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Abstract 

Commercializing targeted sprayer systems allows producers to reduce herbicide inputs but risks 

the possibility of not treating emerging weeds. Currently, targeted applications with the John 

Deere system allow for five spray sensitivity settings, and no published literature discusses the 

impact of these settings on detecting and spraying weeds of varying species, sizes, and positions 

in crops. Research was conducted in AR, IL, IN, MS, and NC in corn, cotton, and soybean to 

determine how various factors might influence the ability of targeted applications to treat weeds. 

These data included 21 weed species aggregated to six classes with height, width, and densities, 

ranging from 25 to 0.25 cm, 25 to 0.25 cm, and 14.3 to 0.04 plants m
-2

, respectively. Crop and 

weed density did not influence the likelihood of treating the weeds. As expected, the sensitivity 

setting alters the ability to treat weeds. Targeted applications (across sensitivity settings, median 

weed height and width, and density of 2.4 plants m
-2

) resulted in a treatment success of 99.6% to 

84.4%, 99.1% to 68.8%, 98.9% to 62.9%, 99.1% to 70.3%, 98.0% to 48.3%, and 98.5% to 55.8% 

for Convolvulaceae, decumbent broadleaf weeds, Malvaceae, Poaceae, Amaranthaceae, and 

yellow nutsedge, respectively. Reducing the sensitivity setting reduced the ability to treat weeds. 

Size of weeds aided targeted application success, with larger weeds being more readily treated 

through easier detection. Based on these findings, various conditions could impact the outcome 

of targeted multi-nozzle applications. Additionally, the analyses highlight some of the parameters 

to consider when using these technologies.  

Nomenclature: Amaranthaceae; Convolvulaceae; Malvaceae; Poaceae; yellow nutsedge, 

Cyperus esculentus L.; corn, Zea mays L.; cotton, Gossypium hirsutum L.; soybean, Glycine max 

(L.) Merr. 

Keywords: Palmer amaranth, waterhemp, targeted spray, machine vision, John Deere, nominal 

logistic regression, See & Spray  
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Introduction 

Weeds often emerge in clumps or patches throughout a field, creating an opportunity for 

site-specific management in these localized regions, reducing overall inputs in specific 

production systems (Cardina et al. 1997; El Jgham et al. 2023; Metcalfe et al. 2019; Rew and 

Cousens 2001; Sapkota et al. 2020; Stafford and Miller 1993; Wiles et al. 1992). Spray systems 

to detect emerged weeds on bare soil (i.e. green-on-brown) have been used for several decades in 

fallow systems (Felton & McCloy 1992; Haggar et al. 1983). However, recent technological 

advancements have enabled the development of foliar application systems to discern between the 

crop plant and emerged weeds (i.e. green-on-green). Despite several years of research developing 

targeted sprayers, limited processing capability, intermingling and occlusion of weeds and crops, 

and plasticity of weeds across environments create a challenging situation for highly accurate 

and efficient machine vision technology (Fernandez-Quintanilla et al. 2018; Franz et al. 1991; 

Munier-Jolain et al. 2014). However, technologies such as Greeneye™ (Greeneye Technology, 

Lincoln, NE, USA) and See & Spray™ (Deere & Company, Moline, IL, USA) are becoming 

more common, offering machine vision technologies that target-apply herbicides through 

simultaneous detection and action (Khait et al. 2023; Padwick et al. 2023; Walter and Houis 

2024). The recent commercial development of targeted sprayer technologies provides an 

opportunity to reduce herbicide inputs through targeted applications, specifically to weeds, rather 

than broadcasting over the entire field.  

Weed control is vital in almost all cropping systems to sustain the increasing food and 

fiber demand across the globe. Herbicides are practical and economical for controlling weeds 

and have been utilized extensively since the 1960s (Gianessi and Reigner 2007). However, the 

overreliance on herbicides and lack of integrated tactics have driven widespread herbicide 

resistance (Heap 2024; Norsworthy et al. 2012). If machine vision technologies are not 

optimized for maximum efficacy, these systems may accelerate herbicide resistance evolution by 

missing weeds at susceptible growth stages, resulting in larger-than-recommended sizes at later 

applications or low-dose exposure from partial coverage (Hearn 2009; Norsworthy et al. 2012; 

Villette et al. 2021).  

Field research is needed to evaluate commercial machine vision technologies in corn, 

cotton, and soybean to improve system efficiency and avoid unintended impacts of targeted 
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sprays. Existing research has reported comparable Palmer amaranth control from targeted and 

broadcast applications in corn and soybean with the Greeneye and John Deere systems (Leise et 

al. 2025), with broadcast and targeted applications providing similar Palmer amaranth control 

between 94% and 99%. Other research has demonstrated that targeted applications performed 

similarly to a broadcast for Palmer amaranth, morningglory (Ipomoea spp.), purslane (Portulaca 

spp.), and broadleaf signalgrass [Urochloa platyphylla (Munro ex C. Wright) R.D. Webster] 

control within a program approach (Avent et al. 2024). However, both sources noted that a range 

of sensitivity settings are available for targeted applications with John Deere sprayers and could 

influence the results observed.   

John Deere utilizes computer vision and deep learning to perform simultaneous detection 

and action (Fu et al. 2022; Padwick et al. 2023). The detection algorithm classifies individual 

pixels in images as either weeds, crops, or neither. Technically, the algorithm predicts the 

probability of being one of these classes using several observed variables, called predictors. Such 

probabilities are then turned into an actual predicted class using decision thresholds (James et al. 

2021). With machine vision, the threshold to classify a weed could be adjusted and ultimately 

affect performance, which is mentioned in patents held by Blue River Technology (Fu et al. 

2022; Padwick et al. 2023; Redden 2023; Venkataraju et al. 2023). Once a weed is detected, the 

processors determine where the weed is and activate any nozzle body where droplets from the 

nozzle tip can contribute to the area deemed a weed based on the specific nozzle tips and 

position in three-dimensional space at the time of activation. 

John Deere targeted sprayers provide a setting called “spray sensitivity,” which consists 

of five levels: lowest, low, medium, high, and highest. Spray sensitivity adjusts the decision 

threshold for detecting a weed (Lazaro et al. 2024; Patzoldt et al. 2022), which could also be 

subject to change with software updates. Plant reflectance and architecture are considered 

predictors, providing a predicted probability (Fu et al. 2022; Padwick et al. 2023), which must 

then exceed the decision threshold to be classified as a weed (Redden 2023). Therefore, different 

colors, species, sizes, and positions of weeds in crops could be more difficult to detect than 

others. Targeted applications are currently supported in fallow, soybean, corn, and cotton, with 

different algorithms (i.e., models) for detecting weeds. The objective of these experiments was to 
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determine to what extent selected factors (spray sensitivity, weed size, weed position, weed 

species, and crop) influence the likelihood of treating weeds with targeted applications.   

Materials and Methods 

 The experiment was conducted using a randomized complete block design with two 

factors and four replications. Factor A consisted of application timing: 14, 21, or 28 days after 

planting (DAP). Factor B included the application method: broadcast and three detection 

sensitivity settings: highest, medium, and lowest corresponding to internal algorithm threshold 

levels of 0.4, 0.7, and 0.9, respectively. Nontreated, preemergence (PRE)-only, and hand-weeded 

controls were added for comparisons but are not included in this analysis. Each experiment was 

conducted in corn, cotton, and soybean across various sites in 2022 (Table 1). Corn experiments 

were conducted in Champaign, IL; West Lafayette, IN; and Greenville, MS. Cotton experiments 

were performed in Kinston, NC; Keiser, AR; and Greenville, MS. Lastly, soybean experiments 

were established in Champaign, IL; West Lafayette, IN; Greenville, MS; Keiser, AR; and 

Kinston, NC. 

 Each soybean and cotton experiment was planted to a glyphosate- and glufosinate-

resistant cultivar at regionally recommended seeding rates in fields containing a natural 

population of weeds (Table 1). Corn hybrids were at least glyphosate-resistant and planted into 

natural weed populations at regionally recommended seeding rates. The corn experiments 

utilized labeled rates of S-metolachlor + atrazine + paraquat PRE followed by (fb) atrazine + 

mesotrione + glyphosate + S-metolachlor postemergence (POST) (Table 2). The soybean 

herbicide program included S-metolachlor + metribuzin + paraquat PRE fb glufosinate + S-

metolachlor early POST (EPOST) fb glufosinate + acetochlor mid-POST (MPOST). The cotton 

herbicide program was the same as the soybean program, with the exception being the herbicide 

program used fluometuron rather than metribuzin PRE. Corn experiments did not have 

sequential POST applications, but soybean and cotton received MPOST applications 14 days 

after EPOST applications. All POST treatments also included NIS (Preference, Winfield United, 

Arden Hills, MN, USA) at 0.25% (v/v). To indicate whether weeds were treated or not, POST-

active herbicides included blue dye (Super Signal Blue, Precision Labs LLC, Kenosha, WI, 

USA) at 0.25% (v/v). Cultural practices and soil information, including planting dates, soil series 
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and textures, and row widths can be found in Table 1. All plots were 3.8 m wide and 29.5 m to 

32.8 m long.  

 The sprayer utilized in the studies was previously described by Avent et al. (2024) as a 

dual-boom targeted sprayer engineered by Blue River Technology and was mounted to the front-

end loader of a tractor. Ten nozzle bodies were spaced 38.1 cm apart. All treatments were made 

utilizing the dual boom system capable of applying both broadcast and targeted applications in 

the same pass.   At the PRE application timing, broadcast treatments used PSLDMQ2003 (Deere 

& Company, Moline, IL, USA) nozzle tips calibrated to deliver 140 L ha
-1

 of water. 

Preemergence targeted applications were made using SF4003 nozzles (Greenleaf Technologies, 

Covington, LA, USA) calibrated to deliver 140 L ha
-1

 of water and placed in a prototype cap that 

inclined the nozzle tip rearward at 30-degrees.  

Postemergence treatments included the soil residual herbicides S-metolachlor or 

acetochlor applied through the broadcast boom with AIXR11002 (TeeJet Technologies, Glendale 

Heights, IL) nozzles calibrated to deliver 97 L ha
-1

 of water. In contrast, the foliar-active 

herbicides, glufosinate and mesotrione + atrazine + glyphosate, were sprayed through the 

targeted application boom. Glufosinate in cotton and soybean experiments was applied with 

PS3DQ0004 nozzles (Deere & Company, Moline, IL, USA) all orientated toward the rearward 

position and calibrated to deliver 140 L ha
-1

 of water. Corn experiments with applications of 

mesotrione + atrazine + glyphosate utilized PSLDMQ2003R4 nozzles (Deere & Company, 

Moline, IL, USA) all orientated to the rearward position and calibrated to deliver 140 L ha
-1

 of 

water.     

Nozzles were selected based on droplet spectrum and characterization requirements for 

targeted applications (Gizotti de Moraes et al. 2024). Broadcast treatments contained foliar-

active and residual herbicides in the same tank and were applied using the same nozzles as the 

targeted herbicide applications, but in the standard configuration for broadcast applications 

(Supplementary Figure 1). For example, the PS3DQ0004 nozzles were alternated on the boom to 

create a twin-fan pattern and the PSLDMQ2003 nozzles tips were orientated straight down. 

While the different nozzle orientations could impact spray particle coverage, the different 

orientations should not impact the ability to hit a weed (Ferguson et al. 2016). 
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Individual plant data 

Before each POST application, weeds were marked with numbered wooden stakes in 3.3 

m increments, traversing with the rows. Stakes were placed perpendicular to the direction of 

travel and at an angle to avoid blocking the camera view of each weed. Additionally, stake color 

(natural wood, orange, and red) was tested before application to ensure the stake did not trigger 

applications, and varying sites used different colors. The goal was to mark at least ten plants in 

the area; if ten weeds did not occur within the first 3.3 m, an additional 3.3 m was marked. Areas 

of interest were only within the center furrow to avoid wheel tracks and could be as long as the 

entire plot (29.5 m to 32.8 m). Each weed was recorded for species, height, width, and position 

relative to the crop (in-row or between rows). The position of the weed was classified as “in-

row” if the weed was within or beneath the crop canopy. Otherwise, it was denoted as “between 

rows.”  The success of treating a weed was determined immediately after application by the 

presence or absence of blue dye on the plant: “yes” or “no,” respectively.   

Data preprocessing 

A data column was created for each plot, dividing the number of weeds by the length of 

the area of interest to estimate weed density since some weeds could have been treated due to the 

presence of neighboring, larger weeds from multi-nozzle activation. Other predictors included 

crop (corn, cotton, or soybean), application timing, and sensitivity setting. In the results, the 

detection algorithm decision threshold will be referenced back to the 2022 sensitivity settings for 

clarity and consistency. A decision threshold set at 0 was tested and confirmed that targeted 

applications would broadcast the entire area, so broadcast applications were 0 for the decision 

threshold predictor. Lowest, medium, and highest sensitivity settings were set to the 

corresponding decision thresholds (0.9, 0.7, and 0.4, respectively). Continuous predictors 

included weed height, weed width, weed density, and decision threshold, while application 

timing, crop, weed aggregate class, and weed position relative to the crop were considered 

categorical predictors.   

Across all sites and crops, 7,971 weeds were marked and recorded as treated or missed, 

but some species had too few observations to characterize the relationship or were never missed. 

The weeds with too few observations included common cocklebur (Xanthium strumarium L.), 

honeyvine swallowwort [Cynanchum laeve (Michx.) Pers.], Carolina horsenettle (Solanum 
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carolinense L.), and sicklepod [Senna obtusifolia (L.) H.S. Irwin & Barneby]. All weeds > 25.4 

cm (height and width) were never missed or killed, so these observations were excluded. Weeds 

were aggregated into specific groups to preserve as many observations as possible (Table 3). All 

grasses were grouped into Poaceae. Three morningglory species were combined into 

Convolvulaceae. Palmer amaranth and waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer] 

became Amaranthaceae. Yellow nutsedge (Cyperus esculentus L.) remained individually. Prickly 

sida (Sida spinosa L.) and velvetleaf (Abutilon theophrasti Medik) were combined to Malvaceae. 

Lastly, decumbent broadleaves included carpetweed (Mollugo verticillata L.), curly dock (Rumex 

crispus L.), dandelion (Taraxacum officinale L.), horse purslane (Tranthema portulacastrum L.), 

and wild radish (Raphanus raphanistrum L.). A total of 21 different weeds were classified into 

six distinct groups. All other weeds were excluded from the analysis due to not occurring in two 

or more experimental sites or having never been missed. A total of 7,164 observations remained 

in the dataset (Table 4).  

Data analysis 

The analysis did not include the experimental site as a predictor to infer how targeted 

multi-nozzle applications performed across all locations. Additionally, application timing was not 

considered since this factor was implemented in the experimental design for whole plot 

comparisons and ultimately generated varying weed sizes and densities. Some weeds survived 

the EPOST application and were present at MPOST. These weeds were staked again for the 

sequential application, but injured weeds were not readily missed (visual observation). All other 

predictors were included in the analysis as one-way effects in the interest of parsimony. The 

response was a proportion of the weeds hit and is represented by   , which ranges between 0 and 

1. To link the proportion of treated weeds to the predictors, a logistic regression model (Eq. 1) 

was used, 

   
  
 

    
 
                                  

 
      

       
       

       
        

        
        

  [1] 

where Xi1, Xi2, Xi3, and Xi4 is the ith observation of decision threshold, weed width, weed height, 

and weed density, respectively, with           . The variables   
 
,    

 , and    
  are binary 

dummy variables corresponding to the categorical predictors: weed position, crop, and 

aggregated weed species, respectively. The variables are explained as follows: 
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   if the weed position is in-row and 0 otherwise. 

    
    if the crop is corn and 0 otherwise. 

    
    if the crop is cotton and 0 otherwise. 

    
    if the aggregated weed species is decumbent broadleaf and 0 otherwise. 

    
    if the aggregated weed species is Malvaceae and 0 otherwise. 

    
    if the aggregated weed species is Poaceae and 0 otherwise. 

    
    if the aggregated weed species is Amaranthaceae and 0 otherwise. 

    
    if the aggregated weed species is yellow nutsedge and 0 otherwise. 

In Equation 1,    is the coefficient of the jth predictor or dummy variable, which captures the 

average change in the log-odds to treat a weed (left hand side of Equation 1) when the value of a 

predictor changes (James et al. 2021; Medard 2002). The estimation of the coefficients was done 

using the standard maximum likelihood estimation method. 

Likelihood ratio tests were used to measure the overall significance of the predictors 

(James et al. 2021). A variable was deemed significant at α ≤ 0.05. Odds ratios with Wald tests 

were utilized for pairwise comparisons within the categorial predictors. Odds ratios are 

uncommon in weed science research (Menard 2002). In layman’s terms, the odds of treating one 

scenario are compared to the odds of another scenario, while holding all other predictors 

constant, and if the ratio has 95% confidence interval including 1, then the two scenarios are 

similar. A value less < 1 indicates a reduction in the odds to treat a weed while a value > 1 

indicates an increase. For continuous predictors, 95% confidence intervals were generated to 

visualize the estimated effects. The data analysis was performed using the ‘fit model’ platform of 

JMP Pro version 18.0 (SAS Institute, Cary, NC) with a generalized regression personality.   

Interpreting the model 

There are a range of responses depending upon the different predictors, and context is 

needed when stating a specific response in multivariate analyses. For clarity, predicted responses 

to aid in discussion will include specific scenarios considering the other predictors and the 

median height and width of each species (Table 3). Equation 1 can be used in combination with 

the parameter estimates to calculate the likelihood of treating a weed (Supplementary Table 1). 

Figures were generated for each aggregate weed class using the median height and width of the 
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specific weed class except in cases where the figures use height or width as the independent 

variable. Additionally, the figures use the intercept for the categorical predictors, which are 

specific to between soybean rows.  

Results and Discussion 

Initial observations 

If weeds were always treated, there is no variance in the response, and the data do not 

provide a contribution to the analysis. Additionally, if there are too few observations, the 

parameter estimate is biased and may not accurately portray the relationship (Menard 2002). To 

that end, some weed species had to be excluded from the analysis, despite occurring in multiple 

experimental sites, because the effects that impacted the ability to treat weeds with sufficient 

observations could not be accurately determined. Common cocklebur was never missed, with 52 

observations. The other species that did not have enough data to determine the likelihood of 

treatment included: honeyvine swallowwort, with three misses in 65 observations, Carolina 

horsenettle, with one miss in 41 observations, and sicklepod, with two misses in 27 observations. 

Unfortunately, there were insufficient observations for these species, resulting in biased 

parameter estimates and the need to be excluded.   

Based on the likelihood ratio tests, the most significant predictor for treating a weed was 

the decision threshold (Table 5), with a likelihood ratio χ2 = 750.5. In order of importance, other 

significant predictors included aggregate weed species, weed width, weed position (in-row or 

between rows), and weed height. Weed density and the crop were not significant according to the 

likelihood ratio tests, and did not influence the likelihood of treating a weed. Decision threshold 

(sensitivity setting) is the most important predictor, which is unsurprising because this setting 

dictates that weeds are classified as such. The weed width also appears to drive the predictions 

more than height, which is likely due to the orientation of the cameras being angled downwards 

and collinearity between weed height and width (r = 0.727). The decision to leave height and 

width in the model despite collinearity is due to the width being more relevant for the detection 

algorithm. However, height is more practical for applicators who measure height, not width, 

before herbicide applications. 
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Differences among aggregate species, weed position, and crop to treat weeds 

Targeted applications (across sensitivity settings, median weed height and width, and 

density of 2.4 plants m
-2

) resulted in a treatment success of 99.6% to 84.4%, 99.1% to 68.8%, 

98.9% to 62.9%, 99.1% to 70.3%, 98.0% to 48.3%, and 98.5% to 55.8% for Convolvulaceae, 

decumbent broadleaf weeds, Malvaceae, Poaceae, Amaranthaceae, and yellow nutsedge, 

respectively (data not shown). On average, Convolvulaceae and decumbent broadleaf weeds 

were among the easiest to target (Table 6). These two aggregate classes would have a high 

groundcover percentage (Bryson and DeFelice 2009), lending to assumed easier detection with 

downward-oriented cameras (Lazaro et al. 2024). Yellow nutsedge was more difficult to control 

than all other aggregate species when using comparable sensitivity settings, which is 

unsurprising due to thin leaves and upright architecture (Bryson and DeFelice 2009), which 

suggests different machine settings would be required to increase the probability of treating this 

species. Alternatively, applicators could consider broadcasting an effective foliar-active herbicide 

along with targeted applications to improve control of specific species, such as yellow nutsedge.  

Some species may require special attention when considering settings to target-apply 

herbicides, such as those from the Amaranthus genus. Palmer amaranth and waterhemp have 

many reported herbicide resistance cases (Carvalho-Moore et al. 2022; Evans et al. 2019; Foster 

and Steckel 2022; Heap 2024; Randell-Singleton et al. 2024). Other research has also 

demonstrated that young waterhemp and Palmer amaranth can grow up to 16.8 and 29 cm per 

week, respectively (Heneghan and Johnson 2017; Spaunhorst et al. 2018). Applicators utilizing 

targeted applications cannot afford to miss small Amaranthus species, which could be 

uncontrollable within a week after application.  

Regarding weed position, odds ratios indicated that weeds were more easily treated 

between rows (96.1%) versus within the crop rows (94.9%), averaged over all other predictors 

(Table 6). The higher success rate for weeds between rows was expected since weed occlusion 

by intermingling plant parts has already been reported for weed detection by Franz et al. (1991) 

and herbicide coverage by Creech et al. (2018). However, targeted applications in this research 

were performed while the machine traversed with the rows, rather than at an angle against the 

rows. The results could be more severe if performing applications at an angle, which could more 
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readily occlude weeds. Additionally, the lack of differences between the three crops evaluated 

indicates that the different detection algorithms performed similarly. 

Differences in treating weeds among sensitivity settings, weed size, and weed density 

To reiterate, the continuous decision thresholds of 0.4, 0.7, and 0.9 corresponded to the 

highest, medium, and lowest spray sensitivities in 2022, respectively. Broadcast applications 

were set at a 0 decision threshold, and applications at this setting confirmed uniform deposition 

across the area (100% area sprayed). Figure 1 utilizes the median height and width of each 

aggregate weed class for visualization of the decision threshold and is not intended to compare 

the different weed classes. On average, the range odds ratio (probability of a hit at 0 versus the 

probability of a hit at 0.9) is 0.0192 for the range of decision thresholds, indicating a decrease in 

the odds to treat a weed with decreasing sensitivity levels. Interestingly, the standard error for the 

likelihood to treat a weed also increased with the decision threshold from 0 to 0.9. The increase 

in the standard error demonstrates the uncertainty associated with changes in the sensitivity 

setting.  

The fact that lower sensitivity settings (increasing decision thresholds) reduces the ability 

to treat weeds is concerning since producers will be inclined to reduce the area sprayed for better 

herbicide savings or potential Environmental Protection Agency herbicide mitigation points 

(Anonymous 2024b). However, understanding these dynamics coupled with weed sizes can 

broaden the utility of targeted applications. If operators intend to mimic a broadcast treatment 

with targeted applications, the highest sensitivity setting (decision threshold 0.4) could maximize 

weed control success with targeted multi-nozzle applications. Alternatively, the low sensitivity 

setting (decision threshold 0.9) is not intended for typical applications. The low sensitivity 

setting makes the most sense when producers want to target only large weeds: 1) volunteer crops, 

2) dual-boom applications with a standard rate in the broadcast tank and a spiking dose in the 

targeted tank, 3) application of multiple herbicides where one is broadcasted for small weeds and 

the targeted herbicides aid control of larger weeds (e.g., glufosinate broadcast and 2,4-D targeted, 

or atrazine broadcast and mesotrione targeted). Future research should evaluate the efficacy and 

economics of these scenarios to aid in the utility of targeted sprayers. 

Both weed height and width positively influenced the ability to treat weeds with targeted 

applications (Figures 2 and 3). Averaged over all other predictors, both height and width had unit 
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odds ratios (1 cm increments) of 1.07 and 1.15, respectively, meaning increases in either 

predictor result in increasing the odds to treat a weed. One of the primary limitations of a one-

way analysis is not being able to ascertain the effects in combination with other main effects. 

However, when considering the Amaranthaceae aggregate class at an averaged medium spray 

sensitivity (decision threshold 0.7) and weed density of 2.4 plants m
-2

, the probability of treating 

a 2.5 cm plant (height and width) was 0.69 to 0.84 based on 95% confidence intervals. Increasing 

the same weed size to 5 cm resulted in likelihoods to treat from 0.75 to 0.87 based on 95% 

confidence. Additionally, since width appears to drive the likelihood of treating weeds over 

height (Table 5), scouting practices prior to targeted herbicide applications should consider weed 

width when providing recommendations on the selection of sensitivity settings to achieve a 

desired result. However, this information would be in addition to plant height, which is the 

primary consideration for herbicide product labels. 

When considering the combination of sensitivity setting, weed size, and weed species, the 

herbicide being applied also requires consideration. For example, field applications of 

glufosinate formulations require a minimum of 7, 10, and 5 days between sequential applications 

for corn, cotton, and soybean, respectively (Anonymous 2023). In addition to the reapplication 

restriction, if producers are applying a sequential POST, the general recommendation is to apply 

14 d later (Barber et al. 2025). If weeds are missed while small, some could experience rapid 

growth between sequential applications, and weeds larger than 8 cm would likely be poorly 

controlled (Priess et al. 2022). Therefore, when treating small weeds, applicators should utilize a 

higher sensitivity setting (lower decision threshold) to maximize herbicide coverage and weed 

control, which provided 91.1% likelihood to treat Amaranthaceae weeds 2.5 cm tall and wide 

between soybean rows. The same scenario, but changed to a medium or lowest sensitivity 

setting, treated Amaranthaceae weeds 73.3% and 53.2% of the time, respectively. 

Previous research has indicated that high weed densities could impact the ability of 

machine vision technologies to detect weeds in crops (Jgham et al. 2023; Franz et al. 1991). 

However, based on the results from this analysis, density did not appear to impact the likelihood 

of treating weeds (Table 5 and Figure 4). Even if some weeds were occluded, targeted multi-

nozzle applications appeared to compensate by treating adjacent, detected weeds. However, this 

experiment did not directly evaluate detection performance or quantify spray coverage across the 
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swath of activated nozzles. Other research simulating nozzle densities in turfgrass demonstrated 

that lower nozzle densities (wider nozzle spacings) generated higher false hits, meaning areas 

where weeds were undetected were sprayed (Petelewicz et al. 2024). In this research, targeted 

applications occurred through multi-nozzle activation with ≥100-degree nozzles (Gizotti de 

Moraes 2024), which likely inflated the likelihood to treat weeds through “false hits”. Weeds 

may have been present and adjacent to detectable weeds, but not actually detected by the 

machine vision algorithm. Narrower nozzle angles or single nozzle activating systems could 

increase the likelihood of missing weeds, and further research is needed to evaluate these 

concerns and quantify spray deposition at the edge of activated tapered nozzles.  

Overall, if an operator treats a field of difficult-to-detect or small weeds, spray 

sensitivities should be higher to maximize detection and targeted application success. Currently, 

the user interface displays a scale from lowest to highest spray sensitivity and does not provide 

any metric on the likelihood or actual weed size or the decision threshold (Anonymous 2024a). 

An alternative solution could utilize data from these experiments and allow the operator to select 

a weed size (height or width), allowing the threshold to change to a setting that achieves > 0.90 

probability of treating a specific weed class. However, one limitation of this analysis is the 

inability to look at specific crop and weed interactions. Future research should explore the effects 

of certain weed species within individual crops. Another consideration is that model updates are 

and will be continuous in the future, which means performance results may vary among model 

releases. Lastly, this research investigating targeted applications was conducted with a specific 

technology. Other systems that utilize individually activated, even-fan nozzles may perform 

differently than the technology evaluated here due to differing machine vision algorithms, 

sprayer speeds, nozzle orientations, etc.  

Practical Implications 

The research here highlights the ability of targeted applications to treat problematic weed 

species. Small weeds will always be difficult to detect and treat regardless of the detection 

system since successful targeted applications depend on both the ability to detect and apply 

herbicides. Even broadcast applications to small weeds can be difficult to provide adequate 

droplet coverage with some combinations of nozzle tips and carrier volumes. Regardless, 

continued advancements and improvements in targeted spray technology, such as camera 
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resolution, boom stability, and detection algorithms should improve the ability to manage small 

weeds. The results also indicate that weed position (between or in crop row) and the subsequent 

occlusion of weeds did not influence the ability to spray weeds with targeted applications. These 

data highlight which aggregate species classes are problematic and allow targeted collection 

efforts to improve the training dataset used to develop the detection algorithm (Figure 5). 

Additionally, John Deere has made updates to the system since 2022 and these results may 

underestimate current system performance.  

The analysis could optimize spray sensitivity selection so operators can select the 

appropriate spray sensitivity. Currently, producers or operators do not know the decision 

threshold corresponding to the spray sensitivity level options in the sprayer display. The 

corresponding decision thresholds are also subject to change based on performance or savings 

from internal testing within each year. More transparency is needed to allow applicators to make 

an informed decision when selecting the sensitivity level for a targeted herbicide application. 

Otherwise, failures could occur more frequently, or additional applications may be needed to 

control problematic weed species adequately. However, the observed data collected across all 

experimental sites could be utilized to optimize the applicator settings. 
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Table 1. Site specific information of each crop and cultural practices in 2022. 

Crop Site Planting 

date 

Cultivar Population Row 

spacing 

Soil series 

    seeds ha
-1

 cm  

Corn Champaign, 

IL 

Jun-09 G12S75-5122 84,000 76.2 Drummer 

silty clay 

loam 

 West 

Lafayette, IN 

Jun-01 DKC56-65 79,100 76.2 Drummer 

silty clay 

 Greenville, 

MS 

May-17 P2057VYHR 86,500 96.5 Commerce 

silt loam 

Soybean Champaign, 

IL 

May-31 AG33XF2 345,900 76.2 Flanagan silt 

loam 

 West 

Lafayette, IN 

Jun-09 AG29XF1 345,900 76.2 Chalmers 

silty clay 

 Keiser, AR Jun-05 B4885XF 345,900 96.5 Steele loamy 

sand 

 Greenville, 

MS 

Jun-01 AG48XF2 358,300 96.5 Commerce 

silt loam  

 Kinston, NC Jun-27 AG48XF0 296,500 76.2 Johns sandy 

loam 

Cotton Keiser, AR May-17 DP2020B3XF 108,700 96.5 Sharkey-

Steele 

complex 

 Greenville, 

MS 

May-21 ST4990B3XF 111,200 96.5 Commerce 

silt loam 

 Kinston, NC Jun-12 DP2127B3XF 98,800 76.2 Johns sandy 

loam 
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Table 2. Herbicide program for the experiments
ab

 

 Corn  Soybean  Cotton 

Timing Herbicide Rate  Herbicide Rate  Herbicide Rate 

 
 

g ai/ae 

ha
-1

 
  

g ai/ae 

ha
-1

 
  

g ai/ae 

ha
-1

 

PRE 
S-metolachlor 1,750  

S-

metolachlor 
1,550  S-metolachlor 1,390 

 atrazine 2,250  metribuzin 370  fluometuron 1,120 

 paraquat 716  paraquat 716  paraquat 716 

EPOST 
S-metolachlor 1,400 

 S-

metolachlor 
1,390 

 
S-metolachlor 1,390 

 mesotrione 105  glufosinate 657  glufosinate 657 

 atrazine 674       

 glyphosate 1,260       

MPOST    acetochlor 1,260  acetochlor 1,260 

    glufosinate 657  glufosinate 657 

a
 Abbreviations: EPOST, early-postemergence; MPOST, mid-postemergence; PRE, 

preemergence 

b
 Herbicide sources: Acetochlor, Warrant, Bayer Crop Science, St. Louis, MO; Atrazine, Atrazine 

4L, Drexel Chemical Company, Memphis, TN; fluometuron, Cotoran 4L, ADAMA, Raleigh, 

NC; glufosinate, Noventa, BASF corporation, Research Triangle Park, NC; glyphosate, Roudnup 

PowerMAX 3, Bayer Crop Science; mesotrione, Callisto, Syngenta Crop Protection, LLC, 

Greensboro, NC; metribuzin + S-metolachlor, Boundary 6.5 EC, Syngenta Crop Protection, 

LLC; S-metolachlor, Dual Magnum, Syngenta Crop Protection, LLC; paraquat, Gramoxone SL, 

Syngenta Crop Protection, LLC 

 

  

https://doi.org/10.1017/wet.2025.36 Published online by Cambridge University Press

https://doi.org/10.1017/wet.2025.36


 

  

Table 3. List of aggregate weeds and number, median height and width, and common name 

within each class after preprocessing the dataset.
a 

Aggregate species n Height Width Common name 

  ------ cm ------  

Convolvulaceae (2,446) (3.8) (5.1)  

 2,199 3.8 5.1 pitted morningglory 

 200 1.9 2.5 ivyleaf morningglory 

 47 5.1 10.2 tall morningglory 

Amaranthaceae (2,149) (1.9) (2.5)  

 1,985 1.5 2 Palmer amaranth 

 164 3.8 4.1 waterhemp 

yellow nutsedge (956) (7.6) (8.3) - 

     

Poaceae (614) (3.2) (5.1)  

 24 2.5 2.5 barnyardgrass 

 9 1.9 11.4 bermudagrass 

 216 2.5 3.2 broadleaf signalgrass 

 14 5.1 5.1 fall panicum 

 174 5.7 7.6 giant foxtail 

 94 7.6 7.6 goosegrass 

 81 1.3 1.3 large crabgrass 

 2 11.4 7.0 yellow foxtail 

Malvaceae (504) (1.3) (1.5)  

 387 1.0 1.0 prickly sida 

 117 3.2 6.4 velvetleaf 

Decumbent broadleaf (495) (1.3) (1.3)  

 366 1.3 1.3 carpetweed 

 1 7 19 curly dock 

 4 5.1 7.6 dandelion 

 119 1.3 5.1 horse purslane 

 5 5.1 10.2 wild radish 
a
 Observations, heights and widths in parenthesis correspond to the aggregate species. 
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Table 4. Weeds evaluated and experimental sites.
a
 

Common name Genus Species Authority Sites 

barnyardgrass Echinochloa crus-galli (L.) P. Beauv AR, IN, MS 

Bermudagrass Cynodon dactylon (L.) Pers. NC, SRD 

broadleaf 

signalgrass 

Urochloa platyphylla (Munro ex C. Wright) 

R.D. Webster 

AR, NC, 

MS 

carpetweed Mollugo verticillata L. IN, NC 

curly dock Rumex crispus L. AR 

dandelion Taraxacum officinale F.H. Wigg. IN 

fall panicum Panicum dichotomiflorum Michx. NC 

giant foxtail Setaria faberi Herrm. IL, IN 

goosegrass Eleusine indica (L.) Gaertn NC 

horse purslane Tranthema portulacastrum L. AR, NC, 

MS  

ivyleaf 

morningglory 

Ipomoea hederacea Jacq. AR, NC, 

MS 

large crabgrass Digitaria sanguinalis (L.) Scop. AR, NC, 

MS 

Palmer amaranth Amaranthus palmeri S. Watson AR, IL, 

NC, MS 

pitted 

morningglory 

Ipomoea lacunosa L. AR, IL, IN, 

NC, MS 

prickly sida Sida spinosa L. AR, IL, 

NC, MS 

tall morningglory Ipomoea purpurea (L.) Roth NC 

velvetleaf Abutilon theophrasti Medik IL, IN, NC 

waterhemp Amaranthus tuberculatus (Moq.) J.D. Sauer IL, IN 

wild radish Raphanus raphanistrum L. NC 

yellow foxtail Setaria faberi Herm. IN 

yellow nutsedge Cyperus esculentus L. IN, MS 
a
 Names and authorities are from the WSSA composite list of weeds since not all names are 

present in the USDA plants database (https://wssa.net/weed/composite-list-of-weeds/)
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Table 5. Likelihood ratio effect summary for the logistic regression of weeds treated. 

Effect DF χ2 P > χ2 

Decision threshold (sensitivity settings) 1 750.50 < 0.0001 

Aggregate weed species 5 211.60 < 0.0001 

Weed width 1 56.492 < 0.0001 

Weed position (in-row or between-row) 1 9.8209 0.0017 

Weed height 1 7.3847 0.0066 

Crop  2 3.8941 0.1427 

Weed density 1 0.4061 0.5240 
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Table 6. Odds ratios of treating a weed given the categorical effects.
a
 

Effects 

 Level comparison (likelihood of being treated %) 

Odds 

ratio P > χ2 

Aggregate species 
Convolvulaceae (98.0) vs 

Decumbent broadleaf 

(97.5) 
1.233 0.3057 

 Convolvulaceae (98.0)  vs Malvaceae (96.7) 1.646 0.0079 

 Convolvulaceae (98.0)  vs Poaceae (95.7) 2.208 < 0.0001 

 Convolvulaceae (98.0)  vs Amaranthaceae (93.1) 3.582 < 0.0001 

 Convolvulaceae (98.0)  vs yellow nutsedge (85.1) 8.524 < 0.0001 

 

Decumbent broadleaf 

(97.5)  
vs Malvaceae (96.7) 1.335 0.2120 

 

Decumbent broadleaf 

(97.5) 
vs Poaceae (95.7) 1.790 0.0095 

 

Decumbent broadleaf 

(97.5)   
vs Amaranthaceae (93.1) 2.905 < 0.0001 

 

Decumbent broadleaf 

(97.5) 
vs yellow nutsedge (85.1) 6.913 < 0.0001 

 Malvaceae (96.7)  vs Poaceae (95.7) 1.341 0.1666 

 Malvaceae (96.7) vs Amaranthaceae (93.1) 2.176 < 0.0001 

 Malvaceae (96.7)   vs yellow nutsedge (85.1) 5.179 < 0.0001 

 Poaceae (95.7) vs Amaranthaceae (93.1) 1.622 0.0037 

 Poaceae (95.7)  vs yellow nutsedge (85.1) 3.861 < 0.0001 

 Amaranthaceae (93.1) vs yellow nutsedge (85.1) 2.379 < 0.0001 

      

Weed position between-row (96.1) vs in-row (94.9) 1.339 0.0016 

      

Crop cotton (96.0)  vs corn (95.6) 1.096 0.5608 

 cotton (96.0) vs soybean (95.1) 1.236 0.0641 

 corn (95.6)  vs soybean (95.1) 1.128 0.3415 

a
 Odds ratios are calculated from the ratio of the two levels: 

 
  

    
 

 
  

    
 
 where Pa is the proportion of 

the treated weeds for one group and Pb is the proportion of treated weeds for the comparison 

group. As an example, if Pa = 0.9 and Pb = 0.8, the odds ratio would be 
 

   
     

 

 
   

     
 
     . Likelihoods 

parenthetically presented represent the likelihood averaged over all other predictors. 
b
 P > χ2 are Wald based tests from the model estimates. 
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Figure 1. The effect of decision threshold on the likelihood of treating each weed class, averaged 

over the median height and width of each class, 2.4 plants m
-2

, and the categorical combination 

of between soybean rows. This figure should not be used to compare differences between weed 

classes due to differences between median weed height and width: Covolvulaceae, 3.8 cm and 

5.1 cm; decumbent broadleaf, 1.3 cm and 1.3 cm; Malvaceae, 1.3 cm and 1.5 cm; Poaceae, 3.2 

cm and 5.1 cm; Amaranthaceae, 1.9 cm and 2.5 cm; yellow nutsedge, 7.6 cm and 8.3 cm; 

respectively. Decision thresholds of 0.4, 0.7, and 0.9 correspond to the highest, medium, and 

lowest sensitivity settings in 2022, respectively. Broadcast applications are represented by 0. 

Average range odds ratio for decision threshold = 0.0192 (from broadcast to the lowest 

sensitivity). The solid line represents the predicted likelihood to treat a weed, while the broken 

line represents the 95% confidence interval. Both lines were generated using the save columns 

function within the ‘fit report’ of JMP Pro version 18.0 (SAS Institute, Cary, NC), with a smooth 

spline curve λ = 0.05.  
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Figure 2. The effect of weed height (cm) on the likelihood of treating a weed with targeted 

applications, at a 0.7 decision threshold (medium sensitivity) and the categorical combination of 

between soybean rows. Average unit odds ratio for width = 1.065. The solid line represents the 

predicted likelihood to treat a weed, while the broken line represents the 95% confidence 

interval. Both lines were generated using the save columns function within the ‘fit report’ of JMP 

Pro version 18.0 (SAS Institute, Cary, NC), with a smooth spline curve λ = 0.05. 
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Figure 3. The effect of weed width (cm) on the likelihood of treating each weed class, at a 

medium sensitivity setting (decision threshold 0.7) and the categorical combination of between 

soybean rows. Unit odds ratio for width = 1.150. The solid line represents the predicted 

likelihood to treat a weed, while the broken line represents the 95% confidence interval. Both 

lines were generated using the save columns function within the ‘fit report’ of JMP Pro version 

18.0 (SAS Institute, Cary, NC), with a smooth spline curve λ = 0.05. 
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Figure 4. The effect of weed density (plants m
-2

) on the likelihood of treating yellow nutsedge 

between soybean rows. The figure also uses the medium sensitivity setting (decision threshold 

0.7) and the median yellow nutsedge height and width at 7.6 cm and 8.3 cm, respectively.   Unit 

odds ratio for weed density = 0.989 and were insignificant. The solid lines represents the 

predicted likelihood to treat a weed, while the broken line represents the 95% confidence 

interval. Both lines were generated using the save columns function within the ‘fit report’ of JMP 

Pro version 18.0 (SAS Institute, Cary, NC) , with a smooth spline curve λ = 0.05. 
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Figure 5. The observed likelihood of treating each aggregate group of weeds given the weed 

height (cm) and decision thresholds across observations. Decision thresholds of 0.4, 0.7, and 0.9 

correspond to the highest, medium, and lowest spray sensitivities settings in 2022, respectively. 

Broadcast applications are represented by 0. Figure generated using the ‘graph builder’ platform 

of JMP Pro version 18.0 (SAS Institute, Cary, NC) with a smooth spline line with λ = 8.5.   
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