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VALUE DISTRIBUTION OF BIAXIALLY SYMMETRIC
HARMONIC POLYNOMIALS

J. DPARCHANGELO AND P. A. McCOY

1. Introduction. Consider the biaxially symmetric potential equation

2 2
(11)  Les(®) = (—a—f 42198 4 8 2at] —a—) (u,0) = 0

ou’ u ou v U dv

where a, 8 > —1/2. If 2a 4+ 1 and 28 + 1 are non-negative integers and if
x corresponds to the hypercircle

(1.2)  u = (224 ...+ x2502)2, v = (3124 ... + Yoag2?)l’2,

then the biaxisymmetric Laplace equation in E(+5+2)

62 62 62 62 )
(1.3) (3_x1§+"‘+5_~_+ + ...+ —2] ®(x) =0

2 2
X28+2 Y1 Y a2

and (1.1) are equivalent. A complete set of solutions for (1.1) which are
regular about the origin is given by (cf. [1, 2])

(1.4) & (x) = ®i(u,v) = Bi(r,0) = r*R,P (cos 26),
where
(1.5)  Ry@® (cos 20) = P, (cos 20)/P,=# (1),

the P,@® (x) are the Jacobi polynomials, and « = 7 cos 6, v = r sin § are the
polar coordinates.

It is known that any biaxisymmetric harmonic polynomial (BAHP) of
degree 2n can be represented in the form

(1.6) H(x) = Hu,v) = 2 awr™ R (cos 26),
k=0

where «, 8 > —1/2. Until now, the lack of suitable representations for
R,® (cos 26) had made it difficult to determine a value distribution for BAHP’s
analogous to the value distribution for axisymmetric harmonic polynomials
determined by Morris Marden in [4] using the Whittaker formula. However,
Tom Koornwinder’s Laplace type integral for Jacobi polynomials now allows
us to determine information about the value distribution for BAHP’s using
a convexity argument drawn from the analytic theory of polynomials of
one complex variable.
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According to Koornwinder’s integral representation, cf. [3], if o > 8>
—1/2, then
$ (11, v) = 7 R (cos 26)

1 ™
(L7 = f f (u® — o™ + 2iuvt(cos ¢))dmas(o, 1),
t=0 ¢=0

where the non-negative measure

OT (a + 1) (1 — P74  (sin ¢)*d ¢dt
/T (@ — BT (B + 1/2)

(1.8)  dmag(,t) =

is normalized so that

(1.9) fol ﬁ”dma,ﬁ(¢, t) = 1.

2. Value distribution for BAHP's. Let H(x) = H(u, v) be a BAHP as in
(1.6), and assume that « > 8 > —1/2. Define the associate polynomial of H
to be

n

(21> h(g) = Z akgkv E E Cyan # O

k=0

so that

1 ™
(2.2) H(x) = H(@u,v) = fo fo h(zu,0 (@, £))dMa (0, 1)
where
(2.3) sy, t) = u? — %> 4+ 2 tuvt (cos ¢).

TueEOREM 2.1. Let H be a BAHP of degree 2n as in (2.2) with h as its ussociate.
If h omaits the complex value v in the sector

(24) S=1{tcC:

arg (¢ — o) < 7 — w/2n},

with vertex at ¢ = 0, then on each hypercircle x € Q@ C E*@t8+2 where Q 1s the
region common to the set

X124 Xogpe? — Xopis? — L — Xo@epen? 2 C
and the hyperbolic cylinder
(1200w — M2 — L — Yoy — ) tan? w/2n 2
4o . wepe) (012 L Yaage?),
then H(x) & v =+ n for n = 0 or for «ll Jarg (n/a,)] < 7/2 mod (n + 1).

Proof. Suppose H(xo) = v or H(ug, v0) — v = 0 for some uy, vy correspond-
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ing to xo. Then if

n

(2.5) hE) — v = an | (£ = o),

=1

by (2.2)

(2.6)  H(uo,v0) — vy = fo j:rww, t)dmap(d,t) = 0

where

@7 w(g, 1) = a H (@ — 20,00 (6 1)).

Notice that for a fixed uq, vy, the region F in the complex plane defined by
Zuo,00 (@, t) as ¢ goes from 0 to 7 and ¢ goes from 0 to 1 is the region bounded by
the parabola y? = —4u¢?(x — u) and the line x = u¢®> — 9% Fis contained in
the sector where |arg (¢ — ¢)| £ 7/2n by our assumption that (#¢> — ve® — ¢)
tan 7/2n = 2 uv. Therefore

(2.8) 7 — 7/2n < arg {ox — 2400 (P, )} < 7+ 7/2n
which implies by (2.7) that (2.6) cannot possibly hold since
w(gp, t) € {£ € C:larg ((/a,) —nr] < 7/2}, 0<t<1,0< ¢ <

and dm, g 2 0. Consequently, H(uo, v9) — v € {£ € C: |arg (¢/a,) — nrw| <
7/2} so that H(ug, vo) # v + 7 if n = 0 or |arg (n/a,) — (n + 1)7| < =/2.

THEOREM 2.2. Let H be the BAHP
(2.9) H(x) = Hu,v) = 2, aw™R P (cos 20), o> 8> —1/2,
k=0
and let v be an arbitrary constant. If.

(2.10) » =1 4+ max {|las — v|/|a|, |a1/a.|, . . . , |@n_1/a|}

and x s a hypercircle in the region Q@ defined in Theorem 2.1 with ¢ =
v cosec (2w/n), then

H(x) #v+n
for n = 0 and for all larg (n/a,)| < 7/2 mod (n + 1).

Proof. 1f we denote by k(%) the associate of H, then by Cauchy’s inequality,
(cf. [5, p. 123]) the zeros of

R(E) — vy = (a0 —7v) it + a8+ ... + a8
satisfy the inequality |£| < », with » given by (2.10). Therefore, k(£) # v in
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the sector S of (2.4) where
¢ = v cosec (27/n) > 0,

and the conclusion follows from the previous theorem.

3. Remarks. (On the set Q). It is clear from the proof of Theorem 2.1, that
the projection of Q on the complex plane according to the transformations of
(1.2) results in the set

Q={u+w:u =020 and larg ((u + w)* — ¢)| £ n/2n}.

Using this description, £ is the intersection, with the first quadrant, of the
interior of the hyperbola u?/d% — v2/d* = 1 rotated —a (= —7(n — 1)/4n)
radians from the u — axis where d> = cos 2a. If ¢ =0, Q={t€c C:0=
arg ¢ < w/4n}.

If (x, v, z) are the Cartesian coordinates in E3, and if we view u as the
distance of a point from the x-axis and v as its distance from the y-axis, then

(3.1) u*=9y>4 z2and v® = x? + 2%

Geometrically, Q is the set of points in E? generated by the intersection of cylin-
ders about the x-axis of radius « and about the y-axis of radius v, where once « is
chosen so that u = ¢'/2, then v £ —cot (7/2n)u + (u? cosec? (w/2n) — c)/2

For example, if in Theorem 2.1, H(x) is a BAHP of degree 2 and ¢ > 0,
then @ is the region defined by the interior of the hyperbola «%/c — v%/c = 1,
without rotation, intersected with the first quadrant. Using (3.1), we get that
in E3 Q= {(x, 5, 2) : x2/c — 2%*/c = 1), the interior of hyperbolic cylinders.

(Ona > B > —1/2). First note that the set @ in Theorem 2.1 depends only
on a > B> —1/2 and not specifically on the values of « and 8. If in the
expression for H in (1.6), 8 > a > —1/2, then one must use the identity

P (x) = (=1)"P,0 (—x)

in (1.5) thereby changing (1.6) to

H(u,0) = Y, ™ R %% (—cos 26),
k=1

and a similar argument to that used in Theorem 2.1, (where # and v are
switched in (1.7) due to the —cos 28) using the associated polynomial % (¢) =
"= c:£¥, will give information about the value distribution for H.

4. The converse problem. The methods found in [5] also apply to the
converse problem of relating the values of the associate to those (known)
values of the BAHP. This class of relationships was not considered in [4].
However, the reasoning which follows adopts itself to similar considerations
for axisymmetric harmonic polynomials.
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TurorEM 4.1. If the BAHP H of degree 2n assumes the value v on the sphere of
radius Ry = (uo? + v2)/2, then the associate h assumes the value v at least once
wn the disc |£] £ Ry? cosec (w/2n).

Proof. Following [5, p. 111], consider the point & for which H (u, vy) =
h(£0) = v so that

(41) L foﬂ [h(zuo,vo(¢y t)) - 7]dma,ﬂ(¢r t) = 0.

By factoring k(£) — v as in (2.5), it is clear that if (a;) = R? cosec (7/2n)
for 1 £ k < n, then a; — 24y, (¢, t) satisfies an inequality of the type (2.8)
since

12ug, 00 (D, 1)] = 12ug,0, (0, 1)] = Ry?

Consequently, the integrand of (4.1) is non-vanishing, a contradiction to the
fact that H (u, vo) = #.
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