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RADIOCARBON VARIATIONS FROM TASMANIAN CONIFERS: FIRST RESULTS
FROM LATE PLEISTOCENE AND HOLOCENE LOGS

MIKE BARBETTI', TREVOR BIRD?, GEORGE DOLEZAL', GILLIAN TAYLOR'
ROGER FRANCEY?®, EDWARD COOK* and MIKE PETERSON’

ABSTRACT. Dendrochronological studies have begun on two conifer species in the Stanley River area of western
Tasmania. The chronology extends to 273 BC for Huon pine (Lagarostrobos franklinii) and to AD 1450 for celery-top pine
(Phyllocladus aspleniifolius). Apart from living or recently felled trees, sections have been taken from 58 logs preserved
in floodplain sediments. Two of these logs have late Pleistocene ages, centered around 13.0 and 12.7 k *C yr Bp. Four logs
are between 8 and 9 ka BP, and one is centered at 7.3 ka BP. The remaining logs have various ages between 6.2 ka BP and
the present. '“C measurements have been performed on decadal samples from the two late Pleistocene logs, providing short
(260-yr) records of atmospheric **C variations when plotted against individual ring numbers. Decadal measurements on the
7300-yr-old log have been wiggle-matched with “C calibration curves from German oak and bristlecone pine. Measurements
for the period, AD 1600-1800, show good agreement with northern hemisphere results, and a nearly zero offset between
the hemispheres.

INTRODUCTION

Radiocarbon calibration is now well established for most of the Holocene. The differences between
tree-ring ages and conventional *C ages have been determined for the last 9700 calendar yr by
precision *C measurements on 10- or 20-ring samples, which are independently dated by dendro-
chronology (summarized by Stuiver et al. 1991). A small part of the difference occurs because **C
ages are, by international agreement, calculated using a half-life of 5568 yr, which is known to be
about 3% too short. Differences apart from this 3% reflect variations in the production rate and in
the exchange of C between oceans, atmosphere and biosphere. Most of the Holocene variation
is thought to be due to changes in the production rate; the long-term peak-to-trough change is
attributed to changes in the Earth’s magnetic field strength, which affect the cosmic-ray flux,
whereas shorter-term wiggles (with amplitudes of 100 or 200 yr) are attributed to solar modulation
of the cosmic-ray flux.

Early Holocene C data from southern Germany (Becker & Kromer 1986) are from a floating
tree-ring sequence. They show short-term wiggles, such as those seen in recent millennia, and also
a horizontal trend in the calibration curve with nearly constant “C ages (9600 BP) over several
hundred tree rings.

Southern hemisphere measurements are essential as an independent verification, and are important
because the offset from the northern hemisphere (36 yr in recent centuries; Lerman, Mook & Vogel
1970; Vogel et al. 1986) may have varied in earlier times due to changes in global carbon fluxes.

We began dendrochronological studies 10 years ago on two conifer species in the Stanley River
area of western Tasmania (145°E, 42°S; Francey et al. 1984). The chronology for Huon pine
(Lagarostrobos franklinii) has recently been extended to 273 BC. Living celery-top pine (Phyllo-
cladus aspleniifolius) trees are up to 500 yr old. We sampled logs exposed in the river banks and
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excavated in floodplain sediments between 1981 and 1984, and obtained sections from 58 well-
preserved logs. The oldest are two celery-top logs with late Pleistocene ages, centered around 13.0
and 12.7 k ™C yr BP. Four logs are between 8 and 9 ka, and one is centered at 7.3 ka BP. The
remaining logs have various ages between 6.2 ka BP and the present, but so far there are no logs
between about 3.6 and 2.6 ka.

These discoveries in western Tasmania have given us an opportunity to make selected southern
hemisphere comparisons with the 9.7 ka (dendroyear) span of 'C records obtained from northern
hemisphere bristlecone pine and European oak (Stuiver et al. 1991).

METHODOLOGY

We polished cross-sections from the logs and split them into consecutive 10-ring samples; for the
innermost and outermost parts, where the rings were narrow, we took up to 60 rings per sample.
For the time span, AD 1600-1800, we used five-ring samples where possible. We reduced the wood
samples to about 0.5 mm particle size in a cutting mill, and prepared holocellulose following the
method of Head (1979). We used standard techniques (Gupta & Polach 1985) to prepare benzene
samples (4 ml). Stable carbon isotope (*C/2C) measurements were made on subsamples of the
combustion CO, at the CSIRO Division of Atmospheric Research.

We made C measurements using Teflon vials in a low-level Wallac Quantulus counter, usually
with duplicate measurements in another counter (Wallac Rackbeta) linked to a multichannel
analyzer and microcomputer system. A third counter (Packard Tri-Carb with fixed windows) was
used for some measurements before February 1987, but most of the data were collected between
1987 and 1989. We calculated conventional **C ages using modern standard values derived from
measurements of ANU sucrose and NBS oxalic acid, but we assumed an uncertainty of = 0.1 or
+ 0.2 counts min™! for the standard, considerably larger than the typical Poisson deviation of * 0.07
counts min™ associated with an individual standard measurement. We then combined the results
from the counters, weighting them inversely by variance; age differences between the counters are
indicated by z-statistic values. Measurement uncertainties associated with our combined results
typically range from ca. + 30 yr for recent samples to ca. = 60 yr for late Pleistocene samples.

RESULTS

“C results (Table 1) from the two late Pleistocene logs provide short (260-yr) records of
atmospheric 'C variations when plotted against individual ring numbers (Fig. 1). The variations
from sample to sample are not always smooth, and may reflect a combination of experimental
uncertainties (trace levels of contamination and random measurement errors). One 'C result from
the center of SRT-462, and two from the outermost rings of SRT-157 (probably sapwood), gave
anomalously young results, which are excluded from Figure 1. The overall trend for SRT-462 is
fairly flat, and the trend for SRT-157 is downward toward the outer rings. The two logs do not
appear to overlap in time.

Results from the 7300-yr-old log SRT-444 (Table 2) can be compared with **C calibration curves
from German oak and bristlecone pine (Fig. 2). Since SRT-444 is not dated by dendrochronology,
we sought to position it by *C wiggle-matching. We estimated decadal values for German oak by
a combination of averaging (for cases of multiple measurements per decade) and interpolation (for
decades without data). Three of the SRT-444 values that did not correspond exactly to decadal
spacing were taken as representing the nearest decadal sample. We used these smoothed values and
calculated root mean square (rms) differences, moving the zero-point of the SRT-444 data in
decadal steps. The minimum rms difference occurred with ring O of SRT-444 placed at 8260 den-
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Fig. 1. “C ages from Stanley River celery-top pine logs, SRT-462 (A) and SRT-157 (B). The data.are combined results
from measurements in two liquid scintillation counters.

droyears BP. At that position, the SRT-444 data were an average of 14 yr younger than the oak
data, with an rms difference of 61 yr. We also examined the robustness of the fit by adding or sub-
tracting an arbitrary 50 or 100 yr to all the SRT-444 C data, but did not find a better fit. The
bristlecone pine data covered only part of the region of interest, and was insufficient to allow a
formal fitting procedure.

Results for the period, AD 1600-1800 (SRT-31B and SRT-225 in Table 3), indicated small syste-
matic differences between the counters. The results from Counter 3 (measured 1986/87) were
generally older than those from Counter 1, whereas the results from Counter 2 (measured 1987/88)
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were younger. The results from Counter 1 alone are therefore used in Figure 3, where they show
good agreement with the high-precision decadal data of Stuiver and Becker (1986). There are no
significant differences in phase or amplitude of the variations. However, our data are, on average,
slightly younger than the corresponding northern hemisphere data, and not older by ca. 36 yr, as
would be expected from other comparisons of northern and southern hemisphere wood (Lerman,
Mook & Vogel 1970; Vogel et al. 1986). Since the northern and southern hemisphere measure-
ments were made in different laboratories, we considered the possibility of an error in the modern
standard determination in our laboratory. Thus, two of our pretreated wood samples were sent to
Seattle for measurement; those results coincide with northern hemisphere data (Fig. 3).

DISCUSSION AND CONCLUSION

Comparisons of conventional '*C ages with results from other dating methods provide data on *C
calibration for the late Pleistocene. Uranium-thorium data have been published by Bard et al.
(1990); varve data by Stuiver (1971) and Stuiver et al. (1986); and summaries of thermolumi-
nescence data were given by Barbetti (1980) and Aitken (1987). These data are summarized in
Figure 4.
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Fig. 3. *C ages from Stanley River Huon pine trees, SRT-31B and SRT-225, for the period AD 1600-1800; Counter 1 data
only. The results are compared with the high-precision decadal curve of Stuiver and Becker (1986). Two measurements were

made on our samples by Minze Stuiver (o).
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Fig. 4. Comparison of conventional “C ages with other dating methods for part of the late Pleistocene and early Holocene.
The solid line would be the ideal relationship if conventional “C ages were always equal to true ages, and the dashed line
shows the deviation expected for the 5568-yr half-life. The U-Th data are from Bard et al. (1990), the varve data from
Stuiver (1971) and Stuiver et al. (1986), and the TL data from Barbetti (1980) and Aitken (1987). “C data from southern
Germany (Becker & Kromer 1986) are from a floating Preboreal tree-ring sequence, shown here on the assumption that
the 'C ages are, on average, 1 ka too young (i.e., ring 0 for the Preboreal pine is tentatively placed at 9031 BC or 10,980
BP). The Stanley River data from SRT-462 and SRT-157 are shown here on the assumption that “C ages are 2 ka too

young.
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Virtually all data indicate that *C ages are younger than true ages during the late Pleistocene, with
probable differences ranging from 2.6 ka at 15 ka BP to 0.9 ka at 10 ka BP (Stuiver et al. 1991).

14C data from the Stanley River and from German Preboreal pine (Fig. 4) show trend changes on
a time scale of 1 or 2 centuries, such as those seen throughout the Holocene. The Preboreal data
also show a plateau in the calibration curve with nearly constant 14C ages (9600 BP) over several
centuries in early Holocene time.

Tasmanian C data from SRT-444 have been wiggle-matched with German oak data. With ring
0 of the oak data at 7230 BC (Kromer et al. 1986), our match places ring O of SRT-444 at 8260
dendroyears BP. With that match, our data appear to be slightly, but not significantly, younger than
the northern hemisphere data.

Our data from the southern hemisphere for the period, AD 1600-1800, also indicate little or no
offset in “C concentration when compared with northern hemisphere data. These minimal apparent
offsets, at around 8.1 k dendroyears BP, and again, in recent centuries, would provide an important
constraint on global carbon models if confirmed by further measurements.

Detailed intercomparisons with other laboratories are being planned, and it should be possible
eventually to estimate precisely the offset between the northern and southern hemispheres during
early and mid-Holocene time.
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