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Abstract

Weighing matrices with entries in the complex cubic and sextic roots of unity are employed to construct
Hermitian self-dual codes and Hermitian linear complementary dual codes over the finite field GF(4). The
parameters of these codes are explored for small matrix orders and weights.
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1. Introduction

Weighing matrices (to be defined below) constitute a far reaching generalisation of
Hadamard matrices [10]. Several databases are available on the internet [5, 13]. In
this note, we consider such matrices over the cubic and sextic complex roots of unity
[3]. Note that the quotient of the Eisenstein integers by the ideal generated by 2 is
equal to GF(4). In view of that well-known arithmetic fact, it is natural to construct
quaternary codes from such weighing matrices. In this note, we construct Hermitian
quaternary self-dual codes by extending two constructions of binary self-dual codes
[1, 12] to quaternary codes. The two families of codes are called Cn,k and C∗n,k, where
n stands for the order of the weighing matrix and k for its weight. In addition to being
of interest in their own right, Hermitian quaternary codes that are self-orthogonal are
used in the construction of quantum error-correcting codes (see [6]). Further, since 4 is
the smallest square prime power greater than 1, Hermitian quaternary self-dual codes
have been the first and the most studied amongst Hermitian self-dual codes (see [15]).
The second construction requires Hermitian weighing matrices. Such objects are not
classical and a generation technique, of independent interest, is described.

In the same vein, we construct Hermitian linear complementary dual (shortly LCD)
codes over GF(4) in the sense of [8]. The two types of codes obtained are called Ln,k
and L∗n,k, where n stands for the order of the weighing matrix and k for its weight.
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A new method for constructing Hermitian LCD codes is also introduced in [14]. We
believe that the codes generated using the construction methods in this paper can serve
as invariants of such matrices from a classification perspective. This is in the spirit of
the classification of designs by their codes in the famous book [2].

The material is arranged as follows. The next section collects the notions and
notation needed for the rest of the paper. Sections 3 and 4 study Hermitian quaternary
self-dual codes and Hermitian LCD codes. In Section 5, an algorithm is presented for
finding Hermitian matrices in the equivalence class of CW(n, k, q). Section 6 contains
numerical examples of these constructions.

2. Notation and definitions

2.1. Codes. An [n, k] linear code C over GF(q) is a k-dimensional vector subspace
of GF(q)n, where GF(q) denotes the Galois field of order q, with q being a power
of a prime p. The elements in C are called codewords and the weight wt(x) of
a codeword x is the number of its nonzero coordinates. The distance between
two codewords x and y is the weight wt(x − y). The minimum weight of a linear
code C is defined as min{wt(x) | 0 � x ∈ C}. An [n, k, d] code is a linear code with
minimum weight d. If there exists an n-order monomial matrix P over GF(q) such that
C′ = CP = {cP | c ∈ C}, then the codes C and C′ over GF(q) are said to be equivalent.
If C = CP holds, CP is referred to as an automorphism of C and the set of all automor-
phisms of C forms the automorphism group of C. Let GF(4) = {0, 1, v, v + 1} be a finite
field of order 4. The Hermitian inner product between codewords x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) is defined as x · y = ∑n

i=1 xiy2
i . The Hermitian dual code

C⊥H is defined as C⊥H = {x ∈ GF(4)n | x · y = 0 for all y ∈ C}. If C ⊆ C⊥H , then C is
Hermitian self-orthogonal, and Hermitian self-dual if C = C⊥H . A table of Hermitian
self-dual codes over GF(4) is provided in [11], where for a given length, the highest
bound is given. If a Hermitian self-dual code meets this bound, it is considered optimal.
A linear code C over GF(4) is usually called a Hermitian LCD code if C ∩ C⊥H = {0}.

2.2. Combinatorial matrices. A complex weighing matrix W ∈ CW(n, k, q) is a
matrix of order n and weight k. Its elements are 0 and the qth roots of unity ζq,
and it satisfies WW∗ = kIn, where k ≤ n. Here, W∗ denotes the conjugate transpose
of W and In is the n × n identity matrix. The set CW(n, n, q) corresponds to the set
of Butson–Hadamard matrices, BH(n, q). For q = 3, the complex weighing matrix
W ∈ CW(n, k, 3) includes elements 0, 1, ζ3 and ζ2

3 . For q = 6, the complex weighing
matrix W ∈ CW(n, k, 6) includes elements 0, 1, ζ6, ζ2

6 ,−1,−ζ6 and −ζ2
6 . In this paper,

we focus on the codes generated by these two types of matrices over GF(4). It is natural
to study complex weighing matrices in the context of constructing codes rather than
the full weight Butson–Hadamard matrices for two reasons. The first is that when
interpreted over GF(4), it is natural to allow for entries equal to 0. However, more
importantly, nontrivial complex weighing matrices may exist when Butson matrices
cannot. This is particularly apparent in the case of CW(n, k, 3) as it is not a requirement
that 3 | n when k < n. Additionally, for any n, one can construct at least one CW(n, k, 6)
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with 2 ≤ k ≤ n. See [10] and the references contained therein for further details on
complex weighing matrices and their existence.

If there exist two monomial matrices P and Q, where the nonzero entries of P and
Q are qth roots of unity, such that W′ = PWQ∗, then we say that the two complex
weighing matrices W and W′, both of order n and weight k, with nonzero entries that
are qth roots of unity, are equivalent and we write W ≡ W′. If W ′ = PWQ∗ holds, W′

is referred to as an automorphism of W. The set of all automorphisms of W forms the
automorphism group of W.

3. Hermitian self-dual codes over GF(4)

In this section, we present two methods for constructing Hermitian self-dual codes
over GF(4) using complex weighing matrices.

THEOREM 3.1. Let W ∈ CW(n, k, q) be a complex weighing matrix satisfying
k ≡ 1 (mod 2). If α is a nonzero element in GF(4), then the matrix G = [αIn W]
generates a Hermitian self-dual [2n, n] code Cn,k over GF(4). The matrix
G′ = [αIn W ′] also generates a Hermitian self-dual [2n, n] code over GF(4), where
W ′ is equivalent to W.

PROOF. Consider the equation GG∗ = ααIn +WW∗ = In + kIn = (k + 1)In = 0, where
α denotes the complex conjugate of α. If W′ is equivalent to W, then W′W ′∗ = kIn,
which implies G′G′∗ = 0. Therefore, G′ also generates a Hermitian self-dual code, as
required. �

THEOREM 3.2. Let W ∈ CW(n, k, q) be a complex weighing matrix that satisfies
k ≡ 0 (mod 2) and W = W∗. If α is a nonzero element in GF(4), then the matrix
G = [αIn In +W] generates a Hermitian self-dual [2n, n] code C∗n,k over GF(4). The
matrix G′ = [αIn In +W ′] also generates a Hermitian self-dual [2n, n] code over
GF(4), where W ′ = W ′∗ and W ′ is equivalent to W.

PROOF. The product GG∗ yields αᾱIn + In +W∗ +W +WW∗. Since W is a complex
weighing matrix, it satisfies WW∗ = kIn. Considering k ≡ 0 (mod 2) and W = W∗, this
simplifies to GG∗ = 0. Similarly, when W′ = W ′∗ and W ′ is equivalent to W, the same
conclusion can be drawn. �

PROPOSITION 3.3. If W and W′ are equivalent complex weighing matrices of order
n and weight k, then the Hermitian self-dual codes constructed from W and W′ by
Theorem 3.1 are also equivalent.

PROOF. Since W and W′ are equivalent, there exist monomial matrices P and Q such
that W ′ = PWQ∗. Therefore,

[αIn W ′] = [αIn PWQ∗] = P[αIn W]

[
P−1 0
0 Q∗

]
,
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where the matrix [ P−1 0
0 Q∗ ] is a 2n × 2n monomial matrix and 0 denotes the n × n zero

matrix. This completes the proof. �

4. Hermitian LCD codes over GF(4)

In this section, two methods are presented for constructing Hermitian LCD codes
over GF(4) using complex weighing matrices.

PROPOSITION 4.1 [7, Proposition 2]. If G is a generator matrix for the [n, k] linear
code C, then the k × k matrix GG∗ is nonsingular if and only if C is a Hermitian LCD
code.

THEOREM 4.2. Let W ∈ CW(n, k, q) be a complex weighing matrix with k even. If α
is a nonzero element in GF(4), then the matrix G = [αIn W] generates a Hermitian
LCD code Ln,k of length 2n over GF(4).

PROOF. From the proof of Theorem 3.1, GG∗ = (k + 1)In, and hence det(GG∗) =
(k + 1)n. Then the claim follows from Proposition 4.1. �

THEOREM 4.3. Let W ∈ CW(n, k, q) be a complex weighing matrix with k odd and
W = W∗. If α is a nonzero element in GF(4), then the matrix G = [αIn In +W]
generates a Hermitian LCD code L∗n,k of length 2n over GF(4).

PROOF. From the proof of Theorem 3.2, it follows that GG∗ = (k + 2)In, and hence
det(GG∗) = (k + 2)n. Then, the result is obtained from Proposition 4.1. �

REMARK 4.4. In Theorem 4.2, if W ′ is equivalent to W, then the same construction
will also generate a Hermitian LCD code of length 2n over GF(4). Furthermore,
the Hermitian LCD code generated by W′ is equivalent to the Hermitian LCD code
generated by W. Similarly, in Theorem 4.3, if W ′ is an equivalent Hermitian matrix
to W, then the same construction method will generate a Hermitian LCD code over
GF(4).

5. Finding Hermitian matrices in the equivalence class of a CW(n, k, q)

Let Monn(q) be the group of n × n monomial matrices with nonzero entries in the
qth roots of unity. The group Monn(q)2 acts on CW(n, k, q) via

W(M, N) = MWN∗.

The orbits under this action are the equivalence classes. Restricting to the action of
the group Monn(1)2, the orbits are permutation equivalence classes. The stabilisers of
a matrix W under these actions are the automorphism and permutation automorphism
groups. Our next goal is to describe an algorithm for searching through the equivalence
class of a given CW(n, k, q) for Hermitian members. That is, given W ∈ CW(n, k, q),
we search for a matrix H ≡ W such that H = H∗.
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For any Hermitian matrix H, it must be true that Hij = 0 if and only if Hji = 0.
Given any W ∈ CW(n, k, q), let Wc denote the matrix obtained from W by letting the
(i, j) entry be 1 if Wij = c, and 0 otherwise. Adhering to this notation,

W =
∑

c∈{0}∪〈ζq〉
cWc.

In particular, the matrix W0 is a (0, 1)-matrix of weight n − k and, if W is Hermitian,
then W0 is symmetric. The following proposition is immediate.

PROPOSITION 5.1. If there exists a Hermitian matrix in the equivalence class of W,
then the matrix W0 is permutation equivalent to a symmetric matrix.

We now make another simple observation. Suppose that H ∈ CW(n, k, q) is Hermi-
tian. For any M ∈ Monn(q), we observe that

(MHM∗)∗ = MH∗M∗ = MHM∗. (5.1)

Hence, MHM∗ is also Hermitian for any choice of M. Suppose now that W is any
matrix in CW(n, k, q), not necessarily Hermitian, that is equivalent to H. Then, there
exist matrices S, T ∈ Monn(q) such that SWT∗ = H. It follows that T∗SW = T∗HT ,
which is Hermitian by (5.1). The next proposition follows immediately.

PROPOSITION 5.2. Let W ∈ CW(n, k, q) and suppose that there is a Hermitian matrix
H in the equivalence class of W. Then, there is a monomial matrix M ∈ Monn(q) such
that MW is Hermitian.

It follows that if there is a Hermitian H ≡ W, we need only search for M such that
MW is Hermitian. Now, we may write any matrix M ∈ Monn(q) uniquely in the form
M = DP, where D is diagonal and P is a permutation matrix. If MW is Hermitian, then
it follows that PW0 is symmetric.

Suppose now that a matrix W ∈ CW(n, k, q) is given. We first want to determine
whether or not there exists a Hermitian matrix in the equivalence class of W, and then
find these Hermitian matrices in case they exist. Proposition 5.2 allows us to consider
only the orbit of W under the action of Monn(q) via left multiplication. A matrix in
CW(n, k, q) is normalised if the first nonzero entry in every row and column is 1. Any
matrix is diagonally equivalent to a normalised matrix.

PROPOSITION 5.3. Let H ∈ CW(n, k, q) be Hermitian. Then, there exists a diagonal
matrix D such that DHD∗ is normalised and Hermitian.

PROOF. Let Dj be the diagonal matrix with Hij in the ith position of the diagonal,
if Hij is the first nonzero entry in row j, and 1 elsewhere on the diagonal. Set
D = DnDn−1 · · ·D2D1. Then, the matrix DHD∗ is normalised and also Hermitian by
(5.1). �

It follows from Proposition 5.3 that if W ∈ CW(n, k, q) is diagonally equivalent to a
Hermitian matrix, then there exist diagonal matrices D and E such that DWE∗ is both
normalised and Hermitian.
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Combining the details of the section up to now, we describe a simple computational
algorithm for finding a Hermitian matrix, if it exists, in the equivalence class of a given
matrix W ∈ CW(n, k, q).

(1) Given W, construct W0.
(2) Find a single permutation matrix Q ∈ Monn(1) such that QW0 is symmetric.
(3) Find all permutation matrices P ∈ Monn(1) such that PW0 is symmetric.
(4) For each P found in the previous step, find pairs of diagonal matrices D and E

so that the matrix H = D(PW)E∗ is normalised. If H is Hermitian, then exit the
algorithm.

Steps (1) and (4) of this algorithm are straightforward, requiring no significant
computational effort. Step (2) is computationally difficult, and represents the most
time-consuming aspect of the algorithm. Fortunately, searching through all of Monn(1)
for the matrix Q is not necessary. This is because any assumption that row i of
W0 is permuted to row j immediately restricts the search space, as the remaining
rows must be permuted so as to preserve symmetry. For example, if the first row
of W0 is fixed, then the 1s on the first column must be preserved. Any subsequent
assumptions have a similar effect. For the values of n considered in this work, very few
assumptions are required before complete searches through remaining search spaces
are computationally easy, and running through all possible assumptions is feasible.

Assuming that Step (2) is complete, Step (3) can be implemented rather efficiently
as follows. Suppose we have found a single permutation matrix Q such that QW0 = X
is symmetric. Now consider the equivalent problem of finding all P such that PX is
symmetric. In this case, the symmetry of PX implies that

PX = (PX) = XP = XP.

It follows that PXP = X, and so (P, P) is a permutation automorphism of X. Since X
is a symmetric (0, 1)-matrix of weight n − k, it is an incidence structure. Finding the
matrices P such that PXP = X is an incidence structure automorphism problem, for
which there are efficient algorithms available in MAGMA [4] that can be applied with
advantage. This significantly speeds up the process of finding all of the permutation
matrices P such that PW0 is symmetric.

EXAMPLE 5.4. The matrix

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 1 ζ3 ζ2

3
1 1 0 ζ2

3 ζ3
1 ζ3 ζ2

3 0 1
1 ζ2

3 ζ3 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is a CW(5, 4, 3) that is not Hermitian (but it is symmetric). Note that W0 = I5, which
is already symmetric. However, W is already normalised and is not Hermitian, so we
must proceed with Step (2) of the algorithm and find another permutation matrix P
such that PW0 is symmetric. Any symmetric P is a candidate in this case. Let P be the
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TABLE 1. Optimal Hermitian self-dual codes.

n k q d Sources or constructions of the matrices

3 3 3 4 [5]
5 4 3 4 [3]
6 3 3 4 CW(3, 3, 3) ⊕ CW(3, 3, 3)
6 5 6 4 [3]
6 4 6 4 [3]
8 7 3 6 [10]
8 7 6 6 [9]
12 6 3 8 CW(6, 6, 3) ⊕ CW(6, 6, 3)

permutation matrix that swaps the first two rows. Clearly, the matrix PW is no longer
normalised. Letting E = diag(1, 1, 1, ζ2

3 , ζ3), the matrix H = PWE is normalised. This
matrix is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1
0 1 1 ζ2

3 ζ3
1 1 0 ζ3 ζ2

3
1 ζ3 ζ2

3 0 ζ3
1 ζ2

3 ζ3 ζ2
3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is Hermitian. We can now exit the algorithm.

6. Numerical examples

Using the construction methods provided in Section 3, Table 1 presents some
optimal Hermitian self-dual codes. Here, n, k and q are the three parameters of the
complex weighing matrices, and the parameters of the codes are [2n, n, d].

DEFINITION 6.1. The direct sum of an n-order square matrix and an m-order square
matrix is defined as

A ⊕ B =
[

A 0n×m
0m×n B

]
.

REMARK 6.2. Among the codes presented in Table 1, the three codes with parameters
[12, 6, 4] are nonequivalent, as well as the two codes with parameters [16, 8, 6].

REMARK 6.3. The three matrices W1 ∈ CW(5, 4, 3), W2 ∈ CW(6, 4, 6) and W3 ∈
CW(12, 6, 3) in Table 1 are derived as equivalent Hermitian matrices using the
algorithm in Section 5 and are subsequently used to construct Hermitian self-dual
codes via Theorem 3.2. The Hermitian matrix for W1 is provided in Example 5.4,
while the Hermitian matrices W′2 for W2 and W ′3 for W3 are presented in the Appendix.
The remaining matrices can be directly used to construct Hermitian self-dual codes
via Theorem 3.1.
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Appendix

W ′2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 1
0 1 0 1 ζ2

3 ζ3
0 0 1 1 ζ3 ζ2

3
1 1 1 −1 0 0
1 ζ3 ζ2

3 0 −1 0
1 ζ2

3 ζ3 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W ′3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 ζ2

3 0 ζ3 0 ζ3 0 1 0 ζ2
3

1 0 ζ3 0 ζ2
3 0 ζ2

3 0 ζ3 0 1 0
0 1 0 ζ3 0 1 0 ζ2

3 0 ζ3 0 ζ2
3

1 0 ζ2
3 0 1 0 ζ3 0 ζ3 0 ζ2

3 0
0 1 0 ζ3 0 ζ2

3 0 ζ3 0 ζ2
3 0 1

1 0 ζ2
3 0 ζ3 0 ζ2

3 0 1 0 ζ3 0
0 1 0 ζ2

3 0 ζ2
3 0 1 0 ζ3 0 ζ3

1 0 1 0 ζ2
3 0 ζ3 0 ζ2

3 0 ζ3 0
0 1 0 1 0 ζ3 0 ζ2

3 0 ζ2
3 0 ζ3

1 0 ζ3 0 ζ3 0 1 0 ζ2
3 0 ζ2

3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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