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Abstract
The lower extremity rehabilitation exoskeleton is mainly used to help patients with movement disorders complete
rehabilitation training. For the human-machine interaction problem of the lower limb rehabilitation exoskeleton,
a fuzzy radial-based impedance (RBF-FVI) controller is proposed in this study. A six degree of freedom (DOF)
lower extremity rehabilitation exoskeleton was developed, and the human-machine coupling dynamics model was
established. To realize the compliance control of the human-machine coupling system, a novel RBF-FVI controller is
designed, which includes an inner-loop fuzzy position control module and an outer-loop impedance control module.
The inner-loop fuzzy position control module is mainly used to achieve the tracking control of the desired training
trajectory and position adjustment amount. The outer-loop impedance control module regulates the impedance
parameters and compensates for the uncertainty terms. The superiority of the proposed controller in trajectory
following is verified through simulation and comparison tests. The hardware test of the human-machine coupling
system was carried out, and the test results showed that the subject and the exoskeleton system could realize a
coordinated and smooth movement.

1. Introduction
Neurological injuries, such as stroke, spinal cord injury, and skeletal muscle weakness in the elderly,
may largely limit the ability of this population to achieve major activities of daily living [1]. Recently,
there has been a growing interest in developing exoskeleton devices, which can help the disabled with
motor assistance and rehabilitation training [2, 3]. An exoskeleton robot is usually defined as designed
following the shape and function of the body. Exoskeleton robots can effectively integrate the cogni-
tive abilities of humans and the advantages of robotic devices to help users accomplish rehabilitation
activities [4].

In recent years, many studies have been conducted to improve the performance of lower extremity
exoskeletons [5–7]. As precision and portable exoskeleton designs have evolved, researchers have also
focused on improving control strategies to increase exoskeletons’ precision, efficiency, and comfort.
Since humans wear the exoskeleton, good interaction between the exoskeleton and humans is a key
factor, which means the exoskeleton needs to realize compliance control [8]. The lower limb exoskeleton
compliance control is mainly divided into two categories, one is passive compliance control and the
other is active compliance control. Passive compliance control is to install some cushioning devices
(such as springs) on the exoskeleton to absorb or relieve the impact energy between the exoskeleton
and humans during the movement [9, 10]. Active compliance control means that the robot uses the
force feedback information and adopts a certain control strategy to actively control the force [11]. The
Swiss Lokomat lower extremity rehabilitation exoskeleton uses a hybrid force/position adaptive control
strategy in active rehabilitation [12, 13]. The hybrid force/position control strategy utilizes dual force and
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position control to realize compliance rehabilitation training. The ALEX lower limb exoskeleton also
employs a hybrid force/position control strategy, allowing this lower limb exoskeleton to achieve desired
gait planning while applying less force on the wearer’s leg [14]. However, this method requires a very
accurate model of the robot dynamics. And the hybrid force/position control requires real-time detection
of force and position changes, so many sensors need to be installed. Impedance control has been widely
used to realize compliance control by adjusting the dynamic relationship between the human-machine
position and the interacting force [15–18]. The Ekso lower limb exoskeleton used an impedance control
strategy based on a force field controller, which firstly sets the desired motion trajectory and then corrects
the gait trajectory by detecting the interactive forces between the human and the machine [15]. Chen
designed an impedance control strategy with a perturbation observer for the exoskeleton robot system.
The experimental results show that the exoskeleton could actively adjust the motion trajectory when
encountering obstacles and accurately track human motion trajectory [16].

In the actual use of the process, the state of the robot and external disturbances are random. Hence,
impedance control with fixed impedance parameters cannot adapt to the unstable motion environ-
ment. With the development of science and technology, intelligent algorithms are increasingly used
to assist impedance control for active control [19–25]. Majied proposed a novel hybrid optimized adap-
tive sliding mode impedance control method for a lower limb exoskeleton robot with seven active
joints. The simulation results reveal the superiority of the controller in comparison with SMC [19]. To
improve human-machine coordination, Chen proposed an improved impedance control strategy based
on a genetic algorithm to follow the tracking trajectory. Compared with the traditional method, the
impedance parameters can be calculated and adjusted online, and the gait trajectory can be well tracked
[20]. However, this study is still in the simulation test stage, and the effectiveness of the application to
the hardware platform needs to be further verified. A time-varying desired impedance model based on
the wearer’s lower extremity motility is proposed to provide appropriate power and balance assistance
during sit-to-stand movements. The effectiveness of the method was verified through experiments with
four healthy subjects. Good results were obtained regarding reasonable power assistance and balance
reinforcement [21]. Akdoğan, Erhan designed an adaptive impedance control system for a knee reha-
bilitation robot using the interaction forces between the knee joint and the robot [23]. The experimental
results showed that real-time adjustment of the target impedance parameters could effectively regulate
the active release forces of the knee joint. However, it still has some limitations in complex rehabilitation
training behaviors.

Although the conventional impedance control method has achieved some good results, the per-
formance of the whole system still depends on the manual selection of the target impedance control
parameters. And the effect of existing compliance control algorithms is not ideal. In this study, a fuzzy
radial-based impedance (RBF-FVI) controller is presented to realize compliance control. The main
contributions of the paper are:

1. A 6 degree of freedom (DOFs) lower limb exoskeleton robot was designed. The hip and knee
of each artificial leg can provide two electric-powered DOFs for flexion/extension. And two
passive-installed DOFs of the ankle were used to achieve the motion of supination /overpronation
and plantarflexion/dorsiflexion. The human-machine coupled dynamics equations based on the
spring-damping model are established, and the object under study is determined.

2. To meet the rehabilitation training needs of patients based on conforming to the laws of human
movement, this paper proposes an RBF-FVI controller, which includes a fuzzy position con-
trol module and an outer-loop impedance control module. The fuzzy position control module
is mainly used to control the desired training trajectory tracking and the position adjustment
amount. The external loop impedance control module can establish the dynamic force/position
relationship between the subject and the exoskeleton, enabling the patient to adjust the gait
trajectory autonomously in real-time to improve the suppleness of human-machine interaction.
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Figure 1. (a) Overall structure diagram (1) Back support; (2) Driving source of hip joint; (3) Hip
joint component; (4) Brace of thigh; (5) Driving source of knee joint; (6) Brace of calf; (7) Ankle joint
component; (8) Flexible belt of waist; (9) Waist component; (10) Thigh component; (11) Flexible belt
of thigh; (12) Knee joint component; (13) Calf component; (14) Flexible belt of calf; (15) Pedal; (b).
Exoskeleton mechanical diagram.

3. Simulation experiments are performed on the joint platform of MATLAB/Simulink and
ADAMS. The performance is also analyzed in comparison with the conventional control algo-
rithm. The hardware tests of the exoskeleton robot system were conducted. The test results show
that the robot system’s safety control and impedance control can be achieved, and the operator
and the exoskeleton robot can realize cooperative movement.

The rest of the paper is organized as follows: Section 2 describes exoskeleton robot system.
Section 3 illustrates the design of RBF-FVI controller. The simulation experiment and analysis are pre-
sented in Section 4. Section 5 describes human-machine coupling test. Finally, the conclusion of this
work is given in Section 6.

2. Exoskeleton robot system
2.1. Structure of exoskeleton robot
The developed lower limb exoskeleton is shown in Fig. 1. The exoskeleton robot designed in this paper
mainly considers the motion in the sagittal plane. For each leg, it has one active DoF for the hip joint
and knee joint, respectively, and one passive DoF for the ankle joint.

Each leg will alternate into the support phase and the swing phase. The lower limb exoskeleton control
system mainly considers the following ability of the human lower limb motion and the magnitude of
the interaction force during the motion. Therefore, in this paper, the dynamics of the swing phase are
modeled. The single leg of the lower limb exoskeleton is simplified to a duplex structure consisting of
the hip and knee joints as well as the thigh and calf rods. A simplified model of the swing phase of
the lower limb exoskeleton was established, as shown in Fig. 2(a). The hip joint is taken as the origin
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Figure 2. (a) Simplified model of lower extremity exoskeleton in swing phase; (b )Human-machine
coupling system model.

of the coordinate system. The point O is the hip joint of the exoskeleton, Ke is the knee joint of the
exoskeleton, Cet is center of mass of the thigh rod, Cel is the center of mass of the calf rod, the mass of
the thigh rod is meh, the mass of the calf rod is mek , the length of the thigh rod is lh, the length of the calf
rod is lk , the distance from the Cet to the point O is lch, the distance from the Cel to the knee joint is lck ,
the rotational inertia of the thigh rod is Ieh, the rotational inertia of the calf rod is Iek . The angle between
the thigh rod and the vertical direction is θ 1. The angle between the calf bar and the thigh bar is θ 2. The
counterclockwise direction is specified as the positive direction.

The exoskeleton robot dynamics equation is:

τ = M(θ) θ̈ + C
(
θ , θ̇

)
θ̇ + G(θ) (1)

where θ , θ̇ , θ̈ are 2 × 1 order lower limb exoskeleton joint angle, velocity and acceleration, respectively;
M(θ) is 2 × 2 order inertia matrix; C

(
θ , θ̇

)
is 2 × 2 order Coriolis force matrix; G(θ) is 2 × 1 order

gravity matrix; τ is 2 × 1 order joint driving force matrix. The joint torque can be obtained from the
torque sensor.

The joint torque is:

τ =
[

τ1

τ2

]
(2)

where τ1 and τ2 are the torque of hip joint and knee joint, respectively.
According to Lagrange dynamic equation, the calculation of the generalized torque of the hip joint

and knee joint are:

τ1 = d

dt

∂L

∂θ̇1

− ∂L

∂θ1

= mehl2
chθ̈1 + lhθ̈1 + mkl

2
hθ̈1 + mkl

2
ckθ̈1 + Iek

(
θ̈1 + θ̈2

)
+ mekl

2
ckθ̈ + 2mklhlck

(
θ̈1 cosθ2 − θ̇1θ̇2 sinθ2

) + meklhlck

(
θ̈2 cosθ2 − θ̇ 2

2 sinθ2

) + mehglch sinθ1

+ mekg(lh sinθ1 + lck sin(θ1 + θ2)) (3)

τ2 = d

dt

∂L

∂θ̇2

− ∂L

∂θ2

= (
mekl

2
ck + Iek

)(
θ̈1 + θ̈2

) + meklhlck

(
θ̈1 cosθ2 − θ̇1θ̇2 sinθ2

)
+ meklhlckθ̇1

(
θ̇1 + θ̇2

)
sinθ2 + mekglck sin(θ1 + θ2) (4)

The design of the power system adopts the linear actuator of servo motor and ball screw, and its
motion mode is similar to human lower limb skeletal muscle. The relationship between output torque of
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servo motor and thrust of the ball screw is:

τm = F × L

2 × π × η
(5)

where τm is output torque of servo motor, F is thrust force of ball screw, L is the telescopic length of the
ball screw, η is transmission efficiency from motor to ball screw.

2.2. Human-machine interaction torque
The human lower limb and the exoskeleton are bundled together, and there is always an interaction torque
between the two during the moving process. The human-machine coupled system model in the swing
phase is shown in Fig. 2(b). It is assumed that the thigh and calf rods of the exoskeleton are the same
length as the human thigh and calf, respectively, and the center of mass is also in the same position. Kh

is the human knee joint, Cht and Chl are the center of mass human thigh and human calf, respectively.
The mass of human thigh is mhh, the mass of human calf is mhk .

τdis =
[

τdis1

τdis2

]
(6)

τdis1 = Kimp(θh1 − θ1) (7)

τdis2 = Kimp(θh2 − θ2) (8)

where τdis1 and τdis2 are human-machine interaction torque of hip joint and knee joint, respectively. Kimp

is the elasticity coefficient between the human and the exoskeleton, and Kimp = 17 N·m/rad. θ h1 and θ h2

are the rotation angle of human hip joint and knee joint, respectively.

3. Fuzzy radial-based impedance controller design
3.1. Overall structure
In the whole rehabilitation training process, to meet the patient’s rehabilitation needs based on human
movement patterns, this paper proposes an RBF-FVI control algorithm. The proposed control strategy
mainly consists of an inner-loop fuzzy position control module and an outer-loop impedance control
module, as shown in Fig. 3.

3.2. Inner-loop fuzzy PID position control module
The fuzzy position control module is mainly used to realize the tracking control of the desired training
trajectory and position adjustment. e(t) and u(t) represent the input and output of the PID controller,
respectively. �θ , �θ̇ are the input variables of the fuzzy control rules. �τ is the force error. τm is the
output torque. Kp, Ki, and Kd are the proportional, integral and differential gains. θ e and θ d are the actual
and desired positions of the end of the exoskeleton, respectively. τd are the desired torque. B(t), K(t), and
M(t) denote the amount of damping parameter, stiffness parameter, and inertia parameter, respectively.

Conventional PID controller was able to dynamically adjust the relationship between force and posi-
tion. But it is still difficult to satisfy complex nonlinear and strongly coupled systems, such as exoskeleton
robots. However, fuzzy PID control does not require an accurate mathematical model. The fuzzy math-
ematical theory and methods can be used to adjust the PID parameters in real-time to achieve optimal
control [26, 27]. In order to realize the parameter adaptive control, the input is the position error �θ

and the change rate of position error �θ̇ , and the output is the real-time adjusted parameters Kp, Ki,
and Kd . When the joint angle increases, it is set to a positive value, and when it decreases, it is set to a
negative value. The fuzzy rule of Kp is used for illustration. The learning rate adjustment principle of Kp
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Figure 3. Overview chart of RBF-FVI controller.

is summarized as follows: In the PID controller, the selection of Kp value is determined by the system’s
response speed. Increasing Kp can improve the response speed and reduce the steady-state deviation;
however, too large a Kp value will produce a large overshoot and make the system unstable. Therefore,
a larger Kp value should be taken at the beginning of regulation to improve the response speed, while in
the middle of regulation, Kp is taken as a smaller value to make the system have a smaller overshoot and
ensure a certain response speed; while in the late regulation process, Kp is adjusted to a larger value to
reduce the static difference and improve the control accuracy. The fuzzy sets of both input and output
variables are set to seven groups, which are NB (negative large), NM (negative medium), NS (nega-
tive small), ZO (zero), PS (positive small), PM (positive medium), and PB (positive large). This sets an
extremely large number of levels, and the rules are formulated flexibly and carefully to adapt to control
under different conditions. The setting fuzzy control rules are shown in Table I.

3.3. Outer-loop neural network regulation impedance parameter module
The outer-loop impedance control was used to regulate the impedance parameters and compensate
for uncertainty. The adjustment amount of the movement trajectory was obtained through the human-
machine interaction force so that the movement of the rehabilitation robot can actively adapt to the
movement intention of the patient and realize the active compliance of the movement function reha-
bilitation training. The human-machine interaction force can be calculated by solving the difference
between the measured value of the torque sensor installed at the robot joint and the value calculated by
the dynamic model of the human-machine coupling system. Through inverse kinematics, the reference
trajectory in Cartesian space can be converted into a reference trajectory in joint space. Then, the cor-
rected reference trajectory can be used as a reference trajectory, reflecting the patient’s active motion
intention.

3.3.1. Impedance control
Instead of directly controlling the magnitude of the force between exoskeleton robot and human,
impedance controller controls the robot system by establishing the relationship between the force and
position error. There have been many studies using impedance control methods to control exoskeleton
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Table I. The fuzzy control rules for Kp.

�θ

Kp NB NM NS ZO PS PM PB
�θ̇ NB NB NB NM NM NS ZO ZO

NM NB NB NM NS NS ZO ZO
NS NM NM NS NS ZO PS PS
ZO NM NS NS ZO PS PS PM
PS NS NS ZO PS PS PM PB
PM ZO ZO PS PS PM PB PB
PB ZO ZO PS PM PM PB PB

Figure 4. Impedance control model.

robots for multiple motion tasks [28, 29]. A second-order differential equation is usually used to repre-
sent the impedance model of the exoskeleton robot, which can be expressed as a mass-spring-damping
system, as shown in Fig. 4.

The target impedance is

τ = M
(
θ̈d − θ̈

) + B
(
θ̇d − θ̇

) + K(θd − θ) (9)

where τ is the interaction torque between human and exoskeleton robot, M is the impedance iner-
tia matrix, B is the impedance damping matrix, K is the impedance stiffness matrix. θd, θ̇d, θ̈d are the
position, velocity, and acceleration of human in Cartesian space. θ , θ̇ , θ̈ are the position, velocity, and
acceleration of exoskeleton robot in Cartesian space.

Impedance control successfully accommodates position control and force control into a dynamic
framework that allows position and force to satisfy desired dynamic relationship [30]. There are two
main types of impedance control, namely force-based impedance control and position-based impedance
control. Compared with force-based impedance control, the position-based impedance control does not
need to establish a very accurate dynamics model, and the position-based impedance control theory
is more mature and superior in terms of stability and accuracy. Therefore, this paper adopts position-
based impedance control to optimize the design of the exoskeleton robot torque feedback control system.
Position-based impedance control obtains the position to be compensated by calculating the human-
machine contact force deviation. The compensation force is converted to joint compensation angle.

For single joint, when there is a deviation between the actual position of the joint and the operator’s
position, the actual contact force is calculated by the position deviation and contact stiffness. The desired
position of the exoskeleton joint is:

θ̃d = θd − θref (10)

where θ d is desired human joint angle. θ ref is impedance compensation angle.
https://doi.org/10.1017/S0263574722001333 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001333


Robotica 333

Figure 5. Structure diagram of RBF neural network.

Let θe = θ̃d − θ , the position control is calculated as:

τ − τpd = M̂(θd)
¨̃θ d + Ĉ

(
θ̃d, ˙̃θ d

) ˙̃θ d + Ĝ
(
θ̃d

)
(11)

τpd = Kpθe + Kd

dθe

dt
(12)

where θ is actual exoskeleton joint angle. τpd is compensation torque from PID feedback control.
M̂(θ) , Ĉ

(
θ , θ̇

)
and Ĝ(θ) are the ideal inertia matrix, damping parameter matrix, and gravity matrix

of the exoskeleton robot.

3.3.2. Radial basis function (RBF) neural network
The RBF neural network is a three-layer neural network with an input layer, a hidden layer, and an output
layer [31]. The transformation between the input layer to the hidden layer is nonlinear. The transforma-
tion from the hidden layer to the output layer is linear. The RBF neural network has a fast learning speed
and is suitable for real-time control systems. In this study, the RBF neural network model was used to
adjust the target impedance parameters in real-time and compensate for the model’s uncertainty. Based
on the traditional impedance control, the RBF neural network algorithm is used to adjust the impedance
parameters in real time to improve the stability and flexibility of the control algorithm to achieve better
control results. The structure of the RBF neural network is shown in Fig. 5.

The input layer of the RBF neural network is the vector xi. When the inputs are different, the adjusted
impedance parameters are also different. When the input is position error �θ and force error �τ ,
the output variable is the stiffness correction �K . The hidden layer of the RBF neural network is
described as:

xj =
m∑

i=1

l∑
j=1

ωijsj =
l∑

j=1

(
ω1j�τ + ω2j�θ̇

)
(13)

When the input is velocity error �θ̇ and force error �τ , the output variable is the damping
correction �B.

xj =
m∑

i=1

l∑
j=1

ωijsj =
l∑

j=1

(
ω1j�τ + ω2j�θ̇

)
(14)

dj = f
(
xj

)
(15)
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where m denotes the number of input variables; the RBF neural network designed in this paper has two
input variables, that is, m = 2. sj and dj are the input and output of the hidden layer neural network nodes,
respectively, and ωij is the weighting coefficient between the input layer and the hidden layer.

The activation function of the hidden layer neuron is:

f
(
xj

) = exp
(
−∥∥xj − cj

∥∥2
/
(
2b2

j

))
, j = 1, 2, . . . , l (16)

where cj is the center of the basis function. bj is the width of the basis function. l is the number of nodes
in the hidden layer.

The output layer of the RBF neural network is described as:

y = ωjkdj + f (17)

ym = ωjkdj (18)

where f is modeling error and external perturbation.y is the output value of the RBF network in the
presence of the disturbance term f . ym is the output value of the RBF network without f . ωjk is the
weighting coefficient between the hidden layer and the output layer.

The supervised learning method was used to train all parameters of the RBF neural network (center
of RBF cj , variance bj, and weights between the hidden layer to the output layer ωjk). This is mainly done
by performing gradient descent on the cost function and then correcting each parameters. Specifically,
firstly, the parameters of RBF neural network are initialized randomly; then, the supervised training
optimization is performed by gradient descent for all three parameters in the network. The cost function
was set as:

E = 1

2
(y−ym)2 (19)

Then in each iteration, the parameters are adjusted at a certain learning rate in the negative direction
of the error gradient until the best parameter values are obtained.

cij(t) = cij(t − 1) − η
∂E

∂cij(t − 1)
+ α

[
cij(t − 1) − cij(t − 2)

]
(20)

bij(t) = bij(t − 1) − η
∂E

∂bij(t − 1)
+ α

[
bij(t − 1) − bij(t − 2)

]
(21)

ωjk(t) = ωjk(t − 1) − η
∂E

∂ωjk(t − 1)
+ α

[
ωjk(t − 1) − ωjk(t − 2)

]
(22)

where cij(t) is the central component of the ith hidden layer neuron for the jth input neuron at the t times
iteration; bij(t) is the width vector of the neuron corresponding to cij(t); ωjk(t) is the conditioning weight
between the jth output neuron and the kth hidden layer neuron at the t times iteration of computation. η

is learning rate, η = 0.8. α is the momentum factor, α = 0.5.

3.4. Stability analysis
The Laypunov function was selected as:

V = XTPX + ∥∥ω̃jk

∥∥2

F
(23)

There exists a positive definite matrix P, satisfying ATP + PA = −Q.
where Q is a given positive definite symmetric matrix.

ω̃jk = ωjk
∗ − ω̂jk (24)

where ωjk
∗ is actual weight of RBF neural network, ω̂jk the estimated value of the weight.
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Based on the theory of stability analysis of control systems, it is defined as:∥∥ωjk

∥∥2

F
= tr

(
ω̃jk

Tω̃jk

) ≥ 0 (25)

where tr() is the trace of the matrix.
The modeling error and external perturbation f are described as:

f = ω̂jkϕ
(
xj

)
(26)

where φ(xj) is the output of the Gaussian basis function, and ϕ(xj) = [f (x1), f (x2), . . . f (xj), . . . f (xl)].
The error state equation of the system is given by

Ẋ = AX + B
[
f − f̂

(
x, ωjk

)]
(27)

where X =
[

e

ė

]
, A =

[
0 I

Kp Kd

]
, B =

[
0

I

]
, f̂ is the estimated value of f .

The relevant term in Eq. (27) is transformed as:

f − f̂
(
x, ωjk

) = f − f̂
(
x, ωjk

∗) + f
(
x, ωjk

∗) − f̂
(
x, ωjk

) = β + ωjk
∗Tϕ

(
xj

) − ω̂T
jkϕ

(
xj

) = β + ω̂T
jkϕ

(
xj

)
(28)

where β is the modeling error of the RBF neural network.

Ẋ = AX + B
(
β + ω̂jk

Tϕ
(
xj

))
(29)

Then,

V̇ = XTPẊ + ẊTPX + 2tr
( ˙̃ωjk

Tω̃jk

) = XTP
[
AX + B

(
β + ω̃jk

Tϕ
(
xj

))]T
PX + 2tr

( ˙̃ωjk
Tω̃jk

)
(30)

Substitute Eq. (27) into Eq. (30) to obtain

V̇ = −XTQX + ϕT
(
xj

)
ω̃jkB

TPX + βTBTPX + 2tr
( ˙̃ωT

jkω̃jk

)
(31)

The adaptive rate is taken to be
˙̃ωjk = ϕ

(
xj

)
XTPB − k1 ‖X‖ ω̃jk (32)

where k1 ‖X‖ is the robust term, k1 > 0, and satisfies
[
BTPXϕT

(
xj

) − k1 ‖X‖] ω̃jk + ˙̃ωT

jkω̃jk = 0.
Then,

V̇ = −XTQX + 2k1 ‖X‖ tr
[( ˙̃ωT

jkω̃jk

)]
+ 2βTBTPX (33)

According to the parametric property, it is obtained that

tr
( ˙̃ωT

jkω̃jk

)
≤ ∥∥ω̃jk

∥∥
F

∥∥ω̂jk

∥∥
F
− ∥∥ω̂jk

∥∥2

F
(34)

Then,

V̇ ≤ −XTQX + 2k1 ‖X‖
(∥∥ω̃jk

∥∥
F

∥∥ω̂jk

∥∥
F
− ∥∥ω̂jk

∥∥2

F

)
+ 2βTBTPX ≤ −λmin(Q) ‖X‖2

+ k1 ‖X‖
(∥∥ω̃jk

∥∥
F

∥∥ω̂jk

∥∥2

F

)
+ 2λmax(P) ‖β0‖ ‖X‖

= − ‖X‖
⎡⎣λmin(Q) ‖X‖ + k1

[∥∥ω̃jk

∥∥
F
−

(
ωjk

)
max

2

]2

− k1

4

(
ωjk

)2

max
− ‖β0‖ λmax(P)

⎤⎦ (35)

where λmin(Q) is the minimum eigenvalue of matrix Q and λmax(P) is the maximum eigenvalue of
matrix P.
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Figure 6. Simulation process of human-machine coupling model.

Figure 7. Gait experiment diagram.

For V̇ ≤ 0, the following conditions need to be satisfied.

λmin(Q)‖X‖ ≥ k1

4

(
ωjk

)2

max
+ ‖β0‖ λmax(P) (36)

4. Simulation analysis
4.1. Parameters setting
A human model with 170 cm height and 70 kg weight was set as the study subject, whose thigh length
was about 380 mm, calf-length approximately 400 mm, and ankle height about 80 mm. The motion simu-
lation process is shown in Fig. 6. The input of joint trajectories was obtained by human gait experiments.
A healthy subject with the age of 25, the weight of 70 kg, and the height of 170 cm is recruited for
the experiment, just as shown in Fig. 7. Before the gait experiment, all subjects were given a detailed
explanation of the test content and signed a consent form for voluntary participation in the experiment.
The subjects had no surgery, no history of lower extremity trauma, no balance problems, or neural
muscular disorders within the past six months. A written consent is obtained from the subject. The
test environment was a linear walkway of 5 m in length and 1 m in width. The kinematic parameters
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Table II. The parameters of each controller.

Method Parameters
Torque feedback Kp = 1.5, Ki = 0, Kd = 3
Impedance controller B = 0.5, M = 2, K = 100
FVI controller e∈(1.5,1.5), ec∈(−0.5,0.5), B0 = 0.2,

M0 = 2, K0 = 100; �B∈(−0.5,0.5),
�M∈(−5,5), �K∈(−150,150),

were acquired by VICON acquisition system(Oxford Metrics Ltd, Oxford, UK). The data acquisition
frequency is 1200 Hz.

To verify the effectiveness and superiority of the proposed method, the simulation results are com-
pared with those of torque feedback controller [32], impedance controller [33], and FVI controller [34].
And the parameters of each control method are set, as shown in Table II. The excellent agreement
between the reference trajectory and the actual trajectory illustrates the effectiveness of the measurement
and control methods.

The RBF neural network includes three layers. The input layer contains two nodes with hip error
function and knee error function; the hidden layer uses Gaussian basis function as the excitation function,
the center vector is [−2 −1 0 1 2], and the width is 0.5; the adaptive rate is taken as 30. The root mean
square accuracy was set to 0.01 as the termination condition of the RBF neural network. The moment
coefficient of 0.8 is selected, and the simulation is performed at a speed of 0.2 m/s.

4.2. Simulation results analysis
The joint trajectory tracking results of each controller and trajectory error results are shown in Figs. 8,
9, 10 and 11, respectively. When the traditional torque feedback control method was used to perform
the motion mission, the maximum error values of the hip joint and knee joint between the exoskeleton
robot and the human were 7.8 and 15.1 deg, respectively. Due to the large weight-bearing ratio of the
limb, the release of human muscle force has more excellent resistance, so the tracking performance of
the human joint position to the exoskeleton robot joint position is poor, and the two have a significant
error. The angle deviation needs to be reduced by impedance relationship adjustment. Compared with
the torque feedback control system without the impedance control adjustment module, the exoskeleton
robot obtained by impedance control has a smaller range of error in the joint angle with the human
model. The maximum error of the exoskeleton robot and human hip joint angle is 4.3 deg. This indicates
that the exoskeleton robot control system converts the interaction force difference into angular deviation
according to the change of human-machine contact force and adjusts the input torque in real-time. The
exoskeleton robot provides greater torque support during the limb muscle strength deficiency phase and
improves human tracking performance. The maximum angle error values of the hip joint and knee joint
obtained based on the fuzzy impedance control method were 3.2 and 9.2 deg, respectively. The error
range of the joint angle between the exoskeleton robot and human model is smaller, indicating that the
impedance controller with real-time adjustment of impedance parameters improves the control system’s
control accuracy and the human-machine coupling suppleness better. After adding the neural network
error compensation function module, the maximum angle error values of the hip joint and knee joint
were reduced to 2.4 and 2.2 deg, respectively. This indicates that the neural network compensation has
a good suppression effect on the uncertainty term of the system.

5. Human-machine coupling experiments
5.1. Experimental platform
Human-machine coupling experiments are conducted to demonstrate the functionality of the proposed
control method. The exoskeleton robot platform is shown in Fig. 12. The joint motion range of the
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Figure 8. Hip trajectory tracking results of each controllers.

Figure 9. Trajectory error results of hip joint.

exoskeleton is 20◦ flexion and 40◦ extension for the hip joint, and 70◦ flexion and 0◦ extension for the
knee joints, and 0◦ plantarflexion and 20◦ dorsiflex for ankle joints. The control system consists of the
data processor Raspberry Pi and the motion controller STM32F103. Raspberry Pi is used to process data
collected from angle sensors (AD36/1217AF. ORBVB, Hengstler, Germany) and torque sensors(TRX-
50N·m, Italy). The communication mode between the data processor and motion controller is parallel
port communication. The motion controller controls the motors through the controller area network
Fieldbus. A healthy subject with the age of 25, the weight of 68 kg, and the height of 170 cm is recruited
for the experiment. A written consent is obtained from the subject. For safety reasons, if the angle of
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Figure 10. Knee trajectory tracking results of each controllers.

Figure 11. Trajectory error results of knee joint.

the exoskeleton is greater than the allowable value, the exoskeleton will be forced to stop moving by
software. In addition, the subjects could cut off the power through the emergency switch button. We
intercepted the complete gait course of the left lower limb during the swing phase. The video capture of
the human experiment is shown in Fig. 13. The time of a complete gait cycle is 3.5 s. The experiment
demonstrates that the exoskeleton robot can effectively assist the human body to realize stable walking.
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Figure 12. The exoskeleton robot platform.

Figure 13. Video screenshots of the human experiment.

5.2. Human-machine system testing
A current safety threshold is set to ensure the safety of the contact force between the exoskeleton and
the subject. When the human-machine contact force makes the current within the threshold value, the
movement of the joint does not stop. When the contact force exceeds the current threshold, the joint stops
moving. When the human-machine contact force becomes larger, the joint torque of the exoskeleton
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Figure 14. Real-time currents in hip joint when in stressed and unstressed conditions.

will be correspondingly larger to resist the obstructive force exerted by the human body, and the current
output will become larger at this time. The system simultaneously detects whether the current of each
joint exceeds the threshold. According to the relationship between torque and power of servo motor,

τm = 9550P

n
(37)

where P is the power of motor, P = UI , U is voltage of motor, I is current of motor. n is rational speed of
motor. The current is proportional to the torque. The excessive torque output may cause secondary injury
to the wearer. Generally, the torque required for joint movement does not exceed 200 N.m. According
to the ammeter test, when the torque value reaches 200 N.m, the current value is about 4A. Hence, the
current safety threshold was set as 4A.

We conducted experiments on the exoskeleton under conditions of unloaded(red line) and
loaded(black line). The real-time current value of hip joint and knee joint are shown in Figs. 14 and 15,
respectively. When the exoskeleton is in continuous contact with the subject, the current value will
increase with the contact force (resistance torque) compared to the unstressed condition. We found that
the current was not exceeded the current safety threshold during the entire gait cycle, indicating that the
coupling performance of the human-machine system was good. To test the system’s safety, we let the
subject deliberately increase the range of hip joint motion to increase the human-machine contact force.
Then, the joint will stop at the point S when the current generated by the contacted force exceeds the
threshold value, just as shown in Fig. 15. The test ensures the safety of the exoskeleton system.

We analyzed the variation of the human joint torque, exoskeleton joint torque, and human-machine
interaction torque, respectively, and the experimental results are shown in Figs. 16 and 17. It can
be seen that the torque output curves of the exoskeleton and the human remain the same trend
under the action of the proposed controller in this study. And the human torque always remains at a
lower torque output, which is due to the exoskeleton robot compensating the required torque of the
human body. It is worth noting that at 1.5 s, the human knee joint torque increases suddenly, and the
exoskeleton joint torque decreases sharply, which is because the exoskeleton robot’s motion control has
a specific time delay behavior at the moment of phase transition and fails to make the symbolic human
intention action in time. At this time, the human-machine interaction torque also increases accordingly.
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Figure 15. Real-time currents in knee joint when in stressed and unstressed conditions.

Figure 16. Torque value of hip joint.

We found that this situation cannot be avoided after several experiments, which is the critical problem
we will solve next. The overall tendency is smooth in term of the human-machine interaction torque, and
the average values of interaction torque of hip joint and knee joint are 3.215 and 2.374 N.m, indicating
that the control algorithm proposed in this study can achieve stable and smooth walking.
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Figure 17. Torque value of knee joint.

6. Conclusion
In the actual rehabilitation exercise process, the movement between the lower limb rehabilitation
exoskeleton and the patient must not be completely consistent, which makes the interaction force
between the exoskeleton robot and the patient, and the compliance control can reduce the interac-
tion force between the exoskeleton robot and the patient. In this study, a 6 DoFs exoskeleton robot is
designed, and the exoskeleton dynamics analysis is conducted. A human-machine coupling model of the
exoskeleton robot based on the spring-damping model was established. To meet the needs of patients’
rehabilitation training, a fuzzy radial impedance (RBF-FVI) controller is proposed to satisfy human
motion laws. The controller includes a fuzzy position control module and an outer-loop impedance con-
trol module. Through simulation experiments, it is demonstrated that the control method proposed in this
research is significantly better than other traditional control methods in trajectory following. In this study,
human-machine wear experiments are conducted. The experimental results show that the exoskeleton
robot system designed in this study can assist the human body to achieve stable and smooth walking.
According to the experimental results, there is a sudden change of torque during the gait phase transi-
tion, which requires further optimization of the exoskeleton robot structure and control method. This
will be our future research priority. In addition, we also plan to conduct human-machine experiments
on stroke patients to further validate the effectiveness of the robotic system designed in this study.
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