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Abstract

Psychologists and neuroscientists extensively rely on computational models for studying and
analyzing the human mind. Traditionally, such computational models have been hand-
designed by expert researchers. Two prominent examples are cognitive architectures and
Bayesian models of cognition. Although the former requires the specification of a fixed set
of computational structures and a definition of how these structures interact with each
other, the latter necessitates the commitment to a particular prior and a likelihood function
that – in combination with Bayes’ rule – determine the model’s behavior. In recent years, a
new framework has established itself as a promising tool for building models of human
cognition: the framework of meta-learning. In contrast to the previously mentioned model
classes, meta-learned models acquire their inductive biases from experience, that is, by
repeatedly interacting with an environment. However, a coherent research program around
meta-learned models of cognition is still missing to date. The purpose of this article is to
synthesize previous work in this field and establish such a research program. We accomplish
this by pointing out that meta-learning can be used to construct Bayes-optimal learning
algorithms, allowing us to draw strong connections to the rational analysis of cognition.
We then discuss several advantages of the meta-learning framework over traditional methods
and reexamine prior work in the context of these new insights.

It is hard to imagine cognitive psychology and neuroscience without computational models –
they are invaluable tools to study, analyze, and understand the human mind. Traditionally,
such computational models have been hand-designed by expert researchers. In a cognitive
architecture, for instance, researchers provide a fixed set of structures and a definition of
how these structures interact with each other (Anderson, 2013b). In a Bayesian model of cog-
nition, researchers instead specify a prior and a likelihood function that – in combination with
Bayes’ rule – fully determine the model’s behavior (Griffiths, Kemp, & Tenenbaum, 2008). To
provide one concrete example, consider the Bayesian model of function learning proposed by
Lucas, Griffiths, Williams, and Kalish (2015). The goal of this model is to capture human
learning in a setting that requires mapping input features to a numerical target value.
When constructing their model, the authors had to hand-design a prior over functions that
people expect to encounter. In this particular case, it was assumed that people prioritize linear
functions over quadratic and other nonlinear functions.

The framework of meta-learning (Bengio, Bengio, & Cloutier, 1991; Schmidhuber, 1987;
Thrun & Pratt, 1998) offers a radically different approach for constructing computational
models by learning them through repeated interactions with an environment instead of requir-
ing a priori specifications from a researcher. This process enables such models to acquire their
inductive biases from experience, thereby departing from the traditional paradigm of hand-
crafted models. For the function learning example mentioned above, this means that we do
not need to specify which functions people expect to encounter in advance. Instead, during
meta-learning a model would be exposed to many realistic function learning problems on
which it then can figure out which functions are likely and which are not.

Recently, psychologists have started to apply meta-learning to the study of human learning
(Griffiths et al., 2019). It has been shown that meta-learned models can capture a wide range of
empirically observed phenomena that could not be explained otherwise. They, among others,
reproduce human biases in probabilistic reasoning (Dasgupta, Schulz, Tenenbaum, &
Gershman, 2020), discover heuristic decision-making strategies used by people (Binz,
Gershman, Schulz, & Endres, 2022), and generalize compositionally on complex language
tasks in a human-like manner (Lake & Baroni, 2023). The goal of the present article is to

https://doi.org/10.1017/S0140525X23003266 Published online by Cambridge University Press

https://www.cambridge.org/bbs
https://doi.org/10.1017/S0140525X23003266
https://doi.org/10.1017/S0140525X23003266
http://www.bbsonline.org
http://www.bbsonline.org
mailto:marcel.binz@helmholtz-munich.de
https://orcid.org/0000-0001-8872-8386
mailto:marcel.binz@helmholtz-munich.de
mailto:dasgupta.ishita@gmail.com
mailto:akshay.jagadish@tue.mpg.de
mailto:botvinick@google.com
mailto:wangjane@google.com
mailto:eric.schulz@tue.mpg.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0140525X23003266&domain=pdf
https://doi.org/10.1017/S0140525X23003266


develop a research program around meta-learned models of cog-
nition and, in doing so, offer a synthesis of previous work and
outline new research directions.

To establish such a research program, we will make use of a
recent result from the machine learning community showing
that meta-learning can be used to construct Bayes-optimal
learning algorithms (Mikulik et al., 2020; Ortega et al., 2019;
Rabinowitz, 2019). This correspondence is interesting from a
psychological perspective because it allows us to connect meta-
learning to another already well-established framework: the
rational analysis of cognition (Anderson, 2013a; Chater &
Oaksford, 1999). In a rational analysis, one first has to specify
the goal of an agent along with a description of the environment
the agent interacts with. The Bayes-optimal solution for the task
at hand is then derived based on these assumptions and tested
against empirical data. If needed, assumptions are modified and
the whole process is repeated. This approach for constructing cog-
nitive models has had a tremendous impact on psychology
because it explains “why cognition works, by viewing it as an

approximation to ideal statistical inference given the structure of
natural tasks and environments” (Tenenbaum, 2021). The obser-
vation that meta-learned models can implement Bayesian infer-
ence implies that a meta-learned model can be used as a
replacement for the corresponding Bayesian model in a rational
analysis and thus suggests that any behavioral phenomenon that
can be captured by a Bayesian model can also be captured by a
meta-learned model.

We start our article by presenting a simplified version of an
argument originally formulated by Ortega et al. (2019) and
thereby make their result accessible to a broader audience.
Having established that meta-learning produces models that can
simulate Bayesian inference, we go on to discuss what additional
explanatory power the meta-learning framework offers. After all,
why should one not just stick to the tried-and-tested Bayesian
approach? We answer this question by providing four original
arguments in favor of the meta-learning framework (see Fig. 1
for a visual synopsis):

• Meta-learning can produce approximately optimal learning
algorithms even if exact Bayesian inference is computationally
intractable.

• Meta-learning can produce approximately optimal learning
algorithms even if it is not possible to phrase the corresponding
inference problem in the first place.

• Meta-learning makes it easy to manipulate a learning algo-
rithm’s complexity and can therefore be used to construct
resource-rational models of learning.

• Meta-learning allows us to integrate neuroscientific insights
into the rational analysis of cognition by incorporating these
insights into model architectures.

The first two points highlight situations in which meta-learned
models can be used for rational analysis but traditional Bayesian
models cannot. The latter two points provide examples of how
meta-learning enables us to make rational models of cognition
more realistic, either by incorporating limited computational
resources or neuroscientific insights. Taken together, these arguments
showcase that meta-learning considerably extends the scope of ratio-
nal analysis and thereby of cognitive theories more generally.

We will discuss each of these four points in detail and provide
illustrations to highlight their relevance. We then reexamine prior
studies from psychology and neuroscience that have applied
meta-learning and put them into the context of our newly acquired
insights. For each of the reviewed studies, we highlight how it
relates to the four presented arguments, and discuss why its find-
ings could not have been obtained using a classical Bayesian
model. Following that, we describe under which conditions tradi-
tional models are preferable to those obtained by meta-learning.
We finish our article by speculating what the future holds for
meta-learning. Therein, we focus on how meta-learning could be
the key to building a domain-general model of human cognition.

1. Meta-learned rationality

The prefix meta- is generally used in a self-referential sense: A
meta-rule is a rule about rules, a meta-discussion is a discussion
about discussions, and so forth. Meta-learning, consequently,
refers to learning about learning. We, therefore, need to first
establish a common definition of learning before covering
meta-learning in more detail. For the present article, we adopt
the following definition from Mitchell (1997):
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Definition: Learning
For a given task, training experience, and performance measure, an algo-
rithm is said to learn if its performance at the task improves with
experience.

To illustrate this definition, consider the following example which
we will return to throughout the text: You are a biologist who has
just discovered a new insect species and now set yourself the task
of predicting how large members of this species are. You have
already observed three exemplars in the wild with lengths of 16,
12, and 15 cm, respectively. These data amount to your training
experience. Ideally, you can use this experience to make better
predictions about the length of the next individual you encounter.
You are said to have learned something if your performance is
better after seeing the data than it was before. Typical perfor-
mance measures for this example problem include the mean-
squared error or the (negative) log-likelihood.

1.1 Bayesian inference for rational analyses

In a rational analysis of cognition, researchers are trying to compare
human behavior to that of an optimal learning algorithm. However,
it turns out that no learning algorithm is better than another when
averaged over all possible problems (Wolpert, 1996; Wolpert &
Macready, 1997), which means that we first have to make addi-
tional assumptions about the to-be-solved problem to obtain a

well-defined notion of optimality. For our running example, one
may make the following – somewhat unrealistic – assumptions:

(1) Each observed insect length xk is sampled from a normal dis-
tribution with mean μ and standard deviation σ.

(2) An insect species’ mean length μ cannot be observed directly,
but the standard deviation σ is known to be 2 cm.

(3) Mean lengths across all insect species are distributed accord-
ing to a normal distribution with a mean of 10 cm and a stan-
dard deviation of 3 cm.

An optimal way of making predictions about new observations
under such assumptions is specified by Bayesian inference.
Bayesian inference requires access to a prior distribution p(μ)
that defines an agent’s initial beliefs about possible parameter val-
ues before observing any data and a likelihood p(x1:t|μ) that cap-
tures the agent’s knowledge about how data are generated for a
given set of parameters. In our running example, the prior and
the likelihood can be identified as follows:

p(m) = N(m; 10, 3) (1)

p(x1:t|m) =
∏t
k=1

p (xk|m) =
∏t
k=1

N(xk; m, 2) (2)

Figure 1. Visual synopsis of the four different arguments for meta-learning over Bayesian inference put forward in this article.
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where x1:t = x1, x2, …, xt denote a sequence of observed insect
lengths and the product in Equation (2) arises because of the
additional assumption that observations are independent given
the parameters.

The outcome of Bayesian inference is a posterior predictive
distribution p(xt+1|x1: t), which the agent can use to make proba-
bilistic predictions about a hypothetical future observation. To
obtain this posterior predictive distribution, the agent first com-
bines prior and likelihood into a posterior distribution over
parameters by applying Bayes’ theorem:

p (m|x1:t) = p(x1:t|m)p(m)�
p(x1:t|m)p(m)dm (3)

In a subsequent step, the agent then averages over all possible
parameter values weighted by their posterior probability to get the
posterior predictive distribution:

p (xt+1|x1:t) =
∫
p(xt+1|m)p(m|x1:t)dm (4)

Multiple arguments justify Bayesian inference as a normative
procedure, and thereby its use for rational analyses (Corner &
Hahn, 2013). This includes Dutch book arguments (Lewis,
1999; Rescorla, 2020), free-energy minimization (Friston, 2010;
Hinton & Van Camp, 1993), and performance-based justifica-
tions (Aitchison, 1975; Rosenkrantz, 1992). For this article, we
are mainly interested in the latter class of performance-based jus-
tifications because these can be used – as we will demonstrate later
on – to derive meta-learning algorithms that learn approxima-
tions to Bayesian inference.

Performance-based justifications are based on the notion of
frequentist statistics. They assert that no learning algorithm can
be better than Bayesian inference on a certain performance mea-
sure. Particularly relevant for this article is a theorem first
proved by Aitchison (1975). It states that the posterior predictive
distribution is the distribution from the set of all possible distri-
butions Q that maximizes the log-likelihood of hypothetical
future observations when averaged over the data-generating distri-
bution p (μ, x1:t+1) = p(μ)p(x1:t+1|μ):

p (xt+1|x1:t) = argmaxq[QEp(m,x1:t+1)[log q (xt+1|x1:t)] (5)

Equation (5) implies that if an agent wants to make a predic-
tion about the length of a still unobserved exemplar from a par-
ticular insect species and measures its performance using the
log-likelihood, then – averaged across all possible species that
can be encountered – there is no better way of doing it than
using the posterior predictive distribution. We decided to include
a short proof of this theorem within Box 1 for the curious reader
as it does not appear in popular textbooks on probabilistic machine
learning (Bishop, 2006; Murphy, 2012) nor in survey articles on
Bayesian models of cognition. Note that, although the theorem
itself is central to our later argument, working through its proof
is not required to follow the remainder of this article.

1.2 Meta-learning

Having summarized the general concepts behind Bayes-optimal
learning, we can now start to describe meta-learning in more detail.
Formally speaking, a meta-learning algorithm is defined as any
algorithm that “uses its experience to change certain aspects of a

learning algorithm, or the learning method itself, such that the
modified learner is better than the original learner at learning
from additional experience” (Schaul & Schmidhuber, 2010).

To accomplish this, one first decides on an inner-loop
(or base) learning algorithm and determines which of its aspects
can be modified. We also refer to these modifiable aspects as
meta-parameters (i.e., meta-parameters are simply parameters
of a system that are adapted during meta-learning). In an
outer-loop (or meta-learning) process, the system is then trained
on a series of learning problems such that the inner-loop
learning algorithm gets better at solving the problems that it
encounters. We provide a high-level overview of this framework
in Figure 2.

The previous definition is quite broad and includes a variety of
methods. It is, for example, possible to meta-learn:

• Hyperparameters for a base learning algorithm, such as learn-
ing rates, batch sizes, or the number of training epochs

Box 1 Proof: meta-learning maximizes log-likelihoods of future
observations

We proof that the posterior predictive distribution p(xt+1|x1:t) maximizes the
log-likelihood of future observations averaged over the data-generating
distribution:

p(xt+1|x1:t ) = argmaxqEp(m,x1:t+1)[log q(xt+1|x1:t)] (8)

The essence of this proof is to show that the posterior predictive
distribution is superior to any other reference distribution r(xt+1|x1:t) in
terms of log-likelihood:

Ep(m,x1:t )[log p(xt+1|x1:t )] ≥ Ep(m,x1:t )[log r(xt+1|x1:t)]

or equivalently that:

Ep(m,x1:t ) log
p(xt+1|x1:t )
r(xt+1|x1:t )

[ ]
≥ 0

Proofing this conjecture is straight-forward (Aitchison, 1975):

Ep(m,x1:t ) log
p(xt+1|x1:t)
r(xt+1|x1:t )

[ ]

=
∑

m

∑
x1:t

∑
xt+1

log
p(xt+1|x1:t )
r(xt+1|x1:t) p(xt+1|m)p(x1:t |m)p(m)

=
∑

x1:t

∑
m

∑
xt+1

log
p(xt+1|x1:t)
r(xt+1|x1:t) p(xt+1|m)p(x1:t |m)p(m)

=
∑

x1:t

∑
m

∑
xt+1

log
p(xt+1|x1:t)
r(xt+1|x1:t) p(xt+1|m)p(m|x1:t)p(x1:t)

=
∑

x1:t

∑
m

∑
xt+1

log
p(xt+1|x1:t )
r(xt+1|x1:t) p(xt+1|m)p(m|x1:t)

[ ]
p(x1:t )

=
∑

x1:t

∑
xt+1

∑
m
log

p(xt+1|x1:t )
r(xt+1|x1:t) p(xt+1|m)p(m|x1:t)

[ ]
p(x1:t )

=
∑

x1:t

∑
xt+1

log
p(xt+1|x1:t)
r(xt+1|x1:t)

∑
p(xt+1|m)p(m|x1:t )

[ ][ ]
p(x1:t)

=
∑

x1:t

∑
xt+1

log
p(xt+1|x1:t)
r(xt+1|x1:t) p(xt+1|x1:t)

[ ]
p(x1:t )

=
∑

x1:t
KL

[
p(xt+1|x1:t)|r(xt+1|x1:t)

]
p(x1:t )

≥ 0

Note that although we used sums in our proof, thereby assuming that
relevant quantities take discrete values, the same ideas can be readily
applied to continuous-valued quantities by replacing sums with integrals.
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(Doya, 2002; Feurer & Hutter, 2019; Li, Zhou, Chen, & Li,
2017).

• Initial parameters of a neural network that is trained via sto-
chastic gradient descent (Finn, Abbeel, & Levine, 2017;
Nichol, Achiam, & Schulman, 2018).

• Prior distributions in a probabilistic graphical model (Baxter,
1998; Grant, Finn, Levine, Darrell, & Griffiths, 2018).

• Entire learning algorithms (Hochreiter, Younger, & Conwell,
2001; Santoro, Bartunov, Botvinick, Wierstra, & Lillicrap, 2016).

Although all these methods have their own merits, we will be pri-
marily concerned with the latter approach. Learning entire learn-
ing algorithms from scratch is arguably the most general and
ambitious type of meta-learning, and it is the focus of this article
because it is the only one among the aforementioned approaches
leading to Bayes-optimal learning algorithms that can be used for
rational analyses.

1.3 Meta-learned inference

It may seem like a daunting goal to learn an entire learning algo-
rithm from scratch, but the core idea behind the approach we dis-
cuss in the following is surprisingly simple: Instead of using
Bayesian inference to obtain the posterior predictive distribution,
we teach a general-purpose function approximator to do this
inference. Previous work has mostly focused on using recurrent
neural networks as function approximators in this setting and
thus we will – without loss of generality – focus our upcoming
exposition on this class of models.

Like the posterior predictive distribution, the recurrent neural
network processes a sequence of observed length from a particular
insect species and produces a predictive distribution over the
lengths of potential future observations from the same species.
More concretely, the meta-learned predictive distribution takes
a predetermined functional form whose parameters are given by
the network outputs. If we had, for example, decided to use a

normal distribution as the functional form of the meta-learned
predictive distribution, outputs of the network would correspond
to an expected length mt+1 and its standard deviation st+1.
Figure 3a illustrates this setup graphically.

Initially, the recurrent neural network implements a randomly
initialized learning algorithm.1 The goal of the meta-learning pro-
cess is then to turn this system into an improved learning algo-
rithm. The final result is a learning algorithm that is learned or
trained rather than specified by a practitioner. To create a learning
signal to do this training, we need a performance measure that
can be used to optimize the network. Equation (5) suggests a
straightforward strategy for designing such a measure by replacing
the maximization over all possible distributions with a maximiza-
tion over meta-parameters Θ (in our case, the weights of the
recurrent neural network):

argmaxq[QEp(m,x1:t+1)[log q (xt+1|x1:t)]
≈ argmaxQEp(m,x1:t+1)[log q (xt+1|x1:t , Q)]

(6)

To turn this expression into a practical meta-learning algo-
rithm, we will – as common practice when training deep neural
networks – maximize a sample-based version using stochastic
gradient ascent:

argmaxQEp(m,x1:t+1)[log q (xt+1|x1:t , Q)]

≈ argmaxQ
1
N

∑N
n=1

log q (x(n)t+1|x(n)1:t , Q)
(7)

Figure 3b presents pseudocode for a simple gradient-based
procedure that maximizes Equation (7). The entire meta-learning
algorithm can be implemented in just around 30 lines of self-
contained PyTorch code (Paszke et al., 2019). We provide an
annotated reference implementation on this article’s accompany-
ing Github repository.2

Figure 2. High-level overview of the meta-learning process. A base learner (green rectangle) receives data and performs some internal computations that improve
its predictions on future data-points. A meta-learner (blue rectangle) encompasses a set of meta-parameters that can be adapted to create an improved learner.
This is accomplished by training the learner on a distribution of related learning problems.
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1.4 How good is a meta-learned algorithm?

We have previously shown that the global optimum of Equation
(7) is achieved by the posterior predictive distribution. Thus, by
maximizing this performance measure, the network is actively
encouraged to implement an approximation to exact Bayesian
inference. Importantly, after meta-learning is completed, pro-
ducing an approximation to the posterior predictive distribution
does not require any further updates to the network weights. To
perform an inference (i.e., the learn), we simply have to query
the network’s outputs after providing it with a particular
sequence of observations. Learning at this stage is then realized
by updating the hidden activations of the recurrent neural
network as opposed to its weights. The characteristics of this
new activation-based learning algorithm can be potentially vastly
different from the weight-based learning algorithm used for
meta-learning.

If we want to use the fully optimized network for rational
analyses, we have to ask ourselves: How well does the resulting
model approximate Bayesian inference? Two aspects have to be
considered when answering this question. First, the network has
to be sufficiently expressive to produce the exact posterior

predictive distribution for all input sequences. Neural networks
of sufficient width are universal function approximators
(Hornik, Stinchcombe, & White, 1989), meaning that they can
approximate any continuous function to arbitrary precision.
Therefore, this aspect is not too problematic for the optimality
argument. The second aspect is a bit more intricate: Assuming
that the network is powerful enough to represent the global opti-
mum of Equation (7), the employed optimization procedure also
has to find it. Although we are not aware of any theorem that
could provide such a guarantee, in practice, it has been observed
that meta-learning procedures similar to the one discussed here
often lead to networks that closely approximate Bayesian infer-
ence (Mikulik et al., 2020; Rabinowitz, 2019). We provide a visu-
alization demonstrating that the predictions of a meta-learned
model closely resemble those of exact Bayesian inference for our
insect length example in Figures 3c and 3d.

Although our exposition in this section focused on the super-
vised learning case, the same ideas can also be readily extended
to the reinforcement learning setting (Duan et al., 2016; Wang
et al., 2016). Box 2 outlines the general ideas behind the meta-
reinforcement learning framework.

Figure 3. Meta-learning illustration. (a) A recurrent neural network processes a sequence of observations and produces a predictive distribution at the final time-
step. (b) Pseudocode for a simple meta-learning algorithm. (c) Loss during meta-learning with shaded contours corresponding to the standard deviation across 30
runs. (d) Posterior and meta-learned predictive distributions for an example sequence at beginning and end of meta-learning. The dotted gray line denotes the
(unobserved) mean length.
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1.5 Tool or theory?

It is often not so trivial to separate meta-learning from normal
learning. We believe that part of this confusion arises from an
underspecification regarding what is being studied. In particular,
the meta-learning framework provides opportunities to address
two distinct research questions:

(1) It can be used to study how people improve their learning
abilities over time.

(2) It can be used as a methodological tool to construct learning
algorithms with the properties of interest (and thereafter com-
pare the emerging learning algorithms to human behavior).

Historically, behavioral psychologists have been mainly inter-
ested in the former aspect (Doya, 2002; Harlow, 1949). In the
1940s, for example, Harlow (1949) already studied how learning
in monkeys improves over time. He found that they adapted
their learning strategies after sufficiently many interactions with

tasks that shared a common structure, thereby showing a
learning-to-learn effect. By now, examples of this phenomenon
have been found in many different species – including humans
– across nature (Wang, 2021).

More recently, psychologists have started to view meta-learning as
a methodological tool to construct approximations to Bayes-optimal
learning algorithms (Binz et al., 2022; Kumar, Dasgupta, Cohen,
Daw, & Griffiths, 2020a), and subsequently use the resulting algo-
rithms to study human cognition. The key difference from the former
approach is that, in this setting, one abstracts away from the process
of meta-learning and instead focuses on its outcome. From this per-
spective, only the fully converged model is of interest. Importantly,
this approach allows us to investigate human learning from a rational
perspective because we have demonstrated that meta-learning can be
used to construct approximations to Bayes-optimal learning.

We place an emphasis on the second aspect in the present article
and advocate for using fully converged meta-learned algorithms – as
replacements for the corresponding Bayesian models – for rational
analyses of cognition.3 In the next section, we will outline several
arguments that support this approach. However, it is important to
mention that we believe that meta-learning can also be a valuable
tool to understand the process of learning-to-learn itself. In this
context, several intriguing questions arise: At what timescale does
meta-learning take place in humans? How much of it is because
of task-specific adaptations? How much of it is based on evolution-
ary or developmental processes? Although we agree that these are
important questions, they are not the focus of this article.

2. Why not Bayesian inference?

We have just argued that it is possible to meta-learn Bayes-
optimal learning algorithms. What are the implications of this
result? If one has access to two different theories that make iden-
tical predictions, which of them should be preferred? Bayesian
inference has already established itself as a valuable tool for build-
ing cognitive models in the recent decades. Thus, the burden of
proof is arguably on the meta-learning framework. In this section,
we provide four different arguments that highlight the advantages
of meta-learning for building models of cognition. Many of these
arguments are novel and have not been put forward explicitly in
previous literature. The first two arguments highlight situations in
which meta-learned models can be used for rational analysis but
traditional Bayesian models cannot. The latter two provide exam-
ples of how meta-learning enables us to make rational models of
cognition more realistic, either by incorporating limited computa-
tional resources or neuroscientific insights.

2.1 Intractable inference

Argument 1
Meta-learning can produce approximately optimal learning algorithms
even if exact Bayesian inference is computationally intractable.

Bayesian inference becomes intractable very quickly because the
complexity of computing the normalization constant that appears
in the denominator grows exponentially with the number of
unobserved parameters. In addition, it is only possible to find a
closed-form expression of the posterior distribution for certain
combinations of prior and likelihood. In our running example,
we assumed that both prior and likelihood follow a normal distri-
bution, which, in turn, leads to a normally distributed posterior.
However, if one would instead assume that the prior over mean

Box 2 Meta-reinforcement learning

The main text has focused on tasks in which an agent receives direct feedback
about which response would have been correct. In the real world, however,
people do not always receive such explicit feedback. They, instead, often have
to deal with partial information – taking the form of rewards, utilities, or costs
– that merely informs them about the quality of their response.

Problems that fall into this category are often modeled as Markov
decision processes (MDPs). In an MDP, an agent repeatedly interacts with an
environment. In each time-step, it observes the state of the environment st
and can take an action at that leads to a reward signal rt sampled from a
reward distribution p(rt|st, at, μr). Executing an action furthermore
influences the environment state at the next time-step according to a
transition distribution p(st+1|st, at, μs).

The goal of a Bayes-optimal reinforcement learning agent is to find a
policy, which is a mapping from a history of observations ht = s1, a1, r1, …, st
−1, at−1, rt−1, st to a probability distribution over actions p∗(at |ht), that
maximizes the total amount of obtained rewards across a finite horizon H
averaged over all problems that may be encountered:

p∗(at |ht) = argmaxpEp(mr ,ms )
∏

p(rt |st ,at ,mr )p(st+1 |st ,at ,ms )p(at |ht )
∑H
t=1

rt

[ ]
(9)

MDPs with unknown reward and transition distributions are substantially
more challenging to solve optimally compared to supervised problems as
there is no teacher informing the agent about which actions are right or
wrong. Instead, the agent has to figure out the most rewarding course of
action solely through trial and error. Finding an analytical solution to Equation
(9) is extremely challenging and indeed only possible for a few special cases
(Duff, 2003; Gittins, 1979), which made it historically near impossible to
investigate such problems within the framework of rational analysis.

Even though finding an analytical expression of the Bayes-optimal
policy is often impossible, it is straightforward to meta-learn an
approximation to it (Duan et al., 2016; Wang et al., 2016). The general
concept is almost identical to the supervised learning case: Parameterize
the to-be-learned policy with a recurrent neural network and replace the
maximization over the set of all possible policies from Equation (9) with a
sample-based approximation that maximizes over neural network
parameters. The resulting problem can then be solved using any standard
deep reinforcement learning algorithm.

Like in the supervised learning case, the resulting recurrent neural
network implements a free-standing reinforcement learning algorithm after
meta-learning is completed. Learning is once again implemented via a
simple forward pass through the network, i.e., by conditioning the model on
an additional data-point. The meta-learned reinforcement learning algorithm
approximates the Bayes-optimal policy under the same conditions as in the
supervised learning case: A sufficiently expressive model and an optimization
procedure that is able to find the global optimum.
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length follows an exponential distribution – which is arguably a
more sensible assumption as it enforces lengths to be positive –
it becomes already impossible to find an analytical expression
for the posterior distribution.

Researchers across disciplines have recognized these challenges
and have, in turn, developed approaches that can approximate
Bayesian inference without running into computational difficul-
ties. Prime examples of this are variational inference (Jordan,
Ghahramani, Jaakkola, & Saul, 1999) and Markov chain
Monte-Carlo (MCMC) methods (Geman & Geman, 1984). In
variational inference, one phrases inference as an optimization
problem by positing a variational approximation whose parame-
ters are fitted to minimize a divergence measure to the true pos-
terior distribution. MCMC methods, on the other hand, draw
samples from a Markov chain that has the posterior distribution
as its equilibrium distribution. Previous research in cognitive
science indicates that human learning shows characteristics of
such approximations (Courville & Daw, 2008; Dasgupta, Schulz,
& Gershman, 2017; Daw, Courville, & Dayan, 2008; Sanborn,
Griffiths, & Navarro, 2010; Sanborn & Silva, 2013).

Meta-learned inference also never requires an explicit calcula-
tion of the exact posterior or posterior predictive distribution.
Instead, it performs approximately optimal inference via a single
forward pass through the network. Inference, in this case, is
approximate because we had to determine a functional form for
the predictive distribution. The chosen form may deviate from
the true form of the posterior predictive distribution, which, in
turn, leads to approximation errors.4 In some sense, this type of
approximation is similar to variational inference: Both approaches
involve optimization and require one to define a functional form
of the respective distribution. However, the optimization process
in both approaches uses a different loss function and happens
at different timescales. Although variational inference employs
the negative evidence lower bound as its loss function,
meta-learning directly maximizes for models that can be expected
to generalize well to unseen observations (using the performance-
based measure from Equation (5)). Furthermore, meta-learned
inference only involves optimization during the outer-loop
meta-learning process but not during the actual learning itself.
To update how a meta-learned model makes predictions in the
light of new data, we only have to perform a simple forward
pass through the network. In contrast to this, standard variational
inference requires us to rerun the whole optimization process
from scratch every time a new data-point is observed.5

In summary, it is possible to meta-learn an approximately
Bayes-optimal learning algorithm. If exact Bayesian inference is
not tractable, such models are our best option for performing
rational analyses. Yet, many other methods for approximate infer-
ence, such as variational inference and MCMC methods, also
share this feature, and it will thus ultimately be an empirical ques-
tion which of these approximations provides a better description
of human learning.

2.2 Unspecified problems

Argument 2
Meta-learning can produce optimal learning algorithms even if it is not pos-
sible to phrase the corresponding inference problem in the first place.

Bayesian inference is hard, but posing the correct inference prob-
lem can be even harder. What exactly do we mean by that? To
perform Bayesian inference, we need to specify a prior and a

likelihood. Together, these two objects fully specify the assumed
data-generating distribution, and thus the inference problem.
Ideally, the specified data-generating distribution should match
how the environment actually generates its data. It is fairly
straightforward to fulfill this requirement in artificial scenarios,
but for many real-world problems, it is not. Take for instance
our running example: Does the prior over mean length really fol-
low a normal distribution? If yes, what are the mean and variance
of this distribution? Are the underlying parameters actually time-
invariant or do they, for example, change based on seasons? None
of these questions can be answered with certainty.

In his seminal work on Bayesian decision theory, Savage
(1972) made the distinction between small- and large-world prob-
lems. A small-world problem is one “in which all relevant alter-
natives, their consequences, and probabilities are known”
(Gigerenzer & Gaissmaier, 2011). A large-world problem, on
the other hand, is one in which the prior, the likelihood, or
both cannot be identified. Savage’s distinction between small
and large worlds is relevant for the rational analysis of human
cognition as its critics have pointed out that Bayesian inference
only provides a justification for optimal reasoning in small-world
problems (Binmore, 2007) and that “very few problems of interest
to the cognitive, behavioral, and social sciences can be said to sat-
isfy [this] condition” (Brighton & Gigerenzer, 2012).

Identifying the correct set of assumptions becomes especially
challenging once we deal with more complex problems. To illus-
trate this, consider a study conducted by Lucas et al. (2015) who
attempted to construct a Bayesian model of human function
learning. Doing so required them to specify a prior over functions
that people expect to encounter. Without direct access to such a
distribution, they instead opted for a heuristic solution: 98.8%
of functions are expected to be linear, 1.1% are expected to be
quadratic, and 0.1% are expected to be nonlinear. Empirically,
this choice led to good results, but it is hard to justify from a ratio-
nal perspective. We simply do not know the frequency with which
these functions appear in the real world, nor whether the given
selection fully covers the set of functions expected by participants.

There are also inference problems in which it is not possible to
specify or compute the likelihood function. These problems have
been studied extensively in the machine learning community
under the names of simulation-based or likelihood-free inference
(Cranmer, Brehmer, & Louppe, 2020; Lueckmann, Boelts,
Greenberg, Goncalves, & Macke, 2021). In this setting, it is typi-
cally assumed that we can sample data from the likelihood for a
given parameter setting but that computing the corresponding
likelihood is impossible. Take, for instance, our insect length exam-
ple. It should be clear that an insect’s length does not only depend
on its species’mean but also on many other factors such as climate,
genetics, and the individual’s age. Even if all these factors were
known, mapping them to a likelihood function does seem close
to impossible.6 But, we can generate samples easily by observing
insects in the wild. If we had access to large database of insect
length measurements for different species, this could be directly
used to meta-learn an approximately Bayes-optimal learning algo-
rithm for predicting their length, while circumventing an explicit
definition of a likelihood function.

In cases where we do not have access to a prior or a likelihood,
we can neither apply exact Bayesian inference nor approximate
inference schemes such as variational inference or MCMC meth-
ods. In contrast to this, meta-learned inference does not require
us to define the prior or the likelihood explicitly. It only demands
samples from the data-generating distribution to meta-learn an
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approximately Bayes-optimal learning algorithm – a much weaker
requirement (Müller, Hollmann, Arango, Grabocka, & Hutter,
2021). The ability to construct Bayes-optimal learning algorithms
for large-world problems is a unique feature of the meta-learning
framework, and we believe that it could open up totally new ave-
nues for constructing rational models of human cognition. To
highlight one concrete example, it would be possible to take a col-
lection of real-world decision-making tasks – such as the ones pre-
sented by Czerlinski et al. (1999) – and use them to obtain a
meta-learned agent that is adapted to the decision-making prob-
lems that people actually encounter in their everyday lives. This
algorithm could then serve as a normative standard against
which we can compare human decision making.

2.3 Resource rationality

Argument 3
Meta-learning makes it easy to manipulate a learning algorithm’s com-
plexity and can therefore be used to construct resource-rational models
of learning.

Bayesian inference has been successfully applied to model human
behavior across a number of domains, including perception (Knill
& Richards, 1996), motor control (Körding & Wolpert, 2004),
everyday judgments (Griffiths & Tenenbaum, 2006), and logical
reasoning (Oaksford et al., 2007). Notwithstanding these success
stories, there are also well-documented deviations from the notion
of optimality prescribed by Bayesian inference. People, for exam-
ple, underreact to prior information (Kahneman & Tversky,
1973), ignore evidence (Benjamin, 2019), and rely on heuristic
decision-making strategies (Gigerenzer & Gaissmaier, 2011).

The intractability of Bayesian inference – together with empir-
ically observed deviations from it – has led researchers to conjec-
ture that people only attempt to approximate Bayesian inference.
Many different notions of what constitutes a computational
resource have been suggested, such as memory (Dasgupta &
Gershman, 2021), thinking time (Ratcliff & McKoon, 2008), or
physical effort (Hoppe & Rothkopf, 2016).

Cover (1999) relies on a dichotomy that will be useful for our
following discussion. He refers to the algorithmic complexity of
an algorithm as the number of bits needed to implement it. In con-
trast, he refers to the computational complexity of an algorithm as
the space, time, or effort required to execute it. It is possible to cast
many approximate inference schemes as resource-rational algo-
rithms (Sanborn, 2017). The resulting models typically consider
some form of computational complexity. In MCMC methods,
computational complexity can be measured in terms of the number
of drawn samples: Drawing fewer samples leads to faster inference
at the cost of introducing a bias (Courville & Daw, 2008; Sanborn
et al., 2010). In variational inference, on the other hand, it is pos-
sible to introduce an additional parameter that allows to trade-off
performance against the computational complexity of transforming
the prior into the posterior distribution (Binz & Schulz, 2022b;
Ortega, Braun, Dyer, Kim, & Tishby, 2015). Likewise, other frame-
works for building resource-rational models, such as rational meta-
reasoning (Lieder & Griffiths, 2017), also only target computational
complexity.

The prevalence of resource-rational models based on compu-
tational complexity is likely because of the fact that building sim-
ilar models based on algorithmic complexity is much harder.
Measuring algorithmic complexity historically relies on the
notion of Kolmogorov complexity, which is the size of the shortest

computer program that produces a particular data sequence
(Chaitin, 1969; Kolmogorov, 1965; Solomonoff, 1964). Kolmogorov
complexity is in general noncomputable, and, therefore, of limited
practical interest.7

Meta-learning provides us with a straightforward way to
manipulate both algorithmic and computational complexity in a
common framework by adapting the size of the underlying neural
network model. Limiting the complexity of network weights
places a constraint on algorithmic complexity (as reducing the
number of weights decreases the number of bits needed to store
them, and hence also the number of bits needed to store the learn-
ing algorithm). Limiting the complexity of activations, on the
other hand, places a constraint on computational complexity
(reducing the number of hidden units, e.g., decreases the memory
needed for executing the meta-learned model). This connection
can be made more formal in an information-theoretic framework
(Hinton & Van Camp, 1993; Hinton & Zemel, 1993). For appli-
cations of this idea in the context of human cognition, see, for
instance, Binz et al. (2022) or Bates and Jacobs (2020).

Previously, both forms of complexity constraints have been
realized in meta-learned models. Dasgupta et al. (2020) decreased
the number of hidden units of a meta-learned inference algo-
rithm, effectively reducing its computational complexity. In con-
trast, Binz et al. (2022) placed a constraint on the description
length of neural network weights (i.e., the number of bits required
to store them), which implements a form of algorithmic complex-
ity. To the best of our knowledge, no other class of resource-
rational models exists that allows us to take both algorithmic
and computational complexity into account, making this ability
a unique feature of the meta-learning framework.

2.4 Neuroscience

Argument 4
Meta-learning allows us to integrate neuroscientific insights into the ratio-
nal analysis of cognition by incorporating these insights into model
architectures.

In addition to providing a framework for understanding many
aspects of behavior, meta-learning offers a powerful lens through
which to view brain structure and function. For instance, Wang
et al. (2018) presented observations supporting the hypothesis
that prefrontal circuits may constitute a meta-reinforcement
learning system. From a computational perspective, meta-learning
strives to learn a faster inner-loop learning algorithm via an
adjustment of neural network weights in a slower outer-loop
learning process. Within the brain, an analogous process plausibly
occurs when slow, dopamine-driven synaptic change gives rise
to reinforcement learning processes that occur within the activity
dynamics of the prefrontal network, allowing for adaptation
on much faster timescales. This perspective recontextualized
the role of dopamine function in reward-based learning and
was able to account for a range of previously puzzling neuroscien-
tific findings. To highlight one example, Bromberg-Martin,
Matsumoto, Hong, and Hikosaka (2010) found that dopamine
signaling reflected updates in not only experienced but also
inferred values of targets. Notably, a meta-reinforcement learning
agent trained on the same task also recovered this pattern. Having
a mapping of meta-reinforcement learning components onto
existing brain regions furthermore allows us to apply experimental
manipulations that directly perturb neural activity, for example by
using optogenetic techniques. Wang et al. (2018) used this idea to
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modify their original meta-reinforcement learning architecture to
mimic the blocking or enhancement of dopaminergic reward pre-
diction error signals, in direct analogy with optogenetic stimula-
tion delivered to rats performing a two-armed bandit task
(Stopper, Maric, Montes, Wiedman, & Floresco, 2014).

Importantly, the direction of exchange can also work in the
other direction, with neuroscientific findings constraining and
inspiring new forms of meta-learning architectures. Bellec, Salaj,
Subramoney, Legenstein, and Maass (2018), for example, showed
that recurrent networks of spiking neurons are able to display
convincing learning-to-learn behavior, including in the realm of
reinforcement learning. Episodic meta-reinforcement learning
(Ritter et al., 2018) architectures are also heavily inspired by neu-
roscientific accounts of complementary learning systems in the
brain (McClelland, McNaughton, & O’Reilly, 1995). Both of
these examples demonstrate that meta-learning can be used to
build more biologically plausible learning algorithms, and thereby
highlight that it can act as a bridge between Marr’s computational
and implementational levels (Marr, 2010).

Finally, the meta-learning perspective not only allows us to
connect machine learning and neuroscience via architectural
design choices but also via the kinds of tasks that are of interest.
Dobs, Martinez, Kell, and Kanwisher (2022), for instance, sug-
gested that functional specialization in neural circuits, which
has been widely observed in biological brains, arises as a conse-
quence of task demands. In particular, they found that convolu-
tional neural networks “optimized for both tasks spontaneously
segregate themselves into separate systems for faces and objects.”
Likewise, Yang, Joglekar, Song, Newsome, and Wang (2019)
found that training a single recurrent neural network to perform
a wide range of cognitive tasks yielded units that were clustered
along different functional cognitive processes. Put another way,
it seems plausible that functional specialization emerges by train-
ing neural networks on multiple tasks. Although this has not been
tested so far, we speculate that this also holds in the meta-learning
setting, as it involves training on multiple tasks by design. If this
were true, we could look at the emerging areas inside a
meta-learned model, and use the resulting insights to generate
novel predictions about the processes happening in individual
brain areas (Kanwisher, Khosla, & Dobs, 2023).

3. Previous research

Meta-learned models are already starting to transform the cogni-
tive sciences today. They allow us to model things that are hard to
capture with traditional models such as compositional generaliza-
tion, language understanding, and model-based reasoning. In this
section, we provide an overview of what has been achieved with
the help of meta-learning in previous work. We arranged this
review into various thematic subcategories. For each of them,
we summarize which key findings have been obtained by
meta-learning and discuss why these results would have been dif-
ficult to obtain using traditional models of learning by appealing
to the insights from the previous section.

3.1 Heuristics and cognitive biases

Meta-learning has been previously used to discover algorithms
with a limited computational budget that show human-like cogni-
tive biases as we have already alluded to earlier. Dasgupta et al.
(2020) trained a neural network on a distribution of probabilistic
inference problems while controlling for the number of its hidden

units. They found that their model – when restricted to just a sin-
gle hidden unit – captured many biases in human reasoning,
including a conservatism bias and base rate neglect. Likewise,
Binz et al. (2022) trained a neural network on a distribution of
decision-making problems while controlling for the number of
bits needed to represent the network. Their model discovered
two previously suggested heuristics in specific environments and
made precise prognoses about when these heuristics should be
applied. In particular, knowing the correct ranking of features
led to one reason decision making, knowing the directions of fea-
tures led to an equal weighting heuristic, and not knowing about
either of them led to strategies that use weighted combinations of
features (also see Figs. 4a and 4b).

In both of these studies, meta-learned models offered a novel
perspective on results that were previously viewed as contradic-
tory. This was in part possible because meta-learning enabled
us to easily manipulate the complexity of the underlying learning
algorithm. Although doing so is, at least in theory, also possible
within the Bayesian framework, no Bayesian model that captures
the full set of findings from Dasgupta et al. (2020) and Binz et al.
(2022) has been discovered so far. We hypothesize that this
could be because traditional rational process models struggle to
capture that human strategy selection is context-dependent even
before receiving any direct feedback signal (Mercier & Sperber,
2017). The meta-learned models of Dasgupta et al. (2020) and
Binz et al. (2022), on the other hand, were able to readily show
context-specific biases when trained on an appropriate task
distribution.

3.2 Language understanding

Meta-learning may also help us to answer questions regarding
how people process, understand, and produce language.
Whether the inductive biases needed to acquire a language are
learned from experience or are inherited is one of these questions
(Yang & Piantadosi, 2022). McCoy, Grant, Smolensky, Griffiths,
and Linzen (2020) investigated how to equip a model with a set
of linguistic inductive biases that are relevant to human cognition.
Their solution to this problem builds upon the idea of
model-agnostic meta-learning (Finn et al., 2017). In particular,
they meta-learned the initial weights of a neural network such
that the network can adapt itself quickly to new languages
using standard gradient-based learning. When being trained on
a distribution over languages, these initial weights can be inter-
preted as universal factors that are shared across all languages.
They showed that this approach identifies inductive biases (e.g.,
a bias for treating certain phonemes as vowels) that are useful
for acquiring a language’s syllable structure. Although their cur-
rent work makes limited claims about human language acquisi-
tion, their approach be used in future studies to disentangle
which inductive biases are learned from experience and which
ones are inherited. They additionally argued that a Bayesian mod-
eling approach would only be able to consider a restrictive set of
inductive biases as it needs to commit to a particular representa-
tion and inference algorithm. In contrast, the meta-learning
framework made it easy to implement the intended inductive
biases by simply manipulating the distribution of encountered
languages.

The ability to compose simple elements into complex entities
is at the heart of human language. The property of languages to
“make infinite use of finite means” (Chomsky, 2014) is what
allows us to make strong generalizations from limited data. For
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example, people readily understand what it means to “dax twice”
or to “dax slowly” after learning about the meaning of the verb
“dax.” How to build models with a similar proficiency, however,
remains an open research question. Lake (2019) showed that a
transformer-like neural network can be trained to make such
compositional generalizations through meta-learning. Importantly,
during meta-learning, his models were adapted to problems that
required compositional generalization, and could thereby acquire
the skills needed to solve entirely new problems.

Although Lake (2019) argued that meta-learning “has implica-
tions for understanding how people generalize compositionally,”
he did not conduct a direct comparison to human behavior. In
a follow-up study, Lake and Baroni (2023) addressed this short-
coming and found that meta-learned models “mimic human sys-
tematic generalization in a head-to-head comparison.” These
results are further corroborated by a recent paper of Jagadish,
Binz, Saanum, Wang, and Schulz (2023) which demonstrated
that meta-learned models capture human zero-shot

compositional inferences in a reinforcement learning setting.
However, there also remain open challenges in this context. For
example, meta-learned models do not always generalize systemati-
cally to longer sequences than those in the training data (Lake,
2019; Lake & Baroni, 2023). How to resolve this issue will be an
important challenge for future work.

3.3 Inductive biases

Human cognition comes with many useful inductive biases
beyond the ability to reason compositionally. The preference for
simplicity is one of these biases (Chater & Vitányi, 2003;
Feldman, 2016). We readily extract abstract low-dimensional
rules that allow us to generalize entirely new situations.
Meta-learning is an ideal tool to build models with similar pref-
erences because we can easily generate tasks based on simple
rules and use them for meta-learning, thereby enabling an
agent to acquire the desired inductive bias from data.

Figure 4. Example results obtained using meta-learned models. (a) In a paired comparison task, a meta-learned model identified a single-cue heuristic as the
resource-rational solution when information about the feature ranking was available. Follow-up experiments revealed that people indeed apply this heuristic
under the given circumstances. (b) If information about feature directions was available, the same meta-learned model identified an equal weighting heuristic
as the resource-rational solution. People also applied this heuristic in the given context (Binz et al., 2022). (c) Wang et al. (2016) showed that meta-learned models
can exhibit model-based learning characteristics in the two-step task (Daw et al., 2011) even when they were purely trained through model-free approaches. The
plots on the right illustrate the probability of repeating the previous action for different agents (model-free, model-based, meta-learned) after a common or uncom-
mon transition and after a received or omitted reward.
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Toward this end, Kumar, Dasgupta, Cohen, Daw, and Griffiths
(2020b) tested humans and meta-reinforcement agents on a
grid-based task. People, as well as agents, encountered a series
of 7 × 7 grids. Initially, all tiles were white, but clicking on them
revealed their identity as either red or blue. The goal was to reveal
all the red tiles while revealing as few blue tiles as possible. There
was an underlying pattern that determined how the red tiles were
placed, which was either specified by a structured grammar or by
a nonstructured process with matched statistics. Humans found it
easier to learn in structured tasks, confirming that they have
strong priors toward simple abstract rules (Schulz, Tenenbaum,
Duvenaud, Speekenbrink, & Gershman, 2017). However, their
analysis also indicated that meta-learning is easier on nonstruc-
tured tasks than on structured tasks. In follow-up work, they
found that this result also holds for agents that were trained
purely on the structured version of their task but evaluated on
both versions (Kumar et al., 2022a) – a quite astonishing finding
considering that one would expect an agent to perform better
on the task distribution it was trained on. The authors addressed
this mismatch between humans and meta-learned agents by
guiding agents during training to reproduce natural language
descriptions that people provided to describe a given task. They
found that grounding meta-learned agents in natural language
descriptions not only improved their performance but also led
to more human-like inductive biases, demonstrating that natural
language can serve as a source for abstractions within human
cognition.

Their line of work uses another interesting technique for train-
ing meta-learning agents (Kumar et al., 2022a, 2022b). It does not
rely on a hand-designed task distribution but instead involves
sampling tasks from the prior distribution of human participants
using a technique known as Gibbs sampling with people
(Harrison et al., 2020; Sanborn & Griffiths, 2007). Although
doing so provides them with a data-set of tasks, no expression
of the corresponding prior distribution over them is accessible
and, hence, it is nontrivial to define a Bayesian model for the
given setting. A meta-learned agent, on the other hand, was read-
ily obtained by training on the collected samples.

3.4 Model-based reasoning

Many realistic scenarios afford two distinct types of learning:
model-free and model-based. Model-free learning algorithms
directly adjust their strategies using observed outcomes. Model-
based learning algorithms, on the other hand, learn about the
transition and reward probabilities of an environment, which
are then used for downstream reasoning tasks. People are gener-
ally thought to be able to perform model-based learning, at least
to some extent, and assuming that the problem at hand calls for it
(Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Kool,
Cushman, & Gershman, 2016). Wang et al. (2016) showed that
a meta-learned algorithm can display model-based behavior,
even if it was trained through a pure model-free reinforcement
learning algorithm (see Fig. 4c).

Having a model of the world also acts as the basis for causal
reasoning. Traditionally, making causal inferences relies on the
notion of Pearl’s do-calculus (Pearl, 2009). Dasgupta et al.
(2019), however, showed that meta-learning can be used to create
models that draw causal inferences from observational data, select
informative interventions, and make counterfactual predictions.
Although they have not related their model to human data
directly, it could in future work serve as the basis to study how

people make causal judgments in complex domains and explain
why and when they deviate from normative causal theories
(Bramley, Dayan, Griffiths, & Lagnado, 2017; Gerstenberg,
Goodman, Lagnado, & Tenenbaum, 2021).

Together, these two examples highlight that model-based rea-
soning capabilities can emerge internally in a meta-learned model
if they are beneficial for solving the encountered problem.
Although there are already many traditional models that can
perform such tasks, these models are often slow at run-time as
they typically involve Bayesian inference, planning, or both.
Meta-learning, on the other hand, “shifts most of the compute
burden from inference time to training time [which] is advanta-
geous when training time is ample but fast answers are needed
at run-time” (Dasgupta et al., 2019), and may therefore explain
how people can perform such intricate computations within a rea-
sonable time frame.

Although model-based reasoning is an emerging property of
meta-learned models, it may also be integrated explicitly into
such models should it be desired. Jensen, Hennequin, and
Mattar (2023) have taken this route, and augmented a standard
meta-reinforcement learning agent with the ability to perform
temporally extended planning using imagined rollouts. In each
time-step, their agent can decide to perform a planning operation
instead of directly interacting with the environment (in this
case, a spatial navigation task). Their meta-learned agents opted
to perform this planning operation consistently after training.
Importantly, the model showed striking similarities to patterns
of human deliberation by performing more planning early on
and with an increased distance to the goal. Furthermore, they
found that patterns of hippocampal replays resembled the rollouts
of their model.

3.5 Exploration

People do not only have to integrate observed information into
their existing knowledge, but they also have to actively determine
what information to sample. They constantly face situations that
require them to decide whether they should explore something
new or whether they should rather exploit what they already
know. Previous research suggests that people solve this explora-
tion–exploitation dilemma using a combination of directed and
random exploration strategies (Gershman, 2018; Schulz &
Gershman, 2019; Wilson, Geana, White, Ludvig, & Cohen,
2014; Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018). Why
do people use these particular strategies and not others? Binz
and Schulz (2022a) hypothesized that they do so because
human exploration follows resource-rational principles. To test
this claim, they devised a family of resource-rational reinforce-
ment learning algorithms by combining ideas from meta-learning
and information theory. Their meta-learned model discovered
a diverse set of exploration strategies, including random and
directed exploration, that captured human exploration better
than alternative approaches. In this domain, meta-learning
offered a direct path toward investigating the hypothesis that
people try to explore optimally but are subject to limited compu-
tational resources, whereas designing hand-crafted models for
studying the same question would have been more intricate.

It is not only important to decide how to explore, but also to
decide whether exploration is worthwhile in the first place. Lange
and Sprekeler (2020) studied this question using the
meta-learning framework. Their meta-learned agents are able to
flexibly interpolate between implementing exploratory learning
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behaviors and hard-coded, nonlearning strategies. Importantly,
which behavior was realized crucially depended on environmental
properties, such as the diversity of the task distribution, the task
complexity, and the agent’s lifetime. They showed, for instance,
that agents with a short lifetime should opt for small rewards
that are easy to find, whereas agents with an extended lifetime
should spend their time exploring the environment. The study
of Lange and Sprekeler (2020) clearly demonstrates that
meta-learning makes it conceptually easy to iterate over different
environmental assumptions inside a rational analysis of
cognition. They only had to modify the environment as
desired, followed by rerunning their meta-learning procedure.
In contrast, traditional modeling approaches would require hand-
designing a new optimal agent each time an environmental
change occurs.

3.6 Cognitive control

Humans are remarkable at adapting to task-specific demands. The
processes behind this ability are collectively referred to as cognitive
control (Botvinick, Braver, Barch, Carter, & Cohen, 2001). Cohen
(2017) even argues that “the capacity for cognitive control is per-
haps the most distinguishing characteristic of human behavior.”
It should therefore come as no surprise that cognitive control has
received a significant amount of attention from a computational
perspective (Botvinick & Cohen, 2014; Collins & Frank, 2013).
Recently, some of these computational investigations have been
extended to the meta-learning framework.

The ability to adjust computational resources as needed is one
hallmark of cognitive control. Moskovitz, Miller, Sahani, and
Botvinick (2022) proposed a meta-learned model with such char-
acteristics. Their model learns a simple default policy – similar to
the model of Binz and Schulz (2022a) – that can be overwritten by
a more complex one if necessary. They demonstrate that this
model is not only able to capture behavioral phenomena
from the cognitive control literature but also known effects in
decision-making and reinforcement learning tasks, thereby link-
ing the three domains. Importantly, their study highlights that
the meta-learning framework offers the means to account for
multiple computational costs instead of just a single one – in
this case, a cost for implementing the default policy and one for
deviating from it.

Taking contextual cues into consideration is another vital
aspect of cognitive control. Dubey, Grant, Luo, Narasimhan,
and Griffiths (2020) implemented this idea in the meta-learning
framework. In their model, contextual cues determine the initial-
ization of a task-specific neural network that is then trained using
model-agnostic meta-learning. They showed that such a model
captures “the context-sensitivity of human behavior in a simple
but well-studied cognitive control task.” Furthermore, they dem-
onstrated that it scales well to more complex domains (including
tasks from the MuJoCo [Todorov, Erez, & Tassa, 2012], CelebA
[Liu, Luo, Wang, & Tang, 2015], and MetaWorld [Yu et al.,
2020] benchmarks), thereby opening up new opportunities for
modeling human behavior in naturalistic scenarios.

4. Why is not everything meta-learned?

We have laid out different arguments that make meta-learning a
useful tool for constructing cognitive models, but it is important
to note that we do not claim that meta-learning is the ultimate
solution to every modeling problem. Instead, it is essential to

understand when meta-learning is the right tool for the job and
when not.

4.1 Lack of interpretability

Perhaps its most significant detriment is that meta-learning never
provides us with analytical solutions that we can inspect, analyze,
and reason about. In contrast to this, some Bayesian models
have analytical solutions. Take as an example the data-generating
distribution that we encountered earlier (Equations (1)–(2)).
For these assumptions, a closed-form expression of the posterior
predictive distribution is available. By looking at this closed-
form expression, researchers have generated new predictions
and subsequently tested them empirically (Daw et al., 2008;
Dayan & Kakade, 2000; Gershman, 2015). Performing the same
kind of analysis with a meta-learned model is not as straight-
forward. We do not have access to an underlying mathematical
expression, which makes a structured exploration of theories
much harder.

That being said, there are still ways to analyze a meta-learned
model’s behavior. For one, it is possible to use model architectures
that facilitate interpretability. Binz et al. (2022) relied on this
approach and designed a neural network architecture that pro-
duced weights of a probit regression model that were then used
to cluster applied strategies into different categories. Doing so
enabled them to identify which strategy was used by their
meta-learned model in a particular situation.

Recently, researchers have also started to use tools from cogni-
tive psychology to analyze the behavior of black-box models
(Bowers et al., 2022; Rich & Gureckis, 2019; Ritter, Barrett,
Santoro, & Botvinick, 2017; Schulz & Dayan, 2020). For example,
it is possible to treat such models just like participants in a psy-
chological experiment and use the collected data to analyze
their behavior similar to how psychologists would analyze
human behavior (Binz & Schulz, 2023; Dasgupta et al., 2022;
Rahwan et al., 2019; Schramowski, Turan, Andersen, Rothkopf,
& Kersting, 2022). We believe that this approach has great poten-
tial for analyzing increasingly capable and opaque artificial agents,
including those obtained via meta-learning.

4.2 Intricate training processes

When using the meta-learning framework, one also has to
deal with the fact that training neural networks is complex and
takes time. Neural network models contain many moving parts,
like weight initializations or the used optimizer, that have to be
chosen appropriately such that training can take off in the first
place, and training itself may take hours or days until it is
finished. When we want to modify assumptions in the data-
generating distribution, we have to retrain the whole system
from scratch altogether. Thus, although the process of iterating
over different environmental assumptions is conceptually
straightforward in the meta-learning framework, it may be time
consuming. Bayesian models can, in comparison, sometimes be
more quickly adapted to changes in environmental assumptions.
To illustrate this, let us assume that you wanted to explain human
behavior through a meta-learned model that was trained on the
data-generating distribution from Equations (1)–(2), but found
that the resulting model does not fit the observed data well.
Next, you want to consider the alternative hypothesis that people
assume a nonstationary environment. Although this modification
could be done quickly in the corresponding Bayesian model, the
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meta-learning framework requires retraining on newly generated
data.

There is, furthermore, no guarantee that a fully converged
meta-learned model implements a Bayes-optimal learning algo-
rithm. Indeed, there are reported cases in which meta-learning
failed to find the Bayes-optimal solution (Wang et al., 2021). In
simple scenarios, like our insect length example, we can resolve
this issue by comparing to analytical solutions. This kind of rea-
soning applies to some of the settings in which meta-learning has
been used to study human behavior. For example, for the explo-
ration studies discussed in the previous section, it has been shown
that meta-learned models closely approximate the (tractable but
computationally expensive) Bayes-optimal algorithm (Duan
et al., 2016; Wang et al., 2016). However, in more complex scenar-
ios, it is impossible to verify that a meta-learned algorithm is opti-
mal. We believe that this issue can be somewhat mitigated by
validating meta-learned models in various ways. For example,
we may get an intuition for the correspondence between a
meta-learned model and an intractable Bayes-optimal algorithm
by comparing to other approximate inference techniques (as
done in Binz et al., 2022) or to symbolic models (as done in
Lake & Baroni, 2023). In the end, however, we believe that this
issue is still an open problem and that future work needs to
come up with novel techniques to verify meta-learned models.
Nevertheless, this is already a step forward as verifying solutions
is often easier than generating them.

4.3 Meta-learned or Bayesian inference?

In summary, both frameworks – meta-learning and Bayesian
inference – have their unique strengths and weaknesses. The
meta-learning framework does and will not replace Bayesian
inference but complement it. It broadens our available toolkit
and enables researchers to study questions that were previously
out of reach. However, there are certainly situations in which tra-
ditional Bayesian inference is a more appropriate modeling choice
as we have outlined in this section.

5. The role of neural networks

Most of the points we have discussed so far are agnostic regarding
the function approximator implementing the meta-learned algo-
rithm. However, at the same time, we have appealed to neural net-
works at various points throughout the text. When one looks at
prior work, it can also be observed that neural networks are the
predominant model class in the meta-learning setting. Why is
that the case? In addition to their universality, neural networks
offer one big opportunity: They provide a flexible framework
for engineering different types of inductive biases into a compu-
tational model (Goyal & Bengio, 2022). In the following section,
we will highlight three examples of how previous work has
accomplished this. For each of these examples, we take a concept
from psychology, and show how it can be readily accommodated
in a meta-learned model.

Perhaps one of the most persuasive ideas in cognitive model-
ing is that of gradient-based learning. It is not only at the heart of
one of the most influential models – the Rescorla–Wagner model
(Gershman, 2015; Rescorla, 1972) – but also features prominently
in many other theories of human learning, such as connectionist
models (Rumelhart et al., 1988). Even though the earlier outlined
meta-learning procedure relies on gradient-based learning in the
outer-loop, the resulting inner-loop dynamics must bear no

resemblance to gradient descent. However, it is possible to con-
struct meta-learned models whose inner-loop updates rely on
gradient-based learning. Finn et al. (2017) proposed a
meta-learning technique known as model-agnostic meta-learning
that finds optimal initial parameters of a feedforward neural net-
work that is subsequently trained via gradient descent. The idea is
that these optimal initial parameters allow the feedforward net-
work to generalize to multiple tasks in a minimal number of gra-
dient steps. Although their general setup is similar to the one we
discussed, it leads to models that learn via gradient descent
instead of models that implement a learning algorithm inside
the dynamics of a recurrent neural network. Kirsch and
Schmidhuber (2021) recently brought these two approaches
together into a single model. Their proposed architecture consists
of multiple recurrent neural networks that interact with each
other. Importantly, they showed that one particular configuration
of these networks could implement backpropagation in the for-
ward pass, thereby being able to perform gradient-based learning
in a memory-based system.

Exemplar-based models – like the generalized category model
(Nosofsky, 2011) – are one of the most prominent approaches for
modeling how people categorize items into different classes
(Kruschke, 1990; Shepard, 1987). They categorize a new instance
based on the estimated similarity between that instance and pre-
viously seen examples. Recently, meta-learned models with
exemplar-based reasoning abilities have been proposed for the
task of few-shot classification, in which a classifier must generalize
based on a training set containing only a few examples. Matching
networks (Vinyals et al., 2016) accomplish this by classifying a
new data-point using a similarity-weighted combination of cate-
gories in the training set. Importantly, similarity is computed
over a learned embedding space, thereby ensuring that the
model can scale to high-dimensional stimuli. Follow-up work
has taken inspiration from another hugely influential model of
human category learning and replaced the exemplar-based mech-
anism used in matching networks with one based on category
prototypes (Snell, Swersky, & Zemel, 2017).

Finally, making inferences using similarities to previous expe-
riences is not only useful for supervised learning but also in the
reinforcement learning setting. In the reinforcement learning lit-
erature, the ability to store and recollect states or trajectories for
later use is studied under the name of episodic memory
(Lengyel & Dayan, 2007). It has been argued that episodic mem-
ory could be the key to explaining human performance in natu-
ralistic environments (Gershman & Daw, 2017). Episodic
memory also plays a crucial role in neuroscience, with studies
showing that highly rewarding instances are stored in the hippo-
campus and made available for recall as and when required
(Blundell et al., 2016). Ritter et al. (2018) build upon the neural
episodic control idea from Pritzel et al. (2017) and use a differen-
tial neural dictionary for episodic recall in the context of
meta-learning. Their dictionary stores encodings from previously
experienced tasks, which can then be later queried as needed.
With this addition, their meta-learned model is able to recall pre-
viously discovered policies, retrieve memories using category
examples, handle compositional tasks, re-instate memories while
traversing the environment, and recover a learning strategy people
use in a neuroscience-inspired task.

In summary, human cognition comes with a variety of induc-
tive biases and neural networks provide flexible ways to easily
incorporate them into meta-learned models of cognition. We
have outlined three such examples in the section, demonstrating
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how to integrate gradient-based learning, exemplar- and
prototype-based reasoning, and episodic memory into a
meta-learned model. There are, furthermore, many other induc-
tive biases for neural network architectures that could be used
in the context of meta-learning but have not been yet.
Examples include networks that perform differentiable planning
(Farquhar, Rocktäschel, Igl, & Whiteson, 2017; Tamar, Wu,
Thomas, Levine, & Abbeel, 2016), extract object-based represen-
tations (Piloto, Weinstein, Battaglia, & Botvinick, 2022;
Sancaktar, Blaes, & Martius, 2022), or modify their own connec-
tions through synaptic plasticity (Miconi, Rawal, Clune, & Stanley,
2020; Schlag, Irie, & Schmidhuber, 2021).

6. Toward a domain-general model of human learning

What does the future hold for meta-learning? The current gener-
ation of meta-learned models of cognition is almost exclusively
trained on the data-generating distribution of a specific problem
family. Although this training process enables them to generalize
to new tasks inside this problem family, they are unlikely to gen-
eralize to completely different domains. We would, for example,
not expect a meta-learned algorithm to perform a challenging
maze navigation task if it was only trained to predict the lengths
of insect species.

Although domain-specific models have (and will continue to)
provide answers to important research questions, we agree with
Newell (1992) that “unified theories of cognition are the only
way to bring this wonderful, increasing fund of knowledge
under intellectual control.” Ideally, such a unified theory should
manifest itself in a domain-general cognitive model that cannot
only solve prediction tasks but is also capable of human-like deci-
sion making (Gigerenzer & Gaissmaier, 2011), category learning
(Ashby et al., 2005), navigation (Montello, 2005), problem-solving
(Newell et al., 1972), and so forth. We consider the meta-learning
framework the ideal tool for accomplishing this goal as it allows
us to compile arbitrary assumptions about an agent’s beliefs of
the world (arguments 1 and 2) and its computational architecture
(arguments 3 and 4) into a cognitive model.

To obtain such a domain-general cognitive model via
meta-learning, however, a few challenges need to be tackled.
First of all, there is the looming question of how a data-generating
distribution that contains many different problems should be
constructed. Here, we may take inspiration from the machine
learning community, where researchers have devised generalist
agents by training neural networks on a large set of problems
(Reed et al., 2022). Team et al. (2023) have recently shown that
this is a promising path for scaling up meta-learning models.
They trained a meta-reinforcement learning agent on a vast open-
ended world with over 1040 possible tasks. The resulting agent can
adapt to held-out problems as quickly as humans, and “displays
on-the-fly hypothesis-driven exploration, efficient exploitation
of acquired knowledge, and can successfully be prompted with
first-person demonstrations.” In the same vein, we may come
up with a large collection of tasks that are more commonly
used to study human behavior (Miconi, 2023; Molano-Mazon
et al., 2022; Yang et al., 2019), and use them to train a
meta-learned model of cognition.

Language will likely play an important role in future
meta-learning systems. We do not want a system that learns
every task from scratch via trial and error but one that can be pro-
vided with a set of instructions similar to how a human subject
would be instructed in a psychological experiment. Having agents

capable of language will not only enable them to understand new
tasks in a zero-shot manner but may also facilitate their cognitive
abilities. It, for example, allows them to decompose tasks into sub-
tasks, learn from other agents, or generate explanations (Colas,
Karch, Moulin-Frier, & Oudeyer, 2022). Fortunately, our current
best language models (Brown et al., 2020; Chowdhery et al., 2022)
and meta-learning systems are both based on neural networks.
Thus, integrating language capabilities into a meta-learned
model of cognition should – at least conceptually – be fairly
straightforward. Doing so would furthermore enable such models
to harvest the compositional nature of language to make strong
generalizations to tasks outside of the meta-learning distribution.
The potential for this was highlighted in a recent study (Riveland
& Pouget, 2022) which found that language-conditioned recur-
rent neural network models can perform entirely novel psycho-
physical tasks with high accuracy.

Moreover, a sufficiently general model of human cognition
must not only be able to select among several given options,
like in a decision-making or category learning setting, but it
also needs to maneuver within a complex world. For this, it
needs to perceive and process high-dimensional visual stimuli,
it needs to control a body with many degrees of freedom, and it
needs to actively engage with other agents. Many of these prob-
lems have been at the heart of the deep learning community
(Hill et al., 2020; McClelland, Hill, Rudolph, Baldridge, &
Schütze, 2020; Strouse, McKee, Botvinick, Hughes, & Everett,
2021; Team et al., 2021), and it will be interesting to see whether
the solutions developed there can be integrated into a
meta-learned model of cognition.

Finally, there are also some challenges on the algorithmic side
that need to be taken into account. In particular, it is unclear how
far currently used model architectures and outer-loop learning
algorithms scale. Although contemporary meta-learning algo-
rithms are able to find approximately Bayes-optimal solutions
to simple problems, they sometimes struggle to do so on more
complex ones (e.g., as in the earlier discussed work of Wang
et al., 2021). Therefore, it seems likely that simply increasing
the complexity of the meta-learning distribution will not be suffi-
cient – we will also need model architectures and outer-loop
learning algorithms that can handle increasingly complex data-
generating distributions. The transformer architecture (Vaswani
et al., 2017), which has been very successful at training large lan-
guage models (Brown et al., 2020; Chowdhery et al., 2022), pro-
vides one promising candidate, but there could be countless
other (so far undiscovered) alternatives.

Thus, taken together, there are still substantial challenges
involved in creating a domain-general meta-learned model of cog-
nition. In particular, we have argued in this section that we need
to (1) meta-learn on more diverse task distributions, (2) develop
agents that can parse instructions in the form of natural language,
(3) embody these agents in realistic problem settings, and (4) find
model architectures that scale to these complex problems. Figure 5
summarizes these points graphically.

7. Conclusion

Most computational models of human learning are hand-
designed, meaning that at some point a researcher sat down
and defined how they behave. Meta-learning starts with an
entirely different premise. Instead of designing learning algo-
rithms by hand, one trains a system to achieve its goals by repeat-
edly letting it interact with an environment. Although this seems
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quite different from traditional models of learning on the surface,
we have highlighted that the meta-learning framework actually
has a deep connection to the idea of Bayesian inference, and
thereby to the rational analysis of cognition. Using this connec-
tion as a starting point, we have highlighted several advantages
of the meta-learning framework for constructing rational models
of cognition. Together, our arguments demonstrate that
meta-learning cannot only be applied in situations where
Bayesian inference is impossible but also facilitates the inclusion
of computational constraints and neuroscientific insights into
rational models of human cognition. Earlier criticisms of the
rational analysis of cognition have repeatedly pointed out that
“rational Bayesian models are significantly unconstrained” and
that they should be “developed in conjunction with mechanistic
considerations to offer substantive explanations of cognition”
(Jones & Love, 2011). Likewise, Bowers and Davis (2012) argued
that to understand human cognition “important constraints
[must] come from biological, evolutionary, and processing (algo-
rithmic) considerations.” We believe that the meta-learning
framework provides the ideal opportunity to address these criti-
cisms as it allows for a painless integration of flexible algorithmic
(often biologically inspired) mechanisms.

It is worth pointing out that meta-learning can be also moti-
vated by taking neural networks as a starting point. From this per-
spective, it bridges two of the most popular theories of cognition –
Bayesian models and connectionism – by bringing the scalability
of neural network models into the rational analysis of cognition.
The blending of Bayesian models and neural networks situates the
meta-learning framework at the heart of the debate on whether
cognition is best explained by emergentist or structured probabi-
listic approaches (Griffiths, Chater, Kemp, Perfors, & Tenenbaum,
2010; McClelland et al., 2010). Like traditional connectionist

approaches, meta-learning provides a means to explain how
cognition could emerge as a system repeatedly interacts with an
environment. Whether the current techniques used for
meta-learning mirror the emergence of cognitive processes in
people however remains an open question. Personally, we believe
that this is unlikely and that there are more elaborate processes in
play during human meta-learning than the gradient descent-
based algorithms that are commonly used for training neural
networks (Schulze Buschoff, Schulz, & Binz, 2023). To study
this question systemically, we would need to look at human
behavior across much longer timescales (e.g., developmental or
evolutionary). Yet, at the same time, meta-learning does not
limit itself to a purely emergentist perspective. The modern
neural network toolbox allows researchers to flexibly integrate
additional structure and inductive biases into a model by
adjusting the underlying network architecture – as we have
argued in Section 5 – thereby preserving a key advantage of
structured probabilistic approaches. How much hand-crafting
within the network architecture is needed ultimately depends
on the designer’s goals. The meta-learning framework is agnostic
to this and allows it to range from almost nothing to a substantial
amount.

We believe that meta-learning provides a powerful tool to scale
up psychological theories to more complex settings. However, at
the same time, meta-learning has not delivered on this promise
yet. Existing meta-learned models of cognition are typically
applied to classical scenarios where established models already
exist. Thus, we have to ask: What prevents the application to
more complex and general paradigms? First, such paradigms
themselves have to be developed. Fortunately, there is currently
a trend toward measuring human behavior on more naturalistic
tasks (Brändle, Binz, & Schulz, 2022a; Brändle, Stocks,

Figure 5. Illustration of how a domain-general meta-learned model of cognition could look like. Modifications include training on more diverse task distributions,
providing natural language instructions as additional inputs, and relying on scalable model architectures.
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Tenenbaum, Gershman, & Schulz, 2022b; Schulz et al., 2019), and
it will be interesting to see what role meta-learning will play in
modeling behavior in such settings. Furthermore, meta-learning
can be intricate and time consuming. We hope that the present
article – together with the accompanying code examples –
makes this technique less opaque and more accessible to a
wider audience. Future advances in hardware will likely make
the meta-learning process quicker and we are therefore hopeful
that meta-learning can ultimately fulfill its promise of identifying
plausible models of human cognition in situations that are out of
reach for hand-designed algorithms.

Acknowledgments. The authors thank Sreejan Kumar, Tobias Ludwig,
Dominik Endres, and Adam Santoro for their valuable feedback on an earlier
draft.

Financial support. This work was funded by the Max Planck Society, the
Volkswagen Foundation, as well as the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy
EXC2064/1-390727645.

Competing interest. None.

Notes

1. Based on our earlier definition, it is at this point strictly speaking not a
learning algorithm at all as it does not improve with additional data.
2. https://github.com/marcelbinz/meta-learned-models.
3. There has been a long-standing conceptual debate in cognitive psychology
on whether to view Bayesian models as normative standards or descriptive
tools. We believe that this debate is beyond the scope of the current article and
thus refer the reader to earlier work for an in-depth discussion (Bowers &
Davis, 2012; Griffiths, Chater, Norris, & Pouget, 2012; Jones & Love, 2011;
Tauber, Navarro, Perfors, & Steyvers, 2017; Zednik & Jäkel, 2016). We only
want to add that the framework outlined here is agnostic to this issue –
meta-learned models may serve as both normative standards and descriptive tools.
4. In principle, one could select arbitrarily flexible functional forms, such as
mixtures of normal distributions or discretized distributions with small bin
sizes, which would reduce the accompanying approximation error.
5. This only holds for standard variational inference but not for more
advanced methods that involve amortization such as variational autoencoders
(Kingma & Welling, 2013).
6. Note that although it is possible to apply some Bayesian models (e.g., non-
parametric methods) in this setting, we would have to contend with making
arbitrary assumptions about the likelihood function, causing a loss of optimal-
ity guarantees.
7. Having said that, it is possible to approximate it under certain circum-
stances and different authors have applied such approximations to study
both human and animal cognition (Chater & Vitányi, 2003; Gauvrit, Zenil,
Delahaye, & Soler-Toscano, 2014; Gauvrit, Zenil, & Tegnér, 2017; Griffiths,
Daniels, Austerweil, & Tenenbaum, 2018; Zenil, Marshall, & Tegnér, 2015).
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Abstract

We challenge Binz et al.’s claim of meta-learned model superi-
ority over Bayesian inference for large world problems. While
comparing Bayesian priors to model-training decisions, we ques-
tion meta-learning feature exclusivity. We assert no special jus-
tification for rational Bayesian solutions to large world problems,
advocating exploring diverse theoretical frameworks beyond
rational analysis of cognition for research advancement.

Binz et al. (argument 2) advocate for the superiority of
meta-learned models over Bayesian inference for addressing
large world problems (Savage, 1972). Our commentary aims to
question some perceived fallacies in their arguments.

First, although we recognize that “Identifying the correct set of
assumptions becomes especially challenging once we deal with
more complex problems,” we point out that meta-learned models
also require specific assumptions. Examples are the selection of
samples from the data-generating distribution, choice of the
optimizer, weight initializations, or constraints to mimic
bounded rationality. These decisions, too, can be conceived as
priors and require a certain level of justification. Binz et al.
explicitly emphasized the importance of appropriately making
these choices (sect. 4, “Intricate Training Processes”). Bayesian
or not, prior knowledge is a necessary condition for both mod-
eling procedures. As a consequence, we contend that both
Bayesian and meta-learned models present similar challenges
from a rational perspective. Therefore, why should it be “hard
to justify” prior assumptions for Bayesian models and not for
meta-learned models? For instance, one could reconsider the
critiques moved to Lucas, Griffiths, Williams, and Kalish
(2015). To account for the bias toward expecting linear relation-
ships between continuous variables, the authors assigned lower
prior probabilities to quadratic and radial relationships as com-
pared to linear ones (Lucas et al., 2015). Binz et al. pose the issue
that the chosen prior might not reflect all the functions (and the
associated probability). However, similar concerns arise in the
context of meta-learned models. What justifications exist for
the selection of training data? How does one determine which
functions to employ in the tasks used for training the model?
Even more, on which tasks the model should be trained? Are
these decisions easier to justify from a rational perspective as
compared to the Bayesian counterpart? If the definition of the
priors is considered a main obstacle of Bayesian inference to
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large world problems, a similar challenge extends to the deci-
sions mentioned above, which determine the initial parameteri-
zation of meta-learned models and could be conceived as
equivalent to a “prior” (Griffiths et al., 2019). Finally, if it is
the impossibility to “have access to a prior or a likelihood” the
main obstacle to large world problems, what is “the unique fea-
ture of meta-learned models” compared to other Bayesian meth-
ods that can construct their own empirical priors (e.g.,
hierarchical models and empirical Bayes; Friston & Stephan,
2007) or that bypass the evaluation of the likelihood function
(e.g., approximate Bayesian computation: Beaumont, 2010;
likelihood-free inference: Papamakarios, Nalisnick, Rezende,
Mohamed, & Lakshminarayanan, 2021; simulation-based infer-
ence: Cranmer, Brehmer, & Louppe, 2020)?

Second, it should be noted that the “meta-learning” feature
is not exclusive of meta-learned models in machine learning,
but it can be achieved using hierarchical Bayesian models
(Grant, Finn, Levine, Darrell, & Griffiths, 2018; Griffiths et al.,
2019; Kemp, Perfors, & Tenenbaum, 2007; Li, Callaway,
Thompson, Adams, & Griffiths, 2023). Hence, if meta-learning
is taken as an argument to enable computational models to
face large world problems, it cannot be used as an argument
in favor of meta-learned models over hierarchical Bayesian
inference.

Putting together our first two concerns, we think that a more
fair comparison between meta-learned models (as defined in the
target article) and hierarchical (approximate) Bayesian models
would have been necessary to assert that meta-learned models
contain “unique” features to address large world problems.

A further concern regards meta-learning as a solution for
large world problems. Following Binmore (2007), the distinction
between small and large worlds can be interpreted as making
decisions under risk or uncertainty, respectively. In the first
case, decision makers know all contingencies of the problem
and fully apply the Bayes’ rule to make the optimal decision.
Large world problems are situations characterized by uncer-
tainty about the causes and the likelihood of the events. In
other terms, large world problems can be conceived as situations
in which environmental assumptions previously acquired do not
hold. However, if meta-learned models need to be retrained
when environmental assumptions differ from the training, it fol-
lows that the use of meta-learned models can be justified only in
small worlds, where previous knowledge can be used to make
choices.

Finally, it should be highlighted that the target article grounds
meta-learned models on the rational analysis framework
(Anderson, 1991) given their property of approximate Bayes opti-
mal solutions. However, Savage’s and Binmore’s argument was
that there is no special justification for rational Bayesian solutions
to large world problems. In our opinion, if one wants to hold with
this rational perspective, neither Bayesian nor meta-learned mod-
els can be considered idoneous to model decision making under
uncertainty. However, a possible way out of this impasse can
come from psychological and cognitive research fields that have
investigated decision making under uncertainty. Theoretical
frameworks like the free-energy principle (Friston et al., 2023)
or reinforcement learning (Dimitrakakis & Ortner, 2022;
Kochenderfer, 2015) have investigated how learning under uncer-
tainty occurs and it is used to construct beliefs that guide deci-
sions in situations where causes of the event are unknown. In
our opinion, implementing ideas from these frameworks in the
models can be a promising way to solve large world problems.

In conclusion, we do not think that Binz et al. have provided
convincing support for the claim “The ability to construct
Bayes-optimal learning algorithms for large world problems is a
unique feature of the meta-learning framework.” We suggest that
grounding on the rational analysis of cognition framework is
not sufficient for modeling decisions in large worlds, and that
exploring and integrating other theoretical frameworks could
offer valuable insights to advance their research program.
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Abstract

The meta-learning framework proposed by Binz et al. would
gain significantly from the inclusion of affective and homeostatic
elements, currently neglected in their work. These
components are crucial as cognition as we know it is profoundly
influenced by affective states, which arise as intricate forms of
homeostatic regulation in living bodies.

Binz et al. offer a very promising research program based on
meta-learning to advance our understanding of cognition.
Nonetheless, their proposal could greatly benefit from integrating
affective and homeostatic elements, which have been traditionally
underrepresented in cognitive science and are totally absent in
their article as well. This integration is predicated on the premise
that cognitive processes in general are profoundly influenced by
affective states (e.g., emotions and moods), which arise as intricate
forms of homeostatic regulation in living organisms.

First, there is ample evidence from psychology and affective
neuroscience showing the pervasive influence of affective states
on cognitive processes (Cea, 2023; Clore & Schiller, 2018).
When someone feels affectively moved by new information, she
will more likely attend to it and think about it for an extended
duration, compared to neutral information (Manns & Bass,
2016). People in positive moods tend to engage in more creative
thinking and learn subjects meaningfully (Ormrod, Anderman,
& Anderman, 2019), while those feeling sadness or frustration are
prone to a shallower learning (Ahmed, Van der Werf, Kuyper, &
Minnaert, 2013). This is related to negative emotions being accom-
panied by cortisol release and the fight-or-flight response that can
suppress the prefrontal cortex, thereby hindering higher cognition
(Brackett, 2019). Hence, it is reasonable that emotion regulation
abilities are the strongest predictors of academic achievement in
high-school students (Di Fabio & Palazzeschi, 2009).

Also, our affective states shape what and how we perceive
(Barrett, 2017; Cea & Martínez-Pernía, 2023). According to the
affective information principle, our feelings signal the value and
urgency of any perceived object (Clore & Schiller, 2018).
Moreover, by altering people’s affects, researchers can sway per-
ceptions, for example, making a beverage seem appealing or dis-
tasteful (Berridge & Winkielman, 2003), and people friendly or
mean (Li, Moallem, Paller, & Gottfried, 2007). A key brain area
involved is the orbitofrontal cortex, which integrates sensory
and affective information, ensuring that our perceptions are
always imbued with affect (Barrett & Bar, 2009).

Concerning attention, positive emotions generally broaden it,
leading to a global focus (Fredrickson & Branigan, 2005), whereas
negative emotions narrow it, fostering detail-oriented processing
(Bar-Haim, Lamy, Pergamin, Bakermans-Kranenburg, & Van
Ijzendoorn, 2007). Also, emotionally charged stimuli are shown
to capture attention more effectively than neutral ones, both in
terms of speed and focus (Hajcak, Jackson, Ferri, & Weinberg,
2018). This can cause perceptual interference, making subsequent
neutral stimuli less noticeable (Wang, Kennedy, & Most, 2012), a
process associated with emotional allocation of attentional
resources as indicated by the late positive potential in the parietal
lobe (Hajcak et al., 2018).

Concerning memory, William James claimed that “an experi-
ence may be so exciting emotionally as almost to leave a scar upon
the cerebral tissues” (James, 1890, p. 670). People tend to remem-
ber information with emotional significance more easily than

neutral material (Phelps & Sharot, 2008). Memories associated
with strong emotional arousal are recalled more vividly
(Schaefer & Philippot, 2005) and with greater detail in certain
respects compared to neutral memories (Kensinger & Schacter,
2018). Neurobiologically, the reciprocal interactions between the
amygdala and the hippocampus are considered essential for this
(McGaugh, 2013).

Concerning the homeostatic roots of affect, Seth and Barrett
have independently suggested that affect arises from the brain’s
inferences about the causes of internal body signals to regulate
physiological states (e.g., sugar levels, heart-beat, etc.), ensuring
survival based on past experiences (Barrett, 2017; Barrett &
Simmons, 2015; Seth, 2021; Seth & Tsakiris, 2018). Hence,
according to them, our feelings would then be expressions of
our current and future degree of success or failure in staying
alive. In this way, moods and emotions would be intimately linked
to our bodily nature and homeostatic needs.

This core idea of feelings being rooted in homeostatic regula-
tion in vulnerable systems has been applied to robotics and arti-
ficial intelligence. Man and Damasio (2019) propose a novel class
of soft robots that incorporate physical vulnerability and
self-regulation akin to living organisms. They hypothesize that
this would allow them to develop motivations and evaluations
reminiscent of feelings in humans, potentially leading to more
intelligent interactions with their environments. Similarly,
Bronfman, Ginsburg, and Jablonka (2021) propose that feelings
may arise in artificial systems constructed with soft materials
through the development of homeostatic, self-preservation mech-
anisms that could allow them to instantiate an open-ended
domain-general form of learning, what they call unlimited associ-
ative learning. Finally, Yoshida (2017) introduces a reinforcement
learning model where agents learn to survive by regulating critical
variables like energy levels, using a reward system rooted in
homeostatic principles, leading to adaptive behavior.
Importantly, all proposals emphasize that the possibility of engi-
neering sentient artificial systems depends on having vulnerable
bodies that, akin to ourselves, need to be constantly sensed and
regulated to remain integral, and that this would enhance the
machines’ cognitive capacities.

To conclude, I would like to suggest some potential benefits of
incorporating affective and homeostatic elements into the
meta-learning research program: (i) Enhanced adaptability: By
incorporating these elements into the meta-learning algorithms,
the resulting computational models may better simulate the adapt-
ability of human cognition, like the ability to adjust learning strat-
egies to changing environmental and internal states; (ii) richer
contextual understanding: Incorporating affective-homeostatic ele-
ments in learning-to-learn processes can result in a deeper under-
standing of how emotionally salient contexts influence cognition;
(iii) improved learning efficiency: Affective-homeostatic signals
can guide attention and memory processes, leading to more effi-
cient learning. Meta-learning algorithms that incorporate affective-
homeostatic signals or mechanisms may achieve higher efficiency
in adapting learning algorithms to new tasks or to new informa-
tion; (iv) more realistic simulations: By incorporating affect and
homeostasis, meta-learned models may more accurately simulate
human cognition, which is inherently influenced by affective-bodily
states; and (v) cross-domain generalization: The integration of
affective-homeostatic states may facilitate better generalization
across different cognitive domains, as affect and bodily regulation
often play a role in a wide range of cognitive tasks, from decision
making to social interactions.
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In sum, I encourage Binz et al. to consider the beneficial pros-
pects of incorporating these elements into their proposed research
program, so as to acknowledge the intertwined nature of affect,
bodily homeostasis, and human cognition.
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Abstract

Quantum active Bayesian inference and quantum Markov blan-
kets enable robust modeling and simulation of difficult-to-ren-
der natural agent-based classical inferential paradoxes
interfaced with task-specific environments. Within a non-realist
cognitive completeness regime, quantum Markov blankets
ensure meta-learned irrational decision making is fitted to
explainable manifolds at optimal free energy, where acceptable
incompatible observations or temporal Bell-inequality violations
represent important verifiable real-world outcomes.

Applying a rational analysis framework of cognition, Binz et al.
resolutely embrace the escalating use of meta-learning to
re-construct Bayes optimal-learning algorithms and solutions to
explain the metaphysical relationship of mind to environment.
Such logicomathematical descriptions of cognition non-trivially
approximate properties of mind, including agent-based decision
processes, to that of ideal statistical inference and the structure
of natural tasks and environments. The authors nonetheless fail
to satisfactorily introduce Markov blankets, which would expand
their cognitive construct beyond standard applications of analyt-
ical and numerical tools to demark relations represented in
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directed Bayesian networks or graphs and variational probabilistic
inference. Markov or Pearl blankets, coined by Bruineberg,
Dolega, Dewhurst, and Baltieri (2021) to acknowledge the original
decades-old epistemic concept developed by Pearl (1988), earned
deserving attention for their utility in decision sciences, offering
tractable optimization methods to identify, partition, and under-
stand groups of marginally and conditionally (in)dependent var-
iables associated with complex systems and causal predictions and
attributions. In more recent years, however, a trend started by
Friston and coworkers (e.g., Hipόlito et al., 2021; Friston et al.,
2021; Ramstead, Badcock, & Friston, 2018) promotes extension
of Markov blankets within a free-energy, active-inference frame-
work to describe the physical interface and reciprocal interactions
between agents and their environments. These so-called Friston
blankets, a term also coined by Bruineberg et al. (2021) to differ-
entiate their usage from Pearl blankets, cleverly articulate embed-
ded philosophical axioms of mind, body, and environment
without fully capturing the logicomathematical rigor and cogency
found in typical uses of Pearl blankets and Bayesian inference.
Taking a reasonably conventional position on the state-of-art of
Friston blankets, theorists supportive of free-energy models
must either accept Markov blankets as formal technical innova-
tions that enable practical worthwhile science in absence of
known compelling philosophical conclusions about the nature
of cognition and life or as dubious mathematics-driven metaphys-
ics interpretations of reality with promising high-impact implica-
tions for elucidating cognition and life upon separate
experimental biophysical validation. The merits of such a state-
ment seemly convey a fair, albeit critical, edict to the scientific
community – one that perhaps discouraged Binz et al. from clar-
ifying Markov blankets and leaves the impression that good pro-
ductive science enlisting Markov blankets as instruments for
inference returns only theoretically mundane findings about cog-
nition and, possibly, life. But, that is not the case and the authors’
well-structured arguments may fool readers into believing that
this position is true since Binz et al. disappointingly content
themselves with only discussing classical Bayesian inference and
non-paradoxical cognition, maybe because Friston and coworkers
also never stray beyond a classical formulation of their free-energy
principle for active inference.

Weaknesses in Binz et al.’s narrow perspective on
meta-leaning and cognition may be contrasted and reshaped by
exciting findings produced with quantum decision theory, a strict
valid quantum-statistical approach capable of defining probabilis-
tic human inference unconfined by the physical mechanical world
(Aerts & Aerts, 1995; Aerts, Broakaert, Gabara, & Sozzo, 2016;
Ashtiani & Azgomi, 2015; Busemeyer & Bruza, 2011;
Busemeyer, Wang, & Lambert-Mogiliansky, 2009; Clark, 2011,
2012, 2014b, 2015, 2017; Pinto Moreira, Fell, Dehdashti, Bruza,
& Wichert, 2020; Pothos & Busemeyer, 2013). Quantum decision
theory, with the aid of quantum networks or graphs, quantum
Bayesian inference, and other computational features, demon-
strates robust successes in modeling and simulating
difficult-to-render cognitive phenomena overlooked by Binz
et al., especially causal judgment errors or paradoxes unaccounted
for by classical decision theory, including conjunctive and dis-
junctive fallacies, the Allais paradox, and the Ellsberg or planning
paradox (Atmanspacher & Römer, 2012; Busemeyer, Pothos,
Franco, & Trueblood, 2011; Clark, 2021b; Favre, Wittwer,
Heinimann, Yukalov, & Sornette, 2016; Moreira & Wichert,
2016a, 2016b, 2018b; Pothos & Busemeyer, 2009, 2013). The
great explanatory power of quantum decision networks

(Bianconi, 2002a, 2002b, 2003; Bianconi & Barabási, 2001; Li,
Iqbal, Perc, Chen, & Abbott, 2013) permits expression of quan-
tum Markov chains and blankets (Brandao, Piani, & Horodecki,
2015; Moreira & Wichert, 2018a; Qi & Ranard, 2021; Sutter,
2018; Wichert, Pinto Moreira, & Bruza, 2020), which bound sub-
optimal free-energy classical inferential paradoxes from optimal
free-energy quantum inferential solutions. In this context of
meta-learned cognitive inference, both quantum Bayesian infer-
ence and Markov blankets provide epistemic tools, analogous to
variational Bayesian inference and Pearl blankets, to legitimately
approximate irrational human decision making and cognition
within a cognitive-completeness constraint. That constraint, not
considered by Binz et al., strongly limits degrees of freedom for
emergence of meta-learned subjective physical reality (cf.
Blume-Kohout & Zurek, 2006; Brandao et al., 2015; Clark,
2014a, 2017, 2019, 2020, 2021b, 2023; Yearsley & Pothos, 2014),
a scenario which helps affirm the idea that Markov blankets
may yield meaningful philosophical conclusions regarding the
nature of cognition and life.

Cognitive completeness (Tressoldi, Maier, Buechner, &
Khrennikov, 2015; Yearsley & Pothos, 2014) encapsulates a black-
box approach that isolates any studied cognitive system from the
formidable environment-significant measurement problem of
quantum mechanics. Some scientists insist the scalable neurophys-
iological contents of this black box map onto classical or quantum
cognitive states relevant to particular sets of respective rational or
irrational decisions and their corresponding outcome probabilities
(Clark, 2017, 2021a; Wang & Busemeyer, 2015; Yearsley & Pothos,
2014). For example, if one abandons the constraint of cognitive
realism – the assertion that all (meta-learned) cognitive events
emerge from classical deterministic neurophysiology – then cogni-
tive systems and their decisional outcomes may be completely
described by dimensions or sets of similarity classes on the set of
all probability distributions over deterministic and indeterminate
(or stochastic) neuropsychological variables and associated envi-
ronmental settings. Further, arguably more fundamental cognitive
completeness and Markov blanket partitions imply non-disturbing
measurements should be non-invasive on brain physiology and
cognition, with disturbing measurements affecting outcomes of
hidden neurophysiological and cognitive variables in a quantum-
sensitive manner. Disturbing measurements violate temporal Bell
or Leggett–Garg inequalities, signifying violations of classical
(meta-learned) cognition, such as Markov-blanketed inferential
paradoxes at suboptimal free energy. Restructuring these cognitive
phenomena within quantum decision theory and quantum Markov
blankets creates opportunities for irrational decision making to be
organized into explainable manifolds at optimal free energy, tanta-
mount to quantum active Bayesian inference where observable
incompatibility or inequality violations are acceptable (Clark,
2021a). Such theoretical elegance in describing complex cognition
forces classical and quantum aspects of brain structure and func-
tion into a newer realm of logicomathematical formalism with ver-
ifiable, important real-world consequences.
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Abstract

Binz et al. propose a general framework for meta-learning and
contrast it with built-by-hand Bayesian models. We comment
on some architectural assumptions of the approach, its relation
to the active inference framework, its potential applicability to
living systems in general, and the advantages of the latter in
addressing the explanation problem.

Binz et al. craft a comprehensive outline for advancing
meta-learning (MetaL) on the basis of several arguments concern-
ing the tractability of optimal learning algorithms, manipulation
of complexity, and integration into the rational aspects of cogni-
tion, all seen as basic requirements for a domain-general model of
cognition. Architectural features include an inductive process
from experience driven by repetitive interaction with the environ-
ment, necessitating (i) an inner loop of “base learning,” and (ii)
an outer loop (or MetaL) process through which the system is
effectively trained by the environment to ameliorate its inner
loop learning algorithms. A key aspect of the model is its depen-
dence on the relation between the typical duration of a (general,
MetaL) problem-solving episode and the typical duration of a
(particular, learned) solution.
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While Binz et al. focus on MetaL as a practical methodology
for modeling human cognition, it is also interesting to ask how
MetaL as Binz et al. describe it, fits into the conceptual framework
of cognition in general, and also to ask how it applies both to
organisms other than humans and to artificial (or hybrid) systems
operating in task environments very different from the human
task environment. From a broad perspective, MetaL is one func-
tion of metacognition (e.g., Cox, 2005; Flavell, 1979; Shea & Frith,
2019). Both MetaL and metacognition more generally engage
memory and attention as they are neurophysiologically enacted
by brain regions including the default mode network (Glahn
et al., 2010), as reviewed for the two theories in Wang (2021)
and Kuchling, Fields, and Levin (2022), respectively.

When MetaL is viewed as implemented by a metaprocessor
that is a proper component of a larger cognitive system, one
can ask explicitly about the metaprocessor’s task environment
and how it relates to the larger system’s task environment.
MetaL operates in a task environment of learning algorithms
and outcomes, or equivalently, a task environment of metapara-
meters and test scores. How the latter are measured is straightfor-
ward for a human modeler employing MetaL as a methodology,
but is less straightforward when an explicit system-scale architec-
ture must be specified. The question in this case becomes that of
how the object-level components of a system use the feedback
received from the external environment to train the metaproces-
sor. The answer cannot, on pain of infinite regress, be MetaL. The
relative inflexibility of object-level components as “trainers” of
their associated metaprocessors effectively bakes in some level
of non-optimality in any multilayer system.

Binz et al. emphasize that MetaL operates on a longer time-
scale than object-level learning. Given a task environment that
imposes selective pressures with different timescales, natural
selection will drive systems toward layered architectures that
exhibit MetaL (Kuchling et al., 2022). Indeed the need for a
“learning to learn” capability has long been emphasized in the
active-inference literature (e.g., Friston et al., 2016). Active infer-
ence under the free-energy principle (FEP) is in an important
sense “just physics” (Friston, 2019; Friston et al., 2023;
Ramstead et al., 2022); indeed the FEP itself is just a classical
limit of the principle of unitarity, that is, of conservation of infor-
mation (Fields et al., 2023; Fields, Friston, Glazebrook, & Levin,
2022). One might expect, therefore, that MetaL as defined by
Binz et al. is not just useful, but ubiquitous in physical systems
with sufficient degrees of freedom. As this is at bottom a question
of mathematics, testing it does not require experimental
investigation.

What does call out for experimental investigation is the extent to
which MetaL can be identified in systems much simpler than
humans. Biochemical pathways can be trained, via reinforcement
learning, to occupy different regions of their attractor landscapes
(Biswas, Manika, Hoel, & Levin, 2021, 2022). Do sufficiently com-
plex biochemical networks that operate on multiple timescales
exhibit MetaL? Environmental exploration and learning are ubiqui-
tous throughout phylogeny (Levin, 2022, 2023); is MetaL equally
ubiquitous? Learning often amounts to changing the salience distri-
bution over inputs, or in Bayesian terms, adjusting precision assign-
ments to priors. To what extent can we describe the
implementation of MetaL by organisms in terms of adjustments
of sensitivity/salience landscapes – and hence attractor landscapes
– on the various spaces that compose their umwelts?

As Binz et al. point out, in the absence of a mechanism for
concrete mathematical analysis, MetaL forsakes interpretable

analytic solutions and hence generates an “explanation problem”
(cf. Samek, Montavon, Lapuschkin, Anders, & Müller, 2021). As
in the case of deep AI systems more generally, experimental tech-
niques from cognitive psychology may be the most productive
approach to this problem for human-like systems (Taylor &
Taylor, 2021). Relevant to this is an associated spectrum of
ideas, including how problem solving is innately perceptual,
how inference is “Bayesian satisficing” not optimization (Chater,
2018; Sanborn & Chater, 2016), the relevance of heuristics
(Gigerenzer & Gaissmaier, 2011; cf. Fields & Glazebrook, 2020),
and how heuristics, biases, and confabulation limit reportable self-
knowledge (Fields, Glazebrook, & Levin, 2024). Here again, the
possibility of studying MetaL in more tractable experimental sys-
tems in which the implementing architecture can be manipulated
biochemically and bioelectrically, may offer a way forward not
available with either human subjects or deep neural networks.
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Abstract

The implementation of meta-learning targeted by Binz et al.
inherits benefits and drawbacks from its nature as a connection-
ist model. Drawing from historical debates around bottom-up
and top-down approaches to modeling in cognitive science, we
should continue to bridge levels of analysis by constraining
meta-learning and meta-learned models with complementary
evidence from across the cognitive and computational sciences.

Meta-learning as a model allows researchers to posit how human
and other biological learning systems might learn from experience
in a structured manner, including by relating experiences across
timescales or latent causes non-uniformly. Meta-learning as a
tool allows researchers to posit flexible and data-driven learning
algorithms as computational models of human learning than
those are readily expressed by machine learning algorithms such
as gradient descent with canonical parameters, or inference in a
Bayesian model in which exact inference is tractable. These senses
of a “meta-learning” and a “meta-learned” model align with the
dichotomy employed in Binz et al.

Meta-learning in both senses and using the implementation
focused on in Binz et al. – a recurrent neural network – further
inherits characteristics of connectionism: Universal approxima-
tion, ease of specification, manipulability (including of complex-
ity), and integration of neuroscientific findings, which Binz
et al. rightly note as positives. However, this implementation of
meta-learning also inherits the challenges of a connectionist
approach: Lack of interpretability (the ease with which humans
can understand the workings and outputs of a system) and con-
trollability (the ability to modify a model’s behavior or learning
process to achieve specific outcomes).

These benefits and drawbacks of the bottom-up, emergentist
approach of connectionism have been discussed at length, includ-
ing in this journal (Smolensky, 1988). As a result of these discus-
sions, a common ground between these and top-down structured
approaches such as Bayesian cognitive modeling has emerged:

That models posed in different description languages may not
be at odds simply because they are posed at different levels of
analysis, and in fact should be tested for complementarity
(Rogers & McClelland, 2008; Griffiths, Vul, & Sanborn, 2012).

It is this integrative approach that I view as the most fruitful in
examining the validity of meta-learning and meta-learned cogni-
tive models precisely because (1) it allows us to address the chal-
lenges of working within a single paradigm (say, the lack of
interpretability of a connectionist approach) at the same time as
(2) providing stronger grounds on which to refute a cognitive
model (say, by its inconsistency with evidence from neural
recordings, or its inability to account for how an ecological task
is solved). Making use of the former benefit is especially critical,
as the meta-learned models commonly employed, including by
Binz et al., have the potential to be even more inscrutable than
a connectionist model initialized in a data-agnostic way.

Binz et al. discuss two studies of meta-learning and
meta-learned models that bridge levels of analysis in this manner:
Firstly, a meta-learning algorithm has been tested against experi-
mental neuroscience findings in prefrontal cortex (Wang et al.,
2018). Secondly, a meta-learned recurrent neural network can
approximate the posterior predictive distribution picked out as
optimal by a Bayesian approach (Ortega et al., 2019).
Connecting neuroscientific findings with computational-level
analysis via algorithm is an exciting result. However, as Binz
et al. note, the goodness of fit of the meta-learned approximation
employed in both studies is not guaranteed, and has been empir-
ically demonstrated to be poor.

As a contrast to an approach that makes use of approximation,
our work (Grant, Finn, Levine, Darrell, & Griffiths, 2018) draws a
formal connection between a connectionist implementation of
meta-learning and inference in a hierarchical Bayesian model by
making precise the prior, likelihood, and parameter estimation
procedure implied in the use of the meta-learning implementa-
tion. Equivalently, this result describes a way to implement a
rational solution to a problem of learning-to-learn in a connec-
tionist architecture (though there are likely to be many equivalent
implementations). A formal integration across levels like this is
tighter than an approximation approach, and therefore provides
a firmer footing for integrative constraints across levels of analysis.

Follow-up investigations have made use of this connection
between computational-level and algorithmic-level approaches.
For example, in McCoy, Grant, Smolensky, Griffiths, and
Linzen (2020), we used an analogous setup to Grant et al.
(2018) to meta-learn a syllable typology in a limited data setting
akin to an impoverished language learning environment. To bet-
ter accommodate the complex dynamics of learning, we relaxed
some constraints on the meta-learning algorithm, thus for the
moment doing away with the tight connection between the algo-
rithmic and computational levels. However, in sticking with
methods – namely tuning the gradient-based initialization for
learning in a neural network – for which ongoing research in
machine learning is formally characterizing how prior knowledge
(Dominé, Braun, Fitzgerald, & Saxe, 2023), including data-driven
prior knowledge (Lindsey & Lippl, 2023), interacts with the learn-
ing algorithm and environment, my view is that these approaches
will soon benefit from tighter connections between the algorith-
mic and computational levels echoing to the connection derived
in Grant et al. (2018).

Absent these connections, because meta-learning and
meta-learned models are underconstrained and data-driven, it is
challenging to evaluate the validity and implications of these
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models for our understanding of how experience shapes learning.
Thus, scientists interested in the place of meta-learning and
meta-learned models in cognitive science should work to make
precise the constraints that these models imply across levels of
analysis, including by making use of analytical techniques from
machine learning, at the same time looking into complementary
constraints from experimental neuroscience, and ecologically rele-
vant environments. Given that so many aspects remain open, it is
an exciting time to be working with and on meta-learning toolkit.
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Abstract

The authors’ aim is to build “more biologically plausible learning
algorithms” that work in naturalistic environments. Given that,
first, human learning and memory are inextricable, and, second,
that much human learning is unconscious, can the authors’ first
research question of how people improve their learning abilities
over time be answered without addressing these two issues? I
argue that it cannot.

Learning is the process of acquiring a memory; learning and
memory both depend, fundamentally, on association (Fuster,
1999). The inextricability of learning and memory originates
because any to-be-learned information is encoded in memory
through association, the same associative encoding also enables
retrieval from memory (Brown & Craik, 2000; Tulving &
Thomson, 1973). Once retrieved, the encoded memory will
drive expectations in the same (or similar) environments to
those in which the learning took place.

The authors identify their meta-learned models as ones that
“acquire their inductive biases from experience, i.e. by repeatedly
interacting with an environment.” This implies that learning is
cumulative over time as the model repeatedly samples the envi-
ronment. For human learning to be cumulative across time, the
learned information must be encoded and retained in
memory. Later in the paper, the authors, briefly, acknowledge
the contribution of episodic memory and the hippocampus but
do not spell out how hippocampal memory systems impact
their models.

In relation to the authors’ first research question, people can
improve their learning abilities through elaborate encoding
which creates associations between the to-be-learnt episodic
material and information already encoded in episodic memory
networks (Foer, 2011; Llewellyn, 2013; Yates, 1966). The hippo-
campus is crucial to both associative encoding and later retrieval
of episodes through association (Davachi & Wagner, 2002;
Llewellyn, 2013; Thakral, Benoit, & Schacter, 2017). The sequen-
tial, associative nature of elements of learned, encoded and
retained episodic memories gives rise to rational, step-by-step
learning. However, during rapid eye movement (REM) sleep,
the hippocampus may take elements of different episodic experi-
ences to identify more elaborative, associative, probabilistic and
meaningful patterns in experience which may be expressed,
visually, as dreams and instantiated as cortical nodes/junctions
during non-rapid eye movement (NREM) sleep (Llewellyn &
Hobson, 2015). Cortical episodic memory networks then consist
of sequential, associative pathways which converge at nodes/
junctions which express patterned, probabilistic, experiential
learning. The hidden units/nodes in neural networks may be
analogous to these nodes/junctions in cortical episodic memory
networks.

Given the authors’ recognition, “that episodic memory could
be the key to explaining human performance in naturalistic envi-
ronments” it seems pertinent to expand their algorithms to
encompass not only the logical, experiential, “step-by-step” learn-
ing patterns that predominate during wake but also the more
complex, hyper-associative, experiential patterns identified during
REM sleep. Admittedly, this extension may be, somewhat, futur-
istic. But research has already mimicked slow wave sleep which
restored stability to neural networks engaged in unsupervised
learning (Watkins, Kim, Sornborger, & Kenyon, 2020). Also,
given the adaptivity, speed via massive parallelism, fault tolerance
and optimality of neural networks (Bezdek, 1992) and that
machine learning programmes trained on probabilistic reasoning
are superior to the human brain for visual pattern recognition
(Pavlus, 2016) it may be possible that, in the recurrent neural net-
works mobilized by the authors, REM sleep is not required for
complex pattern recognition.

Experiences in natural environments may never be re-enacted
in their entirety but they are certainly non-random and do not
exclude expectations. Across evolutionary time, many interactions
with the environment held dangers because of predators and
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competitors. To try to avoid dangers, humans needed to identify
the probabilistic, behavioural patterns of predators and competi-
tors. Such patterns would only be revealed over several episodes,
as humans observed the associations that drove predator behav-
iour. For example, lions tend to visit waterholes at night when
prey are abundant (lion presence is associated with nighttime)
but, in the dry season, lions get so thirsty that they may be at
the waterhole during the day (in the dry season, lion presence
can be associated with daytime). Also, elephants tend to drive
lions away from the waterhole, so the presence of elephants offers
some safety (elephant presence is associated with lion absence).
When many associations are at stake and/or actions must be
fast, probabilistic associative patterns, derived from multiple epi-
sodes, drive expectations and learning during future interactions
in the environment.

Much, probably the majority, of learning occurs uncon-
sciously. Contemporarily, dangers may differ but unconscious
expectations, formed through learning and retained as uncon-
scious memories, still drive fast responses to threats (Öhman,
Carlsson, Lundqvist, & Ingvar, 2007). Concomitantly, it would
be expected that the elaborative, complex, associative, probabilistic
and meaningful experiential patterns formed in REM sleep would
be unconscious. Arzi et al. (2012) showed that new associations,
learned during REM sleep, were retained as unconscious memo-
ries, then functioning, during wake, as unconscious expectations
which drove actions.

Does the human unconscious have any parallels in machine
learning? We know that machine learning algorithms inherit
unconscious human biases, indeed they can amplify them
(Thomas, 2018). Moreover, humans can continue to reproduce
machine learning bias, even after they no longer use the algorithm
(Vicente & Matute, 2023). Clearly, unconscious learning and
memory are not subject to voluntary control. Although uncon-
scious biases can be detrimental (e.g., to marginalized groups)
inductive, unconscious (or implicit) biases are essential for faster
information processing both in humans and machine learning.
Inductive biases depend on the associations formed through expe-
rience, in machine learning such associations occur during unsu-
pervised learning. Specifically, in the authors’ meta-learned
models, associations will be experiential.

In sum, the authors assert that their meta-learned models are
“invaluable tools to study, analyse and understand the human
mind.” In humans, experiential, associative learning becomes
associative memories that, then, drive expectations in subsequent
learning. In the memory network architecture of the brain/mind
these associative memories may take the form of the serial, asso-
ciative pathways which underlie conscious learning. Equally,
where these serial pathways cross at nodes/junctions, complex,
hyper-associative, experiential patterns arise from elements of
the different intersecting pathways. These patterns are retained
as unconscious memories which associate elements of different
experiences.

Association is fundamental to both learning and memory,
whether conscious or unconscious. The authors’ first research
question of how people improve their learning abilities over
time can be better addressed through acknowledging, first, the
inextricability of learning and memory and, second, the role of
conscious and unconscious association in each.
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Abstract

Abundant experimental evidence illustrates violations of
Bayesian models across various cognitive processes. Quantum
cognition capitalizes on the limitations of Bayesian models, pro-
viding a compelling alternative. We suggest that a generalized
quantum approach in meta-learning is simultaneously more
robust and flexible, as it retains all the advantages of the
Bayesian framework while avoiding its limitations.
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The use of the Bayesian framework in meta-learning represents an
elegant way to bypass the strictures of an ex-ante specification of
models of cognition. As proposed by Binz et al. (hereafter the
Authors), Bayesian inference, building upon unconstrained inter-
actions with the environment, represents a viable alternative to
more traditional hand-designed learning algorithms.

However, Bayesian models come with inherent limitations,
which researchers are rarely aware of. While scholars normally
endorse Bayesian models because of their unconstrained features,
they rarely consider that such models are actually “constrained” to
the Kolmogorovian assumptions of classical probability theory.

Abundant experimental evidence illustrates violations of
Bayesian models across various cognitive processes, including
probability judgment errors, memory recognition, semantic
spaces, information processing, learning, concept combination,
and perception (e.g., Pothos and Busemeyer, 2022). These viola-
tions stem from the fact that many cognitive phenomena do
not adhere to the law of total probability, along with the distrib-
utivity axiom, assumed in classical Kolmogorovian probability.
Consequently, they do not admit a Bayesian operationalization.

Let us consider a stylized meta-learning process (similar to
those discussed by the Authors) that can be operationalized
through a Bayesian model. Suppose we hypothesize that learning
performance can assume the (mutually exclusive) states P1 or P2,
conditioned on meta-experience, which can assume the (mutually
exclusive) states E1 or E2. Let’s aim to predict the total probabil-
ity, p, of the state P2. Consistent with a Bayesian framework, we
can consider two cases: One, which we’ll refer to as the “uncon-
ditioned case,” where we only observe p(P2); and the other,
referred to as the “conditioned case,” where we observe the con-
ditioned probabilities, p(P2|E1) and p(P2|E2).

Now, suppose that in experimental settings, the observed data
reveal that in the “unconditioned case,” the probability is p(P2) =
0.29, while in the “conditioned case,” the probability is p(E1)⋅p
(P2|E1) + p(E2)⋅p(P2|E2) = 0.59, where p(P2|E2) = 0.63.

We quickly realize that these experimental results are incom-
patible with a Bayesian framework: The total probability of P2
in the “unconditioned case” is inconsistent with that of the “con-
ditioned case” (0.29 vs. 0.59), and the total probability of the
“unconditioned case” is also lower than that in the “conditioned
case,” restricted to E2 (0.29 vs. 0.63). When evidence violates
the law of total probability, Bayesian models reveal inadequacies
(for further discussion, see Busemeyer & Wang, 2015;
Busemeyer, Wang, & Lambert-Mogiliansky, 2009).

Such situations are paradoxical: They are somehow implausi-
ble to the extent that they do not admit a Bayesian formalization,
yet they result from experimental evidence. When it comes to
understanding such evidence, quantum cognition comes to the
fore as a burgeoning field of research that dialectically capitalizes
on the limitations of Bayesian models, providing a compelling
alternative. A fundamental difference between Bayesian and
quantum models – relevant for the present critique – lies in the
fact that quantum models can account for such evidence precisely
because they do not adhere to the law of total probability (for a
comprehensive comparison between Bayesian and quantum mod-
els in cognition, refer to Bruza, Wang, & Busemeyer, 2015).

Continuing with the example discussed above, what differs
between the “unconditioned case” and “conditioned case” is
that, respectively, the non-observation or the observation of the
conditioning variable (E) is not neutral for the final probability.
In other words, the two models are incompatible and do not
admit a mutually consistent formalization.

In a quantum framework, the violations of the total law of
probability are due to interference effects, which occur when the
conditioning variables are not observed. In our example, the
interference between the two conditions (E1 and E2) implies
that they behave like waves, where the interference can be either
destructive (canceling) or constructive (resonating), affecting the
final probability p(P2). On the contrary, when E is observed,
the result is compatible with a classical framework as the act of
measuring the mutually exclusive states of experience eliminates
their interference (for an overview on the role of interference
effects, see Busemeyer & Bruza, 2012).

The Authors wisely avoid claiming that meta-learning is the ulti-
mate solution to every modeling problem, and they contemplate, in
what they call “Intricate training processes,” the possibility that “the
resulting model [of meta-learning] does not fit the observed data.”

We think that such situations are not just due, as implicitly
suggested by the Authors, to the complexity of the scenarios,
but to the fact that the tacit probabilistic assumptions of
Bayesian models are somehow too restrictive.

More in detail, the plausibility of neurocognitive Bayesian
foundations of meta-learning would require stronger justifica-
tions. Indeed, assuming that prefrontal circuits may constitute a
meta-reinforcement learning system (cf., Wang et al., 2018) or,
in general terms, that the brain is a Bayesian machine, matching
top-down prediction with bottom-up experience (cf., Friston,
2010), would also imply assuming that Kolmogorovian probabil-
ity ascribes to the biological realm.

The employment of Bayesian models is institutionalized to
such an extent that their foundational assumptions are rarely con-
tested in scientific debates. However, there are situations, like the
one discussed here, in which Bayesian models reveal their limita-
tions: Despite aspiring to provide a generalized framework for
meta-learning, they inherently harbor very restrictive assumptions
in probability theory.

On the contrary, quantum models exhibit greater flexibility,
are more robust, and can offer a more sophisticated view of
the neurocognitive mechanisms involved in human learning
(cf., Mastrogiorgio, 2022).

However, quantum cognition is not a tout court alternative to
Bayesian models but rather a generalization applicable to cases
where the law of total probability is violated. This implies that
Bayesian models represent a special case within the broader quan-
tum framework: Quantum models reduce to Bayesian models
when experimental evidence aligns with the requirements of the
distributivity axiom and the law of total probability.

Precisely because we support the Authors’ proposal of employ-
ing unconstrained logics in meta-learning, we also believe that a
generalized quantum approach is simultaneously more robust
and flexible, as it retains all the advantages of the Bayesian frame-
work while avoiding its limitations.
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Abstract

Meta-learning is even more broadly relevant to the study of
inductive biases than Binz et al. suggest: Its implications go
beyond the extensions to rational analysis that they discuss.
One noteworthy example is that meta-learning can act as a
bridge between the vector representations of neural networks
and the symbolic hypothesis spaces used in many Bayesian
models.

Like many aspects of cognition, learning can be analyzed at mul-
tiple levels. At a high level (Marr’s [1982] “computational” level)
we can model learning by providing an abstract characterization
of the learner’s inductive biases: The preferences that the learner
has for some types of generalizations over others (Mitchell, 1997).
At a lower level, learning can be modeled by specifying the partic-
ular algorithms and representations that the learner uses to realize
its inductive biases. For each of these levels, there are modeling
traditions that have been successful: Rational analysis and
Bayesian models are defined at the computational level, while
neural networks are defined at the level of algorithm and repre-
sentation. But how can we connect these different traditions?
How can we work toward unified theories that bridge the divide
between levels? In this piece, we agree with, and extend, Binz
et al.’s point that meta-learning is a powerful tool for studying
inductive biases in a way that spans levels of analysis.

Binz et al. describe how an agent can use meta-learning to
derive inductive biases from its environment. This makes
meta-learning well-suited for modeling situations where human
inductive biases align with some problem that humans face –

the situations that are well-covered by the paradigm of rational
analysis (Anderson, 1990). As Binz et al. discuss, meta-learning
can therefore be used to enable an algorithmically defined
model (such as a neural network) to find the solution predicted
by rational analysis, a procedure that bridges the divide between
abstract rational solutions and specific algorithmic instantiations.

This direction laid out by Binz et al. is exciting. We argue that
it can in fact be viewed as one special case within a broader space
of possible lines of inquiry about inductive biases that
meta-learning opens up. In the more general case, the Bayesian
perspective allows us to define an inductive bias as a probability
distribution over hypotheses. A neural network can meta-learn
from data sampled from this distribution, giving it the inductive
bias in question. The distribution that is used could be drawn
from (an approximation of) a human’s experience, in which
case this framing matches the extension of rational analysis that
Binz et al. advocate for. But it is also possible to use other
approaches for defining this distribution, which can correspond
to any probabilistic model. Since we can control probabilistic
models, using a probabilistic model to define the distribution
makes it possible to control the inductive biases that the
meta-learned model ends up with (Lake, 2019; Lake & Baroni,
2023; McCoy, Grant, Smolensky, Griffiths, & Linzen, 2020).
This allows us to take an inductive bias defined at Marr’s compu-
tational level and distill it into a neural network defined at the
level of algorithm and representation.

Traditionally, certain types of inductive biases have been asso-
ciated with certain types of algorithms and representations: The
strong inductive biases of Bayesian models have generally been
based on discrete, symbolic representations (e.g., Goodman,
Tenenbaum, Feldman, & Griffiths, 2008), while neural networks
use continuous vector representations (Hinton, McClelland, &
Rumelhart, 1986) and have weak inductive biases. However,
meta-learning enables us to separately manipulate inductive
biases and representations, making it possible to model previously
inaccessible combinations of representations and inductive biases.
One noteworthy example is that we can use meta-learning to give
symbolic inductive biases to a neural network, allowing us to
study whether and how structured hypothesis spaces (of the
sort often used in Bayesian models) can be realized in a system
with continuous vector representations (the type of representation
that is central in both biological and artificial neural networks).
Thus, while Binz et al. note that meta-learning can be used as
an alternative to Bayesian models, another use of meta-learning
is in fact to expand the applicability of Bayesian approaches by
reconciling them with connectionist models – thereby bringing
together two successful research traditions that have often been
framed as antagonistic (e.g., Griffiths, Chater, Kemp, Perfors, &
Tenenbaum, 2010; McClelland et al., 2010).

In our prior work, we have demonstrated the efficacy of this
approach in the domain of language (McCoy & Griffiths, 2023).
We started with a Bayesian model created by Yang and
Piantadosi (2022), whose inductive bias is defined using a sym-
bolic grammar. We then used meta-learning (specially, MAML:
Finn, Abbeel, & Levine, 2017; Grant, Finn, Levine, Darrell, &
Griffiths, 2018) to distill this Bayesian model’s prior into a neural
network. The resulting system had strong inductive biases of the
sort traditionally found only in symbolic models, enabling this
system to learn formal linguistic patterns from small numbers
of examples despite being a neural network, a class of systems
that normally requires far more examples to learn such patterns.
Additionally, the flexible neural implementation of this system

Commentary/Binz et al.: Meta‐learned models of cognition 31

https://doi.org/10.1017/S0140525X23003266 Published online by Cambridge University Press

https://orcid.org/0000-0002-5138-7255
mailto:tom.mccoy@yale.edu
mailto:tomg@princeton.edu
https://rtmccoy.com/
https://rtmccoy.com/
http://cocosci.princeton.edu/tom/
http://cocosci.princeton.edu/tom/
https://doi.org/10.1017/S0140525X23003266


made it possible to train it on naturalistic textual data, something
that is intractable with the Bayesian model that we built on. Thus,
meta-learning enabled the creation of a model that combined the
complementary strengths of Bayesian and connectionist models of
language learning.

These results show that inductive biases traditionally defined
using symbolic Bayesian models can instead be realized inside a
neural network. Therefore, symbolic inductive biases do not nec-
essarily require inherently symbolic representations or algorithms.
This demonstration provides one already-realized example of how
meta-learning can advance our understanding of foundational
questions about how different levels of cognition relate to each
other, in ways that go beyond the realm of rational analysis.
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Abstract

I propose that meta-learned models, and in particular the situa-
tion-aware deployment of “learning-to-infer” modules can be
advantageously extended to domains commonly thought to lie out-
side the cognitive, such as motivations and preferences on one
hand, and the effectuation of micro- and coping-type behaviors.

An account of the ways in which locally meta-learned models can
address difficulties arising from computational intractability of
Bayesian inference in non-small worlds and difficulties in articu-
lating inference problems over unknown state spaces have is over-
due. We have for some time been aware that the experimental
evidence base of behavioral decision theory admits of alternative
plausible explanations via models of the experimental condition
(meant to illustrate “base rate neglect,” or availability of a plausi-
ble simile) that explain how the subject can seem biased to an
observer while in fact engaging in a reasonable and ecologically
successful pattern of inference (Moldoveanu & Langer, 2002;
Marsh, Todd, & Gigerenzer, 2004). At the same time, incorporat-
ing the informational (say, “bits”) and computational (“operations
performed upon bits”) costs of inferential calculations in models
of cognition not only “makes sense” – as storage and calculation
both require work – but can rationalize patterns of behavior that
previously appeared to some as irrational or sub-rational
(Gershman, Horvitz, & Tennenbaum, 2015; Moldoveanu, 2011).

The meta-learning program of inquiry can be extended to phe-
nomena and episodes that lie beyond or on the fringes of what we
would call “cognitive,” at both the “upstream” (motives, motiva-
tions, identities) and “downstream” (motor behaviors, perceptual
inferences) ends. Motivations, “preferences,” and meta-
preferences can be understood as the outcomes of a process by
which one learns from one’s own reactions to an environment’s
responses to one’s own behaviors. At the other end,
in-the-moment “heedful coping” for the purpose of getting a
“maximal grip” (Merleau Ponty, 2012[1974]) on an immediate
physical or interpersonal environment can be described in ways
that make transparent the structure of the inferential learning
problem and the function that one is trying to approximate, for
example: Producing situation-specific, successful combinations
of vertical and horizontal pressures through one’s digits in
order to balance a large, flat object, or of activations of muscles
to produce particular facial and postural expressions meant to
cause someone else to do, say or think in a particular way.

Consider, first, the “motivational” nexus of motivation-
identity-preference. The idea that one infers one’s own “attitudes”
from one’s behavior in situations whose affordances encode
“choicefulness” has been around for a while (Bem, 1967), but
the problem of “learning to prefer (X to Y, say)” is neither imme-
diately self-evident or “given” nor, once posed, computationally
simple (or, even tractable). But, once preferences are understood
as dispositions to act in particular ways or combinations of
ways in a context and encoded by conditional probabilities linking
combinations of sensorial fields and internal states to actions, the
self-referential problem of inferring “What do I like?/What moti-
vates me?” from observations of “what do I do (or, choose to do)
in situations in which…?” can get off the ground. One can
develop preferences that are highly specific (combinations of
ingredients mixed in precise sequences and proportions to make
a “dish”) or general (“I prefer injustice to disorder”) and motiva-
tions that are domain-specific (“decentralized decision rights as
an approach to managing this team on this task”) or less so (“to
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enable and facilitate other people’s sense of autonomy”).
Preferences and motivations can be more or less sophisticated
(in terms of the number of features of a “situation” the inference
of preference depends on, and the logical depth or computational
complexity of the inference algorithm) and more or less
context-adaptive, and more or less susceptible to recursive refine-
ment upon experiencing the ways in which one behaves in differ-
ent environments. Thus, being able to adaptively modify the
informational and computational complexity of the learning algo-
rithm adds a much-needed degree of freedom to the modelers
toolkit. Both preferences and motivations may be learned without
an explicit awareness of that which is learned or that which learn-
ing is conditioned by. “Learning to prefer” (or learning to be the
self one, motivationally, is) can thus be phrased in a way that
tracks “learning to infer”, provided we can successfully formulate
a local objective or cost function the inferential process meliorates
or seeks to extremize. “Internal conflicts” appear as neither path-
ological nor irrational: An optimal (or ecologically adapted in vir-
tue of its adaptiveness) brain can comprise a set of independent
agents that have conflicting objectives (Livnat & Pippenger,
2006) but are jointly adaptive to environmental niches its organ-
ism copes with frequently enough.

Second, consider the “in-the-moment” perception-sensation-
effectuation nexus, which has to do with trying to get a target var-
iable to take on a certain value within a certain time window using
the least or a fixed amount of energy – such as controlling the ver-
tical displacement of a tray of containers containing hot liquids,
the horizontal displacement of an inverted pendulum, the angular
velocity, height, and vertical velocity of a coin used in a coin toss
or even a dynamical network of physiognomical micro-responses
in an emotionally charged meeting with several attendees. In such
cases, the inverse, counterfactual-dependent problem of “causal
inference” is replaced by the forward, direct problem of effectua-
tion (or control): One is attempting to produce and in some cases
also maintain a specific set of values of variables XT (vertical dis-
placement of a tray of liquids, perceived visceral or emotional
responses of another person) that form part of the state space X
of a dynamically evolving system Xt = F(X,U, t) by making spe-
cific changes to one or more “input” or lever variables U on the
basis of observations of some proxy variables Y that encode or
register filtered, biased states of X via Y =G(X,t). In this case,
the underlying inference problem can be posed in terms of max-
imizing the time-bounded and energy-efficient controllability and
observability of Xt = F(X,U, t); Y = G(X,t) for instance by the
optimal choice and placement of the “lever” or “driver” nodes
(Li and Laszlo Barabassi, 2016), or in terms of making changes
to the structural properties of Xt = F(X,U, t); Y = G(X,t) in ways
that alter its temporal dynamics or time constants (for instance,
learning to control a tremor by using different combinations or
muscle groups for effecting a fine movement, which changes the
parameters of Xt = F(X,U, t); Y = G(X,t) and thus the pole-zero
distribution of its transfer function).
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Abstract

Binz et al. argue that meta-learned models are essential tools for
understanding adult cognition. Here, we propose that these
models are particularly useful for testing hypotheses about
why learning processes change across development. By leverag-
ing their ability to discover optimal algorithms and account for
capacity limitations, researchers can use these models to test
competing theories of developmental change in learning.

Binz et al. argue compellingly for meta-learning as a tool to
understand adult cognition, but their vision is incomplete:
Meta-learned models are particularly apt tools for studying devel-
opment. As the authors note, meta-learned models provide a nat-
ural foundation for theorizing about learning to learn (Wang,
2021) and for understanding experience-driven changes in goal-
directed behavior (Nussenbaum & Hartley, in press). Here, how-
ever, we consider the authors’ central argument and focus not on
meta-learning algorithms or the process of “learning to learn,”
but rather on meta-learned models as a tool for understanding
developmental changes in learning. To date, research has revealed
age-related shifts in the algorithms and neural circuitry that
underlie learning (Bolenz, Reiter, & Eppinger, 2017; Gualtieri &
Finn, 2022; Hartley, Nussenbaum, & Cohen, 2021; Nussenbaum
& Hartley, 2019; Raab & Hartley, 2018), but understanding why
these shifts occur has proven more difficult.

Disentangling whether age-related changes in learning reflect
adaptation to age-varying “external” ecological problems or
“internal” changes in cognitive capacity has been difficult, in
part because developmentalists have lacked the formalizations
needed to make specific predictions about how these two factors
might drive age-related changes in behavior. As an example, in

Commentary/Binz et al.: Meta‐learned models of cognition 33

https://doi.org/10.1017/S0140525X23003266 Published online by Cambridge University Press

https://orcid.org/0000-0002-7185-6880
https://orcid.org/0000-0003-0177-7295
mailto:katenuss@princeton.edu
mailto:cate@nyu.edu
https://www.katenuss.com/
https://www.katenuss.com/
https://www.hartleylab.org/
https://www.hartleylab.org/
https://doi.org/10.1017/S0140525X23003266


many studies of reinforcement learning, participants are tasked
with earning the most reward (e.g., points or money) by selecting
between different options. In these tasks, children tend to make
“noisier” or more exploratory choices, which typically result in
poorer performance (Nussenbaum & Hartley, 2019) but enhanced
learning of task structure (Blanco & Sloutsky, 2021; Liquin &
Gopnik, 2022; Sumner et al., 2019). These findings have led
researchers to theorize that children and adults have optimized
their learning computations to maximize reward over different
types of environments – children’s learning contexts may have
features (e.g., greater reward stochasticity, longer temporal hori-
zons) that favor exploration over immediate reward gain
(Gopnik, 2020). An alternative account, however, is that children’s
“noisier” behavior reflects a more limited cognitive capacity
(Craik & Bialystok, 2006; Ruel, Devine, & Eppinger, 2021),
which constrains their “optimization” of learning computations.

By enabling separable manipulation of external experience and
internal cognitive capacity, meta-learned models may help arbi-
trate between these accounts of developmental change. As Binz
et al. note, through meta-learning, the optimal algorithm emerges
through experience, and is shaped by the distribution of environ-
ments on which the model is trained. Thus, these models can be
used to test how differences in “training” experience might yield
different patterns of learning at “test.” Examining how training
environments influence model behavior within the same tasks
that have been used to study cognitive development can provide
insight into the types of environments for which children, adoles-
cents, and adults have optimized their learning computations. As
one example, Binz and Schulz (2022) found that increasing the
variance in the rewards that a model experienced during training
led to exploration decisions at test that more closely approximated
those of human learners, suggesting that people may have tuned
their learning computations for environments with more stochas-
ticity than the task context. Importantly, meta-learned models can
provide insight into how optimal learning is shaped by exposure
to highly complex environments in which multiple features vary
and interact – environments for which analytically derived “solu-
tions” are intractable but that are more reflective of real-world con-
texts than the simple tasks that have been used in most prior research.

At the same time, meta-learned models can account for how
changes in capacity limitations may yield developmental changes
in learning. As Binz et al. note, the complexity of meta-learned
models can be manipulated easily, particularly when they are imple-
mented as neural networks. Manipulating capacity constraints and
comparing model behavior to that of learners at different ages can
thus provide insight into whether developmental changes in learn-
ing are well accounted for by theories of “resource-rationality.” Binz
and Schulz (2022) found, for example, that increasing the complex-
ity of the algorithms that a meta-learning network could implement
led to changes in patterns of directed exploration that mirrored
those that occur across adolescence (Somerville et al., 2017). This
result exemplifies how, rather than emerging from differences in
external “training” experience, age-related changes in learning can
also be driven by differences in cognitive capacity.

Further, neural network implementations of meta-learning
enable separable manipulations of “algorithmic complexity” via
network weights and “computational complexity” via network
activations. Future developmental modeling work could explore
the ramifications of constraints on algorithmic versus computa-
tional complexity. Numerous studies have revealed a dissociation
between children’s knowledge of rules or structure and their abil-
ity to leverage them to guide behavior (Decker, Otto, Daw, &

Hartley, 2016; Zelazo, Frye, & Rapus, 1996). The types of struc-
tural knowledge that can be acquired at different ages may depend
on algorithmic complexity, while use of that knowledge may rely
on processes like working memory and proactive cognitive con-
trol, which may instantiated via complex computations.
Behavioral dissociations between algorithmic and computational
complexity may be mirrored by neural dissociations. Age-related
change in brain structure or the wiring of neural circuitry may be
analogous to age-related change in network weights and relate
more strongly to algorithmic complexity, whereas age-related
change in patterns of neural activation during learning may be
more closely related to the network activations that underlie com-
putational complexity. Thus, predictions about how age-related
change in these two forms of capacity limitations affect learning
could be further tested and constrained with neural data.

While we have suggested that researchers can leverage meta-
learned models to more explicitly test whether children optimize
their behavior for different environments or with different con-
straints, this dichotomy is likely false. Experience and constraints
interact throughout the lifespan, and the changing “constraints”
implemented by neurobiology may themselves serve an adaptive
function – it may be the case that the complexity of the learning
algorithms an organism can implement and execute systematically
increases through exposure to increasingly varied and complex envi-
ronments. Meta-learned models of cognition thus have the poten-
tial to address questions of longstanding interest in developmental
science, while empirical developmental research provides a valuable
testbed for the theoretical utility of these computational tools.
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Abstract

We summarize the recent progress made by probabilistic program-
ming as a unifying formalism for the probabilistic, symbolic, and
data-driven aspects of human cognition. We highlight differences
with meta-learning in flexibility, statistical assumptions and infer-
ences about cogniton. We suggest that the meta-learning approach
could be further strengthened by considering Connectionist and
Bayesian approaches, rather than exclusively one or the other.

Connectionist-versus-Bayesian debates have occurred in cognitive
science for decades (e.g., Griffiths, Chater, Kemp, Perfors, &
Tenenbaum, 2010; McClelland et al., 2010), with each side pro-
gressing in theory, models, and algorithms, in turn impelling
the other side to advance, resulting in a cycle of fruitful engage-
ment. The recent summary of the meta-learning paradigm that
Binz et al. proposed in the target article bridges the two by pro-
posing how meta-learning in recurrent neural networks can
address some of the traditional challenges of Bayesian approaches.
But, by failing to recognize and engage with the latest iteration of
Bayesian modeling approaches – including probabilistic program-
ming as a unifying paradigm for probabilistic, symbolic, and dif-
ferentiable computation (Cusumano-Towner, Saad, Lew, &
Mansinghka, 2019) – this article fails to push the meta-learning
paradigm as far as it could go.

The authors begin their defense of meta-learning by citing the
intractability of exact Bayesian inference. However, this fails to
address how and why meta-learning is superior to approximate
inference for modeling cognition. As the authors themselves note,
Bayesian modelers use a variety of approximate inference methods,
including neural-network-powered variational inference (Dasgupta,
Schulz, Tenenbaum, & Gershman, 2020; Kingma & Welling, 2013),
Markov chain Monte Carlo (Ullman, Goodman, & Tenenbaum,
2012), and Sequential Monte Carlo methods (Levy, Reali, &
Griffiths, 2008; Vul, Alvarez, Tenenbaum, & Black, 2009), which
have all shown considerable success in modeling how humans per-
form inference (or fail to) in presumably intractable settings. As
such, it is hardly an argument in favor of meta-learning – and against
“traditional” Bayesian models – that exact inference is intractable.

This omission is just one way in which the article fails to
engage with a modern incarnation of the Bayesian modeler’s tool-
kit – Probabilistic Programming. In the past two decades, we have
seen the development of probabilistic programming as unifying
formalism for modeling the probabilistic, symbolic, and data-
driven aspects of human cognition (Lake, Salakhutdinov, &
Tenenbaum, 2015), as embodied in probabilistic programming
language such as Church (Goodman, Mansinghka, Roy,
Bonawitz, & Tenenbaum, 2012), webPPL (Goodman &
Stuhlmüller, electronic), Pyro (Bingham et al., 2019), and Gen
(Cusumano-Towner et al., 2019). These languages enable model-
ers to explore a much wider range of computational architectures
than the standard meta-learning setup, which requires modelers
to reformulate human cognition as a sequence prediction prob-
lem. Probabilistic programming allows modelers to unite the
strengths of general-purpose predictors (i.e., neural networks)
with theoretically informed constraints and model-based reason-
ing. For instance, Ong, Soh, Zaki, and Goodman (2021) showed
how reasoning about others’ emotions can be modeled by com-
bining the constraints implied by cognitive appraisal theory
with bottom-up representations learnt via neural networks from
emotional facial expressions. Similarly, several recent papers
have shown how the linguistic abilities of large language models
(LLMs) can be integrated with rational models of planning, com-
munication, and inverse planning (Wong et al., 2023; Ying,
Zhi-Xuan, Mansinghka, & Tenenbaum, 2023), modeling human
inferences that LLM-based sequence prediction alone struggle
with (Zhi-Xuan, Ying, Mansinghka, & Tenenbaum, 2024).

What flexibility does probabilistic programming afford over
pure meta-learning? As the article notes, one potential benefit of
meta-learning is that it avoids the need for a specific Bayesian
model to perform inference over. Crucially, meta-learning achieves
this by having access to sufficiently similar data at training and test
time, such that the meta-learned algorithm is sufficiently well-
adapted to the implied class of data-generating processes. Human
cognition is much more adaptive. We do not simply adjust our
learning to fit past distributions; we also construct, modify, abstract,
and refactor entire theories about how the world works (Rule,
Tenenbaum, & Piantadosi, 2020; Tenenbaum, Kemp, Griffiths, &
Goodman, 2011; Ullman & Tenenbaum, 2020), reasoning with
such theories on downstream tasks (Tsividis et al., 2021). This
capacity is not captured by pure meta-learning, which occurs “off-
line.” By contrast, probabilistic programming allows modeling these
patterns of thought: Theory building can be formulated as program
induction (Lake et al., 2015; Saad, Cusumano-Towner, Schaechtle,
Rinard, & Mansinghka, 2019), refactoring as program merging
(Hwang, Stuhlmüller, & Goodman, 2011), and abstraction-guided
reasoning as coarse-to-fine inference (Cusumano-Towner, Bichsel,

Commentary/Binz et al.: Meta‐learned models of cognition 35

https://doi.org/10.1017/S0140525X23003266 Published online by Cambridge University Press

https://doi.org/10.31234/osf.io/h437v
https://doi.org/10.31234/osf.io/h437v
https://orcid.org/0000-0002-6781-8072
https://orcid.org/0000-0002-1549-8492
https://orcid.org/0000-0002-1925-2035
mailto:desmond.ong@utexas.edu
mailto:xuan@mit.edu
mailto:jbt@mit.edu
mailto:ngoodman@stanford.edu
https://cascoglab.psy.utexas.edu/desmond/
https://cascoglab.psy.utexas.edu/desmond/
https://cocosci.mit.edu/
https://cocosci.mit.edu/
https://ztangent.github.io/
https://ztangent.github.io/
https://cocolab.stanford.edu/
https://cocolab.stanford.edu/
https://doi.org/10.1017/S0140525X23003266


Gehr, Vechev, & Mansinghka, 2018; Stuhlmüller, Hawkins,
Siddharth, & Goodman, 2015). Inference meta-programs
(Cusumano-Towner et al., 2019; Lew et al., 2023) allow us to
model how people invoke modeling and inference strategies as
needed: One can employ meta-learned inference when one
believes a familiar model applies, but also flexibly compute infer-
ences when a model is learned, extended, or abstracted. On this
view, meta-learning has an important role to play in modeling
human cognition, but not for all of our cognitive capacities.

Another way of understanding the relationship between meta-
learning and probabilistic programming is that the former uses
implicit statistical assumptions while the latter’s assumptions are
explicit. Meta-learning assumes that the structure of the world is
conveyed in the statistical structure of data across independent
instances. With sufficient coverage of the training distribution, flex-
ible deep learning approaches fit this structure and use it to gener-
alize. But they may not do so in a way that may provide any insight
into the computational problem being solved by humans.
Probabilistic programs, by contrast, explicitly hypothesize the stat-
istical patterns to be found in data, providing constraints that, if sat-
isfied, yield insights for cognition. This implicit–explicit distinction
both frames the relative value of the approaches and suggests an
alternative relation: A Bayesian model need not subsume or inte-
grate what is learned by a deep learning model, but simply explicate
it, at a higher level of analysis. Through this lens, having to specify
an inference problem is not a limitation, but a virtue.

The best of both worlds will be to compose and further refine
these paradigms, such as using deep amortized inference (like
meta-learning for Probabilistic Programming), using Bayesian
tools (and other tools for mechanistic interpretation) to understand
the results of meta-learning, or constructing neurosymbolic models
(e.g., by grounding the outputs of meta-learned models in probabi-
listic programs, as in Wong et al., 2023). As a very recent example,
Zhou, Feinman, and Lake (2024) proposed a neurosymbolic pro-
gram induction model to capture human visual learning, using
both Bayesian program induction and meta-learning, achieving
the best of both approaches: Interpretability and parsimony, as
well as capturing additional variance using flexible function
approximators. We believe that the field should move beyond
“Connectionist-versus-Bayesian” debates to instead explore hybrid
“Connectionist-and-Bayesian” approaches.
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Abstract

Binz et al. propose meta-learning as a promising avenue for
modelling human cognition. They provide an in-depth reflection
on the advantages of meta-learning over other computational
models of cognition, including a sound discussion on how
their proposal can accommodate neuroscientific insights. We
argue that active inference presents similar computational
advantages while offering greater mechanistic explanatory
power and biological plausibility.

Binz et al. provide a meritorious survey of the prospects offered by
meta-learning for building models of human cognition. Among
the main assets of meta-learning discussed by Binz et al. is the
capacity to learn inductive bias from experience independently
of the constraints enforced by the modeller. Further, Binz et al.
showcase the capacity of meta-learning algorithms to approxi-
mate Bayesian inference, the gold standard for modelling rational
analysis. Finally, they claim that meta-learning offers an
unequalled framework for constructing rational models of
human cognition that incorporate insights from neuroscience.
We propose that an alternative theory of cognition, active infer-
ence, shares the same strengths as Binz et al.’s proposal while
establishing precise and empirically validated connections to neu-
robiological mechanisms underlying cognition.

Learning from experience has become a benchmark in all
fields aiming to understand and emulate natural intelligence
and might be the next driver of developments in artificial intelli-
gence (Zador & Tsao, 2023). In this regard, meta-learning joins
other frameworks with the potential to advance the understand-
ing of human cognition as it allows learning algorithms to
adapt to experience beyond the modeller’s intervention.
However, active inference provides a distinct advantage as it has
the purpose of modelling and understanding how agents engage
with their environment. In active inference, cognitive agents –
or algorithms – learn through experience by continually refining
their internal model of the environment or the task at hand
(Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo, 2016).

Another critical aspect of Binz et al.’s proposal is their insistent
reference to Bayes’ optimality. The concept has well-grounded
theoretical and empirical foundations (Clark, 2013) that make it
a good standard, justifying Binz et al.’s eagerness to probe their
approach against Bayes’ optimality. Their algorithm approximates
Bayes’ optimality with the mathematical consequence that any
cognitive phenomenon accounted for by Bayesian inference can,
in theory, be accounted for by meta-learning. However, the flex-
ibility of Binz et al.’s approach to meta-learning entails a reduced
interpretability of the resulting models. In active inference, poste-
rior distributions are inferred using the free-energy principle, a
variational approach to Bayesian inference that also approximates
intractable computations but within a fully interpretable architec-
ture (see below).

We also commend Binz et al. for describing meta-learning’s
capacity to incorporate insights from neuroscience, a requisite
for a computational understanding of cognition (Kriegeskorte &
Douglas, 2018). Yet, the biologically inspired elements introduced
are ad hoc and case-dependent, as explicitly stated in their conclu-
sion. Their meta-learning models are not motivated by a funda-
mental biological principle but are conceived as a powerful tool
to enhance learning. By contrast, active inference directly trans-
lates into neural mechanisms (Friston, FitzGerald, Rigoli,

Schwartenbeck, & Pezzulo, 2017) and originates from a single
unifying principle: the imperative for organisms to avoid surpris-
ing states, implemented by a continuous loop between drawing
hypotheses on hidden states (e.g., mean length of an insect spe-
cies) and observations (e.g., length of a particular specimen)
(Friston, 2010). This principle aligns with the Helmoltzian per-
spective of perception as inference and subsequent Bayesian
brain theories. The variational inferential dynamic when receiving
new observations can be naturally cast into a constant bidirec-
tional message passing with direct neural implementation as
ascending prediction errors and descending predictions
(Pezzulo, Parr, & Friston, 2024). Importantly, these mechanisms
are common to all active inference models and enjoy empirical
support (e.g., Bastos et al., 2012; Schwartenbeck, FitzGerald,
Mathys, Dolan, & Friston, 2015).

Learning is a central construct in active inference. Agents con-
stantly update their generative models based on observations and
prediction errors, with the imperative of reducing prediction
errors. Generative models represent alternative hypotheses about
task execution and associated outcomes (e.g., estimating the aver-
age length of a species). These hypotheses, and possibly all com-
ponents of the generative models, are tested and refined through
the agent’s experience (Friston et al., 2016). This experience-
dependent plasticity has two fundamental assets.

First, learning in active inference is directly and naturally
interpreted in terms of biologically plausible neuronal mecha-
nisms. The updates of all components of the generative models
are driven by co-occurrences between predicted outcomes
(in postsynaptic units in the neuronal interpretation sketched
above) and (presynaptic) observational inputs in a process
reminiscent of Hebbian learning (Friston et al., 2016).
Consequently, active inference is cast as a process theory that
can draw specific empirical predictions on neuronal dynamics
(Whyte & Smith, 2021).

Second, and crucially, agents in active inference learn the
reliability of inputs and prediction errors. This precision estima-
tion is akin to learning meta-parameters (as per Binz et al.) as it
entails a weighting process that prioritises reliable sources over
uninformative inputs. The balance between exploration and
exploitation (central constructs in cognition reflecting epistemic
affordances and pragmatic value, respectively) rests upon
mechanisms with direct neurobiological substrate in terms of
dopamine release, with important implications for rational
decision-making – for example, in two-armed bandit tasks
(Schwartenbeck et al., 2019), maze navigation (Kaplan &
Friston, 2018) and computational psychiatry (Smith, Badcock,
& Friston, 2021). Another essential strength of active inference
for implementing meta-learning is its natural hierarchical exten-
sion. Upper levels can control parameters of lower levels,
enabling inference at different timescales whereby learning at
lower levels is optimised over time by top-down adjustments
from upper levels, which has direct neuronal interpretation in
multi-scale hierarchical brain organisation (Pezzulo, Rigoli, &
Friston, 2018).

Model preference depends on performance and, primarily, on
the scientific question at hand. To understand cognition and its
mechanistic underpinnings, models whose components and artic-
ulations can be directly interpreted in terms of neural mecha-
nisms are essential. Active inference is a principled, biologically
plausible and fully interpretable model of cognition with promis-
ing applications to artificial intelligence that accounts for neuro-
biological and psychological phenomena. We contend that it
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provides a comprehensive model for understanding biological sys-
tems and improving artificial cognition.

Financial support. O. P. was funded by a Maria Zambrano Fellowship for
the attraction of international talent for the requalification of the Spanish uni-
versity system—Next Generation EU.

Competing interests. None.

References

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J.
(2012). Canonical microcircuits for predictive coding. Neuron, 76(4), 695–711.
https://doi.org/10.1016/j.neuron.2012.10.038

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cog-
nitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/
S0140525X12000477

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews
Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2016). Active
inference and learning. Neuroscience & Biobehavioral Reviews, 68, 862–879. https://
doi.org/10.1016/j.neubiorev.2016.06.022

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active
inference: A process theory. Neural Computation, 29(1), 1–49. https://doi.org/10.
1162/NECO_a_00912

Kaplan, R., & Friston, K. J. (2018). Planning and navigation as active inference. Biological
Cybernetics, 112(4), 323–343. https://doi.org/10.1007/s00422-018-0753-2

Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature
Neuroscience, 21(9), 1148–1160. https://doi.org/10.1038/s41593-018-0210-5

Pezzulo, G., Parr, T., & Friston, K. (2024). Active inference as a theory of sentient behav-
ior. Biological Psychology, 186, 108741. https://doi.org/10.1016/j.biopsycho.2023.
108741

Pezzulo, G., Rigoli, F., & Friston, K. J. (2018). Hierarchical active inference: A theory of
motivated control. Trends in Cognitive Sciences, 22(4), 294–306. https://doi.org/10.
1016/j.tics.2018.01.009

Schwartenbeck, P., FitzGerald, T. H., Mathys, C., Dolan, R., & Friston, K. (2015). The
dopaminergic midbrain encodes the expected certainty about desired outcomes.
Cerebral Cortex, 25(10), 3434–3445. https://doi.org/10.1093/cercor/bhu159

Schwartenbeck, P., Passecker, J., Hauser, T. U., FitzGerald, T. H. B., Kronbichler, M., &
Friston, K. J. (2019). Computational mechanisms of curiosity and goal-directed explo-
ration. eLife, 8, e41703. https://doi.org/10.7554/eLife.41703

Smith, R., Badcock, P., & Friston, K. J. (2021). Recent advances in the application of pre-
dictive coding and active inference models within clinical neuroscience. Psychiatry and
Clinical Neurosciences, 75(1), 3–13. https://doi.org/10.1111/pcn.13138

Whyte, C. J., & Smith, R. (2021). The predictive global neuronal workspace: A formal
active inference model of visual consciousness. Progress in Neurobiology, 199,
101918. https://doi.org/10.1016/j.pneurobio.2020.101918

Zador, A., Escola, S., Richards, B., Ölveczky, B., Bengio, Y., Boahen, K., Tsao, D. (2023).
Catalyzing next-generation Artificial Intelligence through NeuroAI. Nature
Communications, 14(1), 1597. https://doi.org/10.1038/s41467-023-37180-x

Quo vadis, planning?

Jacques Pesnot-Lerousseaua,b and

Christopher Summerfieldc*

aInstitute for Language, Communication, and the Brain, Aix-Marseille Univ,
Marseille, France; bAix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille,
France and cDepartment of Experimental Psychology, University of Oxford,
Oxford, UK
christopher.summerfield@psy.ox.ac.uk
jacques.pesnot-lerousseau@univ-amu.fr
https://humaninformationprocessing.com/

*Corresponding author.

doi:10.1017/S0140525X24000190, e160

Abstract

Deep meta-learning is the driving force behind advances in con-
temporary AI research, and a promising theory of flexible cogni-
tion in natural intelligence. We agree with Binz et al. that many
supposedly “model-based” behaviours may be better explained
by meta-learning than by classical models. We argue that this
invites us to revisit our neural theories of problem solving and
goal-directed planning.

The most impressive feats of natural intelligence are the most
unfathomable. Caledonian crows fashion hooks to retrieve
grubs, honey badgers build ladders to escape from enclosures,
and humans have worked out how to split the atom (de Waal,
2016). Humans and other animals are capable of remarkable
feats of problem solving in open-ended environments, but we
lack computational theories of how this might be achieved
(Summerfield, 2022). In the target article, Binz et al. introduce neu-
roscientists to an exciting new tool: Deep meta-learning. This com-
putational approach provides an interesting candidate solution for
some of nature’s most startling and puzzling behaviours.

Across the twentieth century, superlative intelligence was syn-
onymous with a capacity for planning, so early AI researchers
believed that if a machine ever vanquished a human at chess,
then AI would have been solved. Classical models conceive of
the world as a list of states and their transition probabilities; plan-
ning requires efficient search, or mental exploration of possible
pathways to reach a goal. Neuroscientists still lean heavily on
these classical models to understand how rodents and primates
solve problems like navigating to a spatial destination, assuming
that these rely on “model-based” search or forms of offline rumina-
tion (Daw & Dayan, 2014). However, in contemporary machine
learning, new explanations of complex sequential behaviours are
emerging.

Today – nearly three decades since the first electronic chess
grandmaster – AI research is dominated by deep network models,
which exploit massive training datasets to learn complex func-
tions mapping inputs onto outputs. In fact, in machine learning,
explicitly model-based solutions to open-ended problems have
not lived up to their promise. To give one example: In 1997,
the chess program Deep Blue defeated the world champion
Garry Kasparov using tree search with an alpha–beta search algo-
rithm, ushering in an era where computers played stronger chess
than people. In 2017, DeepMind’s hybrid network AlphaZero
defeated chess computer champion Stockfish by augmenting the
search algorithm (Monte Carlo Tree Search) with a deep neural
network that learned from (self-)play to evaluate board positions
(Silver et al., 2018). In early 2024, performance comparable to the
best human players was achieved using a deep network alone
without search, thanks to computational innovation (transformer
networks) and increasing scale (millions of parameters). AI
research has implied that when big brains are exposed to big
data, explicit forms of lookahead play a limited role in their suc-
cess. The authors encapsulate this view with a quote attributed to
1920s grandmaster José Raúl Capablanca: “I see only one move
ahead, but it is always the correct one” (Ruoss et al., 2024).

Deep meta-learning applies powerful function approximation
to sequential decision problems, where optimal policies may
involve forms of exploration or active hypothesis testing to meet
long-term objectives. In the domain of reinforcement learning
(RL), deep meta-RL can account for human behaviours on
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benchmark problems thought to tap into model-based inference
or planning, such as the “two-step” decision task, without invok-
ing the need for search. This is because a deep neural network
equipped with a stateful activation memory, and meta-trained
to a wide range of sequential decision problems, can learn a policy
that is intrinsically cognitively flexible. It learns to react on the fly
to the twists and turns of novel sequential environments, and thus
produce the sorts of behaviours that were previously thought to be
possible only with model-based forms of inference. Paradoxically,
although “meta-learning” means “learning to learn,” inner loop
learning can occur in “frozen” networks – those without parameter
updates. This offers a plausible model of how recurrent neural sys-
tems for memory and control, housed in prefrontal cortex, allow us
to solve problems we have never seen before without explicit forms
of search (Wang et al., 2018).

In AI research today, the most successful deep meta-learning
systems are large transformer-based networks that are trained to
complete sequences of tokenised natural language (Large
Language Models or LLMs). These networks learn semantic and
syntactic patterns that allow them to solve a very open-ended
problem – constructing a relevant, coherent sentence.
Researchers working with LLMs today call deep meta-learning
“in context learning” because instead of using recurrent memory,
transformers are purely feedforward networks that rely on autor-
egression – past outputs are fed back in as inputs, providing a
context on which to condition the generative process. Although
transformers do not resemble plausible neural algorithms, their
striking success has opened up new questions concerning neural
computation. For example, in-context learning proceeds faster
when exemplar ordering is structured rather than random, like
human learning but unlike traditional in-weight learning (Chan
et al., 2022b), and “in-context learning” may be better suited to
rule learning than in-weight learning (Chan et al., 2022a).
Meta-learning thus offers new tools for psychologists and neuro-
scientists interested in biological learning and memory in natural
agents.

Binz et al. argue that we should take deep meta-learning seri-
ously as an alternative to Bayesian decision theory. We would go
further, arguing that meta-learning is a candidate general theory
for flexible cognition. It explains why executive function improves
dramatically with experience (Ericsson & Charness, 1994). Unlike
Deep Blue, human world chess no.1 Magnus Carlsen has
improved since his first game at the age of five. Purely search-
based accounts flexible cognition are obliged to propose that per-
formance will plateau as soon as the transition function (e.g., the
rules of chess) are fully mastered, or else posit unexplained ways
in which search policies deepen or otherwise mutate with practice
(Van Opheusden et al., 2023). In a world where states are hetero-
geneous and noisy, deep meta-learning explains how we can gen-
eralise sequential behaviours to novel states. In a world where
speed and processing power are at a premium, meta-learning
shifts the burden of inference to the training period, allowing
for fast and efficient online computation. Meta-learning is a gene-
ral theory of natural intelligence that is – more than classical
counterpart – fit for the real world.

Undoubtedly, humans and other animals do engage in explicit
forms of planning, especially when the stakes are high. But many
sequential behaviours that are thought to index this ability may
rely more on deep meta-learning than classical planning.
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Abstract

Binz et al. highlight the potential of meta-learning to greatly
enhance the flexibility of AI algorithms, as well as to approxi-
mate human behavior more accurately than traditional learning
methods. We wish to emphasize a basic problem that lies under-
neath these two objectives, and in turn suggest another perspec-
tive of the required notion of “meta” in meta-learning: knowing
what to learn.

We postulate that the hard problem in (natural or artificial) intel-
ligence is the question of “what to learn?”. At the fundamental
level, this meta-question is resolved in nature by the evolutionary
process. The question of “how to learn?”, which is the focus of the
meta-learning framework that is presented in the target article, is
not especially easy as well, but it can be captured by devising
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specific training structures and relevant optimization tasks. In
general, it requires to specify the “search space” of possible learn-
ing strategies. The hard problem of learning, however, is the iden-
tification of the learning task itself (i.e., what, and if, to learn)
(Niv, 2019). For instance, a real-life learner observing several
specimens of some unknown insect species (following the exam-
ple in the target article) must first somehow realize that she is
required to evaluate the average length of that species, before
she begins to tune her evaluation strategies. This is indeed a dif-
ferent meta-task than presented by Binz et al., but its solution is
mandatory for any artificial (somewhat-)general intelligence, and
it is regularly handled by the brain (Roli, Jaeger, & Kauffman,
2022).

In the quest to devise domain-general learning models, Binz
et al. correctly identify the need for diverse (and maybe realistic)
training sets. Training a model on many different tasks can
achieve high performance in all of them, and maybe even in unre-
lated, but similar, tasks. Yet, the model will always be constrained
by the task-space spanned by its training sets. The major chal-
lenge does not lie in amplifying the dimensionality, or variability,
of the learned problem, but rather in determining the appropriate
objective function. Here, we may be inspired by the observation
that biological brains have in general not evolved for their ability
to solve a specific task, but, rather, are shaped by the overall suc-
cess of the organism. On the one hand, evolutionary success
obscures the objective of each specific task, since it depends on
long-term benefits that are not always clearly related to short-term
behavior. On the other hand, evolutionary success is a broader
optimization challenge. A generic model that can both solve a
maze and evaluate the average length of a newly identified insect,
without being trained specifically on these tasks, must solve the
hard problem of what-to-learn in a given context. To build a
model that addresses this challenge we cannot handcraft the util-
ity function (or error measurements) of each task separately. The
meta-learning requirement thus becomes to learn how to identify
the utility in learning, or in performing, each of the given tasks,
and more broadly, to identify the task itself. Thus, it is constrain-
ing to use training sets and error functions that provide the
learner with “correct” answers or feedback for each task sepa-
rately, as is typically done in supervised, semi-supervised, and
reinforcement machine learning. The biological brain is overall
domain-general since it is not guided by a task-specific “utility
function.” Domain-specific processes, such as, maybe, those sug-
gested to process language (Fedorenko & Blank, 2020), demon-
strate cases in which natural selection narrowed or “optimized”
the task of finding what-to-learn. Other indications may include
modularity (Ellefsen, Mouret, & Clune, 2015; Sporns & Betzel,
2016), alongside sensory adaptations (Warrant, 2016), attention
biases (Niv et al., 2015), and data acquisition mechanisms
(Lotem & Halpern, 2012). Furthermore, in humans, cultural evo-
lution may also adjust task specificity (Heyes, 2018).

The evolutionary process may also explain the limitations of
treating cognition as rational, or optimal. Binz et al. suggest that
unrealistic aspects of Bayesian models can be mitigated using
resource constraints, for which the offered meta-learning frame-
work is suitable. The problem, however, is that human (and
other animal) behavior is not straightforwardly rational, and
often appears to defy Bayesian optimization (Tversky &
Kahneman, 1981). Moreover, this may not be due to limited
resources but because the success of living creatures is determined
evolutionarily, rather than by immediate outcomes (Houston,
McNamara, & Steer, 2007). When behavioral objectives are

considered on an evolutionary scale, it may be revealed that
they are (locally) optimal (Kacelnik, 2006), and this includes
behaviors that depend upon learning, as is generally assumed in
behavioral ecology. When tasks for which learning is evolution-
arily beneficial end up being learned (i.e., when those individuals
who learn have higher fitness), natural selection resolves the
meta-learning hard problem of what-to-learn (Dunlap &
Stephens, 2016). This may bias the things that animals are able
to learn, by shaping the parameter search-space (Prat, Bshary, &
Lotem, 2022), maybe of the outer learning loop described by
Binz et al. These biases are often addressed in the biological learn-
ing literature as sub-problems of the what-to-learn problem, and
include when-to-learn or from whom-to-learn (Laland, 2004).

We suggest that further advancements in meta-learning think-
ing require addressing the hard problem of learning as one of
their aims. Inspired by (human and nonhuman) biological brains,
this should be done by devising overarching objectives for learn-
ing algorithms that will enable them to learn what are the learning
tasks. In nature, evolution provides some of the solution. Yet, it is
not necessary to mimic the evolutionary process per se, but only
to acknowledge the generality of evolutionary optimization in the
natural world. To this end, it may be better to aspire to simulate
nonhuman-animal behavioral studies, rather than psychological
assays, since nonhuman animals are trained with no description
of the boundaries of their task – they need to realize it by them-
selves (e.g., when a sparrow learns to relate sand color to food
[Ben-Oren, Truskanov, & Lotem, 2022]). Thus, these studies usu-
ally contain a direct meta-learning challenge that requires solving
the problem of what-to-learn.
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Abstract

Recent studies suggest that meta-learning may provide an orig-
inal solution to an enduring puzzle about whether neural net-
works can explain compositionality – in particular, by raising
the prospect that compositionality can be understood as an
emergent property of an inner-loop learning algorithm. We
elaborate on this hypothesis and consider its empirical predic-
tions regarding the neural mechanisms and development of
human compositionality.

Binz et al. review recent meta-learned models that can reproduce
human-like compositional generalization behaviors (Lake &
Baroni, 2023), but they stop short of endorsing meta-learning
as a theoretical framework for understanding human composi-
tionality. Here, we elaborate on this proposal, articulating the
hypothesis that human compositionality can be understood as
an emergent property of an inner-loop, in-context learning algo-
rithm that is itself meta-learned.

Compositionality has played a key theoretical role in cognitive
science since its inception (Chomsky, 1957), providing an expla-
nation for human systematic and productive generalization

behaviors. These phenomena are readily explained by the compo-
sitionality of classical cognitive architectures, as the design of their
symbolic representations and structure-sensitive operations
intrinsically guarantees that they can redeploy familiar constitu-
ents in novel constructions (Fodor & Pylyshyn, 1988). It has
been argued that neural networks are in principle incapable of
playing the same explanatory role because they lack these archi-
tectural features (Fodor & Pylyshyn, 1988; Marcus, 1998).

Much work has explored inductive biases that might encourage
compositionality to emerge in neural networks (Russin, Jo,
O’Reilly, & Bengio, 2020a; Smolensky, 1990; Webb et al., 2024),
but meta-learning offers an original solution to the puzzle. As
Binz et al. emphasize, when an inner-loop, in-context learning algo-
rithm emerges within the activation dynamics of a meta-learning
neural network, it can have fundamentally different properties
than the outer-loop algorithm. Thus, even if the outer-loop algo-
rithm lacks these inductive biases, the network may nevertheless
implement an emergent in-context learning algorithm that embodies
them implicitly.

Lake and Baroni (2023) have shown that such an inner-loop
algorithm can pass tests of compositionality that standard neural
networks fail (Lake & Baroni, 2018). The question, then, is
whether such networks can serve as explanatory models of
human compositional generalization. Can we think of human
compositionality as an emergent property of an inner-loop,
in-context learning algorithm? How might we evaluate such a
hypothesis? Here, we consider two independent aspects of this
proposal: First, its implications for neural mechanisms, and sec-
ond, for development.

One straightforward mechanistic prediction is that employing
inner-loop, in-context learning mechanisms, rather than outer-
loop learning mechanisms, should facilitate compositional gener-
alization behaviors. Cognitive and computational neuroscience
provides empirical support for this prediction. Cognitive control
– the ability to overcome existing prepotent responses and to flex-
ibly adapt to arbitrary goals (Miller & Cohen, 2001) – is an
important capacity for human in-context learning. The neural
mechanisms known to be involved in cognitive control, such as
working memory, gating, and top-down modulation in the pre-
frontal cortex (Miller & Cohen, 2001; O’Reilly & Frank, 2006;
Russin, O’Reilly, & Bengio, 2020b), are also thought to be essen-
tial to compositional abilities such as inferring and applying rules
(Calderon, Verguts, & Frank, 2022; Collins & Frank, 2013; Frank
& Badre, 2012; Kriete, Noelle, Cohen, & O’Reilly, 2013), deductive
and inductive reasoning (Crescentini et al., 2011; Goel, 2007), and
processing complex syntax (Thompson-Schill, 2005). Thus, a
shared set of neural mechanisms may underlie both in-context
learning and compositionality in humans, lending support to
the meta-learning hypothesis.

A second, independent prediction is a developmental one –
that human compositional generalization abilities are themselves
meta-learned over the course of development. Adults come into
any psychological experiment equipped with a wealth of prior
experience. The meta-learning hypothesis predicts that this
includes experiences encouraging the adoption of more composi-
tional learning strategies (i.e., ones sensitive to implicit composi-
tional structure). In general, children exhibit a developmental
trajectory consistent with this hypothesis. Older children learn
new tasks more efficiently (Bergelson, 2020), especially when
these tasks involve cognitive capacities essential to in-context
learning, such as working memory and executive functions
(Munakata, Snyder, & Chatham, 2012). Furthermore, children
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improve throughout development on tasks involving the compo-
sition of rules (Piantadosi & Aslin, 2016; Piantadosi, Palmeri, &
Aslin, 2018).

Innate mechanisms or inductive biases may still be required to
successfully meta-learn a compositional inner-loop algorithm in
the first place. Indeed, studies in machine learning have shown
that architecture seems to be an important factor in determining
whether in-context learning capabilities emerge (Chan et al.,
2022). Similarly, findings from cognitive and computational neu-
roscience have emphasized the importance of architectural fea-
tures such as prefrontal gating mechanisms for the emergence
of abstract representations that could mediate subsequent
in-context generalization abilities (Collins & Frank, 2013; Frank
& Badre, 2012; Kriete et al., 2013; Rougier, Noelle, Braver,
Cohen, & O’Reilly, 2005). These inductive biases can also explain
incidental hierarchical rule learning and generalization in infants
(Werchan, Collins, Frank, & Amso, 2015, 2016). Thus, a combi-
nation of innate architectural features and meta-learning experi-
ences may be necessary for human compositionality to emerge.

The meta-learning datasets used in previous modeling efforts
have typically been developmentally unrealistic because they
have been contrived to engender narrow compositional generali-
zation abilities that are specific to a particular type of task. Could
meta-learning in less explicitly structured learning scenarios lead
to the acquisition of broader compositional generalization abili-
ties? This question deserves careful empirical study, but we may
draw a preliminary insight from the success of large language
models (Brown et al., 2020), which develop in-context learning
abilities (von Oswald et al., 2023; Xie, Raghunathan, Liang, &
Ma, 2022) that in some cases exhibit human-like compositionality
(Webb, Holyoak, & Lu, 2022; Wei et al., 2023; Zhou et al., 2022).
Unlike models explicitly designed for meta-learning, large lan-
guage models are trained to predict the next token on very
large datasets of unstructured text. These datasets contain more
language data than humans are exposed to in an entire lifetime
(Linzen & Baroni, 2021), so future work needs to investigate
what kinds of inductive biases are necessary to improve their sam-
ple efficiency. However, these models provide proof of concept
that neural networks can develop compositional in-context learn-
ing algorithms by training on relatively unstructured data.

Binz et al. shy away from a robust commitment to meta-learning
as a theoretical framework, instead emphasizing its utility as a meth-
odological tool. Here, we have demonstrated how the meta-learning
perspective on human compositionality can generate testable empir-
ical hypotheses about underlying mechanisms and developmental
trajectory. If such a research program bears fruit, it will elevate
meta-learning from a useful tool to a novel cognitive theory.
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Abstract

Meta-learned models of cognition make optimal predictions for
the actual stimuli presented to participants, but investigating
judgment biases by constraining neural networks will be
unwieldy. We suggest combining them with cognitive process
models, which are more intuitive and explain biases. Rational
process models, those that can sequentially sample from the pos-
terior distributions produced by meta-learned models, seem a
natural fit.

Meta-learned models of cognition offer an exciting opportunity to
address a central weakness of current cognitive models, whether
Bayesian or not: Cognitive models generally do not “see” the
experimental stimuli shown to participants. Experimenters
instead feed models low-dimensional descriptions of the stimuli,
which are often in terms of the psychological features imagined
by the experimenter, or sometimes are the psychological descrip-
tions that best fit participants’ judgments (e.g., stimulus similarity
judgments; Nosofsky, Sanders, Meagher, & Douglas, 2018).

For example, in studies of probability judgment, participants
have been asked to judge the probability that “Bill plays jazz for
a hobby” after having been given the description, “Bill is 34
years old. He is intelligent, but unimaginative, compulsive, and
generally lifeless. In school, he was strong in mathematics but
weak in social studies and humanities” (Tversky & Kahneman,
1983). Current probability judgment models reduce these descrip-
tions down to a single unknown number, and attempt to find the
latent probability that best fits the data (e.g., Zhu, Sanborn, &
Chater, 2020).

Models trained on the underlying statistics of the environment,
as meta-learned models are, can bypass this need to infer a latent
variable, instead making predictions from the actual descriptions
used. Indeed, even relatively simple models of semantics that
locate phrases in a vector space produce judgments that correlate
with the probabilities experimental participants give (Bhatia,
2017). Meta-learned models could thus explain a great deal of
the variability in human behavior, and allow experimenters to
generalize beyond the stimuli shown to participants.

However, used as descriptive models, normative meta-learned
models of cognition inherit a fundamental problem from the
Bayesian approach: People’s reliable deviations from normative
behavior. One compelling line of research shows that probability
judgments are incoherent in a way that Bayesian models are not.
Using the above example of Bill, Tversky and Kahneman (1983)
found participants ranked the probability of “Bill is an accountant
who plays jazz for a hobby” as higher than that of “Bill plays jazz
for a hobby.” This violates the extension rule of probability
because the set of all accountants who play jazz for a hobby is
a subset of all people who play jazz for a hobby, no matter how
Bill is described.

The target article discusses constraining meta-learned models
to better describe behavior, such as reducing the number of hid-
den units or restricting the representational fidelity of units. These
manipulations have produced a surprising and interesting range
of biases, including stochastic and incoherent probability judg-
ments (Dasgupta, Schulz, Tenenbaum, & Gershman, 2020).
However, this is just the start to explaining human biases. Even
a single bias such as the conjunction fallacy has intricacies, such
as the higher rate of conjunction fallacies when choosing versus
estimating (Wedell & Moro, 2008), and greater variability in judg-
ments of conjunctions than those of simple events (Costello &
Watts, 2017).

Cognitive process models aim to explain these biases in detail.
For conjunction fallacies, a variety of well-supported models exist,
based on ideas such as participants sampling events with noise in
the retrieval process (Costello & Watts, 2014), or by sacrificing
probabilistic coherence to improve judgment accuracy based on
samples (Zhu et al., 2020), or by representing conjunctions as a
weighted average of simple events (Juslin, Nilsson, & Winman,
2009), or by using quantum probability (Busemeyer, Pothos,
Franco, & Trueblood, 2011). These kinds of models capture
many details of the empirical effects, through simple and intuitive
mechanisms like adjusting the amount of noise or number of
samples, which helps identify experiments to distinguish between
them.

Mechanisticallymodifyingmeta-learnedmodels to explain cogni-
tive biases to the level cognitive process models do appears difficult.
While changes to network structure are powerful ways to induce dif-
ferent biases that could identify implementation-level constraints in
the brain, the effects of these kinds of changes are generally hard to
intuit, while training constrained meta-learning models to test
different manipulations will be slow and computationally expensive.
Thus, it will be challenging to reproduce existing biases in detail or
to design effective experiments for testing these constraints.

Combining meta-learned models with cognitive process mod-
els is more promising. One possibility is to have meta-learned
models act as a “front end” that takes stimuli and converts
them to a feature-based representation, which is then operated
on by a cognitive process model. The parameters of the cognitive
process model could be fit to human data, or potentially the cog-
nitive process model could be encoded into the network (e.g.,
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Peterson, Bourgin, Agrawal, Reichman, & Griffiths, 2021), and
meta-learning could be done on the front end and the cognitive
process parameters end-to-end.

However, as meta-learned models of cognition produce poste-
rior predictive distributions, rational process models offer a
straightforward connection that does not require retraining
meta-learned models. Rational process models do not directly
use a posterior predictive distribution, but instead assume that
the posterior predictive distribution is approximated (i.e., using
the posterior mean, posterior median, or other summary statistic
depending on task), most often using a statistical sampling algo-
rithm (Griffiths, Vul, & Sanborn, 2012). Such a model can explain
details of the conjunction fallacy, and also a wide range of other
biases, such as stochastic choice, anchoring and repulsion effects
in estimates, long-range autocorrelations in judgment, and the
flaws in random sequence generation (Castillo, León-Villagrá,
Chater, & Sanborn, 2024; Spicer, Zhu, Chater, & Sanborn, 2022;
Vul, Goodman, Griffiths, & Tenenbaum, 2014; Zhu,
León-Villagrá, Chater, & Sanborn, 2022, 2023). What these mod-
els have lacked, however, is a principled way to construct the pos-
terior predictive distribution from environmental statistics, and
here meta-learned models offer that exciting possibility.

While rational process models offer what we think is a natural
choice for integration, any sort of combination with existing cogni-
tive models offers benefits. Being able to explain both the details of
biases as cognitive process models do, as well as showing sensitivity
to actual stimuli is a powerful combination that moves toward the
long-standing goal of a general model of cognition. Overall we see
meta-learned models of cognition as not supplanting existing cog-
nitive models, but as a way to make them much more powerful and
relevant to understanding and predicting behavior.
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Abstract

We propose that a principled understanding of meta-learning, as
aimed for by the authors, benefits from linking the focus on
learning with an equally strong focus on structure, which
means to address the question: What are the meta-structures
that can guide meta-learning?

The authors discuss meta-learning as a flexible and computation-
ally efficient tool to generate cognitive models from training data
and thereby to avoid the need for handcrafting cognitive biases as
usually done in current cognitive architectures or Bayesian learn-
ing. They provide four supporting arguments as a motivation for
a systematic research program on meta-learning, which they diag-
nose as so far largely missing. While we agree with this stance, we
propose that a deeper understanding of meta-learning would ben-
efit from complementing the focus on learning with an equally

44 Commentary/Binz et al.: Meta‐learned models of cognition

https://doi.org/10.1017/S0140525X23003266 Published online by Cambridge University Press

http://dx.doi.org/10.1037/rev0000047
http://dx.doi.org/10.1037/rev0000047
https://doi.org/10.1037/a0022542
https://doi.org/10.1037/a0022542
https://doi.org/10.1371/journal.pcbi.1011739
https://doi.org/10.1371/journal.pcbi.1011739
https://doi.org/10.1037/a0037010
https://doi.org/10.1037/a0037010
https://doi.org/10.1037/a0037010
https://dx.doi.org/10.1002/bdm.1936
https://dx.doi.org/10.1002/bdm.1936
https://doi.org/10.1037/rev0000178
https://doi.org/10.1037/rev0000178
https://doi.org/10.1177/0963721412447619
https://doi.org/10.1177/0963721412447619
https://doi.org/10.1037/a0016979
https://doi.org/10.1037/a0016979
https://doi.org/10.3758/s13428-017-0884-8
https://doi.org/10.3758/s13428-017-0884-8
https://doi.org/10.3758/s13428-017-0884-8
https://doi.org/10.1126/science.abe2629
https://doi.org/10.1126/science.abe2629
https://doi.org/10.1177/09567976221089599
https://doi.org/10.1177/09567976221089599
https://doi.org/10.1037/0033-295X.90.4.293
https://doi.org/10.1037/0033-295X.90.4.293
https://doi.org/10.1111/cogs.12101
https://doi.org/10.1111/cogs.12101
https://doi.org/10.1111/cogs.12101
https://doi.org/10.1016/j.cognition.2007.08.003
https://doi.org/10.1016/j.cognition.2007.08.003
https://doi.org/10.1371/journal.pcbi.1010312
https://doi.org/10.1371/journal.pcbi.1010312
https://doi.org/10.1371/journal.pcbi.1010312
https://doi.org/10.1037/rev0000190
https://doi.org/10.1037/rev0000190
https://doi.org/10.1037/rev0000427
https://doi.org/10.1037/rev0000427
https://orcid.org/0000-0002-0849-483X
mailto:malte.schilling@uni-muenster.de
mailto:helge@techfak.uni-bielefeld.de
mailto:frank.ohl@lin-magdeburg.de
https://www.uni-muenster.de/AISystems/
https://www.uni-muenster.de/AISystems/
https://ni.www.techfak.uni-bielefeld.de/people/helge/
https://ni.www.techfak.uni-bielefeld.de/people/helge/
https://www.ovgu.de/Ohl.html
https://www.ovgu.de/Ohl.html
https://doi.org/10.1017/S0140525X23003266


strong focus on structure, that is, to address the question:What are
the meta-structures that are decisive to shape meta-learning?

The reasoning for our proposal derives from the authors’
“Argument 3”, where they argue that meta-learning makes it
easy to manipulate a learning algorithm’s complexity to construct
resource-rational models of learning. By admitting complexity as
an important control for model formation, the authors introduce
structural discriminations between meta-learners. But as a scalar
measure, complexity cannot avoid “collapsing” qualitatively dif-
ferent structures whenever these are assigned the same complex-
ity. Therefore, we suggest extending the research program beyond
scalar orderings as complexity measures: Viewing meta-
structures as patterns of higher-order structure that are qualita-
tively different from each other and that offer structural-
functional “modules” that can be constructed as entities in their
own right and be flexibly used by a meta-learning system. This
view draws close inspiration from the advocated neuroscience
perspective (their “Argument 4”) how constraints of the neurobi-
ological substrate determine the emergence of specific control
structures.Meta-structures are thus abstractable structural princi-
ples guiding the development of “substrate-level” structures in a
meta-learning system. While meta-learning summarizes many
learning trajectories into an overarching base learner (that can
quickly specialize), meta-structure summarizes many learning
priors into an overarching “base prior” (that then guides
meta-learning efficiently).

Examples for such guiding meta-structures can be found in
biological neural network models. As a first meta-structure, we
consider hierarchical organization: The decomposition of
actions into sub-actions on different levels of a hierarchy enables
flexible recombination into different behaviors. Hierarchical orga-
nization is an established principle of biological motor control
that has been applied successfully to Deep Reinforcement
Learning (DRL) (Merel, Botvinick, & Wayne, 2019; Neftci &
Averbeck, 2019). As a benefit, hierarchical organization enables
a form of higher-level learning in which the learner can recom-
bine modular policies into new behaviors without the need to
always learn all details from scratch.

As a second example of a meta-structure: Decentralization
serves parallelization of modules’ actions, decoupling of subtasks
and factorization of state spaces. Decentralization is well-
investigated in motor control in animals, for example, in low-level
reflexes, but it is also widely acknowledged that decentralized
oscillation generating neuronal circuits are essential for locomo-
tion (cf. Dickinson et al., 2000). While decentralization often is
merely characterized as a strategy to cope with slow sensory pro-
cessing, we emphasize how decentralization facilitates
meta-learning. In a study on learning of motor control featuring
decentralized modules for a four-legged walker, we showed how
decentralization positively affected reinforcement learning on
two levels (Schilling, Melnik, Ohl, Ritter, & Hammer, 2021).
First, on the basic learning level, decentralization remedies the
problem of exponential increase of required training runs in tra-
ditional DRL systems as the action space becomes more complex.
Decentralization restricts the action space to the much lower number
of local actuators, thereby reducing the dimensionality. Without the
need for coordination of all control signals by a single centralized
controller, the decentralized network learned stable behaviors
much faster. Second, on the level of meta-learning, the trained
decentralized controller appeared to learn a different, more robust,
mapping when compared to a standard centralized controller: The
decentralized control structure had learned to transfer previously

learned aspects of motor control to entirely new terrains without
the need for further context-specific training. Thus, with respect to
meta-learning this structural prior (meta-structure) of decentraliza-
tion proved beneficial for extrapolation of behavior and appears to
learn better suited mappings for a broader range of tasks.

A further example of meta-structures can be identified in
reversal learning. In reversal learning, an agent initially learns a
mapping, for example, between certain situations and corre-
sponding appropriate responses, and then finds itself in a situa-
tion that requires a different stimulus response mapping to
achieve behavioral goals. While standard DRL agents learn new
mappings at a reversal point from scratch, biological organisms
typically solve reversal problems more effectively (Happel et al.,
2014): They create already during the initial learning phase hier-
archically organized representation structures that can be effi-
ciently used for the new required mapping without learning it
from scratch (Jarvers et al., 2016).

The examples imply that a common mechanism by which
meta-structures support meta-learning is that of enabling a learn-
ing agent to build context. Context-building is naturally intro-
duced by meta-learning itself, for example, as conceived in the
target article: An inner-loop learner operates at the fast time
scale, with temporally short-ranged contexts, while an “outer-loop
process,” which could be implemented either as dedicated net-
work modules or as processes made possible on decentralized
structures, works at time scales and higher levels of abstraction
that allow tuning of inner learner’s adaptivity (Schilling,
Hammer, Ohl, Ritter, & Wiskott, 2023). This meta-structure
can be imagined as recursively extendable, leading to an “onion-
like” architecture providing a principled stratification of an overall
learning process into a layered hierarchy of learners operating at
different levels of granularity (or abstraction), with correspond-
ingly scaled scopes of context. Such concepts can contribute to
our understanding of sophisticated learning capabilities as needed
by embodied agents that continuously adapt interactions of their
body with the environment involving contexts at different tempo-
ral and spatial scales.

The discussion of meta-structures illustrates that meta-learning is
based on abstractable structural principles that support the genera-
tion of a compositional semantics linking the functions of modules
that emerge from learning in a given context. Meta-structures pro-
vide structural preconditions for the establishment of almost arbi-
trary high-level compositional semantics that can be flexibly
reused and serve as building blocks of higher-level abstractions for
novel problem solutions without requiring specific training in
novel contexts. Together, these aspects underscore the significance
of meta-structure for a research program on meta-learning.
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Abstract

Building on the affectivism approach, we expand on Binz et al.’s
meta-learning research program by highlighting that emotion
and other affective phenomena should be key to the modeling
of human learning. We illustrate the added value of affective
processes for models of learning across multiple domains with
a focus on reinforcement learning, knowledge acquisition, and
social learning.

Binz et al. bid to establish an ambitious research program to
model human cognition using a meta-learning framework. They
effectively illustrate the potential and advantages of meta-learned
models, showcasing the ability of such models to acquire induc-
tive biases through experience. Notably, the authors outline a
compelling blueprint for how these models could foster the devel-
opment of a domain-general model of human learning. Here, we
seek to complement this blueprint by highlighting a key element
that is left mostly unexplored in the target article: Affective
processes.

Affective processes – typically emotions, feelings, motivations,
moods, or attitudes – are not only inherently linked to well-being,
but also drive behavioral and cognitive processes such as atten-
tion, learning, memory, and decision-making (e.g., LaBar &
Cabeza, 2006; Lerner, Li, Valdesolo, & Kassam, 2015; Phelps,
2006; Pool, Brosch, Delplanque, & Sander, 2016). This grants
affective processes high explanatory power in understanding

human behavior and cognition, a central argument of the affecti-
vism approach (Dukes et al., 2021). As such, we suggest that con-
sidering affective processes is pivotal to the modeling of human
cognition, and especially of learning. Affective processes are
indeed central to – and exert a pervasive influence on – how
humans learn (e.g., Öhman & Mineka, 2001; Vollberg &
Sander, 2024; Wuensch, Pool, & Sander, 2021). Below, we illus-
trate how emotion and other affective phenomena are central to
human learning across various domains, with a particular focus
on reinforcement learning, knowledge acquisition, and social
learning.

Affective processes emerge as important factors in reinforce-
ment learning. This fundamental learning process enables indi-
viduals to attribute value to states or stimuli and actions via
teaching signals such as rewards and punishments. These rein-
forcers and their associated stimuli typically evoke affective
responses, which are core components of reward-seeking and
threat-related behaviors (Levy & Schiller, 2021; Stussi & Pool,
2022). Affective processes also modulate how individuals learn
from reinforcers. Studies on Pavlovian conditioning – a basic
form of reinforcement learning – have shown that stimuli with
heightened affective relevance, such as both threat-relevant (e.g.,
angry faces) and positive emotional (e.g., baby faces) stimuli,
are more rapidly and persistently associated with an aversive out-
come than neutral stimuli (Stussi, Pourtois, & Sander,
2018; Stussi, Pourtois, Olsson, & Sander, 2021). At the computa-
tional level, these studies indicate that affective relevance modu-
lates how individuals learn from prediction errors: Affectively
relevant stimuli were associated with a lower learning rate for neg-
ative prediction errors (i.e., when the aversive outcome was
expected but omitted), enhancing the persistence of their associ-
ation with the aversive outcome (Stussi et al., 2018, 2021).
Similarly, substantial evidence has demonstrated that individuals
learn differently about positive and negative outcomes in the
instrumental domain (Dorfman, Bhui, Hughes, & Gershman,
2019; Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde, &
Palminteri, 2017). Positively valenced prediction errors are gener-
ally associated with a higher learning rate than negatively
valenced prediction errors, providing a computational correlate
of such learning asymmetry (Palminteri & Lebreton, 2022).
Altogether, these findings highlight that affective mechanisms
shape basic reinforcement learning processes.

Affective processes likewise support epistemic learning. Both
positive and negative emotions have long been studied for their
roles in the encoding, consolidation, and recall of episodic mem-
ories (Levine & Pizarro, 2004), as well as in academic learning in
educational settings (see Pekrun & Linnenbrink-Garcia, 2014).
Epistemic emotions are the key family of emotions supporting
knowledge exploration and acquisition (see Muis, Chevrier, &
Singh, 2018). Emotions such as interest, curiosity, confusion,
surprise, wonder, or awe are drivers of learning (e.g., Chevrier,
Muis, Trevors, Pekrun, & Sinatra, 2019; Vogl, Pekrun,
Murayama, & Loderer, 2020). As an illustration of the central
role of epistemic emotions in learning, the “trivia questions”
paradigm is typically used to understand how epistemic curiosity
enhances memory. Using this paradigm, research has shown that
the more participants are curious to know the response to a
question (e.g., “who is the most cited psychologist of the 21st
century?”), the more they later remember the response (e.g.,
Kang et al., 2009; Marvin & Shohamy, 2016). The impact of
curiosity on knowledge exploration and acquisition, partly
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relying on reward-related processes, is therefore a salient exam-
ple of how the intrinsic value of information can enhance learn-
ing (Murayama, 2022).

While many things can be learned by exploring one’s own
environment, this individual approach has its limitation. Some
information simply cannot be gleaned in this way and requires
input from other (human) sources (Harris & Koenig, 2006).
Critically, such social learning fundamentally relies on affective
processes. Social learning has historically been seen as either a
non-human primate phenomenon that explains how behavior
can be learned from conspecifics (Zentall & Galef, 1988), or a
human cognitive developmental phenomenon concerned with
learning from others’ testimony (Harris, 2012). However, affective
social learning not only points out that these two branches of
social learning originate from the same tree (Gruber, Bazhydai,
Sievers, Clément, & Dukes, 2022), but also that it is possible to
learn from others’ affective attitudes about the value of objects
(e.g., ideas, people, customs). An important part of who we are
– our values, ethics, and morality – is based on our perception,
attention, and memory of interaction with and learning from oth-
ers, whether or not this information is communicated ostensively
(Dukes & Clément, 2017; Egyed, Király, & Gergely, 2013). And
indeed, what we perceive, attend to, and remember is largely
defined by how important, valuable, and affective those objects
of perception, attention, and memory are. Not only do we remem-
ber what is affectively relevant to us as individuals, but others,
serving as proxy relevant detectors, can also signal what is more
or less relevant, to be learned or forgotten (Dukes & Clément,
2019; see also Sorce, Emde, Campos, & Klinnert, 1985).

In conclusion, affective processes play a fundamental role in
learning across various domains and their consideration is key
to the modeling of human learning. Given that emotions are
not immutable and static but flexibly arise from the interaction
between an individual and their environment (Scherer &
Moors, 2019), it could be particularly enlightening to conceptual-
ize emotion as a kind of inductive bias attuned by experience
within the meta-learning framework proposed by Binz et al.
Such conceptualization could offer a promising way of modeling
the effects of emotion on learning, thereby providing added value
to the meta-learning research agenda.
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Abstract

Binz et al. argue that meta-learned models offer a new paradigm
to study human cognition. Meta-learned models are proposed as
alternatives to Bayesian models based on their capability to learn
identical posterior predictive distributions. In our commentary,
we highlight several arguments that reach beyond a predictive
distribution-based comparison, offering new perspectives to
evaluate the advantages of these modeling paradigms.

In their review, Binz et al. propose a framework for studying the
adaptive nature of the mind. They propose that recent advances in
machine learning empower meta-learning paradigms to be used
as a flexible and general framework for studying the computa-
tions, the representations, and even the neuronal processes under-
lying learning. The authors put forward a number of arguments
that provide support for such a paradigm. In this commentary,
we aim to reflect on these arguments in order to better identify
the advantages and limits of using meta-learned models instead
of Bayesian ones.

The authors pit the meta-learning paradigm against Bayesian
approaches. Bayesian models provide a similarly general frame-
work for formulating learning problems as meta-learned models,
but the two paradigms differ in the principles that guide model
construction. In contrast with the primarily data-driven approach
of meta-learned models, Bayesian approaches formulate the com-
putational challenge humans face when performing task(s)
through the definition of likelihood and priors, which summarize
our assumptions about the relevant quantities of the computa-
tional challenge and our prior beliefs about these quantities. In
other words, when constructing a Bayesian model, one needs to
define a generative model of the task and also the relevant quan-
tities that shape the learning procedure, which instantly provides a
set of testable hypotheses and, thus, an opportunity to better
understand cognition. The authors challenge the Bayesian
approach by pointing out that in complex tasks, both defining
and evaluating the likelihood can be impossible, and the function
classes that Bayesian models rely on can be severely constrained.
The authors argue that these challenges can be circumvented by
using meta-learned models instead. To support the paradigm
shift, the authors cite promising new studies that explore the
equivalence of meta-learned models and Bayesian approaches.
While these unifying views certainly contribute to a better

understanding of learning, some aspects of these views deserve
further consideration.

The authors argue that it is the posterior predictive distribu-
tion that a model ultimately learns, and thus, this quantity pro-
vides a platform to compare alternative approaches. The
posterior predictive distribution is then used to establish the
equivalence of Bayesian and meta-learned models. We would
challenge this view based on two observations. First, it is impor-
tant to point out that in its general form, the posterior predictive
distribution is not a quantity that is invariant for a set of tasks, but
it depends on the choice of the prior. This also means that the
equivalence of the meta-learner and the Bayesian learner is con-
strained. This constraint can be illuminated by considering the
contribution of the priors in Bayesian models. The effect of
prior is most pronounced when data are scarce. In such cases,
the equivalence is hard to establish as it is unclear what sort of
prior the meta-learner model implicitly assumes. When data are
abundant, however, the contribution of the prior diminishes,
and in such cases, it is easier to establish the equivalence of the
two model classes. Second, comparing Bayesian models and
deep networks based on predictive performance alone ignores
the power of having a framework that permits combining struc-
tured knowledge representations with powerful inference
(Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Kemp,
Perfors, & Tenenbaum, 2007; Kemp & Tenenbaum, 2008;
Tenenbaum, Griffiths, & Kemp, 2006, 2011). A key benefit of
Bayesian modeling is the characterization of generative models
that could plausibly account for the behavioral outcomes.
Creating and testing hypotheses regarding these generative mod-
els enables us to better understand the computations that underlie
cognition and give rise to the behavioral outcome.

The authors refer to inductive biases that can be transparently
captured by meta-learned models, some of which are not neces-
sarily easy to capture in Bayesian models. While we agree that
some forms of inductive biases are readily delivered by these
meta-learned models, Bayesian models too are capable of investi-
gating relevant inductive biases. These inductive biases might
include assumptions about the function classes that learning
operates on (Kemp & Tenenbaum, 2008) or assumptions about
the computational complexity of the generative model (Csikor,
Meszéna, & Orbán, 2023) both of which can be phrased through
the definition of the likelihood. Such inductive biases can be
explored by pitting them against alternatives and assessing the
models’ power to predict human learning. In summary, we argue
that characterization of learning through the specification of the
generative model, comprised of the prior and the likelihood,
makes it possible to explore the assumptions behind the models,
which assumptions may remain hidden in meta-learned models.

Finally, it’s important to clarify that we agree with the authors
that more flexible tools provide unique opportunities to study a
broader class of phenomena. However, recent advances in
Bayesian models open new opportunities in this aspect, for example,
variational autoencoders (Nagy, Török, & Orbán, 2020; Spens &
Burgess, 2024), non-parametric methods (Éltető, Nemeth,
Janacsek, & Dayan, 2022; Heald, Lengyel, & Wolpert, 2021; Török
et al., 2022), or probabilistic programming (Lake, Salakhutdinov,
& Tenenbaum, 2015), might leverage the need to meticulously
define model architectures a priori by the experimenter and will
complement the data-driven meta-learning approach proposed by
the authors. In particular, the contribution of changing inductive
biases to task performance in humans has been recently investigated
in an implicit learning paradigm using a non-parametric Bayesian

48 Commentary/Binz et al.: Meta‐learned models of cognition

https://doi.org/10.1017/S0140525X23003266 Published online by Cambridge University Press

https://orcid.org/0009-0000-8654-7733
https://orcid.org/0000-0002-2406-5912
mailto:szekely.anna@wigner.hu
http://golab.wigner.mta.hu/people/anna-szekely/
http://golab.wigner.mta.hu/people/anna-szekely/
mailto:orban.gergo@wigner.mta.hu
http://golab.wigner.mta.hu/people/gergo-orban/
http://golab.wigner.mta.hu/people/gergo-orban/
https://doi.org/10.1017/S0140525X23003266


approach (Székely et al., 2024). In general, a combination of flexible
nonlinear Bayesian models with structure learning is particularly
appealing and has proven to be a valuable tool in continual learning
(Achille et al., 2018; Rao et al., 2019).
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Abstract

Meta-learning offers a promising framework to make sense of
some parts of decision-making that have eluded satisfactory
explanation. Here, we connect this research to work in animal
behaviour and cognition in order to shed light on how and
whether meta-learning could help us to understand the evolu-
tion of cognition.

Computational models of learning were historically largely
designed by hand. But this has changed dramatically in the last
decade with the rise of so-called meta-learning models that
have their priors updated through feedback with the environment,
thus offering a better approximation of how human cognition
works due to the inclusion of flexibility and agency. Indeed,
they have been able to explain some puzzling phenomena that
had resisted satisfactory explanations. Yet, this wealth of research
has not been unified into anything like a coherent account. The
lack of such an account motivated Binz et al. to offer a synthesis
of this research and framework for future research by drawing on
Bayesian inference models of cognition and rational models of
cognition (e.g., Anderson, 2013).

In this commentary, we do not aim to challenge their proposal,
which we find very compelling. In synthesising the scattered liter-
ature and explaining meta-learning in an accessible manner, we
believe the authors to be more than successful, and we share
their optimism for applications of meta-learning models of cogni-
tion. Instead of criticising an aspect of their approach, we will here
follow up on a question they themselves raise, but do not pursue
further: “How much of it [meta-learning] is based on evolutionary
or developmental processes?” (2024, p. 11). We hope to aid both
the development of better meta-learning models as well as a better
understanding of human learning by investigating the evolution of
meta-learning from simple animals to humans. As Dennett (1995)
once put it, natural selection is an acid that leaves nothing
untouched, and meta-learning as we shall argue is no exception.

Binz et al. show their optimism for how meta-learning can
help in understanding how cognition can develop in agents
through repeated interactions with the environment, which can
provide a useful model to understand human developmental pro-
cesses, though they admit more research would be needed. But
more interestingly perhaps – and not surprising to anyone who
emphasises that development often recapitulates evolutionary
processes – there is also the potential to use meta-learning models
to help us understand the evolution of cognition more generally.
Binz et al. urge us to consider the more complex tasks we find in
natural settings for humans, but that point is worth extending
towards non-human animals. While they note that meta-learning
models may help us to bridge the two traditions of connectionism
and Bayesian learning, an evolutionary perspective could help us
to merge these traditions.

If we ask why cognition evolved – or here more specifically
why creatures may have evolved meta-learning capacities – we
can draw on the aforementioned puzzling tasks that meta-
learning helps us to explain, such heuristic-based decision-
making, as some of the authors have noted elsewhere (Binz,
Gershman, Schulz, & Endres, 2022). Non-human animals, after
all, also use heuristic strategies to navigate their environments.
Admittedly, animal models of behaviour typically satisfy them-
selves with “hand-designed” algorithms of behaviour, but such
models are deliberately simple to account for trade-offs between
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particular considerations, for example, optimal foraging under
conditions of high predator-density. Studies of animal cognition
have already established that animals can solve more complex
problems than was predicted (Andrews & Monsó, 2021). When
Binz et al. describe the four advantages a meta-learning model
has over a standard Bayesian model, two key features emerge
that are highly relevant to an evolutionary account of
meta-learning: Resource limitations, and the lack of prior infor-
mation about the environment. When considering both of these
features and the way they operate on organisms in the wild, the
ecological plausibility of even an early evolution of meta-learning
capacities becomes quite plausible.

Meta-learning models are able to limit the complexity of the
algorithms they use, to reduce strain on resources. Under the
constraints of natural selection, resource limitations play a
strong role in determining the optimal strategy for organismal
behaviour and/or phenotype. Out in the world, organisms will
have constraints on brain size (and subsequently, memory
capacity and processing power), as well as the time and energy
availability for running cognitive computations. A system that
provides a method for limiting the complexity of more difficult
algorithms – as meta-learning does – will therefore have a strong
advantage for organisms operating under normal constraints.

It is also a common feature of the environments in which ani-
mals find themselves that they will lack prior information about
these environments (Veit, 2023). For any animal that lives in a
variable or changing environment, or those with a complex and
flexible behavioural repertoire, they cannot know in advance
what they will encounter throughout their lifetimes, such as the
distributions of the types of functions they will come across. A
learning model that allows an organism to improve its learning
over repeated encounters with and sampling of its environment
will be selectively advantageous in these contexts as they can
adapt to whatever circumstances in which they find themselves.
Conversely, animals who evolve and develop within stable envi-
ronments with a fairly fixed set of challenges may do better
with pre-set learning algorithms that are optimised for this envi-
ronment, to avoid the complexity and time investment required
for meta-learning.

A meta-learning perspective on the evolution of animal cogni-
tion also fits with our current neuroscientific knowledge on cog-
nitive architectures, as well as the empirical data on animal
learning. For instance, Binz et al. note that many species
(including humans) have been shown to improve their learning
strategies over time. This empirical evidence supports the
evolutionary story we have sketched here. Unfortunately, much
work remains to be done in order to understand the evolution
of cognition, but we hope to have successfully shown that
meta-learning could offer a promising framework for enhancing
such understanding, due to its inherent link to the adaptive
agency of living systems.
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Abstract

We argue that the type of meta-learning proposed by Binz et al.
generates models with low interpretability and falsifiability that
have limited usefulness for neuroscience research. An alternative
approach to meta-learning based on hyperparameter optimiza-
tion obviates these concerns and can generate empirically test-
able hypotheses of biological computations.

Binz et al. describe four different meta-learning approaches and
focus on the last one – methods for learning arbitrary new
tasks without the need for a priori hypotheses about brain or cog-
nitive architectures. They show that this approach can be imple-
mented in recurrent neural networks (RNNs) that are universal
approximators (Hornik, Stinchcombe, & White, 1989), and
argue that it is powerful in producing Bayesian (near-optimal)
learning in an arbitrarily large set of cognitive tasks. While
acknowledging the power of the proposed framework for artificial
intelligence (AI), we question its usefulness in cognitive and neu-
roscience research. We argue that an alternative approach of
hyperparameter optimization (which was first proposed by
Doya, 2002, and is mentioned but not discussed by Binz et al.)
is far more powerful for this role.

To be valuable for empirical research, a computational frame-
work should generate models that are interpretable in neurocog-
nitive terms and make predictions that can be falsified or
confirmed through empirical tests. The internal computations
used by the models should be analogous to those of neurocogni-
tive systems (e.g., attention, memory, valuation, etc.; e.g.,
Castelvecchi, 2016), and predict activity patterns that can be
empirically validated. The framework advocated by Binz et al.
has neither property, and instead generates models that are
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governed by immense numbers of free parameters (up to
billions) and are not interpretable in cognitive terms, amounting
to a “black box” data-driven approach.

A hyperparameter optimization approach alleviates these
concerns by constraining the models it generate to emulate
biologically plausible architectures. This allows for formulating
and testing mechanistic hypotheses that are based in established
literature. The reinforcement meta-learner (RML) model is a
good illustration of this framework in the context of executive
function (Silvetti, Vassena, Abrahamse, & Verguts, 2018).

Consistent with abundant empirical evidence on biological
executive circuits (e.g., Shackman et al., 2011; Silvetti, Seurinck,
van Bochove, & Verguts, 2013; Varazzani, San-Galli, Gilardeau,
& Bouret, 2015; Yarkoni, Poldrack, Nichols, Van Essen, &
Wager, 2011), the RML emulates interactions between the
medial prefrontal cortex (MPFC) and two catecholamine
nuclei – the ventral tegmental area, releasing dopamine (DA),
and the locus coeruleus, releasing norepinephrine (NE). The
MPFC module monitors reward rates conveyed by DA and,
when detecting a “need for control” (e.g., a decrease in the
rates), calls for the release of NE and DA. In turn, these
neurotransmitters are broadcast to task-specific cognitive
modules and enhance their efficiency, thereby restoring
performance and reward rates. The MPFC registers a boost of
neurotransmitter release as a cost and uses Bayesian and
reinforcement-learning (RL) optimization to learn control set-
tings that maximize rewards while minimizing costs. The RML
thus uses traditional Bayesian/RL optimization frameworks to
simultaneously regulate motor input and internal cognitive
computations, thus modeling both first-order performance and
its executive (meta-level) control.

Recent studies have shown that the RML explains empirical
findings that have long stumped traditional frameworks,
including nonstandard reward modulations in visual areas
(Horan, Daddaoua, & Gottlieb, 2019; Silvetti, Lasaponara,
Daddaoua, Horan, & Gottlieb, 2023) and curiosity – the intrinsic
desire to obtain information in the absence of instrumental
rewards (Daddaoua, Lopes, & Gottlieb, 2016; Horan et al., 2019;
Silvetti et al., 2023). By monitoring the volatility of the
environment, the RML provides a meta-learning-based
explanation of the empirical finding of volatility-sensitive
learning rates (Silvetti et al., 2013, 2018). Moreover, when
coupled to modules emulating memory, motor output, decision
making, or attention, the RML reproduces a wide array of
behavioral and neural results related, respectively, to memory
capacity, motor effort, adaptive regulation of learning rates, and
instrumental or curiosity-driven information gathering (Silvetti
et al., 2018, 2023). Thus, despite its biologically constrained
architecture, the RML gains considerable flexibility and generaliz-
ability because it can control different task-specific cognitive
computations.

Because the RML uses a biologically plausible architecture with
a parsimonious parameter set, it generates a rich set of novel pre-
dictions that can be tested against empirical data. These predic-
tions involve possible relationships between behavior and neural
activity, between neural activity and neurotransmitter release,
and between activity in different brain structures. Existing ver-
sions of the RML make predictions about individual computa-
tions (e.g., how much memory effort to engage in a particular
context) but future versions can be extended to probe how the
brain arbitrates between computations (e.g., how it trades-off

between relying on memory versus acquiring new sensory
information when performing a task).

In conclusion, different meta-learning approaches can differ
greatly in their comparative strengths. The entirely unconstrained
approach discussed by Binz et al. may be desirable for AI
applications where there is no need for biological constraints,
for example, when developing an algorithm for a self-driving
car, or optimizing planning in multiple tasks. In contrast, we
believe that a biologically constrained meta-learning framework
is vastly superior for advancing cognitive and neuroscience
research (Marblestone, Wayne, & Kording, 2017). Such a
biologically constrained framework is grounded in the neuro-
scientific literature, and can generate testable and falsifiable
hypotheses about neurobiological processes underlying cognitive
function.
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Abstract

This commentary examines the synergy between meta-learned
models of cognition and integrative learning in enhancing ani-
mal and human learning outcomes. It highlights three integra-
tive learning modes – holistic integration of parts, top-down
reasoning, and generalization with in-depth analysis – and
their alignment with meta-learned models of cognition. This
convergence promises significant advances in educational prac-
tices, artificial intelligence, and cognitive neuroscience, offering
a novel perspective on learning and cognition.

Binz et al.’s seminal paper on “Meta-Learned Models of
Cognition” offers a transformative view on cognitive modeling,
shifting the traditional paradigm toward a more dynamic
and experience-based approach. The authors convincingly argue
for the superiority of meta-learned models in acquiring inductive
biases from experience, as opposed to the rigid, hand-designed
structures of traditional models like cognitive architectures and
Bayesian models of cognition. This shift represents not only a the-
oretical advancement but also a practical one, providing a more
realistic and adaptable framework for understanding cognitive
processes.

Crucially, the paper’s synthesis of meta-learning with rational
analysis presents an exciting pathway for constructing
Bayes-optimal learning algorithms. This approach resonates
strongly with integrative learning theories that we have been
working on, suggesting a shared trajectory toward developing
learning models that can adapt and thrive amidst complexity.
Integrative learning refers to the cognitive process of actively inte-
grating learning materials under the influence of metacognition,
resulting in an efficient and profound understanding and mastery
of knowledge (Lian, 2018). It represents a psychological learning
process where metacognition and cognition are highly unified
(Yin, Wu, & Lian, 2020, 2023). This learning process model
encompasses three modes: holistic integration of parts, top-down
reasoning, and generalization for in-depth analysis (Rong Lian,
personal communication, March 2020).

Firstly, “holistic integration of parts” involves learners first
grasping the overall concept of the subject, establishing a compre-
hensive initial understanding. This is followed by an exploration

of specific parts of the material, with each part being connected
back and integrated into this broader understanding, thus rein-
forcing and enriching the overall comprehension. This
“whole-part-whole” learning process has been shown to play a
positive role not only in animal learning (Yin et al., 2020, 2023)
but also in human learning processes. In studies with university
students learning online network knowledge, it was found that,
compared to a non-integrative learning group, the integrative
learning group better synthesized and processed fragmented
online knowledge, resulting in superior learning performance
(Huang, 2021). This indicates that individuals, during the learn-
ing process, activate metacognition which combines prior knowl-
edge and experience to adjust and optimize new knowledge within
working memory, thereby enhancing online learning effectiveness
(Mayer, 1997).

Secondly, “top-down reasoning” emphasizes beginning with
more broad and generalized high-level concepts and systemati-
cally mastering more specific lower-level knowledge points. By
understanding and applying higher-level knowledge, they deduce
and explain lower-level knowledge, thereby forming a clear, logi-
cally structured knowledge framework. Lan (2022) explored the
impact of this approach on learning outcomes using a study-
recognition paradigm. The results showed that compared to
bottom-up learning, top-down reasoning enabled learners to use
attention resources more reasonably and effectively, facilitating
the relational processing and integration of specific items.
Additionally, cognitive semantic processing was smoother, and
the integration difficulty between semantics was reduced, signifi-
cantly enhancing memory effects. Event-related potential (ERP)
technology was used to explore the underlying neural mecha-
nisms, revealing that the top-down reasoning group had larger
N1 amplitudes and significantly smaller N400 than the
bottom-up learning group when learning specific examples.
This indicates that top-down reasoning learners more effectively
utilized higher-level knowledge, focusing attention resources on
more organized processing of specific examples. From the per-
spective of semantic priming effects, once semantic concepts in
memory are activated, their activation can spread to related
nodes, increasing their activation level (Meyer & Schvaneveldt,
1971), making the learning of related target stimuli easier
(Bueno & Frenck-Mestre, 2002).

Lastly, “generalization for in-depth analysis” starts with learn-
ers forming a general representation of the subject, laying the
groundwork for the overall framework. Learners then delve into
detailed components, engaging in thorough analysis and research.
This in-depth study not only deepens understanding of each part
but also enhances and refines the initial general framework, cul-
minating in a multifaceted and detailed overall cognition. Chen
(2023) explored the impact of this learning mode on university
students’ reading of texts of varying difficulty. Results showed
that the “generalization and in-depth analysis” group had signifi-
cantly higher understanding and memory scores under different
text difficulty conditions compared to the control group, and
also had a lower rate of knowledge forgetting. Reading is a process
involving simultaneous extraction and construction of meaning
(García Madruga et al., 2013). In reading, learners must use com-
plex meaning construction processing to form a complete repre-
sentation, where cognitive control plays a key role in focusing
and switching attention, activating and updating representations
(Wu, Tian, Chen, Chen, & Wang, 2021). The “generalization
for in-depth analysis” mode helps learners construct complete
representations more quickly, and through in-depth analysis
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and summarization of new knowledge, continuously adjust and
optimize their meaning representations, thereby promoting
more refined processing and encoding of information. This pro-
cess helps learners more effectively retrieve and remember
encoded information.

The three modes of integrative learning—holistic integration of
parts, top-down reasoning, and generalization with in-depth
analysis—closely align with the computational processes of
meta-learned models of cognition. This alignment is pivotal,
as the initial encounter with a subject in a holistic, higher-level,
or generalized manner is essential for setting effective starting
metaparameters that guide the learning process. Such an encounter
provides a foundational understanding from which learners can
refine their perceptions and strategies in a targeted manner.
Within this adaptive framework, learners then engage in a cyclical
process of interaction, analysis, and metacognitive adjustment,
fine-tuning their approach based on this foundational overview
and their evolving comprehension of the subject matter. This
methodology not only embodies the adaptability characteristic
of meta-learning but also supports real-time adjustments during
the learning process. As a result, it leads to learning outcomes
that are both precisely tailored to the learner’s needs and highly
effective. Consequently, emphasizing the value of an initial holis-
tic overview reinforces the importance of integrative learning
within the meta-learning paradigm. It empowers learners to
dynamically adjust their information processing strategies from
the outset, significantly enhancing and adapting their learning
experiences to achieve optimal outcomes (Rabinowitz, 2019).

The implications of this area of research are vast, offering new
directions for educational practices, artificial intelligence, and cog-
nitive neuroscience. In education, these insights could lead to
more personalized and effective learning strategies, tailored to
individual (meta-)cognitive patterns. For AI, integrating these
models could result in more adaptive and intuitive systems, better
mimicking human learning processes. In cognitive neuroscience,
this research offers potential for deeper understanding of brain-
based learning mechanisms. Altogether, this represents a signifi-
cant stride in our comprehension and application of cognitive
and learning sciences, opening new avenues for exploration and
innovation.
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Abstract

We are encouraged by the many positive commentaries on our
target article. In this response, we recapitulate some of the points
raised and identify synergies between them. We have arranged
our response based on the tension between data and architecture
that arises in the meta-learning framework. We additionally pro-
vide a short discussion that touches upon connections to foun-
dation models.

R1. Introduction

In our target article, we sketched out a research program around
the idea of meta-learned models of cognition. The cornerstone of
this research program was the observation that neural networks,
such as recurrent neural networks, can be trained via
meta-learning to mimic Bayesian inference without being explic-
itly designed to do so (Ortega et al., 2019). This positions the
resulting meta-learned models ideally for applications in the con-
text of rational analyses of cognition (Anderson, 2013). Yet,
meta-learning additionally enables us to do things that are not
possible with other existing methods, thereby pushing the
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boundaries of rational analyses. Not only is the framework built
on solid theoretical grounds, but it also enjoys growing empirical
support. Meta-learned models account for a wide range of phe-
nomena that pose a challenge to traditional models, such as the
ability for compositional reasoning (Jagadish, Binz, Saanum,
Wang, & Schulz, 2023; Lake & Baroni, 2023) or the reliance on
heuristic strategies (Binz, Gershman, Schulz, & Endres, 2022;
Dasgupta, Schulz, Tenenbaum, & Gershman, 2020).

We believe this research direction is particularly exciting
because it allows us to reconceptualize different cognitive pro-
cesses, including learning, planning, reasoning, and decision-
making, into one unified process: The forward dynamics of a
deep neural network. In the terminology of modern large lan-
guage models (LLMs), this ability to acquire knowledge via a sim-
ple forward pass is also known as in-context learning (Brown
et al., 2020). In-context learning stands in contrast to traditional
means of knowledge acquisition in neural networks that requires
weight adjustment via gradient descent (hence, it is referred to as
in-weights learning). Indeed, there are close connections between
meta-learning and training LLMs to which we will return at the
end of our response.

Many commentators shared our excitement about this new
technology. McCoy & Griffiths write that the “direction laid
out by Binz et al. is exciting.” Pesnot-Lerousseau &
Summerfield suggest that “this computational approach provides
an interesting candidate solution for some of nature’s most star-
tling and puzzling behaviours” and that “meta-learning is a gene-
ral theory of natural intelligence that is – more than [its] classical
counterpart – fit for the real world.” Grant says that “it is an excit-
ing time to be working with and on meta-learning toolkit” but
also points out that “many aspects remain open.” We agree
with this sentiment: Meta-learning is a powerful framework that
provides us with the toolkit to build candidate theories of
human cognition, but we still must figure out the details and pre-
cise instantiations that best describe it.

In the target article, we have framed our argument from a
Bayesian angle. Although this offers an invaluable perspective, it
does somewhat undermine the role that neural networks play in
this context. Indeed, it is really the marriage between Bayesian
and neural network models that gives meta-learning its power.
There were several commentators who picked up on this. We
agree with Ong, Zhi-Xuan, Tenenbaum, & Goodman (Ong
et al.) who “suggest that the meta-learning approach could be fur-
ther strengthened by considering connectionist and Bayesian
approaches, rather than exclusively one or the other.” McCoy &
Griffiths perhaps put it best by saying that meta-learning
“expand[s] the applicability of Bayesian approaches by reconciling
them with connectionist models – thereby bringing together two
successful research traditions that have often been framed as
antagonistic.” This integration of research traditions is what
enables us to build “constraints from experimental neuroscience,
and ecologically relevant environments” into rational theories as
suggested by Grant, thereby leading to more faithful and natural-
istic models.

Many commentators also noted that meta-learning finds
applications beyond studying standard human cognition. For
example, Fields & Glazebrook suggest studying meta-learning
“in more tractable experimental systems in which the implement-
ing architecture can be manipulated biochemically and bioelectri-
cally”, whereas Veit & Browning highlight that “there is also the
potential to use meta-learning models to help us understand the
evolution of cognition more generally.” Nussenbaum & Hartley

furthermore point out that “these models are particularly useful
for testing hypotheses about why learning processes change across
development” because they allow us to arbitrate whether changes
in an individual are due to an adaption to the external environ-
ment (i.e., changes in data) or to internal changes in cognitive
capacity (i.e., changes in architecture). We are excited by these
research directions as well.

We found the tension between data and architecture laid out
by Nussenbaum & Hartley very useful, and have therefore
decided to organize our response around it. We begin by discuss-
ing the commentaries that placed a focus on the importance of
data for understanding human cognition (sect. R2), followed by
those that focused on the importance of model architecture
instead (sect. R3). The point where those two concepts meet
will be the centerpiece of our discussion (sect. R4). We finish
our response by clarifying some of the misunderstandings that
have arisen from our original target article (sect. R5), before pro-
viding a general conclusion (sect. R6).

R2. Data matters more than we thought

Historically, cognitive models have been largely based on sym-
bolic representations. Examples include models of heuristic
decision-making, problem-solving, or planning. This modeling
tradition is largely based on the premise that model architectures
are the driving factor in determining behavior. Proponents of this
approach often argue that symbolic representations are necessary
to capture core ingredients of human cognition, such as decision-
making, problem-solving, or planning (Marcus, 1998). The
advent of Bayesian models of cognition expanded on this picture.
Even though most Bayesian models are also based on symbolic
representations, they are sensitive to the data that are expected
to be encountered. If assumptions about the environment change,
the behavior of these models changes as well. The past 30 years
have shown that people are indeed adaptive to the environment,
thereby providing considerable support to Bayesian models of
cognition (Griffiths, Kemp, & Tenenbaum, 2008).

In contrast to models with symbolic representations, neural
networks are based on distributed vector representations. Many
have argued that neural networks are inherently ill-equipped for
reasoning, planning, and problem-solving because they lack the
symbolic representations of their cousins. Indeed, there is a
whole line of research (known as neurosymbolic AI) attempting
to fix these issues by incorporating symbolic processes into neural
network architectures (De Raedt, Manhaeve, Dumancic,
Demeester, & Kimmig, 2019). The framework of meta-learning
demonstrates that this may not be necessary. It instead offers a
proof-of-concept showing that – when trained on the right data
– neural networks can exhibit many emergent phenomena that
have traditionally been attributed to symbolic models, such as
the ability for model-based (Wang et al., 2016) and compositional
reasoning (Lake & Baroni, 2023). For example, as already dis-
cussed in our target article, Lake and Baroni (2023) have shown
that a vanilla transformer architecture can be taught to make
compositional inferences via meta-learning. Findings like this
allow us to interpret human compositionality as “an emergent
property of an inner-loop, in-context learning algorithm that is
itself meta-learned” as discussed by Russin, McGrath, Pavlick,
& Frank. Likewise, Wang et al. (2016) have shown that a simple
meta-learned recurrent neural network can act like a model-based
reinforcement learning algorithm, even though it does not con-
tain any explicit architecture that facilitates model-based
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reasoning. The implications of these findings are vast as pointed
out by Pesnot-Lerousseau & Summerfield who suggest that
“many supposedly ‘model-based’ behaviours may be better
explained by meta-learning than by classical models” and that
meta-learning “invites us to revisit our neural theories of problem
solving and goal-directed planning.”

Taken together, this suggests that model architecture may not
be as important as once thought for building systems with
human-like reasoning capabilities. What matters much more
than we initially thought however are the data these systems are
trained on. If the data are generated by symbolic processes,
meta-learning will pick up on this and compile these processes
into the resulting models.

There is evidence from recent work in NeuroAI supporting the
idea that data trumps architecture. In a large-scale analysis,
Conwell, Prince, Kay, Alvarez, and Konkle (2022), for example,
found different model architectures achieve near equivalent
degrees of brain predictivity in the human ventral visual system
and that the data they were trained on had a much bigger influ-
ence. Muttenthaler, Dippel, Linhardt, Vandermeulen, and
Kornblith (2022) presented similar findings, suggesting that
“model scale and architecture have essentially no effect on the
alignment [between the representations learned by neural net-
works and] human behavioral responses, whereas the training
dataset and objective function both have a much larger impact.”

That puts the focus on the question of “what to learn?” Prat &
Lamm argue that this is the hard problem in natural and artificial
intelligence. They further point out that nature solves this prob-
lem via evolution and that we cannot handcraft the utility func-
tion (or error measurements) for each task separately. We
sympathize with this perspective. However, the evolutionary per-
spective is not the most useful one when the goal is to build mod-
els of human cognition. We certainly do not want to simulate the
entire process of evolution for this. If we want to avoid this, what
can we do as an alternative? For one, we can use automated tools,
such as Gibbs sampling with people (Harrison et al., 2020), that
measure the priors and utility functions of people and plug the
resulting data into our pipelines. That this is possible in the
meta-learning framework has been recently demonstrated by
Kumar et al. (2022). There is also recent work suggesting that
the generation of data reflecting the real world can be automated
using foundation models. Jagadish, Coda-Forno, Thalmann,
Schulz, and Binz (2024) have, for example, shown that this is a
promising approach for building models that can acquire human-
like priors when trained on ecologically valid problems. In partic-
ular, they queried a LLM to generate naturalistic classification
problems, trained a meta-learning system on these problems,
and demonstrated that the resulting meta-learned models explain
many effects observed in the literature.

R3. Yet, architecture matters too

However, it is certainly not only data that matter for understand-
ing human cognition. Model architecture will still play a role as
pointed out in several commentaries (e.g., Schilling, Ritter, &
Ohl). In fact, there are already results showing that this is the
case in the meta-learning setting. For example, Chan et al.
(2022) studied the trade-off between in-context and in-weights
learning and found that in-context learning only emerges when
the training data exhibit certain data distributional properties.
Importantly, this was only true in transformer-based models
but not in recurrent models (which relied on in-weights learning

instead). This demonstrates that different model architectures can
lead to characteristically different behaviors, thereby highlighting
that architecture is crucial – at least to some extent. From a cog-
nitive perspective, the interesting question will be how much
architecture is needed.

Many commentaries suggested that enhancing the black-box
meta-learning framework with process-level structures will help
us to better understand human cognition. We agree that this is
an intriguing line of thought (see the discussion in our target arti-
cle within sects. 2.4 and 5). In many cases, the commentaries
added an additional dimension to our original proposal. We dis-
cuss some of these proposals in the following and place them into
the context of our framework.

Sanborn, Yan, & Tsvetkov (Sanborn et al.) highlight that
people often deviate from normative behavior (whether
Bayesian or meta-learned). Earlier work has shown that many
of these deviations can be captured by rational process models,
which approximate posterior predictive distributions using poste-
rior mean, posterior median, or other summary statistics. These
rational process models play hand-in-hand with the
meta-learning framework as pointed out by Sanborn et al..
Essentially, their proposal is to have a rational process model rea-
son based on the meta-learned posterior predictive distribution.
This combination brings together the best of both worlds as
one does not even have to retrain the meta-learning model as
in other approaches that induce limited computational resources
into meta-learned models (Binz & Schulz, 2022; Saanum, Éltető,
Dayan, Binz, & Schulz, 2023). That can be convenient from a
practical perspective. We agree that this is an appealing property
and look forward to how the interaction between these two frame-
works will play out in the future.

In a similar vein, Grant argues that the meta-learning toolkit
needs stronger architectural constraints. Her proposal emphasizes
a connectionist implementation of meta-learning called
model-agnostic meta-learning (MAML). MAML implements its
stepwise updating using gradient descent as opposed to the mod-
els we focused on in our target article whose updating is imple-
mented using neural network forward dynamics (which is also
referred to as memory-based meta-learning). Although MAML
involves meta-learning with the same objective as discussed in
our target article, it differs in what is being meta-learned. In
MAML, one adapts the initial weights of a neural network, such
that subsequent gradient steps lead to optimal learning. That
leads to an interesting class of gradient-based meta-learned mod-
els that have many (but not all) of the advantages discussed in our
target article. MAML’s key feature is that it allows for a seamless
link between the algorithmic and the computational level of anal-
ysis. Future research should compare different classes of models
against each other and find the one that best explains human
behavior. It will be particularly exciting to pit gradient-based
models (such as MAML) against memory-based models (includ-
ing recurrent neural networks) and see which class of theories
offers a better account of human behavior. Doing so will allow
us to answer some of the big, outstanding questions of cognitive
psychology and neuroscience, such as whether we can find any
evidence for computations like gradient descent and backpropa-
gation in the brain.

Last but not least, Cea and Stussi, Dukes, & Sander suggest
that the meta-learning framework could benefit from the inclu-
sion of affective elements. We agree that doing so can provide
added value to the meta-learning research agenda. Yet, at the
same time, this proposal highlights one of the tensions involved
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in building complex systems, namely deciding on what should be
prewired and what should be given the chance to emerge instead.
To illustrate this point, let us consider one of the examples pro-
vided by Stussi et al. highlighting the importance of affective pro-
cesses: For humans, positively valenced prediction errors are
generally associated with a higher learning rate than negatively
valenced prediction errors (Palminteri & Lebreton, 2022). In a
recent study, we found that this characteristic emerges naturally
in meta-learned models (Schubert, Jagadish, Binz, & Schulz,
2024), thereby illustrating that at least some affective processes
are already present in meta-learned models.

Ultimately, determining which inductive biases should be pre-
wired and which should be learned from data depends on which
research question one is investigating. If one wants to obtain a
process-level understanding of a phenomenon, there is no better
way than formalizing that phenomenon mathematically and simu-
lating it in silico. If the goal, on the other hand, is to simply induce
superhuman-like general abilities in a computational model, mod-
ern machine learning research, such as the work on AlphaZero,
has taught us that we should keep the amount of prewiring limited
and instead rely mainly on the data itself (Sutton, 2019).

R4. Transcending levels of analysis

The full power of meta-learning does not solely come from its
close ties to Bayesian inference – the algorithmic implementation
also matters. To get a more complete understanding of human
cognition, it seems likely that we need to consider both data
and architecture. Meta-learning allows us to do this by bringing
together two modeling traditions that have focused on these
two aspects individually. It combines the advantages of Bayesian
models – which feature powerful, data-dependent inductive biases
– and neural network models – which come with a vast amount of
architectural design choices – seamlessly. To quote Ortega (2020),
meta-learning “brings back Bayesian statistics within deep learn-
ing without even trying – no latents, no special architecture, no
special cost function, nada.”

That was also recognized by some of the commentators.
McCoy & Griffiths state that meta-learning “reconcil[es
Bayesian approaches] with connectionist models – thereby bring-
ing together two successful research traditions that have often
been framed as antagonistic”. This feature allows the framework
to effortlessly jump between different levels of analysis, from
the computational over the algorithmic to the implementational.
Furthermore, although neural networks have been often criticized
for not being able to engage in symbolic reasoning, meta-learning
illustrates that it is, in principle, possible to equip neural networks
with symbolic inductive biases.

Nussenbaum & Hartley highlight potential applications in the
context of developmental psychology. Here, one of the central
questions involves identifying whether “age-related changes in
learning reflect adaptation to age-varying ‘external’ ecological
problems or ‘internal’ changes in cognitive capacity.” We believe
that this is an exciting research direction. In fact, we have recently
applied some of these ideas to test whether the developmental tra-
jectories of children in the context of intuitive physics can be cap-
tured with deep generative models by manipulating the amount of
training data or the system’s computational resources (Buschoff,
Schulz, & Binz, 2023).

However, the strict dichotomy between data and architecture is
likely to be false. Instead, the two interact with each other over the
lifespan, as also pointed out by Nussenbaum & Hartley.

Meta-learning allows us to disentangle the two and study them
jointly or separately. This not only has implications for under-
standing adults and kids but also in the context of mental and
physical health. We can, for instance, ask which kinds of environ-
ments cause or exacerbate certain mental illnesses, or what types
of architectural constraints lead to maladaptive behaviors. In
doing so, we might be able to better understand these issues
and, in turn, potentially develop targeted aids for them.

R5. Points of contention

Although the framework proposed in our target article was
received well overall, there were a few points of contention raised
by some of the commentators. In this section, we address and
clarify these issues.

The first of them is raised by Ong et al. and by Székely &
Orbán. They both argue that having to specify an inference prob-
lem is a virtue of the Bayesian approach, not a limitation. From
their perspective, the process of defining the inference problem
can in itself shed light on the system whose cognitive processes
are being modeled. We agree that this is a valid – and often
very useful – strategy. However, both of the commentaries come
with the implicit assumption that this is not possible in the
meta-learning framework. We think this is a wrong dichotomy.
The exact same research strategy can be applied in the
meta-learning framework: (1) Define a data-generating distribu-
tion, (2) draw samples from it, (3) use these to construct a
meta-learned model, and (4) compare models with different
assumptions against each other. To illustrate this using the prob-
abilistic programming example of Ong et al., one could, for exam-
ple, define a distribution over probabilistic programs and use
meta-learning to construct a neural network that can perform
approximate inference over probabilistic programs. Although we
generally agree that this is a useful research strategy, it is impor-
tant to mention that there are settings in which it is just not appli-
cable, as outlined in our target article. We think this is where the
strength of meta-learning lies. It allows us to do all of the things
we can do in the traditional Bayesian framework – including
probabilistic programs – and more.

From a conceptual perspective, we also have to weigh in on the
commentaries of Vriens, Horan, Gottlieb, & Silvetti who state
that “the framework generates models that are not interpretable
in cognitive terms and, and crucially, are governed by an immense
numbers of free parameters […].” That is not an accurate depic-
tion of the meta-learning framework from our perspective.
Although these models have potentially a lot of parameters,
they are not free parameters that are fitted to human data.
Instead, they are only optimized to maximize performance on a
given task. Vriens et al. further claim that the framework gener-
ates models with low falsifiability. This is also far from the
truth. Every meta-learned model can be compared against alter-
native models, and hence potentially falsified, as we and others
have shown in many previous studies. Indeed, this is true not
only on the behavioral level but also on the neural level (i.e.,
when there are inconsistencies with neural recordings). In this
sense, meta-learned models provide even stronger grounds on
which they can be refuted as pointed out by Grant. The
meta-learning framework as a whole is of course harder to falsify.
However, we believe that it should be the role of a framework to
generate useful theories, not to be falsifiable.

We also noticed that there were a few misunderstandings con-
cerning the distinction between tool and theory highlighted in our
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target article. In particular, we put forward the notion of using
meta-learning as a tool for building models of human learning.
We did not say much or make any claims about how people actu-
ally acquire their learning algorithms, i.e., the process of
meta-learning itself (see sect. 1.4 of the target article). Although
this is an important problem, it is outside the scope of our article.
Llewellyn states that our first question is to understand how
people improve their learning abilities over time (and subse-
quently that we fail to address this question satisfyingly).
However, we explicitly want to highlight again that we did not
strive to address this question in our target article. Likewise,
Calderan & Visalli mention that we should position ourselves
against hierarchical Bayesian models, which can be used to
model learning-to-learn. We agree that this would be needed if
we were targeting to find out how people learn-to-learn, which
we are not. Even though the study of learning-to-learn is outside
the scope of our target article, we still believe that the
meta-learning framework could provide an interesting perspective
for studying these processes. This was, for example, noted by
Nussenbaum & Hartley in the context of developmental psychol-
ogy, or by Yin, Xiao, Wu, & Lian who make the connection to
integrative learning.

Finally, Calderan & Visalli question the utility of
meta-learning to build rational models in large worlds. In partic-
ular, they ask: “What justifications exist for the selection of train-
ing data?” They rightfully claim that meta-learned models have
priors too and that they therefore offer no important advantages
over Bayesian models. However, in contrast to Bayesian models,
meta-learned models do not require an explicit expression for
these priors – they only need samples from them, which is a
much weaker requirement. That means that we can go out and
measure them by collecting samples. In turn, this gives us many
opportunities. We can, for example, ask people to generate sam-
ples from their priors (as done in the work of Kumar et al.
[2022] mentioned earlier), or we can go out and determine priors
that match real-world statistics (as done in the work of Jagadish
et al. [2024] mentioned earlier). Meta-learning then allows us to
compile these priors into a computational model. Although hier-
archical Bayesian models may also be able to construct their pri-
ors, as mentioned by Calderan & Visalli, they can only do so in a
predetermined class of functions, preventing an effective applica-
tion to large world problems.

R6. Links to foundation models

To our surprise, none of the commentaries touched upon the sim-
ilarities between meta-learning and training LLMs. We therefore
wanted to use this opportunity to raise a few points on this
topic ourselves. Essentially, LLMs are trained using the same
objective we have discussed in our target article (equation 7).
The only thing that is special is that the data distribution amounts
to the whole internet. In this sense, LLMs can be viewed as a spe-
cial case of meta-learned models – all the same principles apply.
Thus, one way to view LLMs is that they approximate Bayesian
inference to predict the next tokens in human language. Like
the meta-learned models we have discussed in our target article,
LLMs learn from their context (i.e., a history of previous observa-
tions) to make better predictions with more examples by updating
only their internal activations. There are exciting research ques-
tions only waiting to be answered in the space between human
cognition and LLMs, and we believe that the meta-learning per-
spective could help us in this endeavor (Binz & Schulz, 2023;

Hussain, Binz, Mata, & Wulff, 2023; Yax, Anlló, & Palminteri,
2023).

It might also be interesting to think about meta-learned mod-
els that are not based on the objectives outlined in our target arti-
cle. For example, we may ask how meta-learned models relate to
the concepts of free energy minimization and active inference (see
commentary by Penacchio & Clemente), what objectives are
needed to meta-learn quantum models (see commentaries by
Clark and Mastrogiorgio), whether we can meta-learn models
using contrastive losses (Tian et al., 2020), or whether it is possi-
ble to give meta-learning systems the ability to determine their
own objectives (see commentary by Moldoveanu). Doing so
might lead to models that do not approximate Bayesian inference
but have other appealing properties. Nevertheless, putting theo-
retical properties aside, finding out which models are most useful
in understanding cognition will ultimately be an empirical ques-
tion, not a theoretical one.

Where will cognitive modeling be in 10 years from now? We
predict that there will be major advances in two main directions:
(1) Our models will become much more domain-general and (2)
they will process high-dimensional, naturalistic stimuli. The
meta-learning framework will help us to achieve both of these
objectives. The first is already addressed by design:
Meta-learning involves training on a collection of tasks – we
only have to make this collection more diverse. Regarding the sec-
ond, meta-learned models of cognition can be readily combined
with visual neural networks, thereby giving them the ability to
“see” experimental stimuli similarly to people (as pointed out
by Sanborn et al.). We are already witnessing some of these sys-
tems that perform a wide range of tasks in complex, vision-based
environments in the machine learning literature. Examples
include models such as Voyager (Wang et al., 2023), Ada
(Team et al., 2023), or SIMA (Raad, Ahuja, Besse, Bolt, &
Young, 2024) – all of which are based (at least to some extent)
on a meta-learned model. Unfortunately, these models are cur-
rently too expensive to train for most academic research labs
(let alone to run ablations on them). For example, training Ada
requires access to 64 TPUs for five weeks. However, compute is
getting cheaper every year, and – together with technological
advances – we think it is likely that a similar system could be
trained on standard hardware 10 years from now. We are excited
by this prospect and what it means for understanding human
cognition.
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