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Abstract

Let I be a homogeneous tree of degree at least three. In this paper we investigate for which values of p and
r the (<7, #)-Poisson semigroup is Lp — L' -bounded, and we give sharp estimates for the corresponding
operator norms.
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Let I be a homogeneous tree of degree q + 1, that is, a connected graph with no loops
in which every vertex is adjacent to q + 1 other vertices. We will write x ~ y if x and
y are adjacent. On % there is a natural Laplace operator defined by the formula

If Lp(f) denotes the Lebesgue space on I with respect to counting measure, Jzf is
bounded from Lp to U for every 1 < p < r < +oo, and is self-adjoint on L2.

Let op{S?) be the L" spectrum of «£?, and bp = inf Re (ap(JC)). For 9 in [0, 1] and
a in (0, 1), the #-heat and the (a, #)-Poisson semigroups (^f.e)/>0 and (^g ,) / > 0 are
spectrally denned, for all t in (0, +oo) and / in L2(%), by

*?,<,/ = / exp (-t[k - 8b2]) dPJ,

*°J = J exp (-t[k - eb2f) dPJ,
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where Pk denotes the spectral resolution of =Sf.
If \ < p,r < +00 and an operator srf : L2(i) ->• L2(J) satisfies a norm inequality

of the form

M7II, < cil/H, v/ e L"(f) n L2(j),
then the operator ,2/ is said to be Lp — L' -bounded.

The case of the heat semigroup was considered in [CMS2], where a detailed study
of the Lp — U operator norms of J^,e was carried out.

This paper is concerned with the study of Poisson semigroup. By spectral theory,
&l, is clearly bounded on L2, but while the heat semigroup is Lp — L' -bounded
whenever 1 < p < r < +00, this turns out not to be the case for the (a, #)-Poisson
semigroup. In this paper we investigate the pairs (p, r) for which g?°e t is Lp — U-
bounded, and we determine exactly the corresponding operator norms.

Our study parallels that of [CGM], where the Poisson semigroup on Riemannian
symmetric spaces of non-compact type is considered, and our results correspond
exactly to what they obtain in the rank one case. The most notable difference is that in
the present setting the infinitesimal generator («5f — 9b2)

a of the semigroup is bounded
on Lp whenever @>lt is, and this allows a considerable simplification of the analysis.

In order to state our main result we need to introduce some notation: For every p in
[1, +00], we write 8(p) for l/p—1/2 and p'forthe conjugate index p/(p—l). Given a
non-negative real number /3, we denote by S^ and S^ the strips ( z e C : |Im (z) | < (3}
and ( z e C : |Im (z)| < ft], respectively, and let y : C ->• C be the function defined
by

a{/2

Then

2<7
y(z) = -cos(zlog<7) = y(0)cos(zlog<7).

<? + l
It is known (see, for example, [PI, Theorem 3.1], or [FTP, Chapter 3]) that op(3f) is
the image under the map 1 — y of the strip S|S(P)|. A simple computation then shows
that (7p(.£f) is the region of all w such that

/ l - R e ( w ) \ 2 / Im(w) V <

\y(0) cosh(S(p) logq)J \y(0) (sinh(«(p) log?))/ "

In particular cr2(j£f) degenerates to the segment [1 — y(0), 1 + y (0)] on the real axis,
and, if we denote by bp the infimum of Re {ap{££)), from the expression above we
deduce that

bp = l- y(0)cosh(8(p)logq) = 1 -
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For 0 in [0, 1] let pe e [1, 2] be the threshold index for which the Lp spectrum of
Jz? — 0b2 is contained in the right half plane, and tangent to the vertical axis, or
equivalently (cf. [CMS2, Theorem 2.2 (i)]) the threshold index for which Jf,,e is
contractive on LP(J). Thus, pe is the unique solution of the equation y(i8(pe)) =
1 - b2e in the interval [1,2].

Given two functions A(t), B(t), both denned on a set D, we say that A(t) ~ B(t)
in D if there exist positive constants C, C such that CA(t) < B(t) < C A{t) for all t
inD.

With this notation, our main result is the following:

THEOREM 1. Assume thatO e [0, I],a e (0, I),and let 1 < p, r < +oo. Then the
following hold:

(i) For every t > 0, &>% t is Lp — L' -bounded if and only if p < r, p < pe', and

r > Pe\

(») If Pe < P < Pe', then

= exp(-t[y(i8(pg)) - y(i8(p))Y) V? e [0, +00);

(iii) If p < r = 2, or if 2 = p < r, then

| |.^£,|| ,. ~ min{l, rV4}exp(-t[y(i8(pe)) - y(0)f) Vt e [0, +00);

(iv) If p < 2 < r, then

III^JI r ~ min{l,/-"3/2}exp(-r[K(/5(p0)) - / (0) f ) Vr e [0, +00);

(v) Ifp<r< 2, and r > pe, then

\\\^e.,\\\pr - min{l,rl /2 ' '}exp(-ny(/«5(pe)) - y(i8(r))T) V? € [0, +00);

(vi) If p < r = pe,then

111^,1 r ~ min {1, r1/ f f ; '} Vf € [0, +00);

(vii) //2 < p < r, and p < /?</, /A /̂i

11^,11 ,. ~min{l,r ' / 2 ' '}exp(-f[)/(/6(pe)) - y(i8(p))]a) Wt e [0,+00);

(viii) If Pe' = p < r, then

^ , 1 ~min{l ,r1 / f f ' '} V?€[0,+oo).
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We note that since &>"ftt is subordinated to the 6>-heat semigroup, the upper bounds
in Theorem 1 could be derived by subordination from the estimates for \3%',,B\P ,. that
follows from [CMS2, Theorem 2.2]. The lower bounds however cannot, and we prove
both upper and lower bounds using techniques of spherical analysis on X, which are
briefly summarised in Section 1 below.

In Section 2 we obtain sharp estimates for the Lp norm of the convolution kernel
associated to &%r which are then used to prove Theorem 1.

The author is grateful to Michael G. Cowling and Stefano Meda for suggesting this
problem, and for many helpful discussions on the subject of this paper.

1. Preliminaries on spherical analysis on $

Let o be a fixed reference point on 8. We say that a function / on 2 is radial if fix)
depends only on the distance dip, x) also denoted by |jc|, between x and o, where,
for x y in i, d(x, y) is defined as the number of edges between the vertices x and
y. If £(£) is a function space on J, we will denote by £(I ) S the subspace of radial
elements in £(£).

Let G be the group of automorphisms of the tree, that is, of isometries of d, and
let K be the isotropy subgroup of o. Then i can be naturally identified with the
coset space G/K, and functions and radial functions on J with K —right-invariant and
K — bi-invariant functions on G, respectively. By means of this identification we can
define the convolution of two functions on I as

-L
whenever the integral makes sense. We observe that in case f2 is radial we can write

/i * fiig -o)= \ Mh- o)f2ih~]g • o)dh Vg e G,
ic

My),
n=0 d(x,y)=n

where, for every n, xn is chosen in such a way that \xn\ — n. It follows that Jiff =
f * iSn — v), where Sn is the Dirac measure at o, and v is the normalised radial measure
concentrated on the set §>i = [x € % : |x| = 1}. Moreover every G—invariant (in
the sense that s^if o g) = i^ff) o g for every g in G) continuous operator from
Lp(5) to L' (£) (weak-star continuous if r = +00) is given by right convolution with
a ^—bi-invariant kernel k: srff(x) = f * kix).

We recall now the main features of spherical analysis on -E. The spherical functions
are defined as the radial eigenfunctions of the Laplace operator J*f satisfying the
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normalisation condition 0 (o) = 1, and are given by

[5]

Vz e rZ,

V z e r / 2 + r / ,

Vz e C \ (r/2)Z,

where T = 27r/ logg and c is the meromorphic function defined by the rule

tfl/2 —1/2+/- _ «-l /2-/z

c(z) = —— : — VzeC\(r/2)Z.
q + \ q': -q '-"

t): is then defined by theThe spherical Fourier transform / of a function / e
formula

VzeS1 / 2.
.rei

Let T be the torus T = K/TZ, usually identified with [ - T / 2 , T/2) , and let \x be the
Plancherel measure on T defined by the formula

where cc = q log q/4n(q + 1). Then the spherical Fourier transformation extends to
an isometry of L2(%y onto L2(T, d/j,(s)), and corresponding Plancherel and inversion
formulae hold:

ll/lb
/ rT/2

and

•r/2

fix) = /" f(s)(l)s(x)dn(s)
J-T/2

See, for instance, [FTN, Ch. 2].
If / is in LP(J)C with 1 < p < 2, then / extends to a holomorphic function in the

strip S|a(p)|, with boundary values / (• ± iS(p)) belonging to Lp'(¥) and the following
version of the classical Hausdorff-Young inequality holds

(1)
r /-1/2 , il/p'
\J \f(s±iS(p)\P ds\ <
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On the other hand, if 1 < p < 2, and a radial function / is such that f4>n(p) is in
L't*)3 t h e n / i s i n l a n d

ar/2 X l/2-«(p)

\f(s + i8(p))\2ds\
Referring to [CMS 1, Theorems 1.1, 1.2] for the proofs, we remark that the assumption
that f<piS(P) is in L1 is equivalent to the requirement that / is in the Lorentz space
L"J(*):. Also, H/0,-,0,,1, = \f\~(iS(p)).

We conclude this section by recalling that if the operator f \-+ f * k of right
convolution with the radial kernel k is bounded from Lp{%) to L' ($), then, by the
extension to ¥ of a well-known theorem of Hormander ([Ho, Theorem 1.1]), p < r,
and k is in L' (-E)5 (because the Dirac measure at o is in every Lp, and So * k = k). In
particular, if r < 2, k extends to a holomorphic function in S,^,), and, in the special
case where p = r, by the Clerc-Stein ([CS]) condition k is actually holomorphic and
bounded in Sii(p).

2. Estimates for the (a, #)-Poisson semigroup

Denote by p"e, and /" respectively the convolution kernels of ^ ( ° r and of its
inf in i tes imalgenera tor(^-06 2 ^sothat («^-06 2 ) f f / = f*l% a n d ^ , / = f*p°Bj

for every / in L2(i). Since (So — vf= 1 - y, and 1 —6b2 = y(l/pe) by the definition
of pg, it follows that

7*(z) = [1 - y(z) - 9b2T =

and

the powers being defined using the principal branch of the logarithm. Note that l"g

is holomorphic in the strip SS(p)t, continuous on the closure, and its restriction to the
boundary of the strip is the Euclidean Fourier transform of a function in L' (Z). Indeed
the function s H* [y(i8(po)) — y(s + ipe)]a is continuous on T and its derivative is
in L]+((J) for every e < 1 - a, so that the claim follows from [Z, vol. 1 p. 241]. By
[CMS 1, Theorem 1.1],/£ in the Lorentz space LPe ' ( I )8 , and then a theorem by Pytlik
([P2]), and duality, imply that (=5f - 6b2)

a is bounded on Lp for every pe < p < pe'.
Therefore
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where the series converges in the Lp uniform operator norm for every p in [pa, pe'],
and defines a uniformly bounded semigroup of operators.

Now we come to p"er Arguing as above one shows that p", belongs to Lp"A(i):.
On the other hand p"Bl is not in Lp(i) for every p < pe because p"e t does not extend
holomorphically to any strip S^ strictly containing SS(Pll).

By spherical Fourier inversion we can write

l.M) = cc /
J-T

r/2

exp(-f[y(i«(pe)) - y(s)]a)^(.v) \c(s)\'2ds.
/2

We will also need the fact that pa
B, is non-negative on J, for every / > 0. This is most

easily seen using semigroup subordination. Indeed g?"e , can be expressed in terms of
the #-heat semigroup via the formula

f°°
(3) 0>°ei= / faAs)J%.eds,

Jo

where /,.„ is the function defined by

i pa+ioo

fal(s) = : / e:s~':° dz (a > 0, t > 0, s > 0, 0 < a < 1)

(see [Y, Chapter IX. 11]), and therefore

/

+OO

faAs)e""»-hs{x)ds.

where hs{x) is the heat kernel of J. The claim now follows from the positivity of hs

and of /„.,.
As remarked in the introduction, one could use formula (3) above and the results

of [CMS2, Theorem 2.2] to derive upper bounds for the operator norms 1 ^ J | .
Techniques of spherical Fourier analysis however are computationally easier, and
allow us to obtain lower bounds that cannot be obtained by semigroup subordination.

As a first step towards the proof of Theorem 1, we begin by proving sharp Lp norm
estimates for p°e t. To obtain our estimates we will make extensive use of the following
version of Laplace method, whose proof can be found in [E, Section 2.4].

LEMMA 2. Let g and h be functions defined on the interval (a, ft) and assume that
for every sufficiently large positive t the integral

-L7 ( 0 = / g(s)ems)ds
J a

exists. Let h be real valued, continuous at s = a, continuously differentiate with
h'(s) < Ofor a<s<a + r),r)>0, and such that h{s) < h(a) — e, e > 0, for
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< s < f3. Assume furthermore that, ass —»• a, h'(s) = — a(s— a)p ' (1 +
andg(s) =b(s - a)k~l (1 +o( l ) ) , k, p > 0. Then, as t ->• +oo,

= (b/p)r(k/p)(p/atf/pe"'(a) (1

For future use we also note that a straightforward computation shows that

2 4(<7 + I ) 2 s inolog?)
^(,5) ^ —

(q + l)2sin2(ilog^r) + (q — l)2cos2(s logq)

and since

(a - I)2 < (q+ l)2sm2(s\ogq) + (q - I)2cos2(slogq) < (q + I)2 Vi € T,

we have

(4) \c(s)\~2 ~ sin2(i log<7) Vi e T.

LEMMA 3. Fo/- every t in [0, +oo) the following norm estimates hold:

(i) Ifp = 2, then

(ii) // p =

(iii) If Pe < P < 2,

min {1, - y(iS(p))T);

(iv) lfp = pe

PROOF. The proof follows the lines of that of [CGM, Lemma 3] (cf. also the proof
of [CMS2, Lemma 2.1]). By the Plancherel formula

r/2

-r/2

is)]"\c(s)\-2ds.

Since the right-hand side is decreasing in t and bounded above by 1 for all /, we
immediately conclude that
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when 0 < t < 1. On the other hand, using y(s) = y(0) coa(s logq) and (4) above,
we can write

\Pe
-T/2

(.v log?) ds.

The function — 2[y(iS(pg)) — y(I/2)cos(s logq)Y attains its maximum at 5 = 0,
where its derivative vanishes of order one, while sin2(s logq) vanishes there of order
two, so that an application of Lemma 2 yields

Pl,\\2 = Cri/2exp(-2t[y(i8(pe)) - y(0)]) (1 + o(l)) , as t - • +oo,

and (i) follows.
To prove (ii) we note that using the inequality |0Z(JC)| < 0:{o) = 1 in the inversion

formula shows that |p£,(Jt)| < Pe,t(°) f°r every x in £, and that pa
et(o) is decreasing

in t and bounded above by one. Therefore

V?e[0,+oo),

and

\=pae,0{o)<\\p°e,\\oo<p°eA{o),

for fin [0, 1]. Using (4) in the inversion formula we obtain

p%M
fr/2
/ £>-'[>/<'

J-T/2

Proceeding as in (i) to estimate the integral yields (ii).
We next prove (iii). By formula (1) above we have

/2

r/2

I

12

(
/2

iS(p))\" ds

-tp'Re([y(iS(p0))-y(s+i8(p))\" )

-tp'\y(iS(p»))-y(s+i6(p))\" ^

UP'

UP

The integral on the right-hand side defines a decreasing function of t, so that

ar/2 s UP

e-p'\y«s(p<,))-yu+iHp))r d s \ > o vr e [0, l ] .
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Moreover, using the fact that

(5) y(s + i8(p)) = y(i8(p))cos(s logq) - i sinh(8(p)\ogq)sin(s\ogq),

it is easy to verify that the function s i->- -tp'\y{\/pe) — y{\/p + is)\a attains its
maximum at s = 0, and there its derivative vanishes of order one. Therefore by
Lemma 2,

•r/2
.iS(pu))-y(s+i8(p))]\° rfs _

/•r/2
/ e-tp'\lY<.iS

J-T/2J-T/2

as t -> +00, and from this we may conclude that

\p"e,\ > cr]/2p'e-'lyMp>))-ymp))1° Vfe[l ,+oo).

To prove a comparable upper bound, we use (2) above, and the positivity of pa
e, to

write

ar/2 N l/2-«(p)

c-2/Re([y(M(»))-y(,+.-«(p))]')rfsj
The right-hand side decreasing in / and finite for / = 0. Therefore

\pl\p<C V/6[0,+oo).

Since the inequality Re (z") > (Re (z))a holds for Re (z) > 0, and 0 < a < 1, using
(5) we can estimate

•r/2 /-r/2
i i logi/)]" j ^

/•r/2 /-r/2
/ e-2/Re([y(/<S(pB))-y(s+/5(p))]'T) j ^ < i

J-r/2 J-r /2r/2 J-z/\

and, again by Lemma 2, the integral on the right-hand side is equal to

Therefore

II nCT II <r /^»~'/2p'_—'[y('*(p»))—yO'^Cp))]" W/ <̂  F1 _l_/v^*»

||Pe,, Up - c ' e v r e Li, i-ooj,
as required to finish the proof of (iii).

The proof of (iv) proceeds in much the same way. To obtain a lower bound we
write

r/2\pl,\\p >c([ \pl,(s + i8(pe))\
Pe'ds)

V-r/2 /

Or'2 , . \I/P8'

o—
lPo \y(io(pf)))—y(s+iS(pff))\ J \

dS)
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The right-hand side is decreasing in t and therefore bounded away from zero for / in
[0, 1]. Moreover the maximum of the function s i-»- — \y(iS(p0)) — y(s + i8{pg))\

<!

is attained at s = 0 and, as s —*• 0, its derivative is asymptotic to — Cs"~[. By Lemma 2
the integral is equal to

C r l / f f ( l + o ( l ) ) as/

and therefore

\\Pe.,\\ s > crl/api1' Vr <= [ l ,

As for the upper bound, we estimate

\pa
et\ <Cpa

g,{iKPe))mpe)

\J-T/2

As in (iii), the right-hand side is bounded above by a constant for every / > 0 and using
(5) it is not hard to check that the function s t-> -2Re ([y(i8(pe)) - y(s + iS(pe))f)
attains its absolute maximum in [—r/2, r /2] at s = 0, where it vanishes of order a.
Thus Lemma 2 shows that

T e-2,WyiiSip.»-y<S+iHP.m")ds = Crl/"(1+O(l)) 3S t - • +OO,
•/-r/2/-r/

and therefore

Pe., | < cr"l2-Hp>>))la = cr'1"1"1' vr € [ i , +oo) .

PROOF (THEOREM 1). We have already noted that &>"t is bounded on LP{1) for
every p in [pe, pg']. Duality and the inclusion properties of the Lp{%) spaces imme-
diately imply that &%t is Lp — L' -bounded for p and r in the range specified in the
statement. On the other hand, if &>%t is Lp — L' -bounded then p < r by what was
remarked at end of Section 1, and then, by duality, £?%, is also bounded from L' (i)
to Lp (%). Thus p%t is in Ls(f) with s = min{r, p'}, and consequently p"g, extends to
a holomorphic function in SJ(i). This forces ^ > pe, that is, r > p9, and p < pe', as
required to complete the proof of (i).

To prove (ii) we observe that, since pa
B t is non-negative, when pe < p < 2, by the

Herz principle de majoration [H] (cf. [CMS1, Proposition 2.3]) we have

for all t in [0, +00). Duality, and the identity y(i8(p)) = y(iS(p')), imply that this
holds for every p in [pe, pe'].
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We consider next (iii). It suffices to examine the case p < r — 2, for then the case
2 = p < r follows by duality. By the radial form of the Kunze-Stein phenomenon
(cf. [N], and [CMS1, Section 2]), and Lemma 3 (i) we have

for all t in [0, +oo). On the other hand,

and, again by Lemma 3 (i),

for all t in [0, +oo), and (iii) follows.
Assume now that p < 2 < r. The semigroup property and (iii) give

< C (min {1, (t/2)-3/4}exp(-t[y(iS(Pe)) - y(0)]72))2,

for every / in [0, +oo). By the inclusion properties of the Lp(f) spaces, and Lemma
3 (ii) we also have

l^»., HI,, > I ^ J K O O = \\PeAL > Cmin{l,r3/2}exp(-r[y(/6(/7e)) - y(0)f) ,

and (iv) is proved.
Now let p < r < 2 and r > pe. We use again the radial Kunze-Stein phenomenon

and Lemma 3 (iii) to get

C p"ej - y(iS(r))T)

for all t in [0, +oo), and since the reverse inequality is a consequence of Lemma 3 (iii)
and of I ^ J ^ > 111^,1,,. = |p£, | r , (v) follows.

The case p < r = pH is treated as in (vi), using Lemma 3 (iv) instead of
Lemma 3 (iii). Since (vii) and (viii) follow from duality respectively from (v) and
(vi), the proof of Theorem 1 is complete.

[CS]
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