SOME REMARKS ON A PAPER OF D. W. KAHN

C. S. Hoo¹

(received October 20, 1966)

1. Suppose X is a simply-connected CW-complex whose homotopy groups are finite. For each n, let $\mathcal{C}(X,n)$ be the class of torsion groups whose p-primary components are zero for all primes p which do not figure in the homotopy groups $\pi_i(X)$ for $i \leq n$. D. W. Kahn [3] showed that for every unitary bundle ξ over X, the nth Chern class $c_n(\xi)$ is contained in a subgroup of $H^{2n}(X,Z)$ which belongs to $\mathcal{C}(X,2n-1)$. If $\lambda(n)$ denotes the order of the group $\pi_n(X)$, we shall show further that $\lambda(2n-1)c_n(\xi)$ is contained in a subgroup of $H^{2n}(X,Z)$ which belongs to $\mathcal{C}(X,2n-2)$. In fact, these results are true for any integral cohomology class of such a space X and are not peculiar to Chern classes, and hold for the odd dimensional classes too. Kahn's result and our result are immediate corollaries of

THEOREM. If X is a simply-connected CW-complex whose homotopy groups are finite, then $H^n(X,Z)\in\mathcal{C}(X,n-1)$ and $\lambda(n-1)\ H^n(X,Z)\in\mathcal{C}(X,n-2)$ where $\lambda(n-1)$ is the order of $\pi_{n-1}(X)$.

2. In this section all homology and cohomology will be taken with integer coefficients. We first make some preliminary remarks. We observe that the class $\mathcal{C}(X,n)$ is strongly complete, in the terminology of Hu [2]. Suppose $\{X_n, p_n, \pi_n\}$ is a Postnikov system for X. This means that $p_n: X \to X_n$ is an n-equivalence, $\pi_n: X_n \to X_{n-1}$ is a principal $K(\pi_n(X), n)$ fibre space, and

Canad. Math. Bull. vol. 10, no. 2, 1967

This work was done while the author was a Fellow of the Summer Research Institute of the Canadian Mathematical Congress of 1966.

 $\pi_n p_n \simeq p_{n-1}$. Since $\mathcal{C}(X,n)$ is strongly complete, it follows that $H_m(\pi_j(X), j) \in \mathcal{C}(X,n)$ for all m>0 and for all $j \leq n$. It is then easy to show, by induction, that $H_m(X_j) \in \mathcal{C}(X,n)$ for all m>0 and all j < n. (For example, see Chapter 10 of [2]).

Proof of Theorem. Suppose X_{n-1} is the term in a Postnikov decomposition of X in which we have added all the homotopy groups of X in dimensions less than n. Then we have a map $p:X \to X_{n-1}$ which induces isomorphisms in homotopy in dimensions less than n. If we convert this map into a fibre map, then we have a fibration $F \to X \to X_{n-1}$ with F being (n-1) connected, and i inducing isomorphisms in homotopy in dimensions greater than (n-1). Since X, and consequently X_{n-1} , is simply connected, this fibration provides an exact sequence, part of which is the following:

$$0 \to H^n (X_{n-1}) \xrightarrow{p^*} H^n (X) \xrightarrow{i^*} H^n(F) \to \dots$$

Since F is (n-1) connected and $\pi_n(F) = \pi_n(X)$, the universal coefficient theorem gives

$$H^n(F) \stackrel{\sim}{=} Hom(H_n(F), Z) \stackrel{\sim}{=} Hom(\pi_n(X), Z)$$
.

Since $\pi_n(X)$ is finite, it follows that $H^n(F) = 0$. Hence $p^*: H^n(X_{n-1}) \stackrel{\sim}{=} H^n(X)$. Now

$$H^{n}(X_{n-1}) \stackrel{\sim}{=} Hom (H_{n}(X_{n-1}), Z) + Ext (H_{n-1}(X_{n-1}), Z)$$

by the universal coefficient theorem. Since $H_n(X_{n-1})$ and $H_{n-1}(X_{n-1})$ are elements of $\mathcal{C}(X,n-1)$ and hence are finite, we have $H^n(X_{n-1}) \stackrel{\sim}{=} H_{n-1}(X_{n-1}) \in \mathcal{C}(X,n-1)$. This proves the first part of the theorem.

The proof of the second part is along the same lines. Let

 X_{n-2} be the term in a Postnikov decomposition of X in which we have added all the homotopy groups in dimensions less than (n-1). Then we have a fibration $F \xrightarrow{i} X \xrightarrow{p} X_{n-2}$ where F is obtained from X by killing all homotopy groups in dimensions less than (n-1). Again we have an exact sequence which ends as follows:

$$\rightarrow H^{n-1} (F) \stackrel{\tau}{\rightarrow} H^{n} (X_{n-2}) \stackrel{p^{*}}{\rightarrow} H^{n} (X) \stackrel{i^{*}}{\rightarrow} H^{n} (F) ,$$

where τ is the transgression. Let us consider $H^n(F)$. A Postnikov decomposition of F begins as follows:

$$K(\pi_{n}(X), n) \rightarrow G$$

$$\downarrow$$

$$K(\pi_{n-1}(X), n-1)$$

with $H^n(F) \stackrel{\sim}{=} H^n(G)$. The fibration

$$\mathrm{K}(\pi_{\mathrm{n}}(\mathrm{X}),\,\mathrm{n}) \rightarrow \mathrm{G} \rightarrow \mathrm{K}(\pi_{\mathrm{n}^{-1}}(\mathrm{X}),\,\mathrm{n}^{-1})$$

gives an exact sequence:

$$0 \to \operatorname{H}^n(\pi_{n-1}(X), n-1) \to \operatorname{H}^n(G) \to$$

$$H^{n}(\pi_{n}(X), n) \to H^{n+1}(\pi_{n-1}(X), n-1) \to \dots$$

But $H^{n}(\pi_{n}(X), n) = \text{Hom}(\pi_{n}(X), Z) = 0$ since $\pi_{n}(X)$ is finite.

Hence
$$H^{n}(F) \stackrel{\sim}{=} H^{n}(G) \stackrel{\sim}{=} H^{n}(\pi_{n-1}(X), n-1)$$
. But

$$H^{n}(\pi_{n-1}(X), n-1) \stackrel{\sim}{=} Hom(H_{n}(\pi_{n-1}(X), n-1), Z) + Ext(H_{n-1}(\pi_{n-1}(X), n-1), Z)$$

$$\stackrel{\sim}{=} \pi_{n-1}(X)$$

since $H_n(\pi_{n-1}(X), n-1) = 0$ by [1], and $\pi_{n-1}(X)$ is finite. Thus

$$H^{n}(F) \stackrel{\sim}{=} \pi_{n-1}(X)$$
.

Hence $\lambda(n-1)$ H^n $(X) \subset \ker$ i^* where $\lambda(n-1)$ is the order of $\pi_{n-1}(X)$. Hence $\lambda(n-1)$ H^n $(X) \subset p^*$ H^n (X_{n-2}) . Since

$$H^{n}(X_{n-2}) \stackrel{\sim}{=} Hom(H_{n}(X_{n-2}), Z) + Ext(H_{n-1}(X_{n-2}), Z)$$

$$\stackrel{\sim}{=} H_{n-1}(X_{n-2})$$

 ϵ ℓ (X, n-2), this completes the proof of the Theorem.

Remarks. The Theorem gives some information regarding the order of some Chern classes. For example, suppose X is 2k-connected and has finite homotopy. Let ξ be a unitary bundle over X. We observe that $\ell(X,2k)$ contains only the group with one element. Hence, according to the Theorem, we have $\lambda(2k+1) \ c_{k+1} \ (\xi) = 0$ where $\lambda(2k+1)$ is the order of $\pi_{2k+1}(X)$. Thus the order of $c_{k+1}(\xi)$ divides the order of $\pi_{2k+1}(X)$.

Similarly, if X is (2k-1) connected, then clearly $c_k(\xi) \in H^{2k}(X,Z) \cong \operatorname{Hom}(\pi_{2k}(X),Z) = 0$. The order of $c_{k+1}(\xi)$ is a little bit more complicated. The Theorem tells us that $\lambda(2k+1) \ c_{k+1}(\xi)$ is an element of a subgroup of $H^{2k+2}(X,Z)$ which belongs to $\mathcal{C}(X,2k)$. Let P be the family of all primes p such that the p-primary component of $\pi_{2k}(X)$ is non-zero. For each $p \in P$, let r(p) be the exponent of the highest power of p which divides the order of $H^{2k+2}(X,Z)$. Let $m(k) = \prod_{p \in P} r^{(p)}$. $p \in P$ Then $m(k) \lambda(2k+1) \ c_{k+1}(\xi) = 0$. Thus the order of $c_{k+1}(\xi)$ divides $m(k) \lambda(2k+1)$.

REFERENCES

- 1. S. Eilenberg and S. MacLane, On the groups $H(\pi, n)$, II. Annals of Math. 60 (1954), pages 49-139.
- 2. S. T. Hu, Homotopy theory. Academic Press, New York (1959).

ру.