 2008; Scalas & Yoshida, 2019) come closer
to describing the group oriented communications between dataspace actors. Global types
provide a perspective for describing the protocol among a group of participants. Though
efforts toward adapting session type theories to actor systems have found some suc-
cess (Mostrous & Vasconcelos, 2011; Crafa, 2012; Neykova & Yoshida, 2014), much
work remains to be done to handle the full spectrum of actor programming and its relatives,
such as the dataspace model.
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12 Conclusion

The notation of facets for dataspace actors is good for concurrent actor programming. Our
examples show how the notation directly addresses the most common concerns: engaging
and disengaging in behavior, managing local state and resources, sharing information dur-
ing a conversation, etc. Furthermore, the language design captures the key components of
behavior, allowing a types-as-processes approach to analyzing temporal behavior.

The facet notation is also good for reasoning about programs. A type system can
ensure basic soundness and provides the basis of behavioral verification. The evaluation
on realistic programs illustrates the system’s usefulness. Our formal work proves that this
approach is well-founded; our evaluation supplies initial evidence of the practicality of the
approach.

The work itself suggests several directions for future improvements. Concerning the
facet notation, the design could benefit from Avila et al. (2020)’s language of communi-
cation patterns. Concerning the behavioral type system, precision could be improved by
using a dependency notation for correlation information in assertions similar to the work
of Scalas et al. (2019) for channel names. Finally, an additional validation could come
from porting our work to a widely used actor system, such as Akka. The broadened con-
text would introduce additional research challenges, such as accounting for the possibility
of communication failures, as well as shed additional light on the usefulness and usability
of our design.
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A Comparing Facet-based and Functional Actors

This section provides additional motivation for the facet notation via a comparison to the
results of implementing actor behaviors in a procedural manner.

Figure A1 implements the behavior of the light-actor (Figure 4) using a procedural
interface to the Racket dataspace library. In the procedural interface, the behavior of an
individual actor is specified as a state transducer function.

The BEHAVIOR function (lines 3–8) implements this interface. Its inputs are a representa-
tion of an event and the current-state of the actor. The body of the BEHAVIOR function
dispatches to one of several sub-behavior functions for the actor. The current-state is
an instance of the light-actor-state struct containing two pieces of information.
The first is the actor’s current control state, dictating which conversation(s) to engage
in response to an event. The actor’s interactions are simple enough that its control may
be encoded as a switch.14 The second holds any additional data relevant to the active
sub-behavior.

Placing the light-actor into a dataspace as an instance of an actor struct (lines 9–
11) requires specifying the initial light-actor-state as well as the actor’s initial
assertions, establishing interest in receiving wall-switch information. Note that the
actor’s ctrl-state—UNPOWERED—is expressed separately but must be in sync with the
initial assertion(s).

The unpowered, powered, and located sub-routines implement the actor’s various
sub-behaviors. Each routine computes a transition-to struct as its result. The first
slot of the transition-to specifies a new private state for the actor, while the second
requests updates to the actor’s current assertions. The updates are a list, with each item
calling for the introduction of a new assertion (assert) or withdrawal of an existing one
(retract).

The unpowered routine (lines 13–19) responds to notification that the wall-switch
is ON with a transition-to the POWERED state. In the POWERED state, the actor uses
the powered-state struct as its private state to keep track of whether the light is cur-
rently ON or OFF. Additionally, it introduces the light assertion and expresses interest in
a room-assignment.

The powered routine (lines 21–32) implements two possibilities. The first is the
event that the wall switch is turned off (line 23). The resulting transition returns to the
"unpowered" state, retracting the powered-specific assertions. The second possibility
is the appearance of a room-assignment assertion (line 28). In that case, the actor tran-
sitions to the LOCATED state. The private state of the actor must then keep track of both
the current ON/OFF status of the light as well as the assigned room. The located-state
struct serves this purpose. Finally, the actor introduces a new interest in presence sensor
information for the assigned room.

14 An actor engaged in truly complex conversations requires a more sophisticated encoding or the use of
(delimited) continuations. Note that while it may seem attractive to represent the control state as a function,
allowing the body of BEHAVIOR to simply be the application of the ctrl-state to event, that approach
makes composing the behaviors of different states more difficult, as when the located behavior inspects the
desired ctrl-state of the powered behavior (lines 40–41). While additional programming patterns may be
employed to address this deficiency, the facet notation is the result of considering such patterns and designing
a DSL around them.
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1 (define (spawn-light wall-switch-id)
2 (define my-id (generate-unique-id "light"))
3 (define (BEHAVIOR event current-state)
4 (match-define (light-actor-state ctrl-state data) current-state)
5 (match ctrl-state
6 [UNPOWERED (unpowered event current-state)]
7 [POWERED (powered event current-state)]
8 [LOCATED (located event current-state)]))
9 (define STATE0 (light-actor-state UNPOWERED (unpowered-state)))

10 (define ASSERTIONS0 (assertions (? (wall-switch wall-switch-id ON))))
11 (actor BEHAVIOR STATE0 ASSERTIONS0))
12

13 (define (unpowered event current-state)
14 (match event
15 [(asserted (wall-switch _ ON))
16 (transition-to (light-actor-state POWERED
17 (powered-state ON))
18 #:with-updates (list (assert (light my-id ON))
19 (assert (? (room-assignment my-id �)))))]))
20

21 (define (powered event current-state)
22 (match event
23 [(retracted (wall-switch _ ON))
24 (transition-to (light-actor-state UNPOWERED
25 (unpowered-state))
26 #:with-updates (list (retract (light my-id �))
27 (retract (? (room-assignment my-id �)))))]
28 [(asserted (room-assignment my-id $room))
29 (transition-to (light-actor-state LOCATED
30 (located-state (powered-state-on? current-state)
31 room))
32 #:with-updates (list (assert (? (in-room room 0)))))]))
33

34 (define (located event current-state)
35 (match-define (located-state on? room) current-state)
36 (define powered-transition (powered event (powered-state on?)))
37 (match powered-transition
38 [(transition-to (light-actor-state UNPOWERED _) $updates)
39 (transition-to (light-actor-state UNPOWERED (unpowered-state))
40 #:with-updates (append updates
41 (list (retract (? (in-room room 0))))))]
42 [_
43 (match event
44 [(asserted (in-room room 0))
45 (transition-to (light-actor-state LOCATED (located-state OFF room))
46 #:with-updates (list (retract (light my-id �))
47 (assert (light my-id OFF))))]
48 [(retracted (in-room room 0))
49 (transition-to (light-actor-state LOCATED (located-state ON room))
50 #:with-updates (list (retract (light my-id �))
51 (assert (light my-id ON))))])]))

Fig. A1. Procedural light actor.

The located routine (lines 34–54) must still react to the withdrawal of wall-switch
assertions, in the manner of powered. To accomplish this goal, it invokes the powered
function on the event and a synthesized instance of powered-state. A procedure-based
actor must determine how to combine the state-changes and actions from each of its
conversations on a case-by-case basis. Here, it inspects the resulting transition. If the tran-
sition is to the "unpowered" state, the located function augments the transition with
the retraction of interest in presence sensor assertions. Otherwise, the actor ignores
the transition and proceeds by analyzing the event. Depending on the presence sensor
information, the actor either updates the light’s private state and public assertion to ON or
OFF.
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Analysis. The facet-based implementation enjoys a number of advantages.
Spatial locality. The procedural actor describes its initial assertion in one place and

updates to its assertions throughout different locations in the code. The actor manipulates
its light assertion in four different locations (lines 18, 26, 46, and 50). The problem is
not unique to assertion-manipulating dataspace actors. Consider the code for a networked
actor. The code for connecting is typically in one place, while code for using the con-
nection or tearing it down is somewhere else. By contrast, in the facet language, an actor
accomplishes the same behavior with a single endpoint—which is less error prone than
when functionality is distributed over many locations.

Conversational structure. The organization of the facet code directly reflects the rela-
tionships among the actor’s conversations. The interaction with the presence sensor takes
place as a sub-conversation in the context of a room-assignment assertion, which is
dependent on the conversation with the wall switch. Recovering the same relationships
from the implementation of the procedural actor requires a careful inspection of its code.

Localized State and Automatic Demultiplexing. Facet-based actors define state item-by-
item and in the relevant context, and dataflow keeps public and private state automatically
in sync. Likewise, the control state of the facet-based actor is maintained by the lan-
guage implementation, which automatically routes incoming assertion patches to the
(pattern)matching endpoints.

The contrast between the code in a facet notation and a procedural language is large,
even when the latter is enriched with imperative assignment or objects. For simple con-
versations, switches like those in the light actor combined with assignments or objects
will simplify the procedural code. Complications arise for an actor conducting parallel
conversations. While each conversation’s state could be encapsulated in an object, doing
so would have the unfortunate consequence that the code for manually demultiplexing
incoming events and the code for maintaining a local view would be at separate places.

Similarly, a procedural language forces an actor to maintain its control state explicitly. In
our concrete example, the ctrl-state field is the symptom of this problem. Continuations
(delimited or unconstrained) (Felleisen, 1988; Flatt et al., 2007) do not solve the problem
either, as code (or patterns) for managing the continuations must still be deployed to keep
track of the state.

Brevity. Finally, the facet-based implementation requires far fewer lines of code.

B Facet Metafunctions

The semantics of Section 5.2 refers to several secondary metafunctions. This section
provides their formal definitions.

The matchD function matches an event against an event descriptor. Successful matches
yield a set of substitutions for the binding variables of the event descriptor’s pattern:

matchD : D × Evt ×π × π × σ
partial−−−→ S

matchD(start, start, π , π ′, σ ) = {∅}
matchD(stop, stop, π , π ′, σ ) = {∅}

matchD(asserted e, π+/π−, π , π ′, σ ) = project(v, π , π ′, π+) if v = eval(e, σ )
matchD(retracted e, π+/π−, π , π ′, σ ) = project(v, π , π ′, π−) if v = eval(e, σ )

https://doi.org/10.1017/S0956796824000091 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000091


58 S. Caldwell et al.

The project function handles matching a pattern against a set of assertions, yielding a
set of substititutions. The set is empty when there are no matching assertions in the set:

project : v ×π × π × π −→ S
project(v, πi, π ′

i , π ) = {matchv(v, I) | I ∈ {inst(v, u) | u ∈ π},
known(I , πi) 
= known(I , π ′

i )}
where
known(I , π ) = 1 if ∃ u ∈ π .matchv(I , u) defined; else, 0

The helper inst partially matches a pattern against a value, leaving wildcards and binders
in place:

inst : v × u
partial−−−→ v

inst(�, u) = �

inst(x : τ , u) = x
inst(v, v) = v

inst(m(−→v ), m(−→u )) = m(
−→
v′ )

if |−→v | = |−→u |−→
v′ = −−−−−→

inst(v, u)
inst(? v, ? u) = ? v′ if v′ = inst(v, u)

The matchv function implements basic value-against-pattern matching. We assume
without loss of generality that all binders in a given pattern are unique:

matchv : v × u
partial−−−→ γ

matchv(�, u) = ∅
matchv(x : τ , u) = {x 	→ u}

matchv(v, v) = ∅
matchv(m(−→v ), m(−→u )) = ⋃ −→γ

if |−→v | = |−→u |
−→γ = −−−−−−−−→

matchv(v, u)
matchv(? v, ? u) = matchv(v, u)

The ⊕ operation updates an actor’s knowledge of assertions based on a patch:

⊕ : π ×�−→ π

π ⊕ π+/π− = (π ∪ π+) − π−

The evaluator for expressions is eval. The function is partial due to the possibility of
unbound field names. A primitive interpretation δ is a partial function from an operation p
and a vector of values the result value:

eval : e ×σ partial−−−→ v
eval(b, σ ) = b

eval(! x, σ ) = σ (x)
eval(�, σ ) = �

eval(x : τ , σ ) = x : τ

eval(p(−→e ), σ ) = δ(p, −→v )if −→v = −−−−−−→
eval(e, σ )

eval(m(−→e ), σ ) = m(−→v ) if −→v = −−−−−−→
eval(e, σ )

eval(? e, σ ) = ? v if v = eval(e, σ )

The assertions-of function produces the current assertions made by an actor given its
active facet tree and field store:
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assertions-of : FT ×σ −→ π

assertions-of(ε, σ ) = ∅
assertions-of(fn[−→e (

−−→
D Pr)].

−→
FT, σ ) = ⋃ −−−−−−−−−−−−−→

assertions-ofe(e, σ ) ∪⋃ −−−−−−−−−−−−−−→
assertions-ofD(D, σ ) ∪⋃ −−−−−−−−−−−−−−→
assertions-of(FT, σ )

It utilizes a family of helper functions for determining the assertions associated with
endpoints. The assertions-ofe function does the work for assertion endpoints:

assertions-ofe : e ×σ −→ π

assertions-ofe(�, σ ) = Assertion
assertions-ofe(x : τ , σ ) = Assertion

assertions-ofe(m(−→ei ), σ ) = {m(−→ui ) | ui ∈ assertions-ofe(ei, σ )}
assertions-ofe(? e, σ ) = {? u | u ∈ assertions-ofk(e, σ )}

assertions-ofe(e, σ ) = {eval(e, σ )}

While the assertions-ofD metafunction produces the assertion of interest when needed
by an event-handler endpoint:

assertions-ofD : D ×σ −→ π

assertions-ofD(start, σ ) = ∅
assertions-ofD(stop, σ ) = ∅

assertions-ofD(asserted e, σ ) = {? u | u ∈ assertions-ofe(e, σ )}
assertions-ofD(retracted e, σ ) = {? u | u ∈ assertions-ofe(e, σ )}

C The Extended Light Actor

The full implementation of the light actor in Figure 4 is a good example for illustrating how
the facet machine deals with loading and manipulating states. Here is the fixed version of
the actor description, assuming suitable bindings for wall-switch-id and my-id:

start light-facet
∅
(asserted wall-switch(wall-switch-id, ON)
field state = ON in
start during<wall-switch>

light(my-id, !state) ∪ ∅
(retracted wall-switch(wall-switch-id, ON)
stop during<wall-switch>)
(asserted room-assignment(my-id, room : String)
start during<room-assignment>

∅
(retracted room-assignment(my-id, room)
stop during<room-assignment>)
(asserted in-room(room, �)
start during<in-room>

∅
(retracted in-room(room, �)
stop during<in-room>)
(asserted room-empty(room)
·)
(asserted room-occupied(room)
·))))
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Fig. C1. The light-facet facet as an initial machine state and its transitions.

Figure C1 shows the complete machine transition sequence, starting from the initial
state. From there, the machine executes a labeled inject transition to get the start instruction
of the facet script. A transfer transition launches the script, which then immediately issues
an action patch via another labeled inject transition. At this point, the facet is ready to shut
down, which the machine realizes with stop transition.

D Type Judgments

The following definitions complete the type judgment for facet actor terms (section 6.1).
The judgment for event descriptions is 	 D D : DT:
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	 D start : start
D-START

	 D stop : stop
D-STOP

	 e e : τ pattern(τ )

	 D asserted e : asserted τ
D-ASSERTED

	 e e : τ pattern(τ )

	 D retracted e : retracted τ
D-ASSERTED

The judgment for expressions is 	 e e : τ :

	 e b : B
E-BASE

	(x) = τ

	 e x : τ
E-VAR

	 e � : �
E-WILDCARD

	 e x : τ : x : τ
E-BIND

	(x) = Field τ

	 e ! x : τ
E-REF

−−−−−−−−→
	 e e : τ δτ (p, −→τ ) = τ ′

	 e p(−→e ) : τ ′ E-PRIMOP
	 e e : τ

	 e ? e : ? τ
E-?

−−−−−−−−→
	 e e : τ

	 e m(−→e ) : m(−→τ )
E-TUPLE

Types suitable for asserting, assertable(τ ):

assertable(B)
A-BASE

assertable(�)
A-WILDCARD

assertable(τ )

assertable(? τ )
A-WILDCARD

−−−−−−−−−−→
assertable(τ )

assertable(m(−→τ ))
A-TUPLE

Types suitable for patterns, pattern(τ ):

pattern(B)
P-BASE

pattern(�)
P-WILDCARD

pattern(x : τ )
P-BIND

pattern(τ )

pattern(? τ )
P-WILDCARD

−−−−−−−→
pattern(τ )

pattern(m(−→τ ))
P-TUPLE

The following metafunctions complete the definition of the type judgment.
The bindingsD metafunction creates a type environment from the binding variables in

an event description:
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bindingsD : D −→ 	

bindingsD(start) = ·
bindingsD(stop) = ·

bindingsD(asserted e) = bindingsP(e)
bindingsD(retracted e) = bindingsP(e)

It utilizes a helper function for patterns, bindingsP:

bindingsP : e −→ 	

bindingsP(�) = ·
bindingsP(x : τ ) = x : τ

bindingsP(m(−→e )) = −−−−−−−−→
bindingsP(e)

bindingsP(? e) = bindingsP(e)
bindingsP(e) = ·

Two metafunctions prune type environments to help keep track of facet and field names.
The first, prune, removes all facet and field names from an environment, i.e.,variables that
are not shared between actors:

prune : 	 −→ 	

prune(·) = ·
prune(	, fn : FacetName) = prune(	)

prune(	, x : τ ) =
{

prune(	) if x = Field τ ′
prune(	), x : τ otherwise

The second, prune-up-to, removes all facet names that are children of a particular facet,
giving an environment of names of active facets after that facet stops:

prune-up-to : fn ×	 −→ 	

prune-up-to(fn, ·) = ·
prune-up-to(fn, 	, fn′ : FacetName) =

{
	 if fn = fn′

prune-up-to(fn, 	) otherwise
prune-up-to(fn, 	, x : τ ) = x : τ , prune-up-to(	, fn)

E Dataspace Metafunctions

The semantics of Section 7 refers to several metafunctions. For completeness, this section
provides their formal definitions. But, also see the work of Caldwell et al. (2020) plus
Garnock-Jones & Felleisen (2016), which fully specify the semantics of dataspace systems
as well. The primary difference between the semantics presented here and prior work is the
aggregation of incoming patches performed by bc� below.

The bootDS metafunction initializes a dataspace program based on a collection of initial
facet-based actor descriptions:

bootDS :
−→
Pr −→ DS

bootDS(
−→
Pr) = [

−−−−→
(
, π/∅); ∅;

−→
A ]

where−→
P = −−−−−→

bootP(Pr)−−→
�, π = −−−−−→

boot�(P)−→

 = 0 · 1 · . . . · |−→Pr | − 1−→
A = −−−−→


 	→�
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The boot� function boots a process description to an actor state:

boot� : P −→� × π

boot� (actor f v π ) = ∅/∅ � (f, v), π

The update metafunction is the work horse of dataspace event dispatch:

update : (R ×−→
A ) × (
×�) −→ R ×−→

A

update((R,
−→
A ), (
,�)) = R ⊕ R (�, 
),

−−−−−−−−−−−→
bc�(
, R, �, A)

The bc� metafunction updates the pending event for an actor if it has an active interest:

bc� : 
× R × Evt × AQ −→ AQ

bc�(
evt , Rold , πadd/πdel , 
 	→� � B ·) =
{

 	→� ◦ �fb � B · if 
= 
evt


 	→� ◦ �other � B · if 
 
= 
evt

where

�fb = {u | u ∈ π•add , (? u, 
) ∈ Rnew } ∪ {u | u ∈ (π◦ ∪ π•add − π•del), ? u ∈ πadd}/
{u | u ∈ π•del , (? u, 
) ∈ Rold} ∪ {u | u ∈ π◦, ? u ∈ πdel}

�other = {u | u ∈ π•add , (? u, 
) ∈ Rold}/{u | u ∈ π•del , (? u, 
) ∈ Rold}
π• = {u | (u, 
′) ∈ Rold , 
′ 
= 
evt}

Rnew = Rold ⊕ R (πadd/πdel , 
)
π•add = πadd − π•
π◦ = {u | (u, 
′) ∈ Rold }

πdel• = πdel − π•

The ◦ operator applies two patches in sequence, maintaining disjointness:

◦ : �×�−→�

π+
1

π−
1

◦ π+
2

π−
2

= (π+
1 − π−

2 ) ∪ π+
2

(π−
1 − π+

2 ) ∪ π−
2

The helper function patch calculates the difference in assertions between two machine
states:

patch : M × M −→�

patch(M, M′) = assertions-ofM(M′) − assertions-ofM(M)

assertions-ofM(M) − assertions-ofM(M′)

The label-to-action function translates a facet machine’s internal transition label to a
sequence of (zero or one) actions:

label-to-action : l• −→ −→
act

label-to-action(•) = ·
label-to-action(Pr) = bootP(Pr)

The assertions-ofM function extends the assertions-of family of functions, determining
the active assertions of a facet machine:

assertions-ofM : M −→ π

assertions-ofM(error) = ∅
assertions-ofM(〈FT;

−→
I ;

−→
PS; π ; σ 〉) = assertions-of(FT, σ )

The ⊕R operator updates the table of active assertions based on an actor’s patch:

⊕R : R ×(�, 
) −→ R
R ⊕ R (π+/π−, 
) = R ∪{(u, 
) | u ∈ π+} − {(u, 
) | u ∈ π−}
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The dispatchDS function invokes an actor’s behavior on its pending event, when non-
empty:

dispatchDS : � −→� ×�× −→
P

dispatchDS(� � (f, v)) =
{
� � (f, v), ∅/∅, · if �= ∅/∅
∅/∅ � (f, v′),�,

−→
P otherwise

where
v′, −→act = f(�, v)
�=�0 ◦�1 ◦ . . . for �i ∈ −→

act−→
P = P0 · P1 . . . for Pi ∈ −→

act

F Type Level Programs

Section 6.2 sketches a semantics for the behavioral types of facets, appealing to a type-level
facet machine. In the same vein, Section 7.2 informally presents a semantics for the types
of dataspaces. This section supplements these with formal definitions. The definitions of
the metafunctions are just like those from Appendix B; their definitions are omitted.

Figure C2 defines the syntax for describing the states of a type-level facet machine and
Figure C3 the transition relation.

F.1 Machine Typing

Theorem 1, soundness for the type-level facet machine, needs matching type judgments.
The type judgment for facet machines, M M : MT:

Fig. C2. Type evaluation syntax.
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Fig. C3. Type machine transitions.

store-bindings(στ ) = 	 	 FT FT : FTT−−−−−−−−→
	 I I : IT

−−−−−−−−−−−−→
	 PS PS : PST π π : πτ σ σ : στ

M 〈FT;
−→
I ;

−→
PS; π ; σ 〉 : 〈FTT;

−→
IT ;

−→
PST; πτ ; στ 〉

T-MACHINE

The store-bindings function creates a type environment from a store:

store-bindings : στ −→ 	

store-bindings(∅) = ·
store-bindings(στ � x 	→ τ ) = store-bindings(στ ), x : τ

The type judgment for facet trees, 	 FT FT : FTT:

	 FT ε : ε
FT-EMPTY

	 A A : Aτ

−−−−−−−−−−→
	 D D : DT−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

	, fn : FacetName, bindingsD(D) Pr Pr : T
−−−−−−−−−−−−→
	 FT FT : FTT

	 FT fn[−→e (
−−→
D Pr)].

−→
FT : fn[Aτ (

−−−→
DT T)].

−→
FTT

FT-TREE
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The type judgment for machine instructions, 	 I I : IT:

	 A A : Aτ

−−−−−−−−−−−−−−−−−−−−→
	, bindingsD(D) Pr Pr : T

	 I start fn −→e (
−−→
D Pr) @ fid : start fn Aτ (

−−−→
DT T) @ fid

I-START

	 I stop fn : stop fn
I-STOP

prune(	) Pr Pr : T

	 I spawn Pr : spawn
−→
T

I-SPAWN

The type judgment for pending scripts, 	 PS PS : PST:

	 Pr Pr : T

	 PS (fid, Pr) : (fid, T)
PS-SCRIPT

The type judgment for assertion sets, π π : πτ :

πτ = {τR | u ∈ π , τR u : τR}
π π : πτ

π -SET

The type judgment for assertions, τR u : τR:

τR b : B
R-BASE

−−−−−−−→τR u : τR

τR m(−→u ) : m(−→τR )
R-TUPLE

τR u : τR

τR ? u : ? τR

R-?

The type judgment for patches, � � : �τ :

π π+ : π+
τ π π+ : π+

τ

� π+/π− : π+
τ /π

−
τ

�-PATCH

The type judgment for events, Evt Evt : Evtτ :

� � : �τ

Evt � : �τ

EVT-PATCH Evt start : start
EVT-START

Evt stop : stop
EVT-STOP

The type judgment for stores, σ σ : στ :

στ = {x 	→ τ | x 	→ v ∈ σ , · e v : τ }
σ σ : στ

σ -SET

The type judgment for substitutions, γ γ : γτ :

γτ = {x 	→ τ | x 	→ v ∈ γ , · e v : τ }
γ γ : γτ

γ -SUB
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The type judgment for transition labels, l l : lτ :

l • : • L-NONE
Evt � : �τ

l � : �τ

L-EVT
· Pr Pr : T

l Pr : T
L-SPAWN

F.2 Type-level Dataspaces

A type-level dataspace DST has nearly the same semantics as the one from Section 7, with
two modifications. First, assertions range over types τ . Second, actor behaviors are defined
in terms of facet machine types, defined above, with related metafunctions such as interpM

lifted to the type level, mutatis mutandis.

G Proof Details

The following lemmas establish that the machine transitions for actors and types are
related via typing, under certain conditions. The transitions fall roughly in the following
categories:

• initialization (Lemmas 13);
• transitions in response to an external stimulus (Lemmas 15, 16, 17); and
• transitions for performing internal work (Lemmas 18, 19).

Finally, Lemma 20 establishes that related type and term machines make related assertions.

Lemma 13 (Boot). If

• 	 Pr Pr : T
• bootPr(Pr, σ ) = 〈FT;

−→
I ;

−→
PS; π ; σ 〉

then

• bootT(T) = 〈FTT;
−→
IT ;

−→
PST; πτ ; ∅〉

• M 〈FT;
−→
I ;

−→
PS; π ; σ 〉 : 〈FTT; ST;

−→
PST; πτ ; type-store(σ )〉

Proof By induction on the type derivation and the soundness of the dispatch metafunc-
tion (Lemma 16).

Definition 14 (Store Typing).

type-store : σ −→ στ
type-store(∅) = ∅

type-store(σ [x 	→ v]) = type-store(σ )[x 	→ τ ]
where · e v : τ

In other words, initialization of related actor terms and types yields related term and
type machines.
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Lemma 15 (Matching Events). If

• e v : τ
• e u : τ ′

then matchv(v, u) = γ iff matchτ (τ , τ ′) = γτ with γ γ : γτ .

Proof By induction on the pattern type derivation.
Essentially, if a pattern matches an assertion, then the pattern’s type matches the

assertion’s type, yielding related substitutions, and vice versa.

Lemma 16 (Dispatch). If

• fid = 〈−→fn 〉
• 	 D D : DT

• 	,
−−−−−−−−−−→
fn : FacetName,bindingsD(D) Pr Pr : T

• Evt Evt : Evtτ
• π π : πτ
• π π ′ : π ′

τ

then

dispatch1(fid, D, Pr, Evt, π , π ′, σ ) = −→
PS

iff

dispatch1T(fid, DT, T, Evtτ , πτ , π ′
τ ) = −→

PST

with
−−−−−−−−−−−−−−−−−−−−−−−−→
	,

−−−−−−−−−−→
fn : FacetName PS PS : PST

Proof By induction on the type derivations. The dispatch lemma (Lemma 16) lifts to
events in general, so the term and type applications of matchD yield related substitutions.
When applied to related event-handler bodies, the related substitutions yield related scripts.

In other words, dispatching related events yields related scripts to execute.

Lemma 17 (Partial Evaluation). If 	 Pr Pr : T and safe(Pr) then p-e(Pr, σ , fid) =−→
I , σ ′ iff p-eT(T, στ , fid) = −→

IT , σ ′
τ with

−−−−−−−−→
	 I I : IT

Proof By induction on the type derivation.
That is, partially evaluating a pending script and its type yields related instructions.

Lemma 18 (Preservation). If M M : MT and safe(M) then M −→
M′ = 〈FT;

−→
I ;

−→
PS; π ; σ 〉 iff MT −→ 〈FTT;

−→
IT ;

−→
PST; πτ ; στ 〉 with

M M′ : 〈FTT;
−→
IT ;

−→
PST; πτ ; type-store(σ )〉
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Proof Following a standard approach (Wright & Felleisen, 1994), we can show that
at most one of the machine transition rules can apply. Through the application of related
lemmas, such as Lemmas 16 and 17, the updated parts of the machine state remain related
via typing.

In other words, if a term machine takes a transition, then its type can take a transition to
a related type machine, up to the type of the store. Since type machines do not manipulate
or depend on the store at all, the store from the destination term-level machine state is
translated to a new store type for the type-level.

Lemma 19 (Progress). If M M : MT either inert(M), inert(MT) or there exists

M′, M′
T such that M

l•−−→ M′ and MT
lτ •−−→ M′

T.

Proof By inspection of the machine state.

Lemma 20 (Machine Assertions). If M M : MT then

π assertions-ofM(M) : assertions-ofMT
(MT)

Proof By induction on the type derivation and via similar properties for the assertions-of
family of functions.

This establishes that related term and type machines make the same assertions.
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