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VALUE DISTRIBUTION OF BIAXIALLY SYMMETRIC 
HARMONIC POLYNOMIALS 

J. D'ARCHANGELO AND P. A. McCOY 

1. Introduction. Consider the biaxially symmetric potential equation 

(1.1) A»/s($) = 1—2 H — + r H -r-J *(«,«>) = 0 
\dw u du dv v dvl 

where a, P > —1/2. If 2a + 1 and 2/3 + 1 are non-negative integers and if 
X corresponds to the hypercircle 

(1.2) U = (Xx2 + . . . + XW+22)U2, V = ( ^ + . . . + 3 W ) 1 7 2 , 

then the biaxisymmetric Laplace equation in E2(a+/3+2), 

(1.3) \-f-2 + • • • + T - ^ - S + T^5 + . . . + T - ^ - ï ) * ( X ) = 0 
VdXl 5X2/3+2 Ôyi a3/2«+2 / 

and (1.1) are equivalent. A complete set of solutions for (1.1) which are 
regular about the origin is given by (cf. [1, 2]) 

(1.4) *k(x) = $*(«,») = g*(r,0) = r 2 * i ? ^ ( c o s 2 0 ) , 

where 

(1.5) £*<«•« (cos 2d) = iV«'«(cos 20) / iy« '«( l ) , 

the Pk
{a'^(x) are the Jacobi polynomials, and u = r cos 0, z; = r sin 6 are the 

polar coordinates. 
It is known that any biaxisymmetric harmonic polynomial (BAHP) of 

degree 2n can be represented in the form 

(1.6) H(x) =H{u,v) = £ akr
uRk

M) (cos 26), 
k=0 

where a, /3 > —1/2. Until now, the lack of suitable representations for 
Rk(<*'& (cos 26) had made it difficult to determine a value distribution for BAHP's 
analogous to the value distribution for axisymmetric harmonic polynomials 
determined by Morris Marden in [4] using the Whittaker formula. However, 
Tom Koornwinder's Laplace type integral for Jacobi polynomials now allows 
us to determine information about the value distribution for BAHP's using 
a convexity argument drawn from the analytic theory of polynomials of 
one complex variable. 
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According to Koornwinder 's integral representat ion, cf. [3], if a > # > 
- 1 / 2 , then 

& ( « , » ) = ruRk
{a^(cos 26) 

= I I (u2 — v2t2 + 2iuvt(cos <t>))kdma,p(<t>, t), 

where the non-negative measure 

2 r ( « + i ) ( i - f 2 ) " - ^ - i ^ + i ( s i n ^d4>dt 

irmT{a- p)T((3~+ 1/2) 

is normalized so t h a t 

(1.8) dma,t}{4>, t) = -i/o 

(1.9) I I dntaAt, 0 = 1. 
•Jo *J o 

2. Va lue d i s t r i b u t i o n for BAHP's . Let H(x) = H(u, v) be a B A H P as in 
(1.6), and assume tha t a > (3 > —1/2. Define the associate polynomial of H 
to be 

(2.1) M£) = É "£*> K C . a ^ O 
fc=0 

so tha t 

(2.2) Hix) =H(u,v) = I I h(zu,,(<l>,t))dma,e(<l>,t) 
*J o « J o 

where 

(2.3) zMl!,(0, /) = w2 - fl2/2 + 2 iwîtf (cos </>). 

T H E O R E M 2.1. Let H be a BAHP of degree 2n as in (2.2) with h as its associate. 
If h omits the complex value y in the sector 

(2.4) S = {£eC: |arg (£ - c)\ < IT - ir/2n}, 

with vertex at c ^ 0, then on each hyper circle % G Œ C E 2 ( Q ! + ^ + 2 ) where 12 is //z<? 
region common to the set 

Xl2 + • • • + X 2 / 3 + 2
2 — X 2 / 3 + 3

2 — . . . — X 2 ( a + /3 + 2 ) 2 ^ C 

aw î the hyperbolic cylinder 

(x!2 . . . + x2/3+2
2 - yi2 - . . . - ;y2a+22 - c)2 tan 2 TT/2W ^ 

4(X!2 + . . . + X2/î+22)(yi2 + • • • + ^2a+22), 

//ten i^(x) ^ 7 + y for 7] = 0 or for all |arg (r?/a„)| < 7T./2 mod (w + 1). 

Proof. Suppose H(xo) = 7 or H(u0, VQ) — y = 0 for some «o, ^o correspond-
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ing to xo- Then if 

(2.5) A({) - y = an ft (£ - ak), 

by (2.2) 

(2.6) H(uo,Vo) — 7 = 1 I w ( 0 , t)dtnatp((t>, t) = 0 
•/ o J o 

where 

n 

(2.7) w(0 , 0 = an f i («* - 2«o.flo(0i 0 ) -

Notice t ha t for a fixed Uo, z/0, the region F in the complex plane defined by 
Zuo.vo (</>> 0 as 0goes from 0 to T and / goes from 0 to 1 is the region bounded by 
the pa rabo la^ 2 = — 4UQ2(X — u0) and the line x = UQ2 — v0

2. Fis contained in 
the sector where |arg (£ — c)\ ^ ir/2n by our assumption tha t (uo2 — v0

2 — c) 
tan ir/2n ^ 2 uv. Therefore 

(2.8) w — ir/2n < arg {ak - sMOit,o(0, t)} < T + ir/2n 

which implies by (2.7) t h a t (2.6) cannot possibly hold since 

w(0, 0 G {£ G C : |arg (£/an) - mr| < TT/2}, O < / < 1 , O < 0 < T T 

and dmai/3 ^ 0. Consequently, fl"(w0, flo) — 7 € {£ G C : |arg (%/an) — nir\ < 
TT/2] SO tha t H(UQ, V0) T^ y + V if *? = 0 or |arg (rç/ara) — (w + l)7r| < TT/2. 

T H E O R E M 2.2. Let H be the BAHP 

(2.9) H(x) = H(u,v) = E akr
2*Rk

{a'fi)(cos 26), a > /3 > - 1 / 2 , 

awd te/ 7 be an arbitrary constant. If. 

(2.10) v = 1 + max {|a0 - 7 I / K I , k i / a n | , . . . , |an_i/an |} 

awd x ^ a hyper circle in the region 0 defined in Theorem 2.1 with c = 
v cosec (2-ir/n), then 

H(x) ^y + v 

for 7] = 0 and for all |arg (^AOI < ^"/2 mod (n + 1). 

Proof. If we denote by A(£) the associate of H, then by Cauchy 's inequality, 
(cf. [5, p . 123]) the zeros of 

* t t ) - 7 = (oo ~ 7) + ai{ + ^ 2 + • . • + 0 , ^ 

satisfy the inequality |£| < p, with ^ given by (2.10). Therefore, A(£) ^ 7 in 
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the sector S of (2.4) where 

c = v cosec (2ir/n) > 0, 

and the conclusion follows from the previous theorem. 

3. R e m a r k s . (On the set 12). I t is clear from the proof of Theorem 2.1, t ha t 
the projection of 12 on the complex plane according to the t ransformations of 
(1.2) results in the set 

Q = {u + iv : u ^ 0, v ^ 0, and |arg ((u + iv)2 — c)\ ^ ir/2n}. 

Using this description, 12 is the intersection, with the first quadran t , of the 
interior of the hyperbola u2/d2c — v2/d2c = 1 rota ted — a ( = — ir(n — \)/\n) 
radians from the u — axis where d2 = cos 2a. If c = 0, 12 = {£ £ C : 0 ^ 
a rg£ :§ 7r/4n}. 

If (x, y, z) are the Cartesian coordinates in E3 , and if we view^ u as the 
distance of a point from the x-axis and v as its distance from the 3>-axis, then 

(3.1) u2 = y2 + z2 and v2 = x2 + z2. 

Geometrically, 12 is the set of points in E 3 generated by the intersection of cylin­
ders about the x-axis of radius u and about the ;y-axis of radius v, where once u is 
chosen so tha t u ^ cl/2, then v ^ —cot (ir/2n)u + (u2 cosec2 (w/2n) — c)1/2. 

For example, if in Theorem 2.1, H(x) is a BAHP of degree 2 and c > 0, 
then 12 is the region defined by the interior of the hyperbola u2/c — v2/c = 1, 
wi thout rotat ion, intersected with the first quadran t . Using (3.1), we get t h a t 
in E3 , 12 = {(x, y, z) : x2/c — z2/c ^ 1), the interior of hyperbolic cylinders. 

(On a > j8 > —1/2) . First note t ha t the set 12 in Theorem 2.1 depends only 
on a > jS > —1/2 and not specifically on the values of a and 0. If in the 
expression for H in (1.6), 0 > a > —1/2 , then one must use the ident i ty 

pn<«.*)(tf) = ( _ i ) * p n ( ^ ) ( _ x ) 

in (1.5) thereby changing (1.6) to 

H(u,v) = £ ck/
kRk

w'a\-cos2d), 
k=l 

and a similar a rgument to t ha t used in Theorem 2.1, (where u and v are 
switched in (1.7) due to the —cos 26) using the associated polynomial A(£) = 
2ï-=o £*£*, will give information abou t the value distr ibution for H. 

4. T h e converse p r o b l e m . T h e methods found in [5] also apply to the 
converse problem of relating the values of the associate to those (known) 
values of the BAHP. This class of relationships was not considered in [4]. 
However, the reasoning which follows adopts itself to similar considerations 
for axisymmetric harmonic polynomials. 
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THEOREM 4.1. If the BAHP H of degree 2n assumes the value y on the sphere of 
radius RQ = (uo2 + Vo2)1/2, then the associate h assumes the value y at least once 
in the disc |£| ^ R0

2 cosec (w/2n). 

Proof. Following [5, p. I l l ] , consider the point £0 for which H(u0, vQ) = 
h(£o) = y so that 

(4.1) I I [h(zm,vM, 0) " 7]dmai/3(0, 0 = 0. 
** 0 ^ 0 

By factoring h (Co) — y as in (2.5), it is clear that if (ak) §; RQ
2 cosec (w/2n) 

for 1 ^ k ^ n, then ak — £wo>wo(</>, t) satisfies an inequality of the type (2.8) 
since 

!««„„„(*, 01 ^ l««„..„(o, i ) | =R„* 

Consequently, the integrand of (4.1) is non-vanishing, a contradiction to the 
fact that H(uo, v0) = 7. 
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