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Abstract
Inspired by work of Szymik and Wahl on the homology of Higman–Thompson groups, we establish a general
connection between ample groupoids, topological full groups, algebraic K-theory spectra and infinite loop spaces,
based on the construction of small permutative categories of compact open bisections. This allows us to analyse
homological invariants of topological full groups in terms of homology for ample groupoids.
Applications include complete rational computations, general vanishing and acyclicity results for group homology
of topological full groups as well as a proof of Matui’s AH-conjecture for all minimal, ample groupoids with
comparison.
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1. Introduction

The construction of topological full groups has recently attracted attention because it led to solutions
of several outstanding open problems in group theory. For instance, it gave rise to first examples of
finitely generated, infinite simple amenable groups (see [39] and also [40]). Topological full groups
also led to the first examples of finitely generated, infinite simple groups with intermediate growth
[65]. Moreover, this construction also produces new families of infinite simple groups with prescribed
finiteness properties [83].

Topological full groups arise from generalized dynamical systems in the form of topological
groupoids, which describe orbit structures of dynamical systems in situations where the actual space
of orbits might be very badly behaved. Topological groupoids only capture local symmetries arising in
dynamical systems, which is enough to determine their orbit structures. Roughly speaking, elements of
topological full groups are global symmetries which are pieced together from local symmetries encoded
by topological groupoids.

Topological groupoids and their topological full groups arise in a variety of settings, for instance from
topological dynamical systems given by actions of groups on topological spaces by homeomorphisms.
Indeed, the first examples of topological full groups were studied in [47, 32] in the setting of Cantor
minimal systems and the closely related context of Bratteli diagrams. They also arise from shifts of finite
type, or more generally, from graphs (see, for instance, [57]). Further examples have been constructed
from self-similar groups or actions and higher rank graphs (see, for instance, [58, 64]). In this context,
there is an interesting connection to C*-algebra theory because topological groupoids serve as models
for C*-algebras (see [76]) such as Cuntz algebras, Cuntz–Krieger algebras, graph C*-algebras or higher
rank graph C*-algebras, many of which play distinguished roles in the classification programme for C*-
algebras. There is also an interesting link to group theory because Thompson’s group V and many of its
generalizations and variations [37, 86, 5] can be described as topological full groups of corresponding
topological groupoids. In the case of V, this observation goes back to [63]. This gives a dynamical
perspective on Thompson-like groups, which have been popular and important objects of study in group
theory ever since the introduction of V by Thompson (see, for instance, [9]).

While general structural properties [56, 57, 58, 66, 55] and rigidity results have been developed [78,
60, 57] and several deep results have been established for particular examples of topological full groups
[39, 40, 65, 83, 90], it would be desirable to create a dictionary between dynamical properties and
invariants of topological groupoids on the one hand and group-theoretic properties and invariants of
topological full groups on the other hand. This would allow us to study topological full groups – which
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are very interesting but in many aspects still remain mysterious – through the underlying topological
groupoids which are often much more accessible. The goal of this paper is to develop this programme
in the context of homological invariants by establishing a link between groupoid homology and group
homology of topological full groups. This leads to a better understanding of this class of groups arising
from dynamics, not only because it allows us to compute group homology, which is a fundamental
invariant, but also because the methods developed to accomplish this task reveal interesting connections.

For the particular example class of Thompson’s group V and its generalizations, the study of homo-
logical invariants and properties has a long history [8, 7]. It was shown in [7] that V is rationally acyclic.
Only recently, it was established in [90] that V is even integrally acyclic. The new approach in [90]
also allows for many more homology computations for Higman–Thompson groups. However, for other
classes of topological full groups, very little is known about homological invariants. In degree one, Ma-
tui has formulated the AH-conjecture, which describes 𝐻1 (i.e., the abelianization) of topological full
groups in terms of groupoid homology of the underlying topological groupoids. This AH-conjecture
has been verified for general classes of topological full groups (for instance, for almost finite, principal
groupoids, see [56, 57, 58]) as well as for several example classes (for instance, for groupoids arising
from shifts of finite type [57, 58], graphs [67] or self-similar actions [68], as well as transformation
groupoids of odometers [79] and Cantor minimal dihedral systems [80]). However, no general results
of this nature are known concerning homology groups in higher degree.

In this paper, we develop a new approach to homological invariants of topological full groups. The key
novelties are the construction of small permutative categories of bisections for all ample groupoids and
the realization of groupoid homology as (reduced) stable homology of the associated algebraic K-theory
spectra. Another key ingredient is the identification of homology of the corresponding infinite loop
spaces with group homology of the topological full groups we are interested in. This last identification
is inspired by [90] and at the same time vastly generalizes corresponding results on the particular
example class of Higman–Thompson groups in [90]. Our new insights allow us to apply powerful tools
from algebraic topology to the study of homology of topological full groups, bringing together group
theory, topological dynamics and algebraic topology as well as ideas from operator algebras. Among
other things, our insights lead to

• a complete description of rational group homology for large classes of topological full groups,
• general vanishing and acyclicity results, explaining and generalizing the result that V is acyclic in [90],
• a verification of Matui’s AH-conjecture for a general class of ample groupoids, including all purely

infinite and minimal ones.

We establish these results under very mild assumptions, that is, for all ample groupoids which are
minimal, whose unit spaces do not have isolated points, and which have comparison. The first two
conditions are necessary, as we explain below in our discussion of Theorem B. Comparison appears
naturally and is in itself an interesting property. It has been verified in many situations [16, 45, 27], and
there is the conjecture that comparison holds in great generality, as we explain below. For topological
full groups of amplified groupoids, we prove analogous results in complete generality, that is, for all
ample groupoids. The present work is a significant step forward in our understanding of homological
invariants of ample groupoids and topological full groups, both at the conceptual level as well as
concerning concrete applications. Indeed, our results on rational group homology are the first explicit
computations of that kind which work in all degrees. The acyclicity results imply, for example, that
all of Brin’s groups 𝑛𝑉 are integrally acyclic and that all Brin–Higman–Thompson groups 𝑛𝑉𝑘,𝑟 are
rationally acyclic. In addition, we are able to construct continuum many pairwise nonisomorphic infinite
simple groups which are all integrally acyclic. Moreover, our work leads to a conceptual explanation and
strengthening of Matui’s AH-conjecture as we obtain precise obstructions for the strong AH-conjecture
and establish that the amplified version of the AH-conjecture is always true (i.e., for all ample groupoids).

Let us now formulate our main results. Let G be a topological groupoid, that is, a topological
space which is at the same time a small category with invertible morphisms such that all operations
(range, source, multiplication and inversion maps) are continuous. We always assume the unit space
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𝐺 (0) consisting of the objects of G to be locally compact and Hausdorff. In addition, suppose that G is
ample, in the sense that it has a basis for its topology given by compact open bisections (see §2.1). If
𝐺 (0) is compact, then the topological full group 𝑭(𝐺) is defined as the group of global compact open
bisections. In the general case, 𝑭(𝐺) is the inductive limit of topological full groups of restrictions of
G to compact open subspaces of 𝐺 (0) . The new examples of infinite simple groups mentioned at the
beginning (see [39, 40, 65, 83]) are given by commutator subgroups 𝑫 (𝐺) of 𝑭(𝐺). Given an ample
groupoid G as above, we construct a small permutative category 𝔅𝐺 of compact open bisections of G
(see §3). Let K(𝔅𝐺) be the algebraic K-theory spectrum of 𝔅𝐺 and Ω∞K(𝔅𝐺) the associated infinite
loop space (see §2.6).

Our first main result identifies the (reduced) stable homology ofK(𝔅𝐺) with the groupoid homology
of G as introduced in [14] and studied in [56].

Theorem A (see Theorem 4.18). Let G be an ample groupoid with locally compact Hausdorff unit
space. Then we have

�̃�∗(K(𝔅𝐺)) � 𝐻∗(𝐺).

For the second main result, we need the assumption that G is minimal, that is, every G-orbit is dense
in 𝐺 (0) and that the unit space of G does not have isolated points. These two conditions are necessary
for Theorem B. We also require G to have comparison, which roughly means that G-invariant measures
on 𝐺 (0) control when one compact open subspace of 𝐺 (0) can be transported into another by compact
open bisections of G. Comparison appears naturally and is needed for the key ingredient, Morita
invariance (see Theorem F), which allows us to compare compact open subspaces of the unit space
and the corresponding topological full groups of the restricted groupoids in homology. Under these
assumptions, we can identify group homology of the topological full group 𝑭(𝐺) with the homology
of Ω∞0 K(𝔅𝐺), the connected component of the base point in Ω∞K(𝔅𝐺).

Theorem B (see Theorem 5.18). Let G be an ample groupoid whose unit space is locally compact
Hausdorff without isolated points. Assume that G is minimal and has comparison. Then we have

𝐻∗(𝑭(𝐺)) � 𝐻∗(Ω∞0 K(𝔅𝐺)).

Note that the group completion theorem (see [59, 74]) gives us a similar isomorphism in homology,
where the left-hand side is replaced by homology of the amplified version of the topological full group.
However, that alone is not enough to derive Theorem B. Indeed, the key (and also most demanding)
step is to show that the amplified version of the topological full group and the topological full group
itself have the same group homology. This is achieved by Morita invariance (Theorem F), which plays
the role of homological stability in [90] (see also [75]).

Groupoid homology is much more accessible than group homology of topological full groups because
there are many tools to compute groupoid homology, and several computations have been produced for
various example classes of ample groupoids (see §2.3.2). Thus, the point of our two main results is
that they enable us to study group homology of topological full groups in terms of groupoid homology,
provided we understand how to relate 𝐻∗(Ω∞0 K(𝔅𝐺)) to �̃�∗(K(𝔅𝐺)). This problem has been studied in
algebraic topology, where powerful tools have been developed. The precise relation between homology
of infinite loop spaces and the corresponding spectra is not easy to understand. But we can still derive
several consequences. In the following, let us present a selection of such consequences.

In order to present our results on rational group homology, we need the following notation:

𝐻odd
∗ (𝐺,Q) :=

{
𝐻∗(𝐺,Q) if ∗ > 0 odd,
{0} else,

and 𝐻odd
∗>1(𝐺,Q) :=

{
𝐻∗(𝐺,Q) if ∗ > 1 odd,
{0} else,
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as well as

𝐻even
∗ (𝐺,Q) :=

{
𝐻∗(𝐺,Q) if ∗ > 0 even,
{0} else.

Corollary C (see Corollaries 6.1 and 6.5). Let G be an ample groupoid, with locally compact Hausdorff
unit space without isolated points. Assume that G is minimal and has comparison. Then, as graded
vector spaces over Q,

𝐻∗(𝑭(𝐺),Q) � Ext(𝐻odd
∗ (𝐺,Q)) ⊗ Sym(𝐻even

∗ (𝐺,Q)).

In particular, 𝑭(𝐺) is rationally acyclic (i.e., 𝐻∗(𝑭(𝐺),Q) � {0} for all ∗ > 0) if and only if
𝐻∗(𝐺,Q) � {0} for all ∗ > 0.

For the commutator subgroup 𝑫 (𝐺) of 𝑭(𝐺), we obtain, again as graded vector spaces over Q,

𝐻∗(𝑫 (𝐺),Q) � Ext(𝐻odd
∗>1 (𝐺,Q)) ⊗ Sym(𝐻even

∗ (𝐺,Q)).

Here, Ext stands for exterior algebra (see, for instance, [35, §5]) and Sym stands for symmetric
algebra (see, for instance, [35, §9]).

Next, we present vanishing results which generalize and provide a conceptual explanation for the
result in [90] that V is acyclic.

Corollary D (see Corollaries 6.8, 6.9 and 6.10). Let G be an ample groupoid whose unit space is locally
compact Hausdorff and does not have isolated points. Assume that G is minimal and has comparison.

Suppose that 𝑘 ∈ Zwith 𝑘 > 0. If 𝐻∗(𝐺) � {0} for all ∗ < 𝑘 , then 𝐻∗(𝑭(𝐺)) � {0} for all 0 < ∗ < 𝑘
and 𝐻𝑘 (𝑭(𝐺)) � 𝐻𝑘 (𝐺). If 𝑘 ≥ 2, then this implies 𝑭(𝐺) = 𝑫 (𝐺). In particular, if 𝐻∗(𝐺) � {0} for
all ∗ ≥ 0, then 𝑭(𝐺) is integrally acyclic, that is, 𝐻∗(𝑭(𝐺)) � {0} for all ∗ > 0, and 𝑭(𝐺) = 𝑫 (𝐺).

For the commutator subgroup, we always have 𝐻1(𝑫 (𝐺)) � {0}.

Concrete examples where Corollary D applies can be found in §6.4. In particular, we construct
continuum many pairwise nonisomorphic infinite simple groups which are all integrally acyclic (see
Remark 6.18).

In low degrees, we obtain the following exact sequence.

Corollary E (see Corollary 6.14). Let G be an ample groupoid, with locally compact Hausdorff unit
space without isolated points. Assume that G is minimal and has comparison. Then there is an exact
sequence

𝐻2(𝑫 (𝐺)) �� 𝐻2 (𝐺) �� 𝐻0 (𝐺,Z/2)
𝜁 �� 𝐻1 (𝑭(𝐺))

𝜂 �� 𝐻1(𝐺) �� 0.

The maps 𝜂 and 𝜁 coincide with the ones in [58, §2.3] and [66, §7].
In particular, Matui’s AH-conjecture is true for ample groupoids G which are minimal, have com-

parison and whose unit spaces are locally compact Hausdorff without isolated points.

Note that this in particular verifies Matui’s AH-conjecture for all purely infinite minimal ample
groupoids, which was not known before. Our result also verifies the AH-conjecture for all minimal ample
groupoids which are𝜎-compact, Hausdorff and almost finite, and whose unit spaces are compact without
isolated points. Previously, this was only known under the additional assumption of principality [56].

Our results also lead to several new concrete homology computations. For instance, if G is the
transformation groupoid of a Cantor minimal Z-system, then the commutator subgroup 𝑫 (𝐺) of 𝑭(𝐺)
is always rationally acyclic. In particular, this covers the class of infinite simple amenable groups found in
[39]. Moreover, we obtain that all Brin–Higman–Thompson groups 𝑛𝑉𝑘,𝑟 are rationally acyclic and that
𝑛𝑉2,𝑟 is integrally acyclic for all n and r (this is the case 𝑘 = 2). We also obtain concrete computations
of rational group homology for topological full groups of certain tiling groupoids, graph groupoids
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and groupoids attached to self-similar actions such as Katsura–Exel–Pardo groupoids. Moreover, we
compute rational group homology for classes of Thompson-like groups introduced by Stein in [86],
including irrational slope versions of Thompson’s group V. The reader may consult §6.4 for results
concerning homology for concrete example classes of topological full groups.Let us now explain the
main ideas. The construction of 𝔅𝐺 is a key ingredient. The underlying category of 𝔅𝐺 actually already
appeared in [53, §2] in the context of finiteness properties, but the extra structure making 𝔅𝐺 a small
permutative category has not been exploited before. For us, the key insight is that for general ample
groupoids, we can replace the small permutative categories constructed from Cantor algebras in [90]
in the setting of Higman–Thompson groups by the categories of bisections 𝔅𝐺 . This allows us to treat
general ample groupoids, for which the notion of Cantor algebras is not available. Actually, from the
point of view of groupoids, 𝔅𝐺 is more natural because it takes into account all compact open subspaces
of the unit space of our groupoid, whereas for groupoids giving rise to Higman–Thompson groups, the
small permutative categories constructed from Cantor algebras in [90] are only subcategories of our
𝔅𝐺 . To create the structure of a small permutative category starting with compact open bisections of our
ample groupoid G, the idea of amplification is crucial, that is, we pass from G to R ×𝐺. Here, R is the
full equivalence relation on N = {1, 2, 3, . . . }, that is, R = N×N with the discrete topology. On the C*-
algebraic level, this corresponds to passing to matrix algebras, an idea which is at the heart of K-theory.
Actually, if we are willing to replace 𝑭(𝐺) by 𝑭(R × 𝐺), then our results above are unconditionally
true, that is, they do not need the assumptions that 𝐺 (0) has no isolated points and that G is minimal and
has comparison (see Thereom 5.17 and the results in §6). In particular, we obtain a proof, for general
ample groupoids, of a modified AH-conjecture with 𝑭(R × 𝐺) in place of 𝑭(𝐺) (see Theorem 6.12
and Remark 6.15).

To go back from 𝑭(R × 𝐺) to 𝑭(𝐺), at least in homology, we need to establish Morita invariance,
which plays the role of homological stability in [90] (see also [75]).

Theorem F (see Theorem 5.14 and Remark 5.16). Suppose that G is an ample groupoid which is
minimal, has comparison, and whose unit space 𝐺 (0) is locally compact Hausdorff without isolated
points. Then for all nonempty compact open subspaces 𝑈 ⊆ 𝑉 of 𝐺 (0) , the canonical maps 𝑭(𝐺𝑈

𝑈 ) →

𝑭(𝐺𝑉
𝑉 ) and 𝑫 (𝐺𝑈

𝑈 ) → 𝑫 (𝐺𝑉
𝑉 ) induce isomorphisms in homology in all degrees.

Here, 𝐺𝑈
𝑈 and 𝐺𝑉

𝑉 are the restrictions of G to U and V, respectively. Theorem F implies that the
homology of Brin–Higman–Thompson groups 𝑛𝑉𝑘,𝑟 does not depend on r (see §6.4), just as in the
case of Higman–Thompson groups [90]. Moreover, Theorem F implies that homology of topological
full groups and their commutator subgroups is invariant under (Morita) equivalence of groupoids
(see Corollary 5.15 and Remark 5.16).Interestingly, the notion of comparison also appears in the
classification programme of C*-algebras [44, 46, 45, 54]. For instance, transformation groupoids of free
minimal actions of groups with subexponential growth and elementary amenable groups on the Cantor
space have comparison [16, 45]. Moreover, all purely infinite minimal groupoids have comparison.
This includes transformation groupoids arising from amenable, minimal actions of many nonamenable
groups on the Cantor space [27]. At the moment, there is no example of a minimal ample groupoid
known which does not have comparison, and there is the conjecture that all transformation groupoids of
free minimal group actions on the Cantor space have comparison. Our proof of Morita invariance splits
naturally into the case of purely infinite minimal groupoids, where no nonzero invariant measures exist,
and the case where nonzero invariant measures do exist (almost finite minimal groupoids, for instance).
The cases covered in [90] belong to the purely infinite setting. In the setting where nonzero invariant
measures do exist, no Morita invariance results were known and we had to develop new ideas. In both
cases, we analyse connectivity of certain simplicial complexes constructed out of bisections, following
the general criterion for homological stability formulated in [75]. Our result identifying (reduced) stable
homology of the algebraic K-theory spectrum K(𝔅𝐺) with groupoid homology of G is a completely
new insight which does not appear in [90]. This result is interesting on its own right because it gives a
new perspective on groupoid homology, which is a fundamental invariant in topological dynamics. For
instance, this invariant plays a key role in the classification of Cantor minimal systems up to topological

https://doi.org/10.1017/fmp.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.31


Forum of Mathematics, Pi 7

orbit equivalence [31, 29, 30]. This new insight leads to a conceptual explanation why Thompson’s
group V is acyclic (as proven in [90]). This is because, as observed in [63], V can be identified with
the topological full group of the ample groupoid 𝐺2, which is the Deaconu–Renault groupoid for the
one-sided full shift on two symbols (see §2.2.4). And it is known that the homology of 𝐺2 vanishes (see
§2.3.2). From the point of view of C*-algebras, this can be explained using Matui’s HK-conjecture [58,
Conjecture 2.6], because 𝐺2 is a groupoid model for the Cuntz algebra O2, whose K-theory vanishes.

Our main results also lead to a better understanding of Matui’s AH-conjecture by relating it to the
Atiyah–Hirzebruch spectral sequence. Our work on the AH-conjecture demonstrates that our proof of
Theorem A reveals more information about the isomorphism �̃�∗(K(𝔅𝐺)) � 𝐻∗(𝐺), allowing us to
identify the maps in the Atiyah–Hirzebruch spectral sequence with the ones appearing in Matui’s AH-
conjecture.

I would like to thank E. Scarparo, O. Tanner and M. Yamashita for very helpful comments and
discussions.

2. Preliminaries

2.1. Groupoids

A groupoid is a small category whose morphisms are all invertible. As usual, we identify the groupoid
with its set of morphisms, say G, and view its set of objects (also called units) 𝐺 (0) as a subset of G by
identifying objects with the corresponding identity morphisms. By definition, our groupoid G comes
with range and source maps r : 𝐺 → 𝐺 (0) , s : 𝐺 → 𝐺 (0) , a multiplication map

𝐺 ×s r 𝐺 = {(𝑔1, 𝑔2): s(𝑔1) = r(𝑔2)} → 𝐺, (𝑔1, 𝑔2) ↦→ 𝑔1𝑔2

and an inversion map 𝐺 → 𝐺, 𝑔 ↦→ 𝑔−1 such that r(𝑔−1) = s(𝑔), s(𝑔−1) = r(𝑔), 𝑔𝑔−1 = r(𝑔) and
𝑔−1𝑔 = s(𝑔). These structure maps satisfy a list of conditions so that G becomes a small category (see,
for instance, [76, Chapter I, Section 1]).

We are interested in the case of topological groupoids, that is, our groupoid G is endowed with
a topology such that range, source, multiplication and inversion maps are all continuous. We do not
assume that G is Hausdorff, but 𝐺 (0) is always assumed to be Hausdorff in the subspace topology. We
call𝐺 (0) the unit space. We will also always assume that𝐺 (0) is locally compact. A topological groupoid
is called étale if the range map (and hence also the source map) is a local homeomorphism. It follows
that 𝐺 (0) is an open subspace of G in that case. An open subspace 𝑈 ⊆ 𝐺 is called an open bisection
if the restricted range and source maps r|𝑈 : 𝑈 → r(𝑈), 𝑔 ↦→ r(𝑔), s|𝑈 : 𝑈 → s(𝑈), 𝑔 ↦→ s(𝑔) are
bijections (and hence homeomorphisms). If G is étale, then G has a basis for its topology consisting of
open bisections. Note that open bisections are always locally compact and Hausdorff because they are
homeomorphic to open subspaces of the unit space. A topological groupoid G is called ample if it is
étale and its unit space 𝐺 (0) is totally disconnected. An étale groupoid is ample if and only if it has a
basis for its topology consisting of compact open bisections.

A topological groupoid G is called minimal if for all 𝑥 ∈ 𝐺 (0) , the orbit 𝐺.𝑥 :=
{
r(𝑔): 𝑔 ∈ s−1(𝑥)

}
is

dense in𝐺 (0) . Let 𝑀 (𝐺) be the set of all nonzero Radon measures 𝜇 on𝐺 (0) which are invariant, that is,
𝜇(r(𝑈)) = 𝜇(s(𝑈)) for all open bisections𝑈 ⊆ 𝐺. An ample groupoid G is said to have groupoid strict
comparison for compact open sets (abbreviated by comparison in the following) if for all nonempty
compact open sets 𝑈,𝑉 ⊆ 𝐺 (0) with 𝜇(𝑈) < 𝜇(𝑉) for all 𝜇 ∈ 𝑀 (𝐺), there exists a compact open
bisection 𝜎 ⊆ 𝐺 with s(𝜎) = 𝑈 and r(𝜎) ⊆ 𝑉 (see for instance [54, §6]). Note that we restrict ourselves
to nonempty open sets U and V because we want our definition of comparison to cover purely infinite
groupoids, where 𝑀 (𝐺) = ∅ (see below).

Examples of groupoids with comparison include locally compact 𝜎-compact Hausdorff ample
groupoids with compact unit spaces which are almost finite in the sense of [56, §6] (see also [54,
Proposition 7.2]). This covers many examples, for instance, AF groupoids, classes of transforma-
tion groupoids and tiling groupoids, as we explain below in §2.2. Another class of groupoids with
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comparison is given by purely infinite minimal groupoids, in the following sense: An ample groupoid
G is purely infinite minimal if and only if for all compact open subspaces 𝑈,𝑉 ⊆ 𝐺 (0) with 𝑉 ≠ ∅,
there exists a compact open bisection 𝜎 ⊆ 𝐺 such that s(𝜎) = 𝑈 and r(𝜎) ⊆ 𝑉 (compare [57, §4.2],
but we do not require essential principality or Hausdorffness). Concrete examples are discussed in
§2.2. By definition, it is clear that purely infinite minimal groupoids have comparison.

2.2. Examples of groupoids

Let us discuss several classes of examples of topological groupoids.

2.2.1. AF groupoids
AF groupoids are inductive limits of elementary groupoids. Here, an elementary groupoid is a disjoint
union of groupoids of the form R × 𝑋 , where R is the full equivalence relation on a finite set and X
is a totally disconnected, locally compact Hausdorff space. AF groupoids are represented by Bratteli
diagrams. We refer to [76, Chapter III, §1], [33, §3] and [56, §2] for details.

2.2.2. Transformation groupoids
Let Γ be a discrete group acting on a locally compact Hausdorff space X via Γ× 𝑋 → 𝑋, (𝛾, 𝑥) ↦→ 𝛾.𝑥.
We form the transformation groupoid Γ � 𝑋 := Γ × 𝑋 , equipped with the product topology. The unit
space of 𝐺 = Γ � 𝑋 is given by 𝐺 (0) = {𝑒} × 𝑋 � 𝑋 (where e is the identity of Γ), with source and
range maps s(𝛾, 𝑥) = 𝑥 and r(𝛾, 𝑥) = 𝛾.𝑥. Multiplication is given by (𝛾′, 𝛾.𝑥) (𝛾, 𝑥) := (𝛾′𝛾, 𝑥). Such a
transformation groupoid is always étale. It is ample if and only if X is totally disconnected. Moreover, G
is minimal if and only if Γ acts minimally on X, that is, for all 𝑥 ∈ 𝑋 , the orbit {𝛾.𝑥: 𝛾 ∈ Γ} is dense in X.
For our transformation groupoid, 𝑀 (𝐺) coincides with the Γ-invariant non-zero Radon measures on X.

Suppose that Γ is countably infinite, that X is compact, metrizable and totally disconnected and that
the Γ-action on X is free. Then the transformation groupoid 𝐺 = Γ � 𝑋 has comparison if all finitely
generated subgroups of Γ have subexponential growth [16] (see also [46]) or if Γ is elementary amenable
[45].

Concrete examples are given by Cantor minimal systems, that is, the case when Γ = Z and X is
homeomorphic to the Cantor space (see [31]), or by Cantor minimal Z𝑑-systems, that is, the case when
Γ = Z𝑑 and X is homeomorphic to the Cantor space (see [29, 30]). A class of concrete examples is
given by interval exchange transformations (see, for instance, [11]). Transformation groupoids of Cantor
minimal dihedral systems also have comparison by [70].

Another concrete class of examples is given by odometers: Let Γ𝑖 be a decreasing sequence of finite
index subgroups of a group Γ. Then the left multiplication action of Γ on Γ/Γ𝑖 induces an action of Γ
on 𝑋 := lim

←−−𝑖
Γ/Γ𝑖 . X is always totally disconnected, the action is always minimal and the corresponding

transformation groupoid always has comparison.
Furthermore, it was shown in [27] that transformation groupoids of amenable, minimal actions of

many nonamenable groups on the Cantor space have comparison.

2.2.3. Tiling groupoids
Groupoids associated with tilings have been constructed in [43]. For aperiodic, repetitive tilings with
finite local complexity, the corresponding tiling groupoids are étale, minimal, have unit spaces homeo-
morphic to the Cantor space and are almost finite by [38], hence have comparison.

2.2.4. Graph groupoids
Groupoids attached to graphs have been constructed in [76, 15] (see also [49, 71, 67], for instance).
We will refer to these as graph groupoids, and remark that they are special cases of Deaconu-Renault
groupoids. The reader will find criteria when graph groupoids are purely infinite minimal in [67].

Let us describe groupoids associated with shifts of finite type (abbreviated by SFT groupoids), which
are special cases of graph groupoids. Consider a shift of finite type encoded by a finite directed graph
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with vertices 𝐸0 and edges 𝐸1. Let A be the corresponding adjacency matrix, that is, 𝐴 = (𝐴( 𝑗 , 𝑖)) 𝑗 ,𝑖∈𝐸0 ,
where 𝐴( 𝑗 , 𝑖) is the number of edges from i to j. Assume that A is irreducible, in the sense that for all
𝑗 , 𝑖, there exists n such that 𝐴𝑛 ( 𝑗 , 𝑖) > 0 and that A is not a permutation matrix. Let 𝑋𝐴 be the infinite
path space of our graph, that is, 𝑋𝐴 consists of infinite sequences (𝑥𝑘 )𝑘 such that the target of 𝑥𝑘+1 is
the domain of 𝑥𝑘 . Equip 𝑋𝐴 with the product topology. Define the one-sided shift 𝜎𝐴 : 𝑋𝐴 → 𝑋𝐴 by
setting (𝜎𝐴(𝑥𝑘 ))𝑘 = 𝑥𝑘+1. The groupoid attached to our shift of finite type is given by

𝐺𝐴 :=
{
(𝑥, 𝑛, 𝑦) ∈ 𝑋𝐴 × Z × 𝑋𝐴: ∃ 𝑙, 𝑚 ∈ Z with 𝑙, 𝑚 ≥ 0 such that 𝑛 = 𝑙 − 𝑚 and 𝜎𝑙

𝐴(𝑥) = 𝜎
𝑚
𝐴 (𝑦)

}
.

The topology of 𝐺𝐴 is generated by sets of the form{
(𝑥, 𝑙 − 𝑚, 𝑦) ∈ 𝐺𝐴: 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉, 𝜎𝑙

𝐴(𝑥) = 𝜎
𝑚
𝐴 (𝑦)

}
,

where 𝑙, 𝑚 ∈ Z with 𝑙, 𝑚 ≥ 0, and U, V are open subspaces of 𝑋𝐴 such that 𝜎𝑙
𝐴 and 𝜎𝑚

𝐴 induce
homeomorphisms

𝑈
𝜎𝑙

𝐴

�
�� 𝜎𝑙

𝐴(𝑈) = 𝜎
𝑚
𝐴 (𝑉) 𝑉.

𝜎𝑚
𝐴

�
��

The unit space of 𝐺𝐴 is given by {(𝑥, 0, 𝑥) ∈ 𝐺𝐴: 𝑥 ∈ 𝑋𝐴}, which is canonically homeomorphic to
𝑋𝐴. Source and range maps are given by s(𝑥, 𝑛, 𝑦) = 𝑦, r(𝑥, 𝑛, 𝑦) = 𝑥 and multiplication is given by
(𝑥, 𝑛, 𝑦) (𝑦, 𝑛′, 𝑧) = (𝑥, 𝑛 + 𝑛′, 𝑧). In this setting, our groupoid 𝐺𝐴 is always purely infinite minimal,
with unit space homeomorphic to the Cantor space. Note that compared to the convention in [57], the
direction of our arrows is reversed.

2.2.5. Higher rank graph groupoids
Higher rank graphs are small categories which come with a functor toN𝑘 satisfying a certain factorisation
property (see [48]). Groupoids attached to higher rank graphs have been introduced and studied in [48,
20]. These groupoids can be identified with boundary groupoids arising from left regular representations
of higher rank graphs so that [52, Proposition 5.21] gives sufficient conditions when these groupoids are
purely infinite minimal. Particular examples are given by products of SFT groupoids, which are always
purely infinite minimal and have been studied in [58].

2.2.6. Groupoids arising from self-similar actions
Groupoids associated with self-similar actions on trees have been introduced and studied in [64, Example
6.5] (see also [68], for instance). These are always étale and purely infinite minimal, with unit space
homeomorphic to the Cantor space. Note, however, that these groupoids may be non-Hausdorff.Étale
groupoids attached to self-similar actions on graphs have been studied in [18] (see also [68, 69]). A
special case is given by Katsura–Exel–Pardo groupoids 𝐺𝐴,𝐵 (in the language of [68]), where A and B
are two 𝑁 × 𝑁 row-finite matrices with integer entries, where 𝑁 ∈ N ∪ {∞}, and all entries of A are
nonnegative. If A is irreducible and not a permutation matrix, then these groupoids are purely infinite
minimal, with unit space homeomorphic to the Cantor space.

2.2.7. Groupoids arising from piecewise affine transformations
For fixed 𝜆 ∈ (0, 1), groupoids arising from piecewise affine transformations on the unit interval, which
on subintervals of the form [𝑎, 𝑏), for 𝑎, 𝑏 ∈ Z[𝜆, 𝜆−1], are given by 𝑡 ↦→ 𝜆𝑖𝑡 + 𝑐 for some 𝑖 ∈ Z and
𝑐 ∈ Z[𝜆, 𝜆−1], have been studied in [50] (where they are denoted by 𝐺 �𝑂𝑃⊆𝐺 |

𝑁 (𝑃)
𝑁 (𝑃)

). These groupoids
are étale, minimal, with unit space homeomorphic to the Cantor space, and a similar argument as in
[50, Proposition 4.1] shows that the groupoids are purely infinite.

Remark 2.1. The groupoids in §2.2.4, §2.2.5 and §2.2.6 are special cases of boundary groupoids arising
from left regular representations of left cancellative small categories (see [85, 52]). Actually, in all these
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cases, the underlying categories have natural Garside structures, which allow for a detailed analysis of
structural properties of the corresponding groupoids (see [53]).

2.3. Groupoid homology

Let us discuss groupoid homology in the general setting of non-Hausdorff groupoids. We refer the
reader to [14, 56] for more information about groupoid homology.

2.3.1. Functions with compact open support and definition of groupoid homology
Let Z be a topological space and 𝒪 a family of subspaces 𝑂 ⊆ 𝑍 which are Hausdorff, open, locally
compact and totally disconnected in the subspace topology, such that 𝑍 =

⋃
𝑂∈𝒪 𝑂. This implies that

𝒪 determines the topology of Z because a subset of Z is open if and only if its intersection with every
𝑂 ∈ 𝒪 is open.

Let C be a Z-module, that is, an abelian group. Given 𝑐 ∈ C and a subset 𝑈 ⊆ 𝑍 , let 𝑐𝑈 denote the
function 𝑍 → C with 𝑐𝑈 ≡ 𝑐 on U and 𝑐𝑈 ≡ 0 on 𝑍 \𝑈. Define

𝒞(𝑍,C) := span {𝑐𝑈 :𝑈 compact open subspace of some 𝑂 ∈ 𝒪, 𝑐 ∈ C} .

By construction, 𝒞(𝑍,C) consists of functions 𝑍 → C. Clearly, 𝒞(𝑍,C) is an abelian group. As
observed in [87, Proposition 4.3], 𝒞(𝑍,C) is also the linear span of all functions of the form 𝑐𝐾 , where
c runs through all 𝑐 ∈ C and K runs through all subspaces of Z which are compact, open and Hausdorff.

If Z is Hausdorff, then 𝒞(𝑍,C) is the set of continuous C-valued functions on Z with compact (open)
support. In that case, disjointification is a key technique in the analysis of 𝒞(𝑍,C). In the non-Hausdorff
setting, disjointification is not possible in general because intersections of compact sets might not be
compact. Instead, the result below (Lemma 2.2) serves as a replacement. We include it because similar
proof techniques will appear frequently in the non-Hausdorff setting.

Given𝑈 ⊆ 𝑍 , let C𝑈 := {𝑐𝑈 : 𝑐 ∈ C}. Consider
⊕

𝑈 C𝑈 , where the sum runs over all compact open
subsets U of some 𝑂 ∈ 𝒪, and let ℐ be the subgroup of

⊕
𝑈 C𝑈 generated by elements of the form

𝑐𝑈�𝑉 − 𝑐𝑈 − 𝑐𝑉 , where𝑈,𝑉 are disjoint compact open subspaces of some 𝑂 ∈ 𝒪.

Lemma 2.2. The kernel of the canonical projection map 𝜋 :
⊕

𝑈 C𝑈 → 𝒞(𝑍,C), 𝑐𝑈 ↦→ 𝑐𝑈 coincides
with ℐ.

Proof. Suppose that 𝑓 =
∑

𝑖∈𝐼 (𝑐𝑖)𝑈𝑖 satisfies 𝜋( 𝑓 ) = 0, where I is a finite index set. Suppose that
{𝑂1, . . . , 𝑂𝑛} is a finite subset of 𝒪 such that for every 𝑖 ∈ 𝐼 there exists 1 ≤ 𝑚 ≤ 𝑛 with𝑈𝑖 ⊆ 𝑂𝑚. We
proceed inductively on n.

If 𝑛 = 1, then all 𝑈𝑖 are contained in some 𝑂 ∈ 𝒪. Then we can disjointify 𝑈𝑖 in O, that is, we let{
𝑉 𝑗

}
be the set of nonempty subspaces of O of the form

⋂
𝑖∈𝐼 ′𝑈𝑖 ∩

⋂
𝑖′ ∈𝐼\𝐼 ′𝑈

𝑐
𝑖 , where 𝐼 ′ runs through

all nonempty subsets of I and 𝑈𝑐
𝑖 = 𝑍 \ 𝑈𝑖 . By construction,

{
𝑉 𝑗

}
is a family of pairwise disjoint

subsets, and because O is Hausdorff, every 𝑉 𝑗 is compact open. Moreover, every 𝑈𝑖 is a disjoint union
of 𝑉 𝑗 because𝑈𝑖 =

⋃
𝑖∈𝐼 ′ (

⋂
𝑖∈𝐼 ′𝑈𝑖 ∩

⋂
𝑖′ ∈𝐼\𝐼 ′𝑈

𝑐
𝑖 ). So we can write𝑈𝑖 =

∐
𝑗𝑖 𝑉 𝑗𝑖 . Hence, it follows that

(𝑐𝑖)𝑈𝑖 ≡
∑

𝑗𝑖 (𝑐𝑖)𝑉𝑗𝑖
mod ℐ. Hence, we obtain 𝑓 ≡

∑
𝑗 (𝑐 𝑗 )𝑉𝑗 mod ℐ. But now 𝜋( 𝑓 ) = 0 implies that

every 𝑐 𝑗 must be zero because the 𝑉 𝑗 are pairwise disjoint. Hence, 𝑓 ≡
∑

𝑗 (𝑐 𝑗 )𝑉𝑗 = 0 mod ℐ, that is,
𝑓 ∈ ℐ.

Now, suppose that 𝑛 > 1. By disjointifying, we may assume that all the 𝑈𝑖 which are contained in a
single 𝑂𝑚 are pairwise disjoint. Now, fix 𝑖 ∈ 𝐼 with 𝑈𝑖 ⊆ 𝑂𝑛. If there exists 𝑧 ∈ 𝑍 with 𝑧 ∈ 𝑈𝑖 , 𝑧 ∉ 𝑈𝑖′

for all 𝑖′ ≠ 𝑖, then 𝑐𝑖 = 0 as 0 = 𝜋( 𝑓 ) (𝑧) = 𝑐𝑖 . Hence, we may assume 𝑈𝑖 ⊆
⋃

𝑖≠𝑖′ ∈𝐼 𝑈𝑖′ . Actually, we
even have 𝑈𝑖 ⊆

⋃
𝑖′ ∈𝐼 ′𝑈𝑖′ , where 𝐼 ′ is a subset of 𝐼 \ {𝑖} such that for every 𝑖′ ∈ 𝐼 ′, we have 𝑈𝑖′ ⊆ 𝑂𝑚

for some 1 ≤ 𝑚 < 𝑛. Here, we are using that all 𝑈𝑖′ with 𝑈𝑖′ ⊆ 𝑂𝑛 are pairwise disjoint. Therefore, for
every 𝑥 ∈ 𝑈𝑖 there exists a compact open neighbourhood 𝑉𝑥 of x with 𝑉𝑥 ⊆ 𝑈𝑖′ for some 𝑖′ ∈ 𝐼 ′. As 𝑈𝑖

is compact, we can write𝑈𝑖 as a finite union𝑈𝑖 =
⋃

𝑗∈𝐽 𝑉 𝑗 , where 𝑉 𝑗 = 𝑉𝑥 𝑗 for some 𝑥 𝑗 ∈ 𝑈𝑖 . As𝑈𝑖 is
contained in𝑂𝑛, all𝑉 𝑗 are also contained in𝑂𝑛 so that we can (after disjointifying) assume that the𝑉 𝑗 are
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pairwise disjoint. Thus, (𝑐𝑖)𝑈𝑖 ≡
∑

𝑗∈𝐽 (𝑐𝑖)𝑉𝑗 mod ℐ and thus 𝑓 ≡
∑

𝑗∈𝐽 (𝑐𝑖)𝑉𝑗 +
∑

𝑖≠𝑖′ ∈𝐼 (𝑐𝑖′ )𝑈𝑖′
mod ℐ.

Now, run this procedure for all 𝑖 ∈ 𝐼 such that𝑈𝑖 ⊆ 𝑂𝑛. In this way, we are able to replace {𝑂1, . . . , 𝑂𝑛}

by {𝑂1, . . . , 𝑂𝑛−1} and then apply induction hypothesis. �

We derive the following immediate consequence.

Corollary 2.3. 𝒞(𝑍,C) � 𝒞(𝑍,Z) ⊗Z C.

Let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) . Let C be as above.
Define

𝒞(𝐺,Z) := span {1𝑈 :𝑈 ⊆ 𝐺 compact open bisection} .

Note that since every compact open bisection is automatically Hausdorff, 𝒞(𝐺,Z) coincides with
𝒞(𝑍,Z) as defined above, for 𝑍 = 𝐺 and 𝒪 given by the collection of all open bisections. 𝒞(𝐺,Z)
becomes a Z-algebra with respect to convolution given by ( 𝑓1 𝑓2) (𝑔) =

∑
ℎ1ℎ2=𝑔 𝑓1(ℎ1) 𝑓2(ℎ2) for

𝑓1, 𝑓2 ∈ 𝒞(𝐺,Z). Algebras of this form have for instance been studied in [87, 12].
Now, consider

𝒞(𝐺 (0) ,C) := span
{
𝑐𝑈 :𝑈 ⊆ 𝐺 (0) compact open, 𝑐 ∈ C

}
.

𝒞(𝐺 (0) ,C) is a left- and right-𝒞(𝐺,Z)-module via

( 𝑓 𝑚) (𝑥) =
∑

𝑔−1𝑔=𝑥

𝑓 (𝑔−1)𝑚(r(𝑔)), (𝑚 𝑓 ) (𝑥) =
∑

𝑔𝑔−1=𝑥

𝑚(s(𝑔)) 𝑓 (𝑔−1),

for 𝑓 ∈ 𝒞(𝐺,Z) and 𝑚 ∈ 𝒞(𝐺 (0) ,C). Let us now define groupoid homology in terms of the bar
resolution and then explain an alternative approach using Tor .

Let 𝐺 (𝜈) :=
{
(𝑔1, . . . , 𝑔𝜈) ∈ 𝐺

𝜈: s(𝑔𝜇+1) = r(𝑔𝜇)
}
, equipped with the subspace topology coming

from the product topology on 𝐺𝜈 . Let 𝒪 (𝜈) be the collection of subsets of 𝐺 (𝜈) of the form

𝑂1 ×s r . . . ×s r 𝑂𝜈 :=
{
(𝑔1, . . . , 𝑔𝜈) ∈ 𝐺

(𝜈) : 𝑔𝜇 ∈ 𝑂𝜇

}
,

where 𝑂𝜇 are open bisections with s(𝑂𝜇+1) = r(𝑂𝜇). Let 𝒞(𝐺 (𝜈) ,C) be defined as above (with
𝑍 = 𝐺 (𝜈) , 𝒪 = 𝒪 (𝜈) ). Consider the maps 𝑑𝜇

𝜈 : 𝐺 (𝜈) → 𝐺 (𝜈−1) given by 𝑑0
1 = s, 𝑑1

1 = r and

𝑑
𝜇
𝜈 (𝑔1, . . . , 𝑔𝜈) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑔2, . . . , 𝑔𝜈) if 𝜇 = 0,
(𝑔1, . . . , 𝑔𝜇𝑔𝜇+1, . . . , 𝑔𝜈) if 0 < 𝜇 < 𝜈,
(𝑔1, . . . , 𝑔𝜈−1) if 𝜇 = 𝜈.

Since 𝑑
𝜇
𝜈 are local homeomorphisms, they induce homomorphisms (𝑑𝜇

𝜈 )∗ : 𝒞(𝐺 (𝜈) ,C) →
𝒞(𝐺 (𝜈−1) ,C) given by (𝑑𝜇

𝜈 )∗( 𝑓 ) (𝑧) =
∑

𝑦 ∈ (𝑑
𝜇
𝜈 )
−1 (𝑧) 𝑓 (𝑦). Now, define

𝜕𝜈 :=
𝜈∑

𝜇=0
(−1)𝜇 (𝑑𝜇

𝜈 )∗. (1)

It is straightforward to check that 𝐵∗(𝐺,C) := (𝒞(𝐺 (𝜈) ,C), 𝜕𝜈)𝜈 is a chain complex. Groupoid homol-
ogy is defined as the homology of this chain complex, that is,

𝐻∗(𝐺,C) := 𝐻∗(𝐵∗(𝐺,C)).
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2.3.2. Groupoid homology for examples
Given an AF groupoid G as in §2.2.1, the 0-th homology 𝐻0 (𝐺,C) is given by the dimension group,
with coefficients in C, of a Bratteli diagram describing G (the dimension group is independent of the
choice of the diagram), and all higher homology groups vanish, that is, 𝐻∗(𝐺,C) � {0} for all ∗ > 0
(see for instance [76, 47, 19, 56]).

For a transformation groupoid 𝐺 = Γ � 𝑋 as in §2.2.2, it follows from the definitions that groupoid
homology is canonically isomorphic to group homology with coefficients in the Γ-module 𝐶𝑐 (𝑋,C),
that is, 𝐻∗(𝐺,C) � 𝐻∗(Γ, 𝐶𝑐 (𝑋,C)) (see [6] for the definition of group homology). Here, 𝐶𝑐 (𝑋,C)
denotes the set of compactly supported continuous functions on X with values in C, where C is equipped
with the discrete topology. Note that since X is Hausdorff,𝐶𝑐 (𝑋,C) coincides with𝒞(𝑋,C) from §2.3.1.
Let us describe groupoid homology more explicitly in the case of Cantor minimal systems, following
[31]. In that case, Γ = Z, X is homeomorphic to the Cantor space, and 𝐶𝑐 (𝑋,C) = 𝐶 (𝑋,C) because X
is compact. Let 𝜑 ∈ Homeo(𝑋) be the homeomorphism corresponding to the canonical generator 1 of
Z. Then

𝐻0 (Z � 𝑋,C) � 𝐶 (𝑋,C)/
{
𝑓 − 𝑓 ◦ 𝜑−1: 𝑓 ∈ 𝐶 (𝑋,C)

}
,

𝐻1 (Z � 𝑋,C) � C and all higher homology groups vanish, that is, 𝐻∗(Z � 𝑋,C) � {0} for all ∗ > 1.
Let us now consider tiling groupoids as in §2.2.3. Given a tiling ofR𝑑 , let G be its tiling groupoid and

Ω the hull space of our tiling. As observed in [72, §5.2], groupoid cohomology of G can be identified
with sheaf cohomology of Ω. Using the description of groupoid homology of G in terms of group
homology (see, for instance, [72, §5.2]) and Poincaré duality, we obtain an identification of groupoid
homology𝐻∗(𝐺) with the (𝑑−∗)-th Čech cohomology �̌�𝑑−∗(Ω) ofΩ. Explicit homology computations
can be found in [26, 22, 23, 25].

For an SFT groupoid 𝐺𝐴 as in §2.2.4, it was shown in [56, Theorem 4.14] that

𝐻∗(𝐺𝐴,C) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
coker (id − 𝐴𝑡 :

⊕
𝐸0 C→

⊕
𝐸0 C) if ∗ = 0,

ker (id − 𝐴𝑡 :
⊕

𝐸0 C→
⊕

𝐸0 C) if ∗ = 1,
{0} else.

For homology computations for more general graph groupoids, we refer to [67] and the references
therein.

For groupoids of higher rank graphs as in §2.2.5, groupoid homology has been computed for some
cases in [19]. Let us briefly summarize the result from [19] in the one vertex case. Let Λ be a one vertex
k-graph and 𝐺Λ the corresponding groupoid. Let Λ𝜀𝑖 be the elements of Λ with degree 𝜀𝑖 , where 𝜀𝑖 are
the standard generators of N𝑘 . Write 𝑁𝑖 := |Λ𝜖𝑖 | − 1. If Λ is row-finite and 𝑁𝑖 ≥ 1 for all i, then

𝐻∗(𝐺Λ) �

{
(Z/gcd(𝑁1, . . . , 𝑁𝑘 )) (

𝑘−1
∗ ) if 0 ≤ ∗ ≤ 𝑘 − 1,

{0} else.

For products of SFT groupoids, which is another particular case of groupoids of higher rank graphs, a
complete computation of groupoid homology has been established in [58, Proposition 5.4].

Consider Katsura–Exel–Pardo groupoids 𝐺𝐴,𝐵, which are special cases of groupoids attached to
self-similar actions on graphs (see §2.2.6). Let us present the groupoid homology computation in [69]
(see also [68]). We use the same notation as in §2.2.6. Assume that A and B are row-finite matrices with
integer entries and all entries of A are nonnegative. Suppose that for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , 𝐵𝑖, 𝑗 = 0 if and

https://doi.org/10.1017/fmp.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.31


Forum of Mathematics, Pi 13

only if 𝐴𝑖, 𝑗 = 0. Then

𝐻∗(𝐺𝐴,𝐵) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

coker (id − 𝐴) if ∗ = 0,
ker (id − 𝐴) ⊕ coker (id − 𝐵) if ∗ = 1,
ker (id − 𝐵) if ∗ = 2,
{0} else.

For groupoids arising from piecewise affine transformations as in §2.2.7, groupoid homology com-
putations for classes of examples can be found in [50].

2.3.3. Description of groupoid homology using derived functors
Our goal now is to show that

𝐻∗(𝐺,C) � Tor 𝒞 (𝐺,Z)
∗ (𝒞(𝐺 (0) ,Z),𝒞(𝐺 (0) ,C)).

For Hausdorff groupoids, this is shown in [4, 61]. We treat the case of non-Hausdorff groupoids. The
results of §2.3.3 are merely included for completeness; they are not needed in the sequel. However,
some of the ideas will appear again in §4.

First of all, note that, following for instance the approach in [61, §4.1], we will be able to use standard
results in homological algebra, even though they are usually formulated for unital rings whereas our
ring 𝒞(𝐺,Z) is in general not unital, only locally unital.

First of all, the inversion map induces an involution on𝒞(𝐺,Z)which flips the order of multiplication,
which in turn allows us to interchange left-𝒞(𝐺,Z)-modules and right-𝒞(𝐺,Z)-modules and thus leads
to the identification Tor 𝒞 (𝐺,Z)

∗ (𝒞(𝐺 (0) ,Z),𝒞(𝐺 (0) ,C)) � Tor 𝒞 (𝐺,Z)
∗ (𝒞(𝐺 (0) ,C),𝒞(𝐺 (0) ,Z)). So it

suffices to show that 𝐻∗(𝐺,C) � Tor 𝒞 (𝐺,Z)
∗ (𝒞(𝐺 (0) ,C),𝒞(𝐺 (0) ,Z)).

Next, we define another chain complex 𝐸∗(𝐺,Z) := (𝒞(𝐺 (𝜈+1) ,Z), 𝜕𝜈+1)𝜈 , where 𝜕𝜈+1 is given as
follows: The maps 𝑑𝜇

𝜈+1 : 𝐺 (𝜈+1) → 𝐺 (𝜈) given by

𝑑
𝜇
𝜈+1(𝑔0, . . . , 𝑔𝜈) =

{
(𝑔0, . . . , 𝑔𝜇𝑔𝜇+1, . . . , 𝑔𝜈) if 0 ≤ 𝜇 < 𝜈,
(𝑔0, . . . , 𝑔𝜈−1) if 𝜇 = 𝜈,

are local homeomorphisms, hence induce homomorphisms (𝑑𝜇
𝜈+1)∗ : 𝒞(𝐺 (𝜈+1) ,Z) → 𝒞(𝐺 (𝜈) ,Z)

given by (𝑑𝜇
𝜈+1)∗( 𝑓 ) (𝑧) =

∑
𝑦 ∈ (𝑑

𝜇
𝜈+1)

−1 (𝑧) 𝑓 (𝑦). Define 𝜕𝜈+1 :=
∑𝜈

𝜇=0 (𝑑
𝜇
𝜈+1)∗. Now, consider the left

G-action on 𝐺 (𝜈+1) with respect to the anchor map 𝜌 : 𝐺 (𝜈+1) → 𝐺 (0) , (𝑔0, . . . , 𝑔𝜈) ↦→ r(𝑔0)
and the action 𝑔.(𝑔0, . . . , 𝑔𝜈) := (𝑔𝑔0, 𝑔1, . . . , 𝑔𝜈) for all 𝑔 ∈ 𝐺 and (𝑔0, . . . , 𝑔𝜈) ∈ 𝐺

(𝜈+1) with
𝜌(𝑔0, . . . , 𝑔𝜈) = s(𝑔). This G-action induces a left-𝒞(𝐺,Z)-module structure on 𝒞(𝐺 (𝜈+1) ,Z) via
( 𝑓 𝑚) (𝑧) :=

∑
𝑔∈𝐺, 𝑦∈𝐺 (𝜈+1) , 𝑔.𝑦 = 𝑧 𝑓 (𝑔)𝑚(𝑦) for 𝑓 ∈ 𝒞(𝐺,Z), 𝑚 ∈ 𝒞(𝐺 (𝜈+1) ,Z). It is straightforward

to check that 𝐸∗(𝐺,Z) is a chain complex in the category of 𝒞(𝐺,Z)-modules.
Observe that 𝐵∗(𝐺,C) � 𝒞(𝐺 (0) ,C) ⊗𝒞 (𝐺,Z) 𝐸∗(𝐺,C). This is because the identification 𝐺 (0) ×𝐺

𝐺 (𝜈+1) � 𝐺 (𝜈) , (r(𝑔0), (𝑔0, . . . , 𝑔𝜈))) ↦→ (𝑔1, . . . , 𝑔𝜈) induces an isomorphism

𝒞(𝐺 (0) ,C) ⊗𝒞 (𝐺,Z) 𝒞(𝐺
(𝜈+1) ,Z) � 𝒞(𝐺 (𝜈) ,C)

sending 𝑐r(𝑈0) ⊗ 1𝑈0 ×s r... ×s r𝑈𝜈 to 𝑐𝑈1 ×s r... ×s r𝑈𝜈 .
Moreover, 𝐸∗(𝐺,C) is exact. The corresponding chain homotopy is induced by the maps ℎ𝜈 : 𝐺 (𝜈) →

𝐺 (𝜈+1) , (𝑔0, . . . , 𝑔𝜈−1) ↦→ (r(𝑔0), 𝑔0, . . . , 𝑔𝜈−1) for 𝜈 ≥ 1 and the inclusion ℎ0 : 𝐺 (0) → 𝐺 for 𝜈 = 0
(see, for instance, [4, 61], but note that 𝐸𝐺• in [4, §2.3] does not coincide with our 𝐺 (•) ; instead, use
the identification 𝐸𝐺• � (𝑔0, 𝑔1, 𝑔2, . . . ) ↦→ (𝑔0, 𝑔

−1
0 𝑔1, 𝑔

−1
1 𝑔2, . . . ) ∈ 𝐺

(•) ).
Therefore, once we show that 𝒞(𝐺 (𝜈+1) ,Z) are flat left-𝒞(𝐺,Z)-modules, then we conclude that

𝐻∗(𝐺,C) � Tor 𝒞 (𝐺,Z)
∗ (𝒞(𝐺 (0) ,Z),𝒞(𝐺 (0) ,C)).
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As a first step, observe that we have an isomorphism

𝒞(𝐺,Z) ⊗𝒞 (𝐺 (0) ,Z) 𝒞(𝐺
(𝜈) ,Z) � 𝒞(𝐺 (𝜈+1) ,Z) (2)

sending 𝑎 ⊗ 𝑓 to the function (𝑔0, 𝑔1, . . . , 𝑔𝜈) ↦→ 𝑎(𝑔0) 𝑓 (𝑔1, . . . , 𝑔𝜈). The proof is similar as the one
for Lemma 2.2.

Now, suppose that M is a right-𝒞(𝐺,Z)-module. By [88], there is a sheaf M of Z-modules over𝐺 (0)
together with a G-action such that 𝑀 � Γ𝑐 (𝐺

(0) ,M) as right-𝒞(𝐺,Z)-modules. Here, Γ𝑐 stands for
continuous sections with compact support. Using the anchor map 𝜌 : 𝐺 (𝜈) → 𝐺 (0) , define the pullback
𝜌∗M as a sheaf over 𝐺 (𝜈) with fibre (𝜌∗M)𝑧 = M𝜌(𝑧) for 𝑧 ∈ 𝐺 (𝜈) . Let 𝒪 (𝜈) be the collection of
subspaces of the form 𝑂1 ×s r . . . ×s r 𝑂𝜈 as above. Note that 𝜌 restricts to a homeomorphism on these
subspaces 𝑂1 ×s r . . . ×s r 𝑂𝜈 . For a compact open subspace 𝑈 ⊆ 𝑂 ∈ 𝒪 (𝜈) and 𝑚 ∈ 𝑀 , define (𝜌∗𝑚)𝑈
as the composite

(𝜌 |𝑂)
−1(𝑈)

𝜌 �� 𝜌(𝑈)
𝑚1𝜌(𝑈 ) �� M.

Set

Γ𝒞 (𝐺
(𝜈) , 𝜌∗M) := span

{
(𝜌∗𝑚)𝑈 :𝑈 compact open subspace of some 𝑂 ∈ 𝒪 (𝜈) , 𝑚 ∈ 𝑀

}
.

By construction, Γ𝒞 consists of sections𝐺 (𝜈) → 𝜌∗M. Note that since𝐺 (𝜈) is not Hausdorff in general,
Γ𝒞 does not coincide with Γ𝑐 . Now, a similar argument as for Lemma 2.2 implies that the following map,

𝑀 ⊗𝒞 (𝐺 (0) ,Z) 𝒞(𝐺
(𝜈) ,Z) � Γ𝒞 (𝐺

(𝜈) , 𝜌∗M), (3)

sending 𝑚 ⊗ 𝑓 to the function 𝑧 ↦→ 𝑚(𝜌(𝑧)) 𝑓 (𝑧), is an isomorphism.
Now, we arrive at the desired conclusion.

Proposition 2.4. For all 𝜈 ≥ 0, 𝒞(𝐺 (𝜈+1) , 𝑅) is a flat left-𝒞(𝐺,Z)-module.

Proof. Suppose that 0 �� 𝑀
𝜄 �� 𝑁 is an exact sequence of right-𝒞(𝐺,Z)-modules. By [88], we

obtain corresponding sheavesM andN . Moreover, 𝜄 induces injective homomorphisms 𝜄𝑥 : M𝑥 ↩→ N𝑥

on the fibres, for all 𝑥 ∈ 𝐺 (0) . We want to show that

𝜄 ⊗ id : 𝑀 ⊗𝒞 (𝐺,Z) 𝒞(𝐺
(𝜈+1) ,Z) → 𝑁 ⊗𝒞 (𝐺,Z) 𝒞(𝐺

(𝜈+1) ,Z)

is injective. Using equations (2) and (3), we obtain the following identification:

𝑀 ⊗𝒞 (𝐺,Z) 𝒞(𝐺
(𝜈+1) ,Z) � 𝑀 ⊗𝒞 (𝐺,Z) 𝒞(𝐺,Z) ⊗𝒞 (𝐺 (0) ,Z) 𝒞(𝐺

(𝜈) ,Z)

� 𝑀 ⊗𝒞 (𝐺 (0) ,Z) 𝒞(𝐺
(𝜈) ,Z)

� Γ𝒞 (𝐺
(𝜈) , 𝜌∗M).

Similarly, 𝑁 ⊗𝒞 (𝐺,Z) 𝒞(𝐺
(𝜈+1) ,Z) � Γ𝒞 (𝐺 (𝜈) , 𝜌∗N ). Identifying elements of Γ𝒞 (𝐺 (𝜈) , 𝜌∗M) and

Γ𝒞 (𝐺 (𝜈) , 𝜌∗N ) as functions on 𝐺 (𝜈) with values in M and N , respectively, we see that, under the
identifications above, 𝜄 ⊗ id sends 𝑓 ∈ Γ𝒞 (𝐺 (𝜈) , 𝜌∗M) to the map 𝑧 ↦→ 𝜄𝜌(𝑧) ( 𝑓 (𝑧)). And since 𝜄𝑥 is
injective for all 𝑥 ∈ 𝐺 (0) , we deduce that 𝜄 ⊗ id must be injective as well, as desired. �

As explained above, using [61, Proposition 4.21], this leads to the desired description of groupoid
homology in terms of Tor .

Theorem 2.5. 𝐻∗(𝐺,C) � Tor 𝒞 (𝐺,Z)
∗ (𝒞(𝐺 (0) ,Z),𝒞(𝐺 (0) ,C)).
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2.4. Topological full groups

In the following, let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) .
Definition 2.6. If 𝐺 (0) is compact, then the topological full group 𝑭(𝐺) is the group of compact open
bisections 𝜎 ⊆ 𝐺 with r(𝜎) = 𝐺 (0) = s(𝜎). Multiplication in 𝑭(𝐺) is given by multiplication of
bisections, that is, 𝜎𝜏 := {𝑔ℎ: 𝑔 ∈ 𝜎, ℎ ∈ 𝜏, s(𝑔) = r(ℎ)}.

In the general case where 𝐺 (0) is not necessarily compact, we set 𝑭(𝐺) := lim
−−→𝑈

𝑭(𝐺𝑈
𝑈 ) =⋃

𝑈 𝑭(𝐺𝑈
𝑈 ). Here, the limit is taken over all compact open subspaces 𝑈 ⊆ 𝐺 (0) , ordered by inclu-

sion, and 𝐺𝑈
𝑈 = {𝑔 ∈ 𝐺: s(𝑔), r(𝑔) ∈ 𝑈}. Given two compact open subspaces 𝑈 ⊆ 𝑉 of 𝐺 (0) , we view

𝑭(𝐺𝑈
𝑈 ) as a subgroup of 𝑭(𝐺𝑉

𝑉 ) via the embedding 𝑭(𝐺𝑈
𝑈 ) ↩→ 𝑭(𝐺𝑉

𝑉 ), 𝜎 ↦→ 𝜎 � (𝑉 \𝑈).
If G is effective, that is, when the interior of the isotropy subgroupoid {𝑔 ∈ 𝐺: r(𝑔) = s(𝑔)} coincides

with 𝐺 (0) , then the map sending 𝜎 ∈ 𝑭(𝐺𝑈
𝑈 ) ⊆ 𝑭(𝐺) to the homeomorphism 𝐺 (0) → 𝐺 (0) given

by 𝑥 ↦→ 𝜎.𝑥 on U and identity on 𝐺 (0) \ 𝑈 is injective so that we may view 𝑭(𝐺) as a subgroup
of Homeo(𝐺 (0) ). Here, we use the notation that 𝜎.𝑥 denotes r(𝑔) for the unique element 𝑔 ∈ 𝜎 with
s(𝑔) = 𝑥.

Topological full groups first appeared in [47, 32] (for special classes of groupoids). Several subgroups
of 𝑭(𝐺) have been constructed, for instance, the alternating full group 𝑨(𝐺) (see [66]). It is known that
for almost finite or purely infinite groupoids G which are minimal, effective and Hausdorff, with unit
space𝐺 (0) homeomorphic to the Cantor space, the alternating full group coincides with the commutator
subgroup 𝑫 (𝐺) of 𝑭(𝐺) (see [57, 66]).

Nekrashevych showed in [66] that for every minimal, effective groupoid G whose unit space 𝐺 (0)
is homeomorphic to the Cantor space, the alternating full group 𝑨(𝐺) is simple. Moreover, again for
minimal, effective groupoids G with unit space 𝐺 (0) homeomorphic to the Cantor space, it is possible
to reconstruct the groupoid G from the topological full group 𝑭(𝐺) (see [57, 66]). A far-reaching
generalization of these results has been obtained in [55].

Matui formulated the AH-conjecture, which describes the first homology group 𝐻1 (𝑭(𝐺)) in terms
of groupoid homology of G. He constructed an index map 𝐼 : 𝐻1 (𝑭(𝐺)) → 𝐻1(𝐺) and conjectured
for every minimal, effective groupoid G whose unit space 𝐺 (0) is homeomorphic to the Cantor space,
there is an exact sequence

𝐻0 (𝐺) ⊗ Z/2 �� 𝐻1(𝑭(𝐺))
𝐼 �� 𝐻1 (𝐺) �� 0.

Note that Matui restricts his discussion to second countable Hausdorff groupoids. Moreover, he for-
mulated the AH-conjecture in terms of the abelianization 𝑭(𝐺)ab of 𝑭(𝐺), which is isomorphic to
𝐻1 (𝑭(𝐺)). The AH-conjecture has been verified for all principal, almost finite, second countable Haus-
dorff groupoids as well as groupoids arising from shifts of finite type, products of groupoids from shifts
of finite type, graph groupoids and Katsura–Exel–Pardo groupoids as well as transformation groupoids
of of odometers and Cantor minimal dihedral systems (see [56, 57, 58, 67, 68, 79, 80]).

2.5. Examples of topological full groups

For an AF groupoid G, the topological full group 𝑭(𝐺) is the increasing union of finite direct sums of
finite symmetric groups.

For a transformation groupoid G of a Cantor minimal Z-system, Juschenko and Monod showed that
𝑭(𝐺) is amenable [39]. By taking alternating full groups 𝑨(𝐺) in the case of minimal subshifts (in this
case 𝑨(𝐺) coincides with the commutator subgroup 𝑫 (𝐺) of 𝑭(𝐺)), this produces the first examples
of finitely generated amenable infinite simple groups, answering an open problem in group theory.

Now, let 𝐷∞ be the infinite dihedral group Z� (Z/2) � (Z/2) ∗ (Z/2). Starting with a Cantor minimal
𝐷∞-system, Nekrashevych constructed another Cantor minimal Γ-system (for some new group Γ) and
shows that, under certain conditions, the alternating full group of the groupoid of germs for the Γ-action
is a finitely generated simple periodic group of intermediate growth (see [65]). This again answers an
open problem in group theory.
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Other examples include topological full groups of transformation groupoids of Cantor minimal Z𝑑-
systems, tiling groupoids or topological full groups of interval exchange transformations (the latter have
been studied in [11]).

The groupoids discussed so far are almost finite (with the exception of Nekrashevych’s examples,
where the groupoids could be non-Hausdorff and almost finiteness is not known). Let us now turn to
topological full groups of purely infinite groupoids.

Let 𝐺2 be the groupoid attached to the one-sided full shift on two symbols. In the language of
§2.2.4, the graph we consider consists of one vertex and two edges (which must then be loops), the
corresponding adjacency matrix A is given by the 1×1-matrix with entry 2, and we set𝐺2 := 𝐺𝐴. Then
𝑭(𝐺2) � 𝑉 , where V is Thompson’s group V (see [9]). This was first observed in [63] (see also [57]).
More generally, if we consider the one-sided full shift on k symbols, its graph given by one vertex and k
edges, the adjacency matrix given by the 1 × 1-matrix with entry k and let the corresponding groupoid
be 𝐺𝑘 , then 𝑭(R𝑟 × 𝐺

𝑛
𝑘 ) � 𝑛𝑉𝑘,𝑟 . Here, R𝑟 is the groupoid given by the full equivalence relation on

the finite set {1, . . . , 𝑟}, and 𝑛𝑉𝑘,𝑟 are the Brin–Higman–Thompson groups (see, for instance, [37, 5]
and also [58]).

Szymik and Wahl show that the group homology 𝐻∗(𝑉𝑘,𝑟 ) does not depend on r and that 𝑉𝑘,𝑟 is
acyclic for 𝑘 = 2. They also produce further computations of parts of 𝐻∗(𝑉𝑘,𝑟 ) (see [90]). Their work is
based on Cantor algebras, which lead to the construction of a small permutative category and hence an
algebraic K-theory spectrum K such that 𝐻∗(𝑉𝑛,𝑟 ) � 𝐻∗(Ω∞0 K). Here, Ω∞K is the infinite loop space
corresponding to K, and Ω∞0 K denotes the path component of the base point of Ω∞K (these notions are
introduced in §2.6). The results in [90] are then obtained by analysing the homotopy groups of K. It is
not immediate how to carry over the constructions in [90] to more general groupoids because the notion
of Cantor algebras is tailored to the situation of Higman–Thompson groups.

Topological full groups for SFT groupoids and products of SFT groupoids have been studied in detail
in [57, 58].

For groupoids G arising from self-similar actions on trees, the topological full groups 𝑭(𝐺) are iso-
morphic to Röver-Nekrashevych groups (see [77, 63, 64] as well as [83]). These groups have interesting
finiteness properties. We say that a group is of type F𝑛 if it admits a classifying space with a compact
n-skeleton. These finiteness properties play an important role in group homology and specialize to fa-
miliar notions in low dimensions (a group is of type F1 if and only if it is finitely generated and of type
F2 if and only if it is finitely presented). [83] shows that topological full groups arising from classes of
self-similar actions give rise to first examples of infinite simple groups which are of type F𝑛−1 but not
of type F𝑛, for each n.

For groupoids G arising from piecewise affine transformations [50], the topological full groups
𝑭(𝐺) are isomorphic to groups considered in [86] (for the parameters 𝑙 = 1, 𝐴 = Z[𝜆, 𝜆−1], 𝑃 = 〈𝜆〉 in
the terminology of [86]). Moreover, a similar construction as in [50] leads to ample groupoids whose
topological full groups coincide with the groups denoted by 𝐺 (𝑙, 𝐴, 𝑃) in [86], for arbitrary parameters
𝑙, 𝐴, 𝑃 (see [91]).

As these examples show, topological full groups and the closely related notion of alternating full
groups lead to new examples in group theory with interesting properties. They provide a rich supply of
infinite simple groups. However, even though we have seen much progress regarding particular example
classes and spectacular advances have been made in our understanding of these groups, general results
about topological full groups are rare and seem to be difficult to obtain. For instance, not much is
known regarding analytic properties of topological full groups in general. All in all, it is a fascinating
yet challenging problem to develop a better understanding of the interplay between group-theoretic
properties of topological full groups and dynamical properties of the underlying topological groupoids.

2.6. Algebraic K-theory spectra of small permutative categories

Let us now describe the construction of algebraic K-theory spectra from small permutative categories
as in [82, 92]. We follow the exposition in [17]. We will use the language of simplicial sets (see, for
instance, [24, 34]) and of spectra in the sense of algebraic topology (see, for instance, [89, 2]).
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Definition 2.7. A small permutative category is a small category 𝔅 with object set obj𝔅, morphism
set mor𝔅, together with a functor ⊕ : 𝔅 ×𝔅→ 𝔅, an object 0 ∈ obj𝔅 and natural isomorphisms{

𝜋𝑢,𝑢′ ∈ mor𝔅 : 𝜋𝑢,𝑢′ : 𝑢 ⊕ 𝑢′ � 𝑢′ ⊕ 𝑢
}
𝑢,𝑢′ ∈ obj𝔅

such that ⊕ is associative with unit 0, and we have 𝜋0,𝑢 = 𝜋𝑢,0 = id𝑢 , 𝜋𝑢′,𝑢𝜋𝑢,𝑢′ = id𝑢⊕𝑢′ , that is, the
diagram

𝑢 ⊕ 𝑢′

id𝑢⊕𝑢′ ���
��

��
��

��
𝜋𝑢,𝑢′ �� 𝑢′ ⊕ 𝑢

𝜋𝑢′,𝑢

��
𝑢 ⊕ 𝑢′

commutes, and (𝜋𝑢,𝑢′′ ⊕ id𝑢′ ) (id𝑢 ⊕ 𝜋𝑢′,𝑢′′ ) = 𝜋𝑢⊕𝑢′,𝑢′′ , that is, the diagram

𝑢 ⊕ 𝑢′ ⊕ 𝑢′′

𝜋𝑢⊕𝑢′,𝑢′′ ����
���

���
���
id⊕𝜋𝑢′,𝑢′′�� 𝑢 ⊕ 𝑢′′ ⊕ 𝑢′

𝜋𝑢,𝑢′′ ⊕id𝑢′
��

𝑢′′ ⊕ 𝑢 ⊕ 𝑢′

commutes, for all objects 𝑢, 𝑢′, 𝑢′′ of 𝔅.

Given 𝜎 ∈ mor𝔅, we write 𝔱(𝜎) for its target and 𝔡(𝜎) for its domain, and we denote by 𝔅(𝑣, 𝑢)
the set of morphisms of 𝔅 from u to v, that is, 𝔅(𝑣, 𝑢) = {𝜎 ∈ mor𝔅: 𝔱(𝜎) = 𝑣, 𝔡(𝜎) = 𝑢}.

Now, let A be a finite based set, that is, a finite set with a choice of an element called the base point.

Definition 2.8. Given a small permutative category 𝔅 and a finite based set A, let 𝔅(𝐴) be the category
with objects of the form

{
𝑢𝑆 , 𝜑𝑇 ,𝑇 ′

}
𝑆,𝑇 ,𝑇 ′

, where 𝑆, 𝑇, 𝑇 ′ run through all subsets of A not containing
the base point with 𝑇 ∩𝑇 ′ = ∅, 𝑢𝑆 ∈ obj𝔅 for all S and 𝜑𝑇 ,𝑇 ′ ∈ 𝔅(𝑢𝑇∪𝑇 ′ , 𝑢𝑇 ⊕ 𝑢𝑇 ′ ) are isomorphisms
for all 𝑇, 𝑇 ′. We require that for 𝑆 = ∅, 𝑢∅ = 0, and for 𝑇 = ∅, 𝜑∅,𝑇 ′ = id𝑢𝑇 ′ . Moreover, for all pairwise
disjoint 𝑇, 𝑇 ′, 𝑇 ′′, the following diagrams should commute:

𝑢𝑇 ⊕ 𝑢𝑇 ′

𝜋𝑢𝑇 ,𝑢𝑇 ′

��

𝜑𝑇 ,𝑇 ′ �� 𝑢𝑇∪𝑇 ′

id
��

𝑢𝑇 ′ ⊕ 𝑢𝑇 𝜑𝑇 ′,𝑇

�� 𝑢𝑇 ′∪𝑇

𝑢𝑇 ⊕ 𝑢𝑇 ′ ⊕ 𝑢𝑇 ′′

id𝑢𝑇 ⊕𝜑𝑇 ′,𝑇 ′′

��

𝜑𝑇 ,𝑇 ′ ⊕id𝑢𝑇 ′′�� 𝑢𝑇∪𝑇 ′ ⊕ 𝑢𝑇 ′′

𝜑𝑇∪𝑇 ′,𝑇 ′′

��
𝑢𝑇 ⊕ 𝑢𝑇 ′∪𝑇 ′′ 𝜑𝑇 ,𝑇 ′∪𝑇 ′′

�� 𝑢𝑇∪𝑇 ′∪𝑇 ′′ .

A morphism 𝑓 :
{
𝑢𝑆 , 𝜑𝑇 ,𝑇 ′

}
→

{
�̃�𝑆 , �̃�𝑇 ,𝑇 ′

}
consists of 𝑓𝑆 ∈ 𝔅(�̃�𝑆 , 𝑢𝑆) for all S such that 𝑓∅ = id0

and the following diagram commutes for all disjoint 𝑇,𝑇 ′:

𝑢𝑇 ⊕ 𝑢𝑇 ′

𝑓𝑇 ⊕ 𝑓𝑇 ′

��

𝜑𝑇 ,𝑇 ′ �� 𝑢𝑇∪𝑇 ′

𝑓𝑇∪𝑇 ′

��
�̃�𝑇 ⊕ �̃�𝑇 ′ �̃�𝑇 ,𝑇 ′

�� �̃�𝑇∪𝑇 ′ .

The following result is for instance explained in [17, Theorem 4.2].
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Theorem 2.9. 𝐴 ↦→ 𝔅(𝐴) defines a functor from the category of finite based sets to the category of
small categories, where a map of based sets 𝛼 : 𝐴→ �̄� induces the functor

{
𝑢𝑆 , 𝜑𝑇 ,𝑇 ′

}
↦→

{
𝑢𝛼
𝑆 , 𝜑

𝛼
𝑇 ,𝑇 ′

}
,

with 𝑢𝛼
𝑆 := 𝑢𝛼−1𝑆 , 𝜑𝛼

𝑇 ,𝑇 ′ = 𝜑𝛼−1𝑇 ,𝛼−1𝑇 ′ , and a morphism { 𝑓𝑆} is mapped to
{
𝑓 𝛼𝑆

}
, with 𝑓 𝛼𝑆 = 𝑓𝛼−1𝑆 .

Next, we construct a Γ-space in the sense of [82] (see also [3]), that is, a functor from the category
of finite based sets to the category of simplicial sets, sending the trivial based set to the simplicial set
which is constantly given by one point. Given a finite based set A, let 𝔑𝔅(𝐴) be the simplicial set with
p-simplices 𝔑𝑝𝔅(𝐴) consisting of elements of the form ( 𝑓1, . . . , 𝑓𝑝), where 𝑓� are morphisms in 𝔅(𝐴)
such that 𝔡( 𝑓�) = 𝔱( 𝑓�+1). The face maps 𝛿𝑝� : 𝔑𝑝𝔅(𝐴) → 𝔑𝑝−1𝔅(𝐴) are given by 𝛿1

0 ( 𝑓 ) = 𝔡( 𝑓 ),
𝛿1

1 ( 𝑓 ) = 𝔱( 𝑓 ) and

𝛿𝑝� ( 𝑓1, . . . , 𝑓𝑝) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( 𝑓2, . . . , 𝑓𝑝) if � = 0,
( 𝑓1, . . . , 𝑓� 𝑓�+1, . . . , 𝑓𝑝) if 0 < � < 𝑝,

( 𝑓1, . . . , 𝑓𝑝−1) if � = 𝑝.

Degeneracy maps are also part of the structure of a simplicial set, but since these are not needed for
homology, we do not recall their definition here (see for instance [24, 34]).

Given a map 𝛼 : 𝐴 → �̄� of finite based sets, define a map of simplicial sets 𝔑𝔅(𝛼) : 𝔑𝔅(𝐴) →
𝔑𝔅( �̄�) by setting 𝔑𝑝𝔅(𝛼) ( 𝑓1, . . . , 𝑓𝑝) := ( 𝑓 𝛼1 , . . . , 𝑓

𝛼
𝑝 ).

The topological space 𝑆1 is modelled by the simplicial set, also denoted by 𝑆1, given by 𝑆1
𝑞 =

{0, . . . , 𝑞} with base point 0 and face maps

𝑑𝑞• : 𝑆1
𝑞 → 𝑆1

𝑞−1, 𝑎 ↦→

{
𝑎 if 𝑎 ≤ •,
𝑎 − 1 if 𝑎 > •.

For • = 𝑞, 𝑑𝑞𝑞 sends q to 0. Again, we do not need the precise form of the degeneracy maps. Note that
we have 𝑆1 � Δ1/𝜕Δ1 (see for instance [24, 34]).

To obtain simplicial sets describing 𝑆𝑛, set 𝑆𝑛 = 𝑆1 ∧ . . . ∧ 𝑆1 (n factors), as simplicial sets. Here,
the smash product 𝑋 ∧ 𝑆1 (where X is some simplicial set) is given by

(𝑋 ∧ 𝑆1)𝑞 = (𝑋𝑞 × 𝑆
1
𝑞)/((

{
0𝑋𝑞

}
× 𝑆1

𝑞) ∪ (𝑋𝑞 ×
{
0𝑆1

𝑞

}
)) � 𝑋×𝑞 × (𝑆

1
𝑞)
× ∪ {0} ,

where 0 stands for base point and, for a based set A with base point 0, 𝐴× denotes 𝐴 \ {0}. The face
maps are induced from the face maps of X and 𝑆1. Concretely,

𝑆𝑛𝑞 = {(𝑎1, . . . , 𝑎𝑛): 𝑎𝑚 ∈ {1, . . . , 𝑞}} ∪ {0} ,

and 𝑑𝑞• : 𝑆𝑛𝑞 → 𝑆𝑛𝑞−1, (𝑎1, . . . , 𝑎𝑛) ↦→ (𝑏1, . . . , 𝑏𝑛) is given by

𝑏𝑚 =

{
𝑎𝑚 if 𝑎𝑚 ≤ •,
𝑎𝑚 − 1 if 𝑎𝑚 > •.

For • = 𝑞, 𝑏𝑚 is defined to be 0 if 𝑎𝑚 = 𝑞. For 𝑛 = 0, we set 𝑆0
𝑞 := {0, 1} for all q and 𝑑𝑞• = id{0,1}.

Now, consider the bisimplicial set (𝑝, 𝑞) ↦→ 𝔑𝑝𝔅(𝑆𝑛𝑞), with face maps 𝛿� : 𝔑𝑝𝔅(𝑆𝑛𝑞) →
𝔑𝑝−1𝔅(𝑆𝑛𝑞) and 𝔑𝑞𝔅(𝑑•) : 𝔑𝑝𝔅(𝑆𝑛𝑞) → 𝔑𝑝𝔅(𝑆𝑛𝑞−1). Furthermore, form the diagonal, that is, the
simplicial set 𝔑𝔅(𝑆𝑛) given by 𝔑𝔅(𝑆𝑛)𝑞 := 𝔑𝑞𝔅(𝑆𝑛𝑞) and the face maps, for 0 ≤ • ≤ 𝑞, given by the
composites

𝔑𝑞𝔅(𝑆𝑛𝑞)
𝛿• �� 𝔑𝑞−1𝔅(𝑆𝑛𝑞)

𝔑𝑞−1𝔅(𝑑•) �� 𝔑𝑞−1𝔅(𝑆𝑛𝑞−1).
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Now, we are ready for the definition of the algebraic K-theory spectrumK(𝔅). The n-th simplicial set
is given by 𝑋𝑛 = 𝔑𝔅(𝑆𝑛). We need to define the structure maps 𝜍𝑛 : Σ𝑋𝑛 → 𝑋𝑛+1. Σ𝑋𝑛 is given by the
smash product𝔑𝔅(𝑆𝑛)∧𝑆1. As explained above, we have (𝔑𝔅(𝑆𝑛)∧𝑆1)𝑞 � (𝔑𝔅(𝑆𝑛)𝑞)××(𝑆1

𝑞)
×∪{0},

and the face maps are induced by the ones of 𝔑𝔅(𝑆𝑛) and 𝑆1. Every 𝑏 ∈ (𝑆1
𝑞)
× induces the map

𝜄𝑏 : 𝑆𝑛𝑞 → 𝑆𝑛+1𝑞 , 𝒂 ↦→ (𝒂, 𝑏), 0 ↦→ 0.

This in turn induces 𝔑𝑞𝔅(𝜄𝑏) : 𝔑𝑞𝔅(𝑆𝑛𝑞) → 𝔑𝑞𝔅(𝑆𝑛+1𝑞 ). Therefore, we obtain the based maps

(𝔑𝔅(𝑆𝑛) ∧ 𝑆1)𝑞 → 𝔑𝔅(𝑆𝑛+1)𝑞 , ( 𝒇 , 𝑏) ↦→ 𝔑𝑞𝔅(𝜄𝑏) ( 𝒇 ), 0 ↦→ 0.

In this way, we obtain the simplicial map 𝜍𝑛 : 𝔑𝔅(𝑆𝑛) ∧ 𝑆1 → 𝔑𝔅(𝑆𝑛+1), as desired.
We have constructed a spectrum K(𝔅) of simplicial sets. By taking geometric realizations, we also

obtain a spectrum consisting of topological spaces.
It turns out that K(𝔅) is a symmetric spectrum which is also a connective positive Ω-spectrum, that

is, the adjoint maps 𝑋𝑛 → Ω𝑋𝑛+1 of 𝜍𝑛 are homotopy equivalences for all 𝑛 ≥ 1. The infinite loop space
attached toK(𝔅) is given by Ω∞K(𝔅) := Ω𝑋1 (see [82]). Note that Ω∞K(𝔅) coincides up to homotopy
with Ω𝐵 |𝔅|. Here, |𝔅| is the nerve or classifying space of 𝔅, and 𝐵 |𝔅| is the bar construction of the
monoid |𝔅|, where the monoid structure is induced by the operation ⊕. We refer the reader to [2] for
more information about infinite loop space theory.

Next, we briefly recall the definition of homology groups for simplicial sets and spectra. Let C be an
abelian group as above. Let X be a simplicial set with face maps 𝑑•. Define a chain complex (𝐶∗𝑋,𝐶∗𝑑)
by𝐶𝑞𝑋 :=

⊕
𝑋𝑞

C, setting𝐶𝑞𝑑 :=
∑𝑞
•=0(−1)•𝐶𝑞𝑑•, where𝐶𝑞𝑑• is the homomorphism𝐶𝑞𝑋 → 𝐶𝑞−1𝑋

induced by 𝑑•. The homology 𝐻∗(𝑋,C) is by definition the homology of the chain complex (𝐶∗𝑋,𝐶∗𝑑).
Note that by the Eilenberg–Zilber theorem (see for instance [34, Chapter IV, §2.2]), given a bisim-

plicial set like (𝑝, 𝑞) ↦→ 𝔑𝑝𝔅(𝑆𝑛𝑞), the homology of the diagonal (in our case 𝔑𝔅(𝑆𝑛)) is naturally
isomorphic to the homology of the total complex (denoted by 𝐶𝑝,𝑞𝔑𝑝𝔅(𝑆𝑛𝑞) in our case) associated
to the bisimplicial set. Moreover, 𝐻∗(𝑋,C) is canonically isomorphic to the singular homology with
coefficients in C of the geometric realization of X (see, for instance, [24, Appendix Two, §1]).

Let us now define the homology of K(𝔅). Applying the above definition of homology groups to 𝑋𝑛,
we obtain the homology groups 𝐻∗+𝑛 (𝑋𝑛,C).
Definition 2.10. 𝐻∗(K(𝔅),C) := lim

−−→𝑛
𝐻∗+𝑛 (𝑋𝑛,C), where the inductive limit is taken with respect to

the connecting maps

𝐻∗+𝑛 (𝑋𝑛,C)
� �� 𝐻∗+𝑛+1(Σ𝑋𝑛,C)

𝐻∗+𝑛+1 (𝜍𝑛) �� 𝐻∗+𝑛+1(𝑋𝑛+1,C).

Here, the first map is the suspension isomorphism.
Let us also introduce the (stable) homotopy groups of K(𝔅).

Definition 2.11. 𝜋∗(K(𝔅)) := lim
−−→𝑛

𝜋∗+𝑛 (𝑋𝑛), where the inductive limit is taken with respect to the
connecting maps

𝜋∗+𝑛 (𝑋𝑛)
Σ �� 𝜋∗+𝑛+1 (Σ𝑋𝑛)

(𝜍𝑛)∗ �� 𝜋∗+𝑛+1 (𝑋𝑛+1).

Here, the first map is the suspension homomorphism.
Note that 𝜋∗(K(𝔅)) � 𝜋∗(Ω∞K(𝔅)) (see, for instance, [81, Chapter I, §1]).
The construction of algebraic K-theory spectra for small permutative spectra is functorial with respect

to permutative functors, that is, functors Φ : 𝔅 → ℭ between small permutative categories which are
compatible with all the structures, that is, Φ(0) = 0, Φ(𝑢 ⊕ 𝑣) = Φ(𝑢) ⊕Φ(𝑣), similarly for morphisms,
and Φ(𝜋𝑢,𝑣 ) = 𝜋Φ(𝑢) ,Φ(𝑣) . Indeed, given such a functor Φ : 𝔅 → ℭ and a finite based set A, then we
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obtain a functor Φ(𝐴) : 𝔅(𝐴) → ℭ(𝐴) sending
{
𝑢𝑆 , 𝜑𝑇 ,𝑇 ′

}
to

{
Φ(𝑢𝑆),Φ(𝜑𝑇 ,𝑇 ′ )

}
and a morphism

{ 𝑓𝑆} to {Φ( 𝑓𝑆)}. Moreover, a based map 𝛼 : 𝐴 → �̄� between finite based sets induces functors
𝔅(𝛼) : 𝔅(𝐴) → 𝔅( �̄�) and ℭ(𝛼) : ℭ(𝐴) → ℭ( �̄�) such that the following diagram commutes:

𝔅(𝐴)

𝔅(𝛼)
��

Φ(𝐴) �� ℭ(𝐴)

ℭ (𝛼)
��

𝔅( �̄�)
Φ( �̄�) �� ℭ( �̄�).

So Φ induces a map of bisimplicial sets between (𝑝, 𝑞) ↦→ 𝔑𝑝𝔅(𝑆𝑛𝑞) and (𝑝, 𝑞) ↦→ 𝔑𝑝ℭ(𝑆𝑛𝑞). It is
straightforward to check that these maps are compatible with the structure maps defining the spectra
K(𝔅) and K(ℭ).

3. Small permutative categories of bisections

In this section, we construct small permutative categories from ample groupoids. Together with the
construction of algebraic K-theory spectra from §2.6, this produces algebraic K-theory spectra for
ample groupoids. We work in the more general setting of groupoid dynamical systems. This extra level
of generality will be needed in §4.

Let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) . Let Z be a G-space
with anchor map 𝜌 : 𝑍 → 𝐺 (0) , that is, the G-action 𝐺 ×s 𝜌 𝑍 → 𝑍, (𝑔, 𝑧) ↦→ 𝑔.𝑧 is defined on
𝐺 ×s 𝜌 𝑍 = {(𝑔, 𝑧) ∈ 𝐺 × 𝑍: s(𝑔) = 𝜌(𝑧)}. Assume that 𝜌 is a local homeomorphism. Let 𝒪 be a family
of open Hausdorff subspaces of Z covering Z, that is, 𝑍 =

⋃
𝑂∈𝒪 𝑂. If Z is Hausdorff, then we can

always take 𝒪 = {𝑍}. Let CO := {𝑈 ⊆ 𝑍:𝑈 compact open subspace of some 𝑂 ∈ 𝒪}. Note that every
𝑈 ∈ CO is Hausdorff. Let R be the full equivalence relation on N = {1, 2, 3, . . . }, that is, R = N × N,
R(0) = N and we view an element ( 𝑗 , 𝑖) ∈ R as a morphism from i to j. Equip R with the discrete
topology. Equivalently, R =

⋃
𝑁 R𝑁 , where R𝑁 is the full equivalence relation on {1, . . . , 𝑁}. We set

out to define a small permutative category 𝔅𝐺�𝑍 as follows: The objects of 𝔅𝐺�𝑍 are given by{
𝑚∐
𝑖=1
(𝑖,𝑈𝑖) ⊆ N × 𝑍:𝑈𝑖 ∈ CO

}
.

For 𝑚 = 0, the disjoint union becomes the empty set ∅. Now, given objects 𝑢 =
∐𝑚

𝑖=1(𝑖,𝑈𝑖) and
𝑣 =

∐𝑛
𝑗=1 ( 𝑗 , 𝑉 𝑗 ), a morphism with target v and domain u is of the form

∐
𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖), where

1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, s 𝑗 ,𝑖 is the map only defined on {𝑖} which sends i to j, 𝜎𝑗 ,𝑖 are compact
open bisections of G and 𝑈 𝑗 ,𝑖 ∈ CO such that s(𝜎𝑗 ,𝑖) = 𝜌(𝑈 𝑗 ,𝑖), and 𝜌 |𝑈 𝑗,𝑖 is a homeomorphism
𝑈 𝑗 ,𝑖 � 𝜌(𝑈 𝑗 ,𝑖). Moreover, we require that for all i, 𝑈𝑖 =

∐
𝑗 𝑈 𝑗 ,𝑖 and that for all j, 𝑉 𝑗 =

∐
𝑖 𝜎𝑗 ,𝑖 .𝑈 𝑗 ,𝑖 .

Here, we use the notation

𝜎.𝑈 := {𝑔.𝑧: 𝑔 ∈ 𝜎, 𝑧 ∈ 𝑈, s(𝑔) = 𝜌(𝑧)}

for compact open bisections 𝜎 ⊆ 𝐺 and compact open subspaces 𝑈 ⊆ 𝑍 . We denote the set of objects
of 𝔅𝐺�𝑍 by obj𝔅𝐺�𝑍 , the set of morphisms of 𝔅𝐺�𝑍 by mor𝔅𝐺�𝑍 and the set of morphisms with
target v and domain u by 𝔅𝐺�𝑍 (𝑣, 𝑢). Given 𝜎 ∈ 𝔅𝐺�𝑍 (𝑣, 𝑢), we set 𝔱(𝜎) := 𝑣 and 𝔡(𝜎) := 𝑢.

The composition of two morphisms 𝜏 =
∐

𝑘, 𝑗 (s𝑘, 𝑗 , 𝜏𝑘, 𝑗 , 𝑉𝑘, 𝑗 ) and 𝜎 =
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖) with
𝔡(𝜏) = 𝔱(𝜎) is given by

𝜏𝜎 =
∐
𝑘,𝑖

(s𝑘,𝑖 ,
∐
𝑗

𝜏𝑘, 𝑗𝜎𝑗 ,𝑖 ,
∐
𝑗

𝜎−1
𝑗 ,𝑖 .(𝑉𝑘, 𝑗 ∩ 𝜎𝑗 ,𝑖 .𝑈 𝑗 ,𝑖)).
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Here, the product of two bisections is by definition given by

𝜏𝑘, 𝑗𝜎𝑗 ,𝑖 := {ℎ𝑔: ℎ ∈ 𝜏, 𝑔 ∈ 𝜎, s(ℎ) = r(𝑔)} .

We define the functor ⊕. To do so, we introduce the notation that for 𝑚 ∈ N, t𝑚 denotes the map
N→ N given by addition with m. Given 𝑢 =

∐𝑚
𝑖=1(𝑖,𝑈𝑖), 𝑢′ =

∐𝑚′

𝑖′=1 (𝑖
′,𝑈 ′𝑖′ ), define

𝑢 ⊕ 𝑢′ :=
𝑚∐
𝑖=1
(𝑖,𝑈𝑖) �

𝑚′∐
𝑖′=1
(t𝑚 (𝑖

′),𝑈 ′𝑖′ ).

Furthermore, define 𝜋𝑢,𝑢′ ∈ 𝔅𝐺�𝑍 (𝑢
′ ⊕ 𝑢, 𝑢 ⊕ 𝑢′) by setting

𝜋𝑢,𝑢′ :=
𝑚∐
𝑖=1
(s𝑚′+𝑖,𝑖 , 𝜌(𝑈𝑖),𝑈𝑖) �

𝑚′∐
𝑖′=1
(s𝑖′,𝑚+𝑖′ , 𝜌(𝑈

′
𝑖′ ),𝑈

′
𝑖′ ).

Moreover, given 𝑢 =
∐𝑚

𝑖=1(𝑖,𝑈𝑖), 𝑢′ =
∐𝑚′

𝑖′=1 (𝑖
′,𝑈 ′𝑖′ ), 𝑣 =

∐𝑛
𝑗=1 ( 𝑗 , 𝑉 𝑗 ), 𝑣′ =

∐𝑛′

𝑗′=1 ( 𝑗
′, 𝑉 ′𝑗′ )

in obj𝔅𝐺�𝑍 , 𝜎 =
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖) ∈ 𝔅𝐺�𝑍 (𝑣, 𝑢) and 𝜎′ =
∐

𝑗′,𝑖′ (s 𝑗′,𝑖′ , 𝜎𝑗′,𝑖′ ,𝑈 𝑗′,𝑖′ ) ∈

𝔅𝐺�𝑍 (𝑣
′, 𝑢′), define

𝜎 ⊕ 𝜎′ :=
∐
𝑗 ,𝑖

(s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖) �
∐
𝑗′,𝑖′

(st𝑛 ( 𝑗′) ,t𝑚 (𝑖′) , 𝜎𝑗′,𝑖′ ,𝑈 𝑗′,𝑖′ ).

It is now straightforward to check that ⊕ indeed defines a functor and that
{
𝜋𝑢,𝑢′

}
are natural isomor-

phisms such that 𝔅𝐺�𝑍 becomes a small permutative category, with unit ∅.
Every element 𝑈 ∈ CO will be viewed as an element of obj𝔅𝐺�𝑍 by identifying U with (1,𝑈) ∈

obj𝔅𝐺�𝑍 . With this convention, it is clear that
∐𝑚

𝑖=1(𝑖,𝑈𝑖) = 𝑈1 ⊕ . . . ⊕ 𝑈𝑚.

Remark 3.1. All morphisms in 𝔅𝐺�𝑍 are actually invertible, that is, 𝔅𝐺�𝑍 is a groupoid.

We will apply this construction to the following special cases: 𝑍 = 𝐺 (𝜈) as in §2.3.1, viewed as
a G-space via the anchor map 𝜌 : 𝐺 (𝜈) → 𝐺 (0) , (𝑔0, . . . , 𝑔𝜈−1) ↦→ r(𝑔0) for all 𝜈 ≥ 0 and action
𝑔.(𝑔0, . . . , 𝑔𝜈−1) := (𝑔𝑔0, . . . , 𝑔𝜈−1) if 𝜈 ≥ 1 and 𝑔.𝑥 := r(𝑔) if 𝜈 = 0. Let 𝒪 (𝜈) be as in §2.3.1, that
is, 𝒪 (𝜈) denotes the collection of subsets of 𝐺 (𝜈) of the form 𝑂0 ×s r . . . ×s r 𝑂𝜈−1, where 𝑂𝜇 are open
bisections with s(𝑂𝜇+1) = r(𝑂𝜇). For 𝜈 = 0, we consider 𝑍 = 𝐺 (0) and 𝒪 (0) =

{
𝐺 (0)

}
. In that case, we

write 𝔅𝐺 := 𝔅𝐺�𝐺 (0) . We will also restrict the G-action to the (trivial) 𝐺 (0) -action 𝐺 (0) � 𝐺 (𝜈−1)

and consider 𝔅𝐺 (0)�𝐺 (𝜈−1) .

Remark 3.2. For 𝜈 = 0, objects in 𝔅𝐺 = 𝔅𝐺�𝐺 (0) are just compact open subspaces 𝑢 ⊆ N × 𝐺 (0) and
morphisms in 𝔅𝐺 are nothing else but compact open bisections of R × 𝐺, the direct product of the
groupoids R and G. In this case, we may and will reduce the general form 𝜎 =

∐
𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖) of

a morphism 𝜎 to 𝜎 =
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖) because the component 𝑈 𝑗 ,𝑖 is superfluous since𝑈 𝑗 ,𝑖 = s(𝜎𝑗 ,𝑖).

Remark 3.3. We have𝔅𝐺 (𝑢, 𝑢) = 𝑭((R×𝐺)𝑢𝑢 ). Moreover, given𝑢 =
∐

𝑖 (𝑖,𝑈𝑖) ∈ obj𝔅𝐺 with pairwise
disjoint subspaces 𝑈𝑖 ⊆ 𝐺

(0) , write𝑈 :=
∐

𝑖𝑈𝑖 ⊆ 𝐺
(0) and set 𝜔 :=

∐
𝑖 (s1,𝑖 ,𝑈𝑖) ∈ 𝔅𝐺 (𝑈, 𝑢). Then

𝔅𝐺 (𝑢, 𝑢) = 𝑭((𝑅 × 𝐺)𝑢𝑢 ) � 𝑭(𝐺𝑈
𝑈 ), 𝜎 ↦→ 𝜔𝜎𝜔−1.

Remark 3.4. Our category of bisections 𝔅𝐺 coincides with the category in [53, Definition 2.1].

3.1. Functoriality of our construction

Our construction of small permutative categories of bisections is functorial for two types of maps, open
embeddings and fibrewise bijective proper surjections. These types of maps also appear in [51, §5]. In
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the following, let G and �̃� be ample groupoids with locally compact Hausdorff unit spaces. Denote by
s, r the source and range maps of G and by s̃, r̃ the source and range maps of �̃�. Let Z be a G-space
with anchor map 𝜌 : 𝑍 → 𝐺 (0) and �̃� be a �̃�-space with anchor map �̃� : �̃� → �̃� (0) . Assume that 𝜌
and �̃� are local homeomorphisms. Let 𝒪 be a family of open Hausdorff subspaces of Z covering Z and
�̃� a family of open Hausdorff subspaces of �̃� covering �̃� . As above, construct the small permutative
categories 𝔅𝐺�𝑍 and 𝔅�̃���̃� .

3.1.1. The case of open embeddings
Suppose that 𝜙 : 𝐺 → �̃� is a groupoid homomorphism which is an embedding with open image and
that 𝜓 : 𝑍 → �̃� is a continuous map such that for all 𝑂 ∈ 𝒪 there exists �̃� ∈ �̃� such that 𝜓(𝑂) ⊆ �̃�
and that 𝜓 restricts to a homeomorphism 𝜓 |𝑂 : 𝑂 � 𝜓(𝑂). Furthermore, we require that the diagram

𝑍

𝜌

��

𝜓 �� �̃�

�̃�
��

𝐺 (0)
𝜙

�� �̃� (0)

commutes and that 𝜓(𝑔.𝑧) = 𝜙(𝑔).𝜓(𝑧) for all 𝑔 ∈ 𝐺 and 𝑧 ∈ 𝑍 with s(𝑔) = 𝜌(𝑧). In this situation, we
define a functor 𝐹𝜙,𝜓 : 𝔅𝐺�𝑍 → 𝔅�̃���̃� as follows: On objects, set 𝐹𝜙,𝜓 (

∐
𝑖 (𝑖,𝑈𝑖)) :=

∐
𝑖 (𝑖, 𝜓(𝑈𝑖)).

Given a morphism 𝜎 =
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖) in 𝔅𝐺�𝑍 , set 𝐹𝜙,𝜓 (𝜎) :=
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜙(𝜎𝑗 ,𝑖), 𝜓(𝑈 𝑗 ,𝑖)).
It is straightforward to check that this is well defined, that is, this defines a morphism in 𝔅�̃���̃� . For
instance, we have that

s̃(𝜙(𝜎𝑗 ,𝑖)) = 𝜙(s(𝜎𝑗 ,𝑖)) = 𝜙(𝜌(𝑈 𝑗 ,𝑖)) = �̃�(𝜓(𝑈 𝑗 ,𝑖)),

and moreover, the restriction

�̃� |𝜓 (𝑈 𝑗,𝑖) : 𝜓(𝑈 𝑗 ,𝑖) → �̃�(𝜓(𝑈 𝑗 ,𝑖)) = 𝜙(𝜌(𝑈 𝑗 ,𝑖))

is a homeomorphism because the composite

𝑈 𝑗 ,𝑖
𝜓 �� 𝜓(𝑈 𝑗 ,𝑖)

�̃� �� �̃�(𝜓(𝑈 𝑗 ,𝑖))

coincides with

𝑈 𝑗 ,𝑖
𝜌 �� 𝜌(𝑈 𝑗 ,𝑖)

𝜙 �� 𝜙(𝜌(𝑈 𝑗 ,𝑖)),

and 𝜓 as well as 𝜙 ◦ 𝜌 are homeomorphisms.
Given two morphisms 𝜏 =

∐
𝑘, 𝑗 (s𝑘, 𝑗 , 𝜏𝑘, 𝑗 , 𝑉𝑘, 𝑗 ) and 𝜎 =

∐
𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖) with 𝔡(𝜏) = 𝔱(𝜎),

we have

𝐹𝜙,𝜓 (𝜏)𝐹𝜙,𝜓 (𝜎) =
∐
𝑘,𝑖

(
s𝑘,𝑖 ,

∐
𝑗

𝜙(𝜏𝑘, 𝑗 )𝜙(𝜎𝑗 ,𝑖),
∐
𝑗

𝜙(𝜎𝑗 ,𝑖)
−1.(𝜓(𝑉𝑘, 𝑗 ) ∩ 𝜙(𝜎𝑗 ,𝑖).𝜓(𝑈 𝑗 ,𝑖))

)
=

∐
𝑘,𝑖

(
s𝑘,𝑖 ,

∐
𝑗

𝜙(𝜏𝑘, 𝑗𝜎𝑗 ,𝑖),
∐
𝑗

𝜓(𝜎−1
𝑗 ,𝑖 .(𝑉𝑘, 𝑗 ∩ 𝜎𝑗 ,𝑖 .𝑈 𝑗 ,𝑖))

)
= 𝐹𝜙,𝜓 (𝜏𝜎).

Hence, 𝐹𝜙,𝜓 respects composition. Furthermore, 𝐹𝜙,𝜓 also respects ⊕ by construction. This shows that
𝐹𝜙,𝜓 is a permutative functor. Moreover, our construction is (covariantly) functorial in (𝜙, 𝜓), in the
sense that 𝐹𝜙′,𝜓′𝐹𝜙,𝜓 = 𝐹𝜙′𝜙,𝜓′𝜓 .
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3.1.2. The case of fibrewise bijective proper surjections
Now, suppose that 𝜙 : �̃� → 𝐺 is a groupoid homomorphism which is a fibrewise bijective proper
surjection. ‘Fibrewise bijective’ means that for all 𝑥 ∈ �̃� (0) , 𝜙 restricts to a bijection r̃−1(𝑥) → r−1(𝜙(𝑥)).
(Equivalently, we could consider fibres of the source maps.) Moreover, suppose that 𝜓 : �̃� → 𝑍 is a
continuous map such that for all 𝑂 ∈ 𝒪 there exists �̃� ∈ �̃� such that 𝜓−1(𝑂) ⊆ �̃� and that 𝜓 restricts to
a proper map 𝜓 |𝜓−1 (𝑂) : 𝜓−1 (𝑂) → 𝑂. Furthermore, we require that the diagram

𝑍

𝜌

��

𝜓 �� �̃�

�̃�
��

𝐺 (0)
𝜙

�� �̃� (0)

commutes and that 𝜓(𝑔.𝑧) = 𝜙(𝑔).𝜓(𝑧) for all 𝑔 ∈ 𝐺 and 𝑧 ∈ 𝑍 with s(𝑔) = 𝜌(𝑧). In addition, assume
that for all 𝑥 ∈ �̃� (0) , 𝜓 restricts to a bijection

�̃�−1(𝑥) ∩ 𝜓−1(𝑂) → 𝜌−1(𝜙(𝑥)) ∩𝑂.

In this situation, we define a functor 𝐹𝜙,𝜓 : 𝔅𝐺�𝑍 → 𝔅�̃���̃� as follows: On objects, set

𝐹𝜙,𝜓 (
∐
𝑖

(𝑖,𝑈𝑖)) :=
∐
𝑖

(𝑖, 𝜓−1(𝑈𝑖)).

Given a morphism 𝜎 =
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖) in 𝔅𝐺�𝑍 , set

𝐹𝜙,𝜓 (𝜎) :=
∐
𝑗 ,𝑖

(s 𝑗 ,𝑖 , 𝜙
−1(𝜎𝑗 ,𝑖), 𝜓

−1(𝑈 𝑗 ,𝑖)).

Let us now check that this is well defined, that is, this defines a morphism in 𝔅�̃���̃� .
First, observe that for all compact open subspaces U contained in some𝑂 ∈ 𝒪, we have 𝜙−1(𝜌(𝑈)) =

�̃�(𝜓−1 (𝑈)). Indeed, ‘⊇’ is clear. Given 𝑥 ∈ 𝜌(𝑈), let 𝑥 ∈ �̃� (0) with 𝜙(𝑥) = 𝑥 be arbitrary and
choose 𝑧 ∈ 𝜌−1(𝑥) ∩ 𝑂. As 𝜓 restricts to a bijection �̃�−1(𝑥) ∩ 𝜓−1 (𝑂) → 𝜌−1(𝜙(𝑥)) ∩ 𝑂, there exists
𝑧 ∈ �̃�−1(𝑥) ∩ 𝜓−1(𝑂) with 𝜓(𝑧) = 𝑧. It follows that 𝑧 ∈ 𝜓−1 (𝑈). Hence, 𝑥 = �̃�(𝑧) ∈ �̃�(𝜓−1 (𝑈)).

Secondly, observe that for every compact open bisection 𝜎 ⊆ 𝐺, s̃(𝜙−1(𝜎)) = 𝜙−1(s(𝜎)). Indeed,
‘⊆’ is clear. Given 𝑥 ∈ s(𝜎), let 𝑥 ∈ �̃� (0) be arbitrary with 𝜙(𝑥) = 𝑥. Choose 𝑔 ∈ s−1(𝑥) ∩ 𝜎. As 𝜙
restricts to a bijection s̃−1(𝑥) → s−1(𝑥), there exists �̃� ∈ s̃−1(𝑥) with 𝜙(�̃�) = 𝑔. Hence, �̃� ∈ 𝜙−1(𝜎).
Thus, 𝑥 = s̃(�̃�) ∈ s̃(𝜙−1(𝜎)). This shows ‘⊇’.

It follows that s̃(𝜙−1(𝜎𝑗 ,𝑖)) = 𝜙−1(s(𝜎𝑗 ,𝑖)) = 𝜙−1(𝜌(𝑈 𝑗 ,𝑖)) = �̃�(𝜓−1(𝑈 𝑗 ,𝑖)).
Moreover, the restriction �̃� |𝜓−1 (𝑈 𝑗,𝑖)

: 𝜓−1(𝑈 𝑗 ,𝑖) → �̃�(𝜓−1 (𝑈 𝑗 ,𝑖)) = 𝜙−1(𝜌(𝑈 𝑗 ,𝑖)) is a home-
omorphism. It suffices to show that this restriction is bijective. Given 𝑧1, 𝑧2 ∈ 𝜓−1 (𝑈 𝑗 ,𝑖) with
�̃�(𝑧1) = �̃�(𝑧2) = 𝑥, we have 𝜌(𝜓(𝑧1)) = 𝜙( �̃�(𝑧1)) = 𝜙(𝑥) = 𝜙( �̃�(𝑧2)) = 𝜌(𝜓(𝑧2)). As 𝜌 is injective on
𝑈 𝑗 ,𝑖 , we deduce that 𝜓(𝑧1) = 𝜓(𝑧2). But 𝜓 restricts to a bijection �̃�−1(𝑥) ∩ 𝜓−1(𝑂) → 𝜌−1(𝜙(𝑥)) ∩𝑂,
where 𝑂 ∈ 𝒪 is such that𝑈 𝑗 ,𝑖 ⊆ 𝑂. Hence, we conclude that 𝑧1 = 𝑧2, as desired.

Given two morphisms 𝜏 =
∐

𝑘, 𝑗 (s𝑘, 𝑗 , 𝜏𝑘, 𝑗 , 𝑉𝑘, 𝑗 ) and 𝜎 =
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖) with 𝔡(𝜏) = 𝔱(𝜎),
we have

𝐹𝜙,𝜓 (𝜏)𝐹𝜙,𝜓 (𝜎)

=
∐
𝑘,𝑖

(
s𝑘,𝑖 ,

∐
𝑗

𝜙−1(𝜏𝑘, 𝑗 )𝜙
−1(𝜎𝑗 ,𝑖),

∐
𝑗

𝜙−1(𝜎𝑗 ,𝑖)
−1.(𝜓−1(𝑉𝑘, 𝑗 ) ∩ 𝜙

−1(𝜎𝑗 ,𝑖).𝜓(𝑈 𝑗 ,𝑖))
)

=
∐
𝑘,𝑖

(
s𝑘,𝑖 ,

∐
𝑗

𝜙−1(𝜏𝑘, 𝑗𝜎𝑗 ,𝑖),
∐
𝑗

𝜓−1(𝜎−1
𝑗 ,𝑖 .(𝑉𝑘, 𝑗 ∩ 𝜎𝑗 ,𝑖 .𝑈 𝑗 ,𝑖))

)
= 𝐹𝜙,𝜓 (𝜏𝜎).
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Hence, 𝐹𝜙,𝜓 respects composition. Furthermore, 𝐹𝜙,𝜓 also respects ⊕ by construction. This shows that
𝐹𝜙,𝜓 is a permutative functor. Moreover, our construction is (contravariantly) functorial in (𝜙, 𝜓), in
the sense that 𝐹𝜙′,𝜓′𝐹𝜙,𝜓 = 𝐹𝜙𝜙′,𝜓𝜓′ .

4. Homology for algebraic K-theory spectra of bisections in terms of groupoid homology

Let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) . Fix an abelian group C.
Our goal is to identify (reduced) stable homology of K(𝔅𝐺) with groupoid homology of G, that is,
�̃�∗(K(𝔅𝐺),C) � 𝐻∗(𝐺,C). Here, �̃�∗(K(𝔅𝐺),C) := 𝐻∗(K(𝔅𝐺),C) for ∗ > 0 and 𝐻0 (K(𝔅𝐺),C) =
�̃�0 (K(𝔅𝐺),C) ⊕ C, where the second direct sum comes from the base point corresponding to the unit
∅ of the small permutative category 𝔅𝐺 .

4.1. Functors inducing homotopy equivalences of classifying spaces

First, we establish a criterion for certain functors to induce homotopy equivalences of classifying spaces.
Let us start by describing the setting. Let Φ : ℭ → 𝔊 be a functor between small categories. Assume
that 𝔊 is a groupoid and that Φ is faithful, that is, the induced maps ℭ(∗, •) → 𝔊(Φ(∗),Φ(•)) are
injective for all •, ∗ ∈ objℭ. Given an object u of 𝔊, we first recall the definition of the category 𝑢\Φ
from [73, §1]. Objects of 𝑢\Φ consist of pairs (𝑣, 𝜎), where 𝑣 ∈ objℭ and𝜎 ∈𝔊(Φ(𝑣), 𝑢). A morphism
in 𝑢\Φ from (𝑣, 𝜎) to (𝑤, 𝜏) is given by 𝑓 ∈ ℭ(𝑤, 𝑣) such that Φ( 𝑓 )𝜎 = 𝜏, that is, the diagram

𝑢

𝜏
���

��
��

��
�

𝜎 �� Φ(𝑣)

Φ( 𝑓 )

��
Φ(𝑤)

commutes in 𝔊.
We now define a new category 𝔉𝑢,Φ as a quotient of 𝑢\Φ. Objects of 𝔉𝑢,Φ are equivalence classes

[𝑣, 𝜎] of objects (𝑣, 𝜎) of 𝑢\Φ, where (𝑣, 𝜎) and (𝑤, 𝜏) are equivalent if there exists an invertible
morphism of 𝑢\Φ from (𝑣, 𝜎) to (𝑤, 𝜏), that is, there exists an invertible element 𝑎 ∈ ℭ(𝑤, 𝑣) such that
Φ(𝑎)𝜎 = 𝜏, that is, the diagram

𝑢

𝜏
���

��
��

��
�

𝜎 �� Φ(𝑣)

Φ(𝑎)
��

Φ(𝑤)

commutes in 𝔊. Morphisms of 𝔉𝑢,Φ are equivalence classes [ 𝑓 ] of morphisms f of 𝑢\Φ, where
𝑓 : (𝑣, 𝜎) → (𝑤, 𝜏) and 𝑓 ′ : (𝑣′, 𝜎′) → (𝑤′, 𝜏′) are equivalent if there exist invertible elements
𝑏 ∈ ℭ(𝑤′, 𝑤), 𝑏′ ∈ ℭ(𝑣′, 𝑣), which are invertible morphisms in 𝑢\Φ, such that 𝑏 𝑓 = 𝑓 ′𝑏′ in ℭ (here
we view f and 𝑓 ′ as morphisms in ℭ), that is, the diagram

𝑣

𝑏′

��

𝑓 �� 𝑤

𝑏
��

𝑣′
𝑓 ′

�� 𝑤′

commutes in ℭ.
Note that a morphism f in 𝑢\Φ from (𝑣, 𝜎) to (𝑤, 𝜏), if it exists, is unique. This is because 𝔊 is a

groupoid and Φ is faithful.

https://doi.org/10.1017/fmp.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.31


Forum of Mathematics, Pi 25

Proposition 4.1. The classifying spaces of 𝑢\Φ and 𝔉𝑢,Φ are homotopy equivalent.

Proof. For every 𝑐 ∈ obj𝔉𝑢,Φ, choose 𝑥𝑐 ∈ obj (𝑢\Φ) such that [𝑥𝑐] = 𝑐. Given [ 𝑓 ] ∈ mor𝔉𝑢,Φ, let
𝑓 ∈ mor (𝑢\Φ) be the unique morphism from 𝑥𝔡 ( 𝑓 ) to 𝑥𝔱 ( 𝑓 ) . This defines a functor 𝔉𝑢,Φ → 𝑢\Φ. We
also have the canonical functor 𝑢\Φ→ 𝔉𝑢,Φ given by forming equivalence classes. By construction, the
composite 𝔉𝑢,Φ → 𝑢\Φ→ 𝔉𝑢,Φ is the identity on 𝔉𝑢,Φ. Now, let Θ be the composite 𝑢\Φ→ 𝔉𝑢,Φ →

𝑢\Φ. By construction, Θ(𝑜) = 𝑥 [𝑜] on objects and Θ( 𝑓 ) = 𝑓 on morphisms. We claim that there is a
natural transformation 𝑇 : id𝑢\Φ ⇒ Θ. Indeed, given an object 𝑜 ∈ obj (𝑢\Φ), let 𝑇𝑜 ∈ (𝑢\Φ) (𝑥 [𝑜] , 𝑜)
be the unique morphism in 𝑢\Φ from o to 𝑥 [𝑜] . Given a morphism 𝑓 ∈ (𝑢\Φ) (𝑜, 𝑜), the diagram

𝑜

𝑇�̃�

��

𝑜
𝑓

��

𝑇𝑜

��
𝑥 [�̃�] 𝑥 [𝑜]

𝑓��

commutes because of uniqueness of morphisms in 𝑢\Φ. Now, our proof is complete because of [73,
Proposition 2]. �

The following is now an immediate consequence of Proposition 4.1 and [73, Theorem A].

Corollary 4.2. If the classifying space of 𝔉𝑢,Φ is contractible for all 𝑢 ∈ obj𝔊, then Φ induces a
homotopy equivalence of classifying spaces.

4.2. Homology for certain free and proper actions

Now, let 𝜈 ≥ 1 and consider 𝔅𝐺 (0)�𝐺 (𝜈−1) and 𝔅𝐺�𝐺 (𝜈) as defined in §3. We set out to define a functor
𝐼 : 𝔅𝐺 (0)�𝐺 (𝜈−1) → 𝔅𝐺�𝐺 (𝜈) . Given𝑈 ∈ CO (𝜈−1) , let

𝐼 (𝑈) :=
{
(𝜌(𝑧), 𝑧) ∈ 𝐺 (𝜈) : 𝑧 ∈ 𝑈

}
.

Now, define

𝐼

(∐
𝑖

(𝑖,𝑈𝑖)

)
:=

∐
𝑖

(𝑖, 𝐼 (𝑈𝑖)).

On morphisms, define

𝐼

(∐
𝑗 ,𝑖

(s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖)

)
:=

∐
𝑗 ,𝑖

(s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 , 𝐼 (𝑈 𝑗 ,𝑖)).

Note that 𝜎𝑗 ,𝑖 = 𝜌(𝑈 𝑗 ,𝑖) because
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖) is a morphism in 𝔅𝐺 (0)�𝐺 (𝜈−1) .
It is straightforward to check that I is a permutative functor and that I is faithful. Therefore, we are

in the setting of Proposition 4.1 and Corollary 4.2.

Proposition 4.3. For all 𝑢 ∈ obj𝔅𝐺�𝐺 (𝜈) , the category 𝔉𝑢,𝐼 is trivial.

Proof. Since 𝔅𝐺 (0)�𝐺 (𝜈−1) is a groupoid (see Remark 3.1), our claim follows from the following
observations.

(i) For all 𝑢 ∈ obj𝔅𝐺�𝐺 (𝜈) , there exists 𝑣 ∈ obj𝔅𝐺 (0)�𝐺 (𝜈−1) and a morphism 𝜎 ∈ 𝔅𝐺�𝐺 (𝜈) (𝐼 (𝑣), 𝑢)
from u to 𝐼 (𝑣).

(ii) Given objects 𝑢 ∈ obj𝔅𝐺�𝐺 (𝜈) , 𝑣, 𝑣′ ∈ obj𝔅𝐺 (0)�𝐺 (𝜈−1) and morphisms 𝜎 ∈ 𝔅𝐺�𝐺 (𝜈) (𝐼 (𝑣), 𝑢),
𝜎′ ∈ 𝔅𝐺�𝐺 (𝜈) (𝐼 (𝑣

′), 𝑢), there exists a morphism 𝜏 ∈ 𝔅𝐺 (0)�𝐺 (𝜈−1) (𝑣′, 𝑣) from v to 𝑣′ such that
𝐼 (𝜏)𝜎 = 𝜎′.
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To prove (i), write 𝑢 =
∐

𝑖 (𝑖,𝑈𝑖). For each i, write𝑈𝑖 =
∐

𝑎𝑖 𝑈𝑖,𝑎𝑖 , where𝑈𝑖,𝑎𝑖 = 𝑈
0
𝑖,𝑎𝑖
×s r . . . ×s r𝑈

𝜈−1
𝑖,𝑎𝑖

and 𝑈𝜇
𝑖,𝑎𝑖

are compact open bisections with s(𝑈𝜇
𝑖,𝑎𝑖
) = r(𝑈𝜇+1

𝑖,𝑎𝑖
). Define for all i and 𝑎𝑖 the compact

open subspace 𝑉𝑖,𝑎𝑖 := 𝑈1
𝑖,𝑎𝑖
×s r . . . ×s r 𝑈

𝜈−1
𝑖,𝑎𝑖

. Furthermore, define 𝑣 :=
∐

𝑖,𝑎𝑖 ((𝑖, 𝑎𝑖), 𝑉𝑖,𝑎𝑖 ) and 𝜎 :=∐
𝑖,𝑎𝑖 (s(𝑖,𝑎𝑖) ,𝑖 , (𝑈

0
𝑖,𝑎𝑖
)−1,𝑈𝑖,𝑎𝑖 ). Then it is straightforward to check that 𝜎 ∈ 𝔅𝐺�𝐺 (𝜈) (𝐼 (𝑣), 𝑢).

Let us now prove (ii). Write 𝐼 (𝑣) =
∐

𝑗 ( 𝑗 , 𝑉 𝑗 ), 𝐼 (𝑣′) =
∐

𝑘 (𝑘,𝑉
′
𝑘 ). Let us show that

𝜎′𝜎−1 ∈ 𝔅𝐺�𝐺 (𝜈) (𝐼 (𝑣
′), 𝐼 (𝑣)) is the image of a morphism in 𝔅𝐺 (0)�𝐺 (𝜈−1) under I. Write

𝜎′𝜎−1 =
∐

𝑘, 𝑗 (s𝑘, 𝑗 , 𝜏𝑘, 𝑗 , 𝑉𝑘, 𝑗 ). For all (𝑔0, . . . , 𝑔𝜈−1) ∈ 𝑉𝑘, 𝑗 , we have 𝑔0 ∈ 𝐺
(0) . Similarly, for every

(ℎ0, . . . , ℎ𝜈−1) ∈ 𝑉
′
𝑘 , we have ℎ0 ∈ 𝐺

(0) . It follows that 𝜏𝑘, 𝑗 ⊆ 𝐺 (0) . Hence, indeed, 𝜎′𝜎−1 = 𝐼 (𝜏) for
some 𝜏 ∈ 𝔅𝐺 (0)�𝐺 (𝜈−1) (𝑣′, 𝑣), as desired. �

The following is an immediate consequence of Corollary 4.2 and Proposition 4.3.

Corollary 4.4. I induces a homotopy equivalence of classifying spaces.

Now, let C be a compact Hausdorff subspace of 𝐺 (𝜈−1) . Let 𝔅𝐶 be the full subcategory of
𝔅𝐺 (0)�𝐺 (𝜈−1) whose objects are of the form

∐
𝑖 (𝑖,𝑈𝑖), where 𝑈𝑖 ⊆ 𝐶. It follows that morphisms of

𝔅𝐶 are of the form
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖), with 𝑈 𝑗 ,𝑖 ⊆ 𝐶 (and hence 𝜎𝑗 ,𝑖 .𝑈 𝑗 ,𝑖 = 𝑈 𝑗 ,𝑖 ⊆ 𝐶). As C is
totally disconnected, we can describe C as 𝐶 � lim

←−−𝑙∈𝔏
U𝑙 , where U𝑙 consist of finitely many compact

open subspaces which partition C, and 𝔏 is the index set given by all these partitions, partially ordered
by refinement. For 𝑙 ∈ 𝔏, let 𝔅𝑙 be the small permutative category with objects of the form

∐
𝑖 (𝑖,𝑈𝑖)

with 𝑈𝑖 ∈ U𝑙 , and morphisms of the form
∐

𝑗 ,𝑖 (s 𝑗 (𝑖) ,𝑖 , 𝜌(𝑈𝑖),𝑈𝑖) from
∐

𝑖 (𝑖,𝑈𝑖) to
∐

𝑗 ( 𝑗 ,𝑈 𝑗 ), where
𝑖 ↦→ 𝑗 (𝑖) is a bijection. In other words, the only morphisms in 𝔅𝑙 are given by permutations. Note that
𝔅𝑙 is a subcategory of 𝔅𝐶 .

Lemma 4.5. For all 𝑙 ∈ 𝔏, we have a canonical isomorphism

𝐻∗(K(𝔅𝑙),C) �

{
(
⊕

U𝑙
C) ⊕ C if ∗ = 0,

{0} else.

Proof. It is easy to see that 𝔅𝑙 coincides with the free permutative category 𝑃U𝑙 in the sense of [92,
§1], where U𝑙 is the category with object set U𝑙 and only identity morphisms. Moreover, it is observed in
[92, §1] that 𝑃U𝑙 is equivalent to the free symmetric monoidal category 𝑆U𝑙 on U𝑙 so that [92, Lemma
2.3 and Lemma 2.5] imply that K(𝑃U𝑙) is weakly homotopy equivalent to Σ∞(𝐵U𝑙)

+. Hence, we obtain

𝐻∗(K(𝔅𝑙),C) � 𝐻∗(K(𝑃U𝑙),C) � 𝐻∗(Σ∞(𝐵U𝑙)
+,C),

and now our claim follows from 𝐻∗(𝐵U𝑙 ,C) � 𝐻∗(U𝑙 ,C). Here, we view U𝑙 as a discrete space. �

For 𝑘 ≤ 𝑙, define a permutative functor 𝐼𝑙,𝑘 : 𝔅𝑘 → 𝔅𝑙 by𝑈 ↦→
⊕
𝑉 (𝑈) for𝑈 ∈ U𝑘 , where the sum

is taken over all𝑉 (𝑈) ∈ U𝑙 contained in U, so that𝑈 =
∐
𝑉 (𝑈) as subspaces in C, and by extending this

to all objects via
∐

𝑖 (𝑖,𝑈𝑖) ↦→
⊕

𝑖 (
⊕
𝑉 (𝑈𝑖)). Here, we are working with a fixed ordering of {𝑉 (𝑈)}

for every U. On morphisms, let 𝐼𝑙,𝑘 (
∐

𝑗 ,𝑖 (s 𝑗 (𝑖) ,𝑖 , 𝜌(𝑈𝑖),𝑈𝑖)) be the morphism⊕
𝑖

(
⊕

𝑉 (𝑈𝑖)) →
⊕

𝑗

(
⊕

𝑉 (𝑈 𝑗 ))

induced by the permutation 𝑖 ↦→ 𝑗 (𝑖). Let us now form the homotopy colimit, in the sense of [92,
Construction 3.22], of the following functor F from 𝔏 to permutative categories: We define 𝐹 (𝑙) := 𝔅𝑙

on objects 𝑙 ∈ 𝔏, and a morphism 𝑘 → 𝑙 (i.e., 𝑘, 𝑙 ∈ 𝔏 satisfying 𝑘 ≤ 𝑙) is mapped to 𝐼𝑙,𝑘 under F.
We recall the construction of ℌ := hocolim 𝐹 from [92, Construction 3.22]. Objects of ℌ are of the
form (𝑙1, 𝑢1) ⊕ . . . ⊕ (𝑙𝑛, 𝑢𝑛), where 𝑙𝑖 ∈ 𝔏 and 𝑢𝑖 ∈ 𝐹 (𝑙𝑖). Morphisms from (𝑙1, 𝑢1) ⊕ . . . ⊕ (𝑙𝑛, 𝑢𝑛) to
(𝑙 ′1, 𝑢

′
1) ⊕ . . . ⊕ (𝑙

′
𝑚, 𝑢

′
𝑚) are given by (𝜆𝑖 , 𝜓, 𝜒 𝑗 ), where 𝜓 : {1, . . . , 𝑛} → {1, . . . , 𝑚} is a surjective

https://doi.org/10.1017/fmp.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.31


Forum of Mathematics, Pi 27

map, 𝜆𝑖 : 𝑙𝑖 → 𝑙 ′
𝜓 (𝑖)

are morphisms in 𝔏 (in our case this simply means 𝑙𝑖 ≤ 𝑙 ′
𝜓 (𝑖)

), and 𝜒 𝑗 :⊕
𝜓 (𝑖)= 𝑗 𝐹 (𝜆𝑖) (𝑢𝑖) → 𝑢′𝑗 are morphisms in 𝐹 (𝑙 ′𝑗 ).
Now, assume that C is contained in some𝑂 ∈ 𝒪 (𝜈−1) , and define a permutative functor 𝐻 : ℌ→ 𝔅𝐶

as follows: Given 𝑢 =
∐
•(•,𝑈•) with 𝑈• ∈ U𝑙 , set 𝐻 (𝑙, 𝑢) :=

∐
•(•,𝑈•) viewed as an object in 𝔅𝐶 .

Define H on a morphism given by data (𝜆𝑖 , 𝜓, 𝜒 𝑗 ) as above by sending it to the morphism given by the
composition ⊕

𝑖

𝐻 (𝑙𝑖 , 𝑢𝑖) →
⊕

𝑖

𝐻 (𝑙 ′𝜓 (𝑖) , 𝐹 (𝜆𝑖) (𝑢𝑖)) →
⊕

𝑗

𝐻 (𝑙 ′𝑗 , 𝑢
′
𝑗 ).

Here, the first map is given as follows: If 𝑢𝑖 =
∐
•(•,𝑈•), then 𝐹 (𝜆𝑖) (𝑢𝑖) =

⊕
•(

⊕
𝑉 (𝑈•)), and on

each component, the first map is given by the morphism
∐

𝑉 (𝑈 ) (s𝑈,𝑉 (𝑈 ) , 𝜌(𝑉 (𝑈)), 𝑉 (𝑈)). The second
map is given by

⊕
𝑖 𝐻 (𝑙

′
𝜓 (𝑖)

, 𝐹 (𝜆𝑖) (𝑢𝑖)) �
⊕

𝑗

⊕
𝜓 (𝑖)= 𝑗 𝐻 (𝑙

′
𝜓 (𝑖)

, 𝐹 (𝜆𝑖) (𝑢𝑖))

⊕
𝑗 𝜒𝑗�� ⊕

𝑗 𝐻 (𝑙
′
𝑗 , 𝑢
′
𝑗 ),

where we view
⊕

𝑗 𝜒 𝑗 as a morphism in 𝔅𝐶 .
Our goal is to show that H induces a homotopy equivalence of classifying spaces. To do so, let us

first describe 𝔉𝑢,𝐻 for 𝑢 ∈ obj𝔅𝐶 . Two objects (𝑣, 𝜎) and (𝑤, 𝜏) in 𝑢\𝐻 are equivalent (with respect
to the relation defining 𝔉𝑢,𝐻 ) if there exists a (necessarily unique) morphism a from v to w which is
invertible in ℌ, that is, a is given by (𝜆𝑖 , 𝜓, 𝜒 𝑗 ) such that 𝜆𝑖 = id and 𝑙 ′

𝜓 (𝑖)
= 𝑙𝑖 for all i. Hence,𝔉𝑢,𝐻 is a

poset, where we define [𝑣, 𝜎] ≥ [𝑤, 𝜏] if there exists a morphism from (𝑣, 𝜎) to (𝑤, 𝜏) in 𝑢\𝐻 given by
𝑓 ∈ ℌ(𝑤, 𝑣) such that 𝐻 ( 𝑓 )𝜎 = 𝜏. We want to show that the classifying space of 𝔉𝑢,𝐻 is contractible.
This will follow from the next observation.

Lemma 4.6. Every two elements of 𝔉𝑢,𝐻 have a common lower bound.

Proof. We want to show that for all [𝑣, 𝜎] and [𝑤, 𝜏], there exists [𝑥, 𝛼] such that [𝑣, 𝜎] ≥ [𝑥, 𝛼]
and [𝑤, 𝜏] ≥ [𝑥, 𝛼]. Indeed, suppose that 𝑢 =

∐
𝑖 (𝑖,𝑈𝑖), 𝑣 =

⊕
•(𝑙•, 𝑣•), 𝐻 (𝑣) =

∐
𝑗 ( 𝑗 , 𝑉 𝑗 ) and that

𝜎 =
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜌(𝑈 𝑗 ,𝑖),𝑈 𝑗 ,𝑖). Then 𝑈𝑖 =
∐

𝑗 𝑈 𝑗 ,𝑖 and 𝑉 𝑗 =
∐

𝑖𝑈 𝑗 ,𝑖 . Find an index 𝑙 ′ with 𝑙• ≤ 𝑙 ′ for
all • such that 𝑈 𝑗 ,𝑖 can be written as a disjoint union 𝑈 𝑗 ,𝑖 =

∐
𝑉 𝑗 ,𝑖,𝜁 for some 𝑉 𝑗 ,𝑖,𝜁 ∈ U𝑙′ . Define

𝑣′ := (𝑙 ′,
⊕

𝑗 ,𝑖,𝜁 𝑉 𝑗 ,𝑖,𝜁 ). Construct a morphism e in ℌ from v to 𝑣′ given by data (𝜆•, 𝜓, 𝜒) as above
(note that 𝑚 = 1 for 𝑣′), with 𝜓(•) = 1 for all •, 𝜆• is the morphism 𝑙• → 𝑙 ′ in 𝔏, which exists because
𝑙• ≤ 𝑙

′, and

𝜒 :
⊕

𝑗

⊕
𝑉 (𝑉 𝑗 ) →

⊕
𝑗 ,𝑖,𝜁

𝑉 𝑗 ,𝑖,𝜁

given by the obvious permutation, induced by the decomposition 𝑉 𝑗 =
∐

𝑖𝑈 𝑗 ,𝑖 =
∐

𝑖

∐
𝑉 𝑗 ,𝑖,𝜁 . By

construction, we have

𝐻 (𝑒) =
∐
𝑗 ,𝑖,𝜁

(s( 𝑗 ,𝑖,𝜁 ) , 𝑗 , 𝜌(𝑉 𝑗 ,𝑖,𝜁 ), 𝑉 𝑗 ,𝑖,𝜁 ).

Similarly, suppose that 𝑤 =
⊕
◦(𝑙◦, 𝑤◦), 𝐻 (𝑤) =

∐
𝑘 (𝑘,𝑊𝑘 ) and 𝜏 =

∐
𝑘,𝑖 (s𝑘,𝑖 , 𝜌(𝑈𝑘,𝑖),𝑈𝑘,𝑖). Then

𝑊𝑘 =
∐

𝑖𝑈𝑘,𝑖 . Find an index 𝑙 with 𝑙◦ ≤ 𝑙 for all ◦ such that 𝑈𝑘,𝑖 can be written as a disjoint union
𝑈𝑘,𝑖 =

∐
𝑊𝑘,𝑖,𝜂 for some𝑊𝑘,𝑖,𝜂 ∈ U𝑙 . Define �̃� := (𝑙,

⊕
𝑘,𝑖,𝜂𝑊𝑘,𝑖,𝜂), and construct a morphism f in

ℌ from w to �̃� as above such that

𝐻 ( 𝑓 ) =
∐
𝑘,𝑖,𝜂

(s(𝑘,𝑖,𝜂) ,𝑘 , 𝜌(𝑊𝑘,𝑖,𝜂),𝑊𝑘,𝑖,𝜂).
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Now, find 𝑙 ∈ 𝔏 such that 𝑙 ′, 𝑙 ≤ 𝑙. It follows that all 𝑉 𝑗 ,𝑖,𝜁 and𝑊𝑘,𝑖,𝜂 can be written as disjoint unions
of elements in U𝑙 . This leads to morphisms 𝑒′ and 𝑓 ′ in ℌ such that

𝐻 (𝑒′) =
∐

𝑘, 𝑗,𝑖,𝜁 ,𝜂

(s(𝑘, 𝑗,𝑖,𝜁 ,𝜂) , ( 𝑗 ,𝑖,𝜁 ) , 𝜌(𝑈𝑘, 𝑗,𝑖,𝜁 ,𝜂),𝑈𝑘, 𝑗,𝑖,𝜁 ,𝜂)

𝐻 ( 𝑓 ′) =
∐

𝑘, 𝑗,𝑖,𝜁 ,𝜂

(s(𝑘, 𝑗,𝑖,𝜁 ,𝜂) , (𝑘,𝑖,𝜂) , 𝜌(�̃�𝑘, 𝑗,𝑖,𝜁 ,𝜂), �̃�𝑘, 𝑗,𝑖,𝜁 ,𝜂)

satisfying 𝔱(𝑒′) = 𝔱( 𝑓 ′) and 𝐻 (𝑒′)𝐻 (𝑒)𝜎 = 𝐻 ( 𝑓 ′)𝐻 ( 𝑓 )𝜏. Setting 𝑥 := 𝔱(𝑒′) = 𝔱( 𝑓 ′) and 𝛼 :=
𝐻 (𝑒′)𝐻 (𝑒)𝜎 = 𝐻 ( 𝑓 ′)𝐻 ( 𝑓 )𝜏, we indeed have [𝑣, 𝜎] ≥ [𝑥, 𝛼] and [𝑤, 𝜏] ≥ [𝑥, 𝛼], as desired. �

We obtain the following consequence of Corollary 4.2 and Lemma 4.6 because posets with the
property that any two elements have a common lower bound have contractible classifying spaces.

Corollary 4.7. H induces a homotopy equivalence of classifying spaces.

Proposition 4.8. We have

𝐻∗(K(𝔅𝐶 ),C) �

{
𝒞(𝐶,C) ⊕ C if ∗ = 0,
{0} else.

Proof. Corollary 4.7 implies that 𝐻∗(K(𝔅𝐶 )) � 𝐻∗(K(ℌ)) because of [92, Lemma 2.3]. Thus, we
obtain

𝐻∗(K(𝔅𝐶 ),C) � 𝐻∗(K(ℌ),C) � 𝐻∗(hocolim𝑙 K(𝔅𝑙),C) � lim
−−→
𝑙

𝐻∗(K(𝔅𝑙),C).

Here, we used [92, Theorem 4.1] for the second isomorphism, and we obtain the third isomorphism
because we are taking a filtered colimit. Thus, applying Lemma 4.5, we derive

𝐻∗(K(𝔅𝐶 ),C) �

{
lim
−−→𝑙
(
⊕

U𝑙
C) ⊕ C � 𝒞(𝐶,C) ⊕ C if ∗ = 0,

{0} else,

as desired. �

Now, suppose that 𝑂 ∈ 𝒪 (𝜈−1) . Let 𝔅𝑂 be the full subcategory of 𝔅𝐺 (0)�𝐺 (𝜈−1) whose objects are of
the form

∐
𝑖 (𝑖,𝑈𝑖), where𝑈𝑖 ⊆ 𝑂.

Proposition 4.9. We have

𝐻∗(K(𝔅𝑂),C) �

{
𝒞(𝑂,C) ⊕ C if ∗ = 0,
{0} else.

Proof. Let us use the same notation as in §2.6. Since 𝑂 =
⋃

𝑈 𝑈, where U runs through all compact
open subspaces of O, we conclude that for all 𝑝, 𝑞, we have 𝔑𝑝𝔅𝑂 (𝑆

𝑛
𝑞) =

⋃
𝑈 𝔑𝑝𝔅𝑈 (𝑆

𝑛
𝑞). Hence, after

taking diagonals, we obtain 𝔑𝔅𝑂 (𝑆
𝑛) =

⋃
𝑈 𝔑𝔅𝑈 (𝑆

𝑛). Since homology is compatible with inductive
limits, we obtain 𝐻∗(𝑋𝑛) � lim

−−→𝑈
𝐻∗(𝑋𝑈,𝑛), where 𝑋𝑛 is the n-th simplicial set of K(𝔅𝑂) and 𝑋𝑈,𝑛 is

the n-th simplicial set of K(𝔅𝑈 ). Therefore, using Proposition 4.8, we conclude that

𝐻∗(K(𝔅𝑂),C) � lim
−−→
𝑈

𝐻∗(K(𝔅𝑈 ),C) � lim
−−→
𝑈

𝒞(𝑈,C) ⊕ C � 𝒞(𝑂,C) ⊕ C,

for ∗ = 0, and 𝐻∗(K(𝔅𝑂),C) � {0} for ∗ > 0. �
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Now, suppose that we are given𝑂1, . . . , 𝑂𝑁 ∈ 𝒪
(𝜈−1) . Let𝔅∩ be the full subcategory of𝔅𝐺 (0)�𝐺 (𝜈−1)

whose objects are of the form
∐

𝑖 (𝑖,𝑈𝑖), where 𝑈𝑖 ⊆ 𝑂1 ∩ 𝑂𝑛 for some 2 ≤ 𝑛 ≤ 𝑁 . Let 𝔅1 be the
full subcategory of 𝔅𝐺 (0)�𝐺 (𝜈−1) whose objects are of the form

∐
𝑖 (𝑖,𝑈𝑖), where 𝑈𝑖 ⊆ 𝑂1. Let 𝔅2

be the full subcategory of 𝔅𝐺 (0)�𝐺 (𝜈−1) whose objects are of the form
∐

𝑖 (𝑖,𝑈𝑖), where 𝑈𝑖 ⊆ 𝑂𝑛 for
some 2 ≤ 𝑛 ≤ 𝑁 . Finally, let 𝔅 be the full subcategory of 𝔅𝐺 (0)�𝐺 (𝜈−1) whose objects are of the form∐

𝑖 (𝑖,𝑈𝑖), where 𝑈𝑖 ⊆ 𝑂𝑛 for some 1 ≤ 𝑛 ≤ 𝑁 . Let 𝔏 be the category with three objects 𝔩∩, 𝔩1 and 𝔩2,
the corresponding identity morphisms, one morphism 𝔩∩ → 𝔩1 and another morphism 𝔩∩ → 𝔩2. Let F be
the functor from 𝔏 to small permutative categories sending 𝔩∩ to 𝔅∩, 𝔩1 to 𝔅1, 𝔩2 to 𝔅2, the morphism
𝔩∩ → 𝑙1 to the inclusion 𝔅∩ ↩→ 𝔅1 and the morphism 𝔩∩ → 𝑙2 to the inclusion 𝔅∩ ↩→ 𝔅2.

Let 𝔓 := hocolim 𝐹. So objects of 𝔓 are of the form (𝑙1, 𝑢1) ⊕ . . . ⊕ (𝑙𝑛, 𝑢𝑛), where 𝑙𝑖 ∈ obj𝔏 and
𝑢𝑖 ∈ 𝐹 (𝑙𝑖). Morphisms from (𝑙1, 𝑢1) ⊕ . . .⊕ (𝑙𝑛, 𝑢𝑛) to (𝑙 ′1, 𝑢

′
1) ⊕ . . .⊕ (𝑙

′
𝑚, 𝑢

′
𝑚) are given by (𝜆𝑖 , 𝜓, 𝜒 𝑗 ),

where 𝜓 : {1, . . . , 𝑛} → {1, . . . , 𝑚} is a surjective map, 𝜆𝑖 : 𝑙𝑖 → 𝑙 ′
𝜓 (𝑖)

are morphisms in 𝔏, and
𝜒 𝑗 :

⊕
𝜓 (𝑖)= 𝑗 𝐹 (𝜆𝑖) (𝑢𝑖) → 𝑢′𝑗 are morphisms in 𝐹 (𝑙 ′𝑗 ). In our case, if 𝑙𝑖 ∈ {𝔩1, 𝔩2}, then we must have

𝑙 ′
𝜓 (𝑖)

= 𝑙𝑖 and 𝜆𝑖 = id.
Define a permutative functor Π : 𝔓→ 𝔅 by sending

⊕
𝑖 (𝑙𝑖 , 𝑢𝑖) to

⊕
𝑖 𝑢𝑖 and the morphism from

(𝑙1, 𝑢1) ⊕ . . . ⊕ (𝑙𝑛, 𝑢𝑛) to (𝑙 ′1, 𝑢
′
1) ⊕ . . . ⊕ (𝑙

′
𝑚, 𝑢

′
𝑚) given by (𝜆𝑖 , 𝜓, 𝜒 𝑗 ) to the morphism

⊕
𝑖 𝑢𝑖 =

⊕
𝑗

⊕
𝜓 (𝑖)= 𝑗 𝑢𝑖

⊕
𝑗 𝜒𝑗 �� ⊕

𝑗 𝑢
′
𝑗 ,

where we view 𝜒 𝑗 , which by definition is a morphism in 𝐹 (𝑙 ′𝑗 ), as a morphism in 𝔅. This is possible
because 𝐹 (𝑙 ′𝑗 ) ⊆ 𝔅.

Let us describe𝔉𝑢,Π for 𝑢 ∈ obj𝔅. Two objects (𝑣, 𝜎) and (𝑤, 𝜏) in 𝑢\Π are equivalent (with respect
to the relation defining 𝔉𝑢,Π) if there exists a (necessarily unique) morphism a from v to w which is
invertible in 𝔓, that is, a is given by (𝜆𝑖 , 𝜓, 𝜒 𝑗 ) such that 𝜆𝑖 = id and 𝑙 ′

𝜓 (𝑖)
= 𝑙𝑖 for all i. Hence,𝔉𝑢,Π is a

poset, where we define [𝑣, 𝜎] ≥ [𝑤, 𝜏] if there exists a morphism from (𝑣, 𝜎) to (𝑤, 𝜏) in 𝑢\Π given by
𝑓 ∈ 𝔓(𝑤, 𝑣) such that Π( 𝑓 )𝜎 = 𝜏. We want to show that the classifying space of 𝔉𝑢,Π is contractible.
Lemma 4.10. Every two elements in 𝔉𝑢,Π have a common upper bound.
Proof. Given [𝑣, 𝜎] and [𝑤, 𝜏], we proceed as in the proof of Lemma 4.6 to obtain invertible morphisms
𝑒, 𝑒′, 𝑓 , 𝑓 ′ in 𝔓 such that Π(𝑒′)Π(𝑒)𝜎 = Π( 𝑓 ′)Π( 𝑓 )𝜏. Let 𝛼 := Π(𝑒′)Π(𝑒)𝜎 = Π( 𝑓 ′)Π( 𝑓 )𝜏. Set
𝑦 := 𝔱(𝑒′) and 𝑧 := 𝔱( 𝑓 ′). Then these objects y and z are of the form 𝑦 = (𝑙1 (𝑦), 𝑢1) ⊕ . . . and
𝑧 = (𝑙1 (𝑧), 𝑢1) ⊕ . . . . Define another object x of 𝔓 as follows: Set 𝑙•(𝑥) := 𝔩∩ if 𝑙•(𝑦) = 𝔩∩ or 𝑙•(𝑧) = 𝔩∩
or 𝔩∩ ≠ 𝑙•(𝑦) ≠ 𝑙•(𝑧) ≠ 𝔩∩. Otherwise, set 𝑙•(𝑥) := 𝑙•(𝑦) = 𝑙•(𝑧). Now, define 𝑥 := (𝑙1 (𝑥), 𝑢1) ⊕ . . . .
This is well defined, that is, if 𝑙•(𝑥) = 𝔩∩ and 𝔩∩ ≠ 𝑙•(𝑦) ≠ 𝑙•(𝑧) ≠ 𝔩∩, then 𝑢• must be an object
of 𝔅1 as well as an object of 𝔅𝑛 for some 2 ≤ 𝑛 ≤ 𝑁 so that 𝑢• ∈ obj𝔅∩. Furthermore, define a
morphism 𝑒 in 𝔓 from x to y by setting 𝜓 := id, defining 𝜆𝑖 as the obvious morphism 𝑙𝑖 (𝑥) → 𝑙𝑖 (𝑦)
and 𝜒 𝑗 := id. Similarly, define a morphism 𝑓 in 𝔓 from x to z. Then Π(𝑒)𝛼 = 𝛼, Π( 𝑓 )𝛼 = 𝛼 so that
[𝑣, 𝜎] = [𝑦, 𝛼] ≤ [𝑥, 𝛼] and [𝑤, 𝜏] = [𝑧, 𝛼] ≤ [𝑥, 𝛼], as desired. �

Since posets with the property that any two elements have a common upper bound have contractible
classifying spaces, we obtain the following consequence of Corollary 4.2 and Lemma 4.10.
Corollary 4.11. Π induces a homotopy equivalence of classifying spaces.

We need the following observation: Let

𝒞∩ := span {𝑐𝑈 : 𝑐 ∈ C, 𝑈 compact open subspace of 𝑂1 ∩𝑂𝑛 for some 2 ≤ 𝑛 ≤ 𝑁} ,
𝒞1 := span {𝑐𝑈 : 𝑐 ∈ C, 𝑈 compact open subspace of 𝑂1} ,

𝒞2 := span {𝑐𝑈 : 𝑐 ∈ C, 𝑈 compact open subspace of 𝑂𝑛 for some 2 ≤ 𝑛 ≤ 𝑁}
𝒞 := span {𝑐𝑈 : 𝑐 ∈ C, 𝑈 compact open subspace of 𝑂𝑛 for some 1 ≤ 𝑛 ≤ 𝑁} .

All these are subspaces of 𝒞(𝐺 (𝜈−1) ,C).
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Lemma 4.12. The obvious inclusion maps fit into the following short exact sequence:

0→ 𝒞∩ → 𝒞1 ⊕ 𝒞2 → 𝒞 → 0,

where the map 𝒞∩ → 𝒞1 ⊕ 𝒞2 sends 𝑓 ∈ 𝒞∩ to ( 𝑓 ,− 𝑓 ) ∈ 𝒞1 ⊕ 𝒞2 and the map 𝒞1 ⊕ 𝒞2 → 𝒞 sends
( 𝑓1, 𝑓2) ∈ 𝒞1 ⊕ 𝒞2 to 𝑓1 + 𝑓2 ∈ 𝒞.

Proof. Suppose that
∑

𝑖 (𝑐𝑖)𝑈𝑖 +
∑

𝑗 (𝑐 𝑗 )𝑉𝑗 = 0 in 𝒞, with 𝑈𝑖 ⊆ 𝑂1 and 𝑉 𝑗 ⊆ 𝑂𝑛 for some 2 ≤ 𝑛 ≤ 𝑁 .
After disjointifying, we may assume that the 𝑈𝑖 are pairwise disjoint. We must have 𝑈𝑖 ⊆

⋃
𝑗 𝑉 𝑗 ,

otherwise 𝑐𝑖 = 0. As in the proof of Lemma 2.2, this allows us to replace𝑈𝑖 by𝑊𝑘 , with𝑊𝑘 ⊆ 𝑉 𝑗 ⊆ 𝑂𝑛

for some 2 ≤ 𝑛 ≤ 𝑁 , so that𝑊𝑘 ⊆ 𝑂1 ∩𝑂𝑛 for some 2 ≤ 𝑛 ≤ 𝑁 . We conclude that(∑
𝑖

(𝑐𝑖)𝑈𝑖 ,
∑
𝑗

(𝑐 𝑗 )𝑉𝑗

)
=

(∑
𝑘

(𝑐𝑘 )𝑊𝑘 ,
∑
𝑗

(𝑐 𝑗 )𝑉𝑗

)
≡

(
0,

∑
𝑘

(𝑐𝑘 )𝑊𝑘 +
∑
𝑗

(𝑐 𝑗 )𝑉𝑗

)

in 𝒞1 ⊕ 𝒞2, where ≡ is understood modulo the image of 𝒞∩ under the map 𝒞∩ → 𝒞1 ⊕ 𝒞2 above. It
follows that

∑
𝑘 (𝑐𝑘 )𝑊𝑘 +

∑
𝑗 (𝑐 𝑗 )𝑉𝑗 = 0 in 𝒞, that is,

∑
𝑘 (𝑐𝑘 )𝑊𝑘 +

∑
𝑗 (𝑐 𝑗 )𝑉𝑗 is the constant zero function

on 𝐺 (𝜈−1) , and hence
∑

𝑘 (𝑐𝑘 )𝑊𝑘 +
∑

𝑗 (𝑐 𝑗 )𝑉𝑗 = 0 in 𝒞2, as desired. �

Given a finite subset 𝑂 = {𝑂1, . . . , 𝑂𝑁 } ⊆ 𝒪 (𝜈−1) , let 𝔅𝑂 be the full subcategory of 𝔅𝐺 (0)�𝐺 (𝜈−1)

whose objects are of the form
∐

𝑖 (𝑖,𝑈𝑖), where𝑈𝑖 ⊆ 𝑂𝑛 for some 1 ≤ 𝑛 ≤ 𝑁 . Also, define

𝒞𝑂 := span {𝑐𝑈 : 𝑐 ∈ C, 𝑈 compact open subspace of 𝑂𝑛 for some 1 ≤ 𝑛 ≤ 𝑁} .

Corollary 4.13. We have

𝐻∗(K(𝔅𝑂),C) �

{
𝒞𝑂 ⊕ C if ∗ = 0,
{0} else.

Proof. We proceed inductively on N. The case 𝑁 = 1 is Proposition 4.9. Now, we turn to the case of
general N. Corollary 4.11 and [92, Lemma 2.3, Theorem 4.1] imply that K(𝔅𝑂) can be identified with
the homotopy pushout of

K(𝔅{𝑂1∩𝑂2 ,...,𝑂1∩𝑂𝑁 })

��

�� K(𝔅{𝑂1 })

K(𝔅{𝑂2 ,...,𝑂𝑁 })

with respect to the maps of spectra induced by the canonical inclusions of small permutative categories
(using functoriality, see §2.6). Thus, proceeding inductively, the long exact sequence in homology for
pushouts (see, for instance, [92, Example 3.7]) yields the short exact sequence

0→ 𝐻0(K(𝔅{𝑂1∩𝑂2 ,...,𝑂1∩𝑂𝑁 }),C) → 𝐻0 (K(𝔅{𝑂1 }),C) ⊕ 𝐻0 (K(𝔅{𝑂2 ,...,𝑂𝑁 }),C)
→ 𝐻0 (K(𝔅𝑂),C) → 0

and that 𝐻∗(K(𝔅𝑂),C) � {0} for all ∗ > 0. Comparing this short exact sequence with the one in
Lemma 4.12, our claim follows. �

Theorem 4.14. For all 𝜈 ≥ 1, we have

𝐻∗(K(𝔅𝐺�𝐺 (𝜈) ),C) �

{
𝒞(𝐺 (𝜈−1) ,C) ⊕ C if ∗ = 0,
{0} else.

https://doi.org/10.1017/fmp.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.31


Forum of Mathematics, Pi 31

Proof. Corollary 4.4 implies that 𝐻∗(K(𝔅𝐺�𝐺 (𝜈) ),C) � 𝐻∗(K(𝔅𝐺 (0)�𝐺 (𝜈−1) ),C) because of [92,
Lemma 2.3]. A similar argument as for Proposition 4.9 implies that 𝐻∗(K(𝔅𝐺 (0)�𝐺 (𝜈−1) ),C) �
lim
−−→𝑂

𝐻∗(K(𝔅𝑂),C), where we order 𝑂 by inclusion. All in all, using Corollary 4.13, we conclude that

𝐻∗(K(𝔅𝐺�𝐺 (𝜈) ),C) � lim
−−→
𝑂

𝐻∗(K(𝔅𝑂),C) �

{
lim
−−→𝑂

𝒞𝑂 ⊕ C � 𝒞(𝐺 (𝜈−1) ,C) ⊕ C if ∗ = 0,

{0} else. �

4.3. Identifying homology of algebraic K-theory spectra with groupoid homology

We introduce the notation 𝔅(𝜈) := 𝔅𝐺�𝐺 (𝜈) . Let Δ𝜇
𝜈+1 be the permutative functor 𝔅(𝜈+1) → 𝔅(𝜈)

induced by the groupoid homomorphism id𝐺 and the map 𝐺 → 𝐺 (0) , 𝑔 ↦→ r(𝑔) for 𝜈 = 0 and 𝜇 = 0,
and

𝐺 (𝜈+1) → 𝐺 (𝜈) , (𝑔0, . . . , 𝑔𝜈) ↦→

{
(𝑔0, . . . , 𝑔𝜇𝑔𝜇+1, . . . , 𝑔𝜈) if 0 ≤ 𝜇 ≤ 𝜈 − 1,
(𝑔0, . . . , 𝑔𝜈−1) if 𝜇 = 𝜈

for 𝜈 > 0. It is straightforward to check that these maps satisfy the conditions in §3.1.1. The functors
Δ𝜇

𝜈+1 induce maps of bisimplicial sets from (𝑝, 𝑞) ↦→ 𝔑𝑝𝔅(𝜈+1) (𝑆𝑛𝑞) to (𝑝, 𝑞) ↦→ 𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞) and
hence maps

𝜕
𝜇
𝜈+1 : 𝐶𝑝,𝑞𝔑𝑝𝔅

(𝜈+1) (𝑆𝑛𝑞) → 𝐶𝑝,𝑞𝔑𝑝𝔅
(𝜈) (𝑆𝑛𝑞),

for all 𝑝, 𝑞. Here, we are using the same notation as in §2.6 (and 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞) denotes the total
complex of (𝑝, 𝑞) ↦→ 𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞)). We set 𝜕𝜈+1 :=

∑𝜈
𝜇=0(−1)𝜇𝜕𝜇

𝜈+1. It is straightforward to check that,
for all 𝑝, 𝑞, the sequence

. . .
𝜕𝜈+2 �� 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈+1) (𝑆𝑛𝑞)

𝜕𝜈+1 �� 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞)
𝜕𝜈 �� . . .

forms a chain complex. Our goal is to show that this chain complex is exact.

Theorem 4.15. The following chain complex is exact:

. . .
𝜕𝜈+2 �� 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈+1) (𝑆𝑛𝑞)

𝜕𝜈+1 �� 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞)
𝜕𝜈 �� . . .

For the proof, let us construct maps ℎ𝜈 : 𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞) → 𝔑𝑝𝔅(𝜈+1) (𝑆𝑛𝑞).
Let us first describe a general method which allows us to modify domains of morphisms. Suppose that

𝜎 =
∐

𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈 𝑗 ,𝑖) is a morphism in𝔅(𝜈) with domain𝔡(𝜎) =
∐

𝑖 (𝑖,𝑈𝑖). Suppose that we want to
replace 𝔡(𝜎) by 𝔡𝜎 =

∐
𝑖 (𝑖,𝑈

′
𝑖 ) ∈ obj𝔅(𝜈+1) , with𝑈 ′𝑖 ⊆ 𝐺

(𝜈+1) and m restricting to a homeomorphism
𝑚 |𝑈 ′𝑖 : 𝑈 ′𝑖 � 𝑈𝑖 , where m is the map 𝑚 : 𝐺 (𝜈+1) → 𝐺 (𝜈) , (𝑔0, . . . , 𝑔𝜈) ↦→ (𝑔0𝑔1, . . . , 𝑔𝜈). Then
define ℎ𝜈 (𝜎, 𝔡𝜎) :=

∐
𝑗 ,𝑖 (s 𝑗 ,𝑖 , 𝜎𝑗 ,𝑖 ,𝑈

′
𝑗 ,𝑖), where 𝑈 ′𝑗 ,𝑖 ⊆ 𝑈

′
𝑖 such that 𝑚(𝑈 ′𝑗 ,𝑖) = 𝑈 𝑗 ,𝑖 . Now, suppose

that 𝜏, 𝜎 are two composable morphisms in 𝔅(𝜈) . Given 𝔡𝜎 as above, construct ℎ𝜈 (𝜎, 𝔡𝜎) and set
𝔡𝜏 := 𝔱(ℎ𝜈 (𝜎, 𝔡𝜎)). Then 𝔡𝜏 is of the same form for 𝔡(𝜏) so that we can form ℎ𝜈 (𝜏, 𝔡𝜏) in the same
way as before. By construction, the following holds:

ℎ𝜈 (𝜏𝜎, 𝔡𝜎) = ℎ𝜈 (𝜏, 𝔡𝜏)ℎ𝜈 (𝜎, 𝔡𝜎).

Now, let us apply the procedure above and construct ℎ𝜈 on 𝔅(𝜈) (𝐴) for some finite based set A. Given an
object (𝑢𝑆 , 𝜑𝑇 ,𝑇 ′ ) in 𝔅(𝜈) (𝐴) and an element 𝑎 ∈ 𝐴 which is not the base point, write 𝑢 {𝑎} =

∐
𝑖 (𝑖,𝑈𝑖)

and set ℎ𝜈 (𝑢 {𝑎}) :=
∐

𝑖 (𝑖,𝑈
′
𝑖 ), where 𝑈 ′𝑖 = {(𝜌(𝑧), 𝑧): 𝑧 ∈ 𝑈𝑖} if 𝜈 ≥ 1, and 𝑈 ′𝑖 = 𝑈𝑖 viewed as a
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subspace of G via the canonical embedding 𝐺 (0) ↩→ 𝐺 if 𝜈 = 0. Now, proceed inductively on #𝑆. If
𝑆 = {𝑎} ∪ 𝑆′, then define ℎ𝜈 (𝑢𝑆) as the target of the morphism ℎ𝜈 (𝜑{𝑎},𝑆′ , ℎ𝜈 (𝑢 {𝑎}) ⊕ ℎ𝜈 (𝑢𝑆′ )). Given
disjoint 𝑇,𝑇 ′ ⊆ 𝐴 not containing the base point, set ℎ𝜈 (𝜑𝑇 ,𝑇 ′ ) := ℎ𝜈 (𝜑𝑇 ,𝑇 ′ , ℎ𝜈 (𝑢𝑇 ) ⊕ ℎ𝜈 (𝑢𝑇 ′ )). It is
straightforward to check that

{
ℎ𝜈 (𝑢𝑆), ℎ𝜈 (𝜑𝑇 ,𝑇 ′ )

}
lies in 𝔅(𝜈+1) (𝐴). Now, we extend ℎ𝜈 to 𝔑𝑝𝔅(𝜈) (𝐴).

Suppose we are given ( 𝑓1, . . . , 𝑓𝑝) ∈ 𝔑𝑝𝔅(𝜈) (𝐴), with 𝑓� = {( 𝑓�)𝑆}. Write 𝔡( 𝑓𝑝) =
{
𝑢𝑆 , 𝜑𝑇 ,𝑇 ′

}
. Then

set

ℎ𝜈 ( 𝑓𝑝)𝑆 := ℎ𝜈 (( 𝑓𝑝)𝑆 , ℎ𝜈 (𝑢𝑆)),

and define recursively

ℎ𝜈 ( 𝑓𝑝′ )𝑆 := ℎ𝜈 (( 𝑓𝑝′ )𝑆 , 𝔡(ℎ𝜈 ( 𝑓𝑝′+1)𝑆)).

It is now straightforward to check that ℎ𝜈 ( 𝑓𝑝′ ) :=
{
( 𝑓𝑝′ )𝑆

}
defines a morphism in 𝔅(𝜈) (𝐴) and that

(ℎ𝜈 ( 𝑓1), . . . , ℎ𝜈 ( 𝑓𝑝)) ∈ 𝔑𝑝𝔅
(𝜈+1) (𝐴).

Apply the above construction to 𝐴 = 𝑆𝑛𝑞 , denote by ℎ𝜈 the map ℎ𝜈 : 𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞) → 𝔑𝑝𝔅(𝜈+1) (𝑆𝑛𝑞)
and let (ℎ𝜈)∗ be the induced map 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞) → 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈+1) (𝑆𝑛𝑞).

Proposition 4.16. (ℎ𝜈)∗, 𝜈 ≥ 0, defines a chain homotopy between the identity map and the zero map,
that is, we have 𝜕1(ℎ0)∗ = id on 𝐶𝑝,𝑞𝔑𝑝𝔅(0) (𝑆𝑛𝑞) and 𝜕𝜈+1(ℎ𝜈)∗ + (ℎ𝜈+1)∗𝜕𝜈 = id on 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞)
for all 𝜈 ≥ 1.

Proof. First, observe that 𝜕𝜇
𝜈+1(ℎ𝜈)∗ and (ℎ𝜈+1)∗𝜕𝜇

𝜈 are determined by how they act on 𝐺 (𝜈) , in the
sense that for both 𝜕𝜇

𝜈+1(ℎ𝜈)∗ and (ℎ𝜈+1)∗𝜕𝜇
𝜈 , there are maps 𝐺 (𝜈) → 𝐺 (𝜈) , say 𝜁 𝜇𝜈 and 𝜂𝜇𝜈 such that,

on the level of 𝔅(𝜈) (𝑆𝑛𝑞), for 𝑎 ∈ 𝑆𝑛𝑞 , 𝑢 {𝑎} =
∐

𝑖 (𝑖,𝑈𝑖) is sent to
∐

𝑖 (𝑖, 𝜁
𝜇
𝜈 (𝑈𝑖)) for 𝜕𝜇

𝜈+1(ℎ𝜈)∗ and to∐
𝑖 (𝑖, 𝜂

𝜇
𝜈 (𝑈𝑖)) for (ℎ𝜈+1)∗𝜕𝜇

𝜈 and that 𝜕𝜇
𝜈+1(ℎ𝜈)∗ = (ℎ𝜈+1)∗𝜕

�̃�
𝜈 if 𝜁 𝜇𝜈 = 𝜂 �̃�𝜈 .

For 𝜈 = 0, it is straightforward to see that 𝜁0
0 = id𝐺 (0) so that 𝜕1(ℎ0)∗ = id. For 𝜈 ≥ 1, 𝜁 𝜇𝜈 is given by

(𝑔1, . . . , 𝑔𝜈) ↦→ (r(𝑔1), 𝑔1, . . . , 𝑔𝜈) ↦→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑔1, . . . , 𝑔𝜈) if 𝜇 = 0,
(r(𝑔1), . . . , 𝑔𝜇𝑔𝜇+1, . . . , 𝑔𝜈) if 1 ≤ 𝜇 ≤ 𝜈 − 1,
(r(𝑔1), . . . , 𝑔𝜈−1) if 𝜇 = 𝜈.

At the same time, 𝜂 �̃�𝜈 is given by

(𝑔1, . . . , 𝑔𝜈) ↦→

{
(. . . , 𝑔�̃�𝑔�̃�+1, . . . .𝑔𝜈) if 0 ≤ �̃� ≤ 𝜈 − 2,
(𝑔1, . . . , 𝑔𝜈−1) if �̃� = 𝜈 − 1

↦→

{
(r(𝑔1), . . . , 𝑔�̃�𝑔�̃�+1, . . . , 𝑔𝜈) if 0 ≤ �̃� ≤ 𝜈 − 2,
(r(𝑔1), . . . , 𝑔𝜈−1) if �̃� = 𝜈 − 1.

Therefore, the computations above show that when we compute 𝜕𝜈+1(ℎ𝜈)∗ + (ℎ𝜈+1)∗𝜕𝜈 , then all terms
cancel except the identity term (corresponding to 𝜇 = 0). �

The following is an immediate consequence of Proposition 4.16.

Corollary 4.17. The chain complex

. . .
𝜕𝜈+2 �� 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈+1) (𝑆𝑛𝑞)

𝜕𝜈+1 �� 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞)
𝜕𝜈 �� . . .

is homotopy equivalent to the zero chain complex.

https://doi.org/10.1017/fmp.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.31


Forum of Mathematics, Pi 33

In particular, the chain complex

. . .
𝜕𝜈+2 �� 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈+1) (𝑆𝑛𝑞)

𝜕𝜈+1 �� 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞)
𝜕𝜈 �� . . .

is exact. This proves Theorem 4.15.

Theorem 4.18. Let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) and C an
abelian group. We have �̃�∗(K(𝔅𝐺),C) � 𝐻∗(𝐺,C).

Proof. Theorem 4.15 implies that

. . .
𝜕𝜈+2 �� 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈+1) (𝑆𝑛𝑞)

𝜕𝜈+1 �� 𝐶𝑝,𝑞𝔑𝑝𝔅(𝜈) (𝑆𝑛𝑞)
𝜕𝜈 �� . . .

is a long exact sequence. After forming diagonals, we obtain the long exact sequence

. . .
𝜕𝜈+2 �� 𝐶𝑞𝔑𝔅(𝜈+1) (𝑆𝑛)

𝜕𝜈+1 �� 𝐶𝑞𝔑𝔅(𝜈) (𝑆𝑛)
𝜕𝜈 �� . . . .

Let ker 𝑛
𝑞 (𝜕0) := 𝐶𝑞𝔑𝔅(0) (𝑆𝑛) = 𝐶𝑞𝔑𝔅𝐺 (𝑆

𝑛) and, for 𝜈 ≥ 1, let ker 𝑛
𝑞 (𝜕𝜈) be the kernel of

𝐶𝑞𝔑𝔅(𝜈) (𝑆𝑛)
𝜕𝜈 �� 𝐶𝑞𝔑𝔅(𝜈−1) (𝑆𝑛).

In this way, we obtain short exact sequences

0 �� ker 𝑛
𝑞 (𝜕𝜈+1)

�� 𝐶𝑞𝔑𝔅(𝜈+1) (𝑆𝑛)
𝜕𝜈+1 �� ker 𝑛

𝑞 (𝜕𝜈)
�� 0.

These are actually short exact sequences of chain complexes with respect to q. Taking homology with
respect to q, we obtain long exact sequences

. . . �� 𝐻∗(ker 𝑛
∗ (𝜕𝜈+1),C) �� 𝐻∗(𝐶∗𝔑𝔅(𝜈+1) (𝑆𝑛),C)

(𝜕𝜈+1)∗ �� 𝐻∗(ker 𝑛
∗ (𝜕𝜈),C) �� . . . .

Taking the inductive limit for 𝑛→∞, we obtain the long exact sequence

. . . �� 𝐻∗(ker (𝜕𝜈+1),C) �� 𝐻∗(K(𝔅(𝜈+1) ),C)
(𝜕𝜈+1)∗ �� 𝐻∗(ker (𝜕𝜈),C) �� . . . .

Here, 𝐻∗(ker (𝜕𝜈),C) := lim
−−→𝑛

𝐻∗(ker 𝑛
∗ (𝜕𝜈),C).

By Theorem 4.14, 𝐻∗(K(𝔅(𝜈+1) ),C) � {0} for all ∗ ≥ 1. Hence, we obtain

𝐻∗(ker (𝜕𝜈),C) � 𝐻∗−1(ker (𝜕𝜈+1),C)

for all ∗ ≥ 2 and all 𝜈 ≥ 0.
This yields, for all ∗ ≥ 2,

𝐻∗(K(𝔅𝐺),C) = 𝐻∗(ker (𝜕0),C) � 𝐻∗−1(ker (𝜕1),C) � . . . � 𝐻1 (ker (𝜕∗−1),C). (4)

Moreover, we obtain that for all ∗ ≥ 1,

0→ 𝐻1 (ker (𝜕∗−1),C) → 𝐻0(ker (𝜕∗),C) → 𝐻0(K(𝔅
(∗) ),C) (5)

is exact.
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In addition, because for all ∗ ≥ 0, the sequence

𝐶𝑞𝔑𝔅(∗+2) (𝑆𝑛)
𝜕∗+2 �� 𝐶𝑞𝔑𝔅(∗+1) (𝑆𝑛)

𝜕∗+1 �� ker 𝑛
𝑞 (𝜕∗)

�� 0

is exact, we obtain the exact sequence

𝐻0(𝐶★𝔑𝔅(∗+2) (𝑆𝑛),C)
𝐻0 (𝜕∗+2)�� 𝐻0(𝐶★𝔑𝔅(∗+1) (𝑆𝑛),C)

𝐻0 (𝜕∗+1)�� 𝐻0(ker 𝑛
★(𝜕∗),C) �� 0,

where we have taken the 0-th homology with respect to the index ★.
Taking the inductive limit for 𝑛→∞, we conclude that the sequence

𝐻0(K(𝔅(∗+2) ),C)
𝐻0 (𝜕∗+2)�� 𝐻0(K(𝔅(∗+1) ),C)

𝐻0 (𝜕∗+1)�� 𝐻0(ker (𝜕∗),C) �� 0

is exact. It follows that 𝐻0 (𝜕∗+1) induces an isomorphism

coker𝐻0 (𝜕∗+2) � 𝐻0(ker (𝜕∗),C), (6)

for all ∗ ≥ 0.
Plugging equation (6) into equation (5), we conclude that for all ∗ ≥ 1, the sequence

0 �� 𝐻1(ker (𝜕∗−1),C) �� coker𝐻0 (𝜕∗+2)
𝐻0 (𝜕∗+1)�� 𝐻0 (K(𝔅(∗) ),C)

is exact. Hence,

𝐻1(ker (𝜕∗−1),C) � (ker𝐻0 (𝜕∗+1)) /(coker𝐻0 (𝜕∗+2)) � 𝐻∗
({
𝐻0(K(𝔅

(∗+1) ),C), 𝐻0 (𝜕∗+1)
})
, (7)

for all ∗ ≥ 1.
Combining equations (4), (7), (6) and applying Theorem 4.14, we conclude that

𝐻∗(K(𝔅𝐺),C) = 𝐻∗(ker (𝜕0),C) � 𝐻∗
({
𝒞(𝐺 (∗) ,C) ⊕ C, �𝜕∗+1

})
,

that is, 𝐻∗(K(𝔅𝐺),C) is given by the homology of the chain complex

. . .
�𝜕4 �� 𝒞(𝐺 (2) ,C) ⊕ C

�𝜕3 �� 𝒞(𝐺 (1) ,C) ⊕ C
�𝜕2 �� 𝒞(𝐺 (0) ,C) ⊕ C �� 0,

where �𝜕∗+1 denotes the map induced by 𝜕∗+1 on 𝐻0 (K(𝔅(∗+1) ),C) � 𝒞(𝐺 (∗) ,C) ⊕ C. Now, �𝜕∗+1 is of
the form 𝜕∗ ⊕ 0 for all ∗ ≥ 1 odd and 𝜕∗ ⊕ idC for all ∗ ≥ 1 even, and it is straightforward to identify 𝜕∗
with the map 𝜕∗ defined in (1). Hence, all in all, we conclude that

�̃�∗(K(𝔅𝐺),C) � 𝐻∗
({
𝒞(𝐺 (∗) ,C), 𝜕∗

})
� 𝐻∗(𝐺,C). �

5. Homology of topological full groups in terms of homology of infinite loop spaces

Let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) . In the following, we write
𝔅 := 𝔅𝐺 . Our goal is to describe the homology of the topological full group 𝑭(𝐺) in terms of the
homology of the infinite loop space attached to K(𝔅).
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5.1. Simplicial complexes attached to small permutative categories of bisections

We will work in the setting of [75] (see also [90]). Let us first introduce some relevant notions (Remark 5.1
explains the motivation for the following subcategories).

Define the subcategory V𝔅 of 𝔅 by setting obj V𝔅 := obj𝔅 and, for 𝑢 =
∐

𝑖∈𝐼 (𝑖,𝑈𝑖), 𝑣 =∐
𝑗∈𝐽 ( 𝑗 , 𝑉 𝑗 ) ∈ obj V𝔅, V𝔅 (𝑣, 𝑢) := {𝜋𝜎: 𝜋 ∈ 𝔓(𝑣, 𝑢), 𝜎 ∈ 𝔅(𝑢, 𝑢)}, where 𝔓(𝑣, 𝑢) are morphisms

of the form 𝜋 =
∐

𝑖 (s 𝑗 (𝑖) ,𝑖 ,𝑈𝑖) for a bijection 𝑖 ↦→ 𝑗 (𝑖) between I and J. In other words, morphisms in
𝔓(𝑣, 𝑢) are just given by permutations, and for objects u, v, there is a morphism from u to v in V𝔅 only
if u and v are equal up to permutation. V𝔅 inherits the structure of a small permutative category from 𝔅.

Moreover, we define a category Q𝔅 as follows. Set obj Q𝔅 := obj V𝔅 = obj𝔅. Given 𝑢, 𝑣 ∈ obj Q𝔅,
define the set of morphisms Q𝔅 (𝑣, 𝑢) to be equivalence classes of pairs (𝑢′, 𝜎), where 𝑢′ ∈ obj Q𝔅
and 𝜎 ∈ V𝔅 (𝑣, 𝑢

′ ⊕ 𝑢), with respect to the equivalence relation that (𝑢′1, 𝜎1) ∼ (𝑢
′
2, 𝜎2) if there exists

𝜏 ∈ V𝔅 (𝑢
′
2, 𝑢
′
1) such that 𝜎2(𝜏 ⊕ 𝑢) = 𝜎1, that is, the diagram

𝑢′1 ⊕ 𝑢

𝜏⊕𝑢

��

𝜎1 �� 𝑣

𝑢′2 ⊕ 𝑢

𝜎2

�����������

commutes, where u is the identity morphism at u. Let us now define composition of morphisms in Q𝔅.
Given [𝑢′, 𝜎] ∈ Q𝔅 (𝑣, 𝑢) and [𝑣′, 𝜏] ∈ Q𝔅 (𝑤, 𝑣), define [𝑣′, 𝜏] [𝑢′, 𝜎] ∈ Q𝔅 (𝑤, 𝑢) as [𝑣′ ⊕ 𝑢′, 𝜏(𝑣′ ⊕
𝜎)], where 𝜏(𝑣′ ⊕ 𝜎) is the composite

𝑣′ ⊕ 𝑢′ ⊕ 𝑢
𝑣′⊕𝜎 �� 𝑣′ ⊕ 𝑣

𝜏 �� 𝑤.

We want to define the structure of a small permutative category on Q𝔅. To this end, we define a
functor ⊕. On objects, ⊕ acts just in the same way as in 𝔅 or V𝔅. Given [𝑢′1, 𝜎1] ∈ Q𝔅 (𝑣1, 𝑢1) and
[𝑢′2, 𝜎2] ∈ Q𝔅 (𝑣2, 𝑢2), define [𝑢′1, 𝜎1] ⊕ [𝑢

′
2, 𝜎2] ∈ Q𝔅 (𝑣1 ⊕ 𝑣2, 𝑢1 ⊕ 𝑢2) as the morphism [𝑢′1 ⊕ 𝑢

′
2, 𝜏],

where 𝜏 is given by the composite

𝑢′1 ⊕ 𝑢
′
2 ⊕ 𝑢1 ⊕ 𝑢2

𝑢′1⊕𝜋𝑢′2 ,𝑢1 ⊕𝑢2
�� 𝑢′1 ⊕ 𝑢1 ⊕ 𝑢

′
2 ⊕ 𝑢2

𝜎1⊕𝜎2�� 𝑣1 ⊕ 𝑣2.

It is straightforward to check that (Q𝔅, ⊕) is a small permutative category and that ∅ is the unit with
respect to ⊕.

Remark 5.1. In the special case of the groupoid𝐺 = R𝑟×𝐺𝑘 whose topological full group is isomorphic
to the Higman–Thompson group 𝑉𝑘,𝑟 (see §2.5), the categories we just introduced already appeared in
[90], where they are described using the language of Cantor algebras: Cantor× in [90] is the restriction
of 𝔅 to objects of the form (𝐺 (0) ) ⊕𝑚, V in [90] is the restriction of V𝔅 to objects of the form (𝐺 (0) ) ⊕𝑚,
and Q in [90] is the restriction of Q𝔅 to objects of the form (𝐺 (0) ) ⊕𝑚, for the groupoid 𝐺 = R𝑟 × 𝐺𝑘 .
Also, note that V𝔅 plays the role of G in [75] and Q𝔅 plays the role of𝑈G in [75].

Let us now verify several conditions from [75].

Lemma 5.2. The condition in [75, Proposition 1.7 (i)] is satisfied in V𝔅. Moreover, the condition in
[75, Proposition 1.7 (ii)] is satisfied in V𝔅. Furthermore, condition C in [75, Definition 1.9] is satisfied
in V𝔅.

Proof. The condition in [75, Proposition 1.7 (i)] holds because V𝔅 (∅, ∅) = {id∅}. The condition in [75,
Proposition 1.7 (ii)] holds because, for all 𝑢, 𝑣 ∈ obj V𝔅, 𝑢 ⊕ 𝑣 � ∅ in V𝔅 implies that 𝑢 = ∅ and 𝑣 = ∅.
Finally, condition C in [75, Definition 1.9] holds because, for all 𝑢, 𝑣, 𝑤 ∈ obj V𝔅, 𝑢 ⊕ 𝑤 � 𝑣 ⊕ 𝑤 in
V𝔅 implies that 𝑢 � 𝑣 in V𝔅. �
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Lemma 5.3. Conditions LS1 and LS2 in [75, Definition 2.5] are satisfied for all 𝑎 ∈ obj Q𝔅 and
∅ ≠ 𝑢 ∈ obj Q𝔅.

Proof. First, we need the following terminology: Given 𝑜 ∈ obj Q𝔅, define 𝜄𝑜 as the unique element of
Q𝔅 (𝑜, ∅) given by 𝜄𝑜 = [𝑜, 𝑜].

To verify condition LS1, we have to show that 𝜄𝑎 ⊕ 𝑢 ⊕ 𝜄𝑢 ≠ 𝜄𝑎⊕𝑢 ⊕ 𝑢 in Q𝔅 (𝑎 ⊕ 𝑢 ⊕ 𝑢, 𝑢). Indeed,
𝜄𝑎 ⊕ 𝑢 ⊕ 𝜄𝑢 = [𝑎 ⊕ 𝑢, 𝜎], where 𝜎 is the morphism 𝑎 ⊕ 𝜋𝑢,𝑢 from (𝑎 ⊕ 𝑢) ⊕ 𝑢 to 𝑎 ⊕ 𝑢 ⊕ 𝑢, while
𝜄𝑎⊕𝑢 ⊕ 𝑢 = [𝑎 ⊕ 𝑢, 𝜏], where 𝜏 is the identity morphism from (𝑎 ⊕ 𝑢) ⊕ 𝑢 = 𝑎 ⊕ 𝑢 ⊕ 𝑢 to 𝑎 ⊕ 𝑢 ⊕ 𝑢. If
𝜄𝑎 ⊕ 𝑢 ⊕ 𝜄𝑢 = 𝜄𝑎⊕𝑢 ⊕ 𝑢 would hold in Q𝔅 (𝑎 ⊕ 𝑢 ⊕ 𝑢, 𝑢), then there would be 𝜌 ∈ V𝔅 (𝑎 ⊕ 𝑢, 𝑎 ⊕ 𝑢) such
that 𝜏 = 𝜎(𝜌 ⊕ 𝑢), that is, the diagram

𝑎 ⊕ 𝑢 ⊕ 𝑢

𝜌⊕𝑢

��

𝜏 �� 𝑎 ⊕ 𝑢 ⊕ 𝑢

𝑎 ⊕ 𝑢 ⊕ 𝑢

𝜎

		�����������

commutes. But that is impossible.
To verify condition LS2, we show that for all 𝑢, 𝑣, 𝑤 ∈ obj Q𝔅 with 𝑢 ≠ ∅, the map

Q𝔅 (𝑤, 𝑣) → Q𝔅 (𝑤 ⊕ 𝑢, 𝑣), [𝑣
′, 𝜎] ↦→ [𝑣′, 𝜎] ⊕ 𝜄𝑢

is injective. Note that [𝑣′, 𝜎] ⊕ 𝜄𝑢 = [𝑣′ ⊕ 𝑢, �̃�], where �̃� is the composite

(𝑣′ ⊕ 𝑢) ⊕ 𝑣
𝑣′⊕𝜋𝑢,𝑣�� 𝑣′ ⊕ 𝑣 ⊕ 𝑢

𝜎⊕𝑢 �� 𝑤 ⊕ 𝑢.

Now, assume that [𝑣′1, 𝜎1], [𝑣
′
2, 𝜎2] ∈ Q𝔅 (𝑤, 𝑣) satisfy [𝑣′1, 𝜎1] ⊕ 𝜄𝑢 = [𝑣′2, 𝜎2] ⊕ 𝜄𝑢 . As above, let

[𝑣′1, 𝜎1] ⊕ 𝜄𝑢 = [𝑣′1⊕𝑢, �̃�1] and [𝑣′2, 𝜎2] ⊕ 𝜄𝑢 = [𝑣′2⊕𝑢, �̃�2]. Then there must exist 𝜌 ∈ V𝔅 (𝑣
′
2⊕𝑢, 𝑣

′
1⊕𝑢)

such that

�̃�1 = �̃�2(𝜌 ⊕ 𝑣),

that is, the diagram

𝑣′1 ⊕ 𝑢 ⊕ 𝑣

𝜌⊕𝑣

��

�̃�1 �� 𝑤 ⊕ 𝑢

𝑣′1 ⊕ 𝑢 ⊕ 𝑢

�̃�2



����������

commutes. But then 𝜌 must be of the form 𝜏 ⊕ 𝑢 for some 𝜏 ∈ V𝔅 (𝑣
′
2, 𝑣
′
1), with 𝜎2(𝜏 ⊕ 𝑣) = 𝜎1. Hence,

[𝑣′1, 𝜎1] = [𝑣′2, 𝜎2] in Q𝔅 (𝑤, 𝑣), as desired. �

Now, let 𝑎, 𝑢 ∈ obj Q𝔅 with 𝑢 ≠ ∅, and fix 𝑟 ≥ 1. Define a semisimplicial set W by setting 𝑊𝑝 :=
Q𝔅 (𝑎 ⊕ 𝑢

⊕𝑟 , 𝑢⊕(𝑝+1) ) for 0 ≤ 𝑝 ≤ 𝑟 − 1 and defining the face maps as 𝑑𝑖 : 𝑊𝑝 → 𝑊𝑝−1, [𝑢
′, 𝜎] ↦→

[𝑢′, 𝜎] (𝑢⊕𝑖 ⊕ 𝜄𝑢 ⊕ 𝑢
⊕(𝑝−𝑖) ) for 0 ≤ 𝑖 ≤ 𝑝.

Moreover, let S be the simplicial complex with vertices given by𝑊0 = Q𝔅 (𝑎⊕𝑢
⊕𝑟 , 𝑢), and

{
[𝑢′𝑖 , 𝜎𝑖]

}
𝑖

forms a simplex of S if there exists a simplex of W with vertices
{
[𝑢′𝑖 , 𝜎𝑖]

}
𝑖
.

Given [𝑢′, 𝜎] ∈ 𝑊𝑝 , then the vertices of [𝑢′, 𝜎] are given by

𝑢
𝜄𝑖 �� 𝑢⊕(𝑝+1)

[𝑢′,𝜎 ] �� 𝑎 ⊕ 𝑢⊕𝑟
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in Q𝔅, for 1 ≤ 𝑖 ≤ 𝑝 + 1. Here, 𝜄𝑖 is the element [𝑢⊕𝑝 , 𝑢⊕(𝑖−1) ⊕ 𝜋𝑢⊕(𝑝−𝑖+1) ,𝑢] ∈ Q𝔅 (𝑢
⊕(𝑝+1) , 𝑢).

Therefore, vertices of [𝑢′, 𝜎] are determined by 𝜎𝜖𝑖 , where 𝜖𝑖 ⊆ R×𝐺 (0) is the compact open bisection
with s(𝜖𝑖) = 𝑢 and r(𝜖𝑖) is the i-th summand of u in 𝑢′ ⊕ 𝑢⊕(𝑝+1) .

We have the following result from [75].

Theorem 5.4. For all 1 ≤ 𝑞 ≤ 𝑟 , S is (𝑟 − 𝑞)-connected if and only if W is (𝑟 − 𝑞)-connected.

Note that we will only need the implication⇒.

Proof. This follows from [75, Proposition 2.9] and [75, Theorem 2.10] because V𝔅 satisfies conditions
LS1 and LS2 from [75, Definition 2.5] by Lemma 5.3 and Q𝔅 satisfies conditions H1 and H2 from [75,
Definition 1.3]. The latter follows from parts (c) and (d) of [75, Theorem 1.10], because condition C in
[75, Definition 1.9] is satisfied in V𝔅 by Lemma 5.2 and the condition in part (d) is easy to check in our
setting. �

To proceed, we need the following observation. Recall that 𝑀 (𝐺) denotes the set of all nonzero
Radon measures 𝜇 on𝐺 (0) which are invariant and that an ample groupoid G is said to have comparison
if for all nonempty compact open sets 𝑈,𝑉 ⊆ 𝐺 (0) with 𝜇(𝑈) < 𝜇(𝑉) for all 𝜇 ∈ 𝑀 (𝐺), there exists a
compact open bisection 𝜎 ⊆ 𝐺 with s(𝜎) = 𝑈 and r(𝜎) ⊆ 𝑉 (see §2.1).

Lemma 5.5. Assume that G is minimal and has comparison. Let𝑌 ⊆ 𝐺 (0) be a compact open subspace.
Suppose that 𝐴 � 𝑌 is given, together with a compact open bisection𝜎with s(𝜎) = 𝐴 and 𝐵 := r(𝜎) � 𝑌 .
If 2𝜇(𝐴) < 𝜇(𝑌 ) for all 𝜇 ∈ 𝑀 (𝐺), then there exists a compact open bisection 𝜏 with r(𝜏) = 𝑌 = s(𝜏)
and 𝜏𝐴 = 𝜎.

Here, 𝜏𝐴 is the restriction of 𝜏 to A, that is,

𝜏𝐴 = {𝑔 ∈ 𝜏: s(𝑔) ∈ 𝐴} ,

which is also the product of 𝜏 and A as bisections.

Proof. 2𝜇(𝐴) < 𝜇(𝑌 ) for all 𝜇 ∈ 𝑀 (𝐺) implies that 𝜇(𝐵) = 𝜇(𝐴) < 𝜇(𝑌 \ 𝐴) for all 𝜇 ∈ 𝑀 (𝐺). Set
𝐶 := (𝑌 \ 𝐴) ∩ 𝐵. Then 𝜇(𝐵) < 𝜇(𝑌 \ 𝐴) implies 𝜇(𝐵 \ 𝐶) = 𝜇(𝐵) − 𝜇(𝐶) < 𝜇(𝑌 \ 𝐴) − 𝜇(𝐶) =
𝜇((𝑌 \ 𝐴) \ 𝐶) for all 𝜇 ∈ 𝑀 (𝐺). As G has comparison, there exists a compact open bisection �̃� with
s( �̃�) = 𝐵 \ 𝐶 and r( �̃�) ⊆ (𝑌 \ 𝐴) \ 𝐶. As (𝐵 \ 𝐶) ∩ ((𝑌 \ 𝐴) \ 𝐶) = ∅, there exists a compact open
bisection �̄� with r( �̄�) = (𝐵 \ 𝐶) � ((𝑌 \ 𝐴) \ 𝐶) = s( �̄�) extending �̃�, that is, �̄�(𝐵 \ 𝐶) = �̃�. Now,

𝜌 := �̄� � (𝑌 \ (𝐵 ∪ (𝑌 \ 𝐴))) � 𝐶

defines a compact open bisection with r(𝜌) = 𝑌 = s(𝜌), with the property that

𝜌.𝐵 = 𝜌.(𝐵 \ 𝐶) � 𝜌.𝐶 ⊆ ((𝑌 \ 𝐴) \ 𝐶) � 𝐶 = 𝑌 \ 𝐴,

that is, (𝜌.𝐵) ∩ 𝐴 = ∅. Here, 𝜌.𝐵 = {r(𝑔): 𝑔 ∈ 𝜌, s(𝑔) ∈ 𝐵} (see §3 for the definition of the G-action
on 𝐺 (0) ).

Now, consider the decomposition

𝑌 \ 𝐴 = (𝑌 \ (𝐴 � 𝜌.𝐵)) � 𝜌.𝐵,

and define

𝜏′ := 𝜌−1
(
(𝑌 \ (𝐴 � 𝜌.𝐵)) � 𝜎−1(𝜌𝐵)−1

)
.

This is well defined because (𝜎−1 (𝜌𝐵)−1).(𝜌.𝐵) = 𝜎−1.𝐵 = 𝐴. Then, by construction 𝜏′.(𝑌 \ 𝐴) =
𝜌−1.(𝑌 \ 𝜌.𝐵) = 𝑌 \ 𝐵. So we obtain the compact open bisection with the desired properties by setting
𝜏 := 𝜎 � (𝜏′(𝑌 \ 𝐴)). �
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Remark 5.6. In the special case that G is purely infinite, the condition 2𝜇(𝐴) < 𝜇(𝑌 ) for all 𝜇 ∈ 𝑀 (𝐺)
in Lemma 5.5 is empty. Indeed, if G is minimal and purely infinite, we can always find a compact open
bisection with r(𝜌) = 𝑌 = s(𝜌) such that (𝜌.𝐵) ∩ 𝐴 = ∅.

Remark 5.7. It is straightforward to see that if G has comparison, then so does R×𝐺. In the following,
we will frequently apply Lemma 5.5 to the groupoid R × 𝐺, using the observation that 𝔅 consists of
compact open bisections in R × 𝐺 (see Remark 3.2).

Proposition 5.8. Assume that 𝑎 ≠ ∅ and that G is minimal and has comparison.

(i) If 𝑟 ≥ 2, then vertices of S (which coincide with the vertices of W) are in bijection with compact
open bisections 𝜎 with s(𝜎) = 𝑢 and r(𝜎) � 𝑎 ⊕ 𝑢⊕𝑟 , via the map V defined by V (𝜎) := [𝑢′, 𝜏],
where 𝜏 ∈ V𝔅 (𝑎 ⊕ 𝑢

⊕𝑟 , 𝑎 ⊕ 𝑢⊕𝑟 ) satisfies 𝜏𝜖𝑟 = 𝜎. Here, 𝜖𝑟 ⊆ R × 𝐺 (0) is the compact open
bisection with s(𝜖𝑟 ) = 𝑢 and r(𝜖𝑟 ) is the r-th summand of u in 𝑎 ⊕ 𝑢⊕𝑟 .

(ii) Given [𝑢′, 𝜏] ∈ 𝑊𝑝 , [𝑢′′, 𝜎] ∈ Q𝔅 (𝑎 ⊕ 𝑢
⊕𝑟 , 𝑢) is a vertex of [𝑢′, 𝜏] if and only if there exists i

such that 𝜏𝜖𝑖 = 𝜎𝜖𝑢 , where 𝜖𝑖 ⊆ R × 𝐺 (0) is the compact open bisection with s(𝜖𝑖) = 𝑢 and r(𝜖𝑖)
is the i-th summand of u in 𝑢′ ⊕ 𝑢⊕(𝑝+1) , and 𝜖𝑢 ⊆ R × 𝐺 (0) is the compact open bisection with
s(𝜖𝑢) = 𝑢 and r(𝜖𝑢) is the summand u in 𝑢′′ ⊕ 𝑢.

(iii) Assume that G is purely infinite and 0 ≤ 𝑝 ≤ 𝑟 − 1 is arbitrary or that 𝑀 (𝐺) ≠ ∅ and p satisfies
2(𝑝 + 1) ≤ 𝑟 . Given 𝑝 + 1 bisections 𝜎𝑖 as in (i), V (𝜎𝑖) form a p-simplex of S if and only if r(𝜎𝑖)

are pairwise disjoint and
∐

𝑖 r(𝜎𝑖) � 𝑎 ⊕ 𝑢
⊕𝑟 .

Note that proper inclusions � are needed in (i) and (iii) to leave space for other vertices in higher-
dimensional simplices.

Proof. (i) The map V is well defined because given 𝜎 as in (i), Lemma 5.5 implies that there exists
𝜏 ∈ V𝔅 (𝑎 ⊕ 𝑢

⊕𝑟 , 𝑎 ⊕ 𝑢⊕𝑟 ) with 𝜏𝜖𝑟 = 𝜎. Here, we use the assumptions 𝑟 ≥ 2 and 𝑎 ≠ ∅. It is
straightforward to see that V is bijective.(ii) is clear by definition.

Let us prove (iii). By assumption, there exists a compact open bisection 𝜏′ with r(𝜏′) ⊆ 𝑎 ⊕ 𝑢⊕𝑟
and s(𝜏′) = 𝑢⊕(𝑝+1) such that 𝜏′𝜖𝑖 = 𝜎𝑖 . By Lemma 5.5, there exists a compact open bisection 𝜏 with
r(𝜏) = 𝑎 ⊕ 𝑢⊕𝑟 = s(𝜏) such that 𝜏𝜖𝑢⊕(𝑝+1) = 𝜏′. Here, 𝜖𝑢⊕(𝑝+1) ⊆ R×𝐺 (0) is the compact open bisection
with s(𝜖𝑢⊕(𝑝+1) ) = 𝑢⊕(𝑝+1) and r(𝜖𝑢⊕(𝑝+1) ) is the summand 𝑢⊕(𝑝+1) in 𝑎 ⊕ 𝑢⊕𝑟 = 𝑎 ⊕ 𝑢⊕(𝑟−𝑝−1) ⊕ 𝑢⊕(𝑝+1) .
Now, (ii) implies our claim. �

Let us summarize the description of S we obtain based on Proposition 5.8.

Corollary 5.9. Assume that 𝑎 ≠ ∅ and that G is minimal and has comparison.
If G is purely infinite, that is, when 𝑀 (𝐺) = ∅, then S can be described as the simplicial complex

with vertices given by compact open bisections 𝜎 with s(𝜎) = 𝑢 and r(𝜎) � 𝑎 ⊕ 𝑢⊕𝑟 , with the property
that for all 0 ≤ 𝑝 ≤ 𝑟 − 1, 𝑝 + 1 vertices 𝜎𝑖 form a p-simplex if and only if r(𝜎𝑖) are pairwise disjoint
and

∐
𝑖 r(𝜎𝑖) � 𝑎 ⊕ 𝑢

⊕𝑟 .
If 𝑀 (𝐺) ≠ ∅, then S is a simplicial complex whose vertices are given by compact open bisections 𝜎

with s(𝜎) = 𝑢 and r(𝜎) � 𝑎 ⊕ 𝑢⊕𝑟 , with the property that for all p with 2(𝑝 + 1) ≤ 𝑟 , 𝑝 + 1 vertices 𝜎𝑖

form a p-simplex if and only if r(𝜎𝑖) are pairwise disjoint and
∐

𝑖 r(𝜎𝑖) � 𝑎 ⊕ 𝑢
⊕𝑟 .

5.2. Connectivity of simplicial complexes

Theorem 5.10. Assume that 𝑎 ≠ ∅ and that G is minimal and purely infinite. Then S is (𝑟−1)-connected.

Proof. We work with the description of S from Corollary 5.9. Let 𝑓 : 𝑆𝑘 → 𝑆 be a continuous map
from the k-dimensional sphere 𝑆𝑘 to S, where 𝑘 ≤ 𝑟 − 2. Find a triangulation of 𝑆𝑘 such that f is
simplicial. Let 𝜈𝑖 be the number of i-simplices in the triangulation of 𝑆𝑘 , and set 𝜈 :=

∑𝑘
𝑖=0 𝜈𝑖 . Given a

simplex 𝝈 = {𝜎1, . . . , 𝜎𝑖} of S, define r(𝝈) :=
∐

𝑖 r(𝜎𝑖). Let P be a partition of 𝑎 ⊕ 𝑢⊕𝑟 into compact
open subspaces refining all compact open subspaces of the form r( 𝑓 (𝑣)), where v is a vertex of 𝑆𝑘 , such
that for all simplices Δ of 𝑆𝑘 , r( 𝑓 (Δ))𝑐 contains at least 𝜈 + 2 elements of P .
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Our goal is to show that f is homotopic to another simplicial map whose image only contains vertices
𝜎 ∈ 𝑆 which are small, in the sense that there exists 𝑉 ∈ P such that r(𝜎) ⊆ 𝑉 . In the process, we will
retriangulate 𝑆𝑘 such that there are always at most 𝜈 vertices. We will modify f such that we keep the
property that for all simplices Δ of 𝑆𝑘 , r( 𝑓 (Δ))𝑐 contains at least 𝜈 + 2 elements of P . In the following,
we call a simplex Δ of 𝑆𝑘 bad if all vertices of 𝑓 (Δ) are not small. In other words, a simplex Δ is not bad
if and only if at least one vertex of 𝑓 (Δ) is small. Let us now go through the bad simplices, removing
them one by one, proceeding inductively on dimΔ .

We start with the case dimΔ = 𝑘 . Since r( 𝑓 (Δ))𝑐 contains at least 𝜈 + 2 elements of P , we can
choose 𝑉 ∈ P with 𝑉 � r( 𝑓 (Δ))𝑐 . Furthermore, choose a compact open bisection 𝜏 with r(𝜏) ⊆ 𝑉 and
s(𝜏) = 𝑢. Then 𝑓 (Δ) ∪ {𝜏} is a simplex in S. Add a vertex a in the centre of Δ , replace Δ by 𝜕Δ ∗ 𝑎 and
replace f by 𝑓 |𝜕Δ ∗ (𝑎 ↦→ 𝜏). This new map is homotopic to f through the simplex 𝑓 (Δ) ∪ {𝜏} because
the two maps are contiguous (see for instance [84, Chapter 3, §5]).

We have added the vertex a, which is mapped to 𝜏 and hence is small. In this way, we removed Δ .
Hence, the number of bad simplices decreased. Moreover, we only increased the number of vertices by
at most 1. In addition, we still keep the property that for all simplices Δ̃ of 𝑆𝑘 , r( 𝑓 (Δ̃))𝑐 contains at
least 𝜈 + 2 elements of P . This is clear if 𝑎 ∉ Δ̃ . If 𝑎 ∈ Δ̃ , then Δ̃ \ {𝑎} ⊆ Δ . We replaced a vertex v of
Δ by a. v must have been an original vertex, and hence r( 𝑓 (𝑣)) covers at least one element of P . This
is the reason why we keep the property, as claimed.

Now, let Δ be a bad simplex of maximal dimension dimΔ = 𝑗 < 𝑘 . Then, by maximality, 𝑓 (LinkΔ)
only contains small vertices. r( 𝑓 (Δ))𝑐 contains at least 𝜈 + 2 elements of P , say {𝑉𝑖}. Choose compact
open bisections with r(𝜏𝑖) ⊆ 𝑉𝑖 and s(𝜏𝑖) = 𝑢. Then, for all i, 𝑓 (Δ) ∪ {𝜏𝑖} is a simplex in S. By the
pigeonhole principle there exist𝜔, 𝜔′ ∈ {𝜏𝑖} such that no vertex of LinkΔ is mapped to𝜔 or𝜔′. So for all
simplicesΔ ′ of LinkΔ , 𝑓 (Δ ′)∪ 𝑓 (Δ)∪{𝜔} is a simplex in S. Add a vertex a in the centre ofΔ , replaceΔ
by 𝑎∗𝜕Δ and replace f in StarΔ = (LinkΔ)∗Δ � 𝑆𝑘− 𝑗−1∗𝐷 𝑗 by ( 𝑓 |LinkΔ )∗(𝑎 ↦→ 𝜔)∗( 𝑓 |𝜕Δ ). We obtain
a new map which is homotopic to f via ( 𝑓 |LinkΔ )∗(𝑎 ↦→ 𝜔)∗( 𝑓 |Δ ) on (LinkΔ)∗𝑎∗Δ � 𝑆𝑘− 𝑗−1∗𝐷0∗𝐷 𝑗

because they are contiguous, as above.
The number of vertices increased by at most 1 (it only increases if 𝜕Δ ≠ ∅). Moreover, a is mapped

to 𝜔 and hence is small. Therefore, we have not added any new bad simplices. As we removed Δ ,
the number of bad simplices decreased. In addition, we still keep the property that for all simplices
Δ̃ of 𝑆𝑘 , r( 𝑓 (Δ̃))𝑐 contains at least 𝜈 + 2 elements of P . This is clear if 𝑎 ∉ Δ̃ . If 𝑎 ∈ Δ̃ , then
Δ̃ \ {𝑎} ⊆ Δ ∗ (Δ̃ ∩LinkΔ), which is an original simplex, with at least one original vertex not in Δ̃ . The
range of the image under f of this original vertex covers at least one element of P . This is the reason
why we keep the property, as claimed.

After this process, we obtain a map, again denoted by f, together with a triangulation of 𝑆𝑘 with at
most 𝜈 vertices such that all vertices in the image of f are small. Our new triangulation has at most
𝜈 vertices (where 𝜈 is the number of simplices in the original triangulation) because the number of
vertices increases by at most 1 for each bad simplex Δ in the original triangulation with dimΔ > 0. As
#P ≥ 𝜈 + 2, there exist 𝑉,𝑉 ′ ∈ P such that the image of every vertex of 𝑆𝑘 is disjoint from V and 𝑉 ′.
Choose compact open bisections 𝜏, 𝜏′ with r(𝜏) ⊆ 𝑉 , r(𝜏′) ⊆ 𝑉 ′ and s(𝜏) = 𝑢 = s(𝜏′). It follows that
for every simplex Δ of 𝑆𝑘 , 𝑓 (Δ) ∪ {𝜏} is a simplex in S.

It follows that f is contiguous to the simplicial map sending all vertices to 𝜏. Hence, f is homotopic
to a constant map, as desired. �

Theorem 5.11. Assume that 𝑎 ≠ ∅ and that G is minimal and has comparison with 𝑀 (𝐺) ≠ ∅. Then S
is (𝑙 − 1)-connected if (𝑙+2) (𝑙+3)2 < 𝑟 .

Proof. Given 𝑘 ≤ 𝑙, (𝑙+2) (𝑙+3)2 < 𝑟 implies 2(𝑝 + 1) < 𝑟 for all p with 𝑝 ≤ 𝑘 . Hence, we may and will
work with the description of the p-simplices of S for 2(𝑝 + 1) < 𝑟 from Corollary 5.9.

Let 𝑓 : 𝑆𝑘−1 → 𝑆 be a continuous map from the (𝑘 − 1)-dimensional sphere 𝑆𝑘−1 to S, where 𝑘 ≤ 𝑙.
Find a triangulation of 𝑆𝑘−1 such that f is simplicial.
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Set 𝑢 𝑗 := 𝑢⊕( 𝑗+3) . By our assumption that (𝑙+2) (𝑙+3)2 < 𝑟 , we have

𝑢𝑘−1 ⊕ 𝑢𝑘−2 ⊕ . . . ⊕ 𝑢0 ⊕ 𝑢−1 ⊆ 𝑎 ⊕ 𝑢
⊕𝑟 .

Set 𝑢 (𝑖) := 𝑢𝑘−1⊕𝑢𝑘−2⊕. . .⊕𝑢𝑖 . We call an i-simplex of 𝑆𝑘−1 bad if all its vertices v satisfy r( 𝑓 (𝑣)) � 𝑢 (𝑖) .
Our goal is to show that f is homotopic to another simplicial map 𝑓 such that r( 𝑓 (𝑣)) ⊆ 𝑢 (0) for all v in
a possibly new triangulation of 𝑆𝑘−1. As G has comparison, there exists a compact open bisection 𝜏 with
r(𝜏) ⊆ 𝑢−1 and s(𝜏) = 𝑢. Hence, 𝑓 (Δ) ∪ {𝜏} is a simplex in S for all simplices Δ of 𝑆𝑘−1. So the same
argument as in the final step of the proof of Theorem 5.10 shows that 𝑓 is homotopic to a constant map.

Let us now explain the procedure to remove bad simplices. Again, we start with bad simplices
Δ with dimΔ = 𝑘 − 1. By comparison, there exists a compact open bisection 𝜏 with s(𝜏) = 𝑢 and
r(𝜏) � r( 𝑓 (Δ))𝑐 ∩ 𝑢𝑘−1. Then 𝑓 (Δ) ∪ {𝜏} is a simplex in S. Add a vertex a in the centre of Δ , replace
Δ by 𝜕Δ ∗ 𝑎 and replace f by 𝑓 |𝜕Δ ∗ (𝑎 ↦→ 𝜏). This new map is homotopic to f through the simplex
𝑓 (Δ) ∪ {𝜏} because the two maps are contiguous.

In this way, we decreased the number of bad (𝑘 − 1)-simplices.
Now, assume that Δ is a bad simplex of maximal dimension 𝑗 = dimΔ < 𝑘 − 1. By maximality,

all vertices in 𝑓 (LinkΔ) have range in 𝑢 ( 𝑗+1) . Otherwise, if there exists a vertex 𝑣 ∈ LinkΔ with
r( 𝑓 (𝑣)) � 𝑢 ( 𝑗+1) , then Δ ∪ {𝑣} would be a bad simplex (here, we use that 𝑢 ( 𝑗+1) ⊆ 𝑢 ( 𝑗) ) of dimension
𝑗 + 1 = dimΔ + 1, that is, of higher dimension than Δ . By comparison, there exists a compact open
bisection 𝜏 with s(𝜏) = 𝑢 and r(𝜏) � r( 𝑓 (Δ))𝑐 ∩ 𝑢 𝑗 . In particular, r(𝜏) ∩ 𝑢 ( 𝑗+1) = ∅. Hence, for all
simplices Δ ′ of LinkΔ , 𝑓 (Δ ′) ∪ 𝑓 (Δ)∪{𝜏} is a simplex in S. Add a vertex a in the centre of Δ , replace Δ
by 𝑎∗𝜕Δ , and replace f in StarΔ = (LinkΔ)∗Δ � 𝑆𝑘− 𝑗−1∗𝐷 𝑗 by ( 𝑓 |LinkΔ )∗(𝑎 ↦→ 𝜏)∗( 𝑓 |𝜕Δ ). We obtain
a new map which is homotopic to f via ( 𝑓 |LinkΔ )∗(𝑎 ↦→ 𝜏)∗( 𝑓 |Δ ) on (LinkΔ)∗𝑎∗Δ � 𝑆𝑘− 𝑗−1∗𝐷0∗𝐷 𝑗 .
Again, we succeeded in decreasing the number of bad simplices. Indeed, after this modification, a
simplex Δ̃ containing a is not a bad simplex of dimension ≤ 𝑗 because r( 𝑓 (𝑎)) = r(𝜏) ⊆ 𝑢 𝑗 ⊆ 𝑢

( 𝑗) . If
dim Δ̃ > 𝑗 then (LinkΔ) ∩ Δ̃ ≠ ∅ so that Δ̃ is not bad. And if 𝑎 ∉ Δ̃ , then Δ̃ is a simplex in the original
triangulation but with Δ̃ ≠ Δ . �

5.3. Homological stability and Morita invariance

As before, let 𝑎, 𝑢 ∈ obj Q𝔅 with 𝑢 ≠ ∅. Now, let𝑊𝑟 be the semi-simplicial set as defined above given
by𝑊𝑟

𝑝 := Q𝔅 (𝑎 ⊕ 𝑢
⊕𝑟 , 𝑢⊕(𝑝+1) ) for 0 ≤ 𝑝 ≤ 𝑟 −1. We add the superscript r to keep track of the number

of summands of u in 𝑎 ⊕ 𝑢⊕𝑟 because we now want to vary r.
First, we establish the following consequence of Theorems 5.4, 5.10, 5.11 as well as [75, Theorems

3.1 and 3.4].

Corollary 5.12. Assume that 𝑎 ≠ ∅ and that G is minimal and has comparison.
For all r there exists 𝑖(𝑟), which grows monotonously with r such that 𝑖(𝑟) → ∞ if 𝑟 → ∞, with

the property that the canonical map V𝔅 (𝑎 ⊕ 𝑢
⊕𝑟 , 𝑎 ⊕ 𝑢⊕𝑟 ) → V𝔅 (𝑎 ⊕ 𝑢

⊕(𝑟+1) , 𝑎 ⊕ 𝑢⊕(𝑟+1) ) induces
isomorphisms

𝐻𝑖 (V𝔅 (𝑎 ⊕ 𝑢
⊕𝑟 , 𝑎 ⊕ 𝑢⊕𝑟 ),C) → 𝐻𝑖 (V𝔅 (𝑎 ⊕ 𝑢

⊕(𝑟+1) , 𝑎 ⊕ 𝑢⊕(𝑟+1) ),C)

for all 𝑖 ≤ 𝑖(𝑟).

Proof. First of all, the proof of Theorem 3.1 and Theorem 3.4 in [75] yields the following state-
ment:Suppose that N is an integer such that 𝑊𝑟 is ( 𝑟−2

𝑘 )-connected for all r with 𝑟 + 1 ≤ 𝑁 . Then, for
all r with 𝑟 + 1 ≤ 𝑁 , the canonical map

𝐻𝑖 (V𝔅 (𝑎 ⊕ 𝑢
⊕𝑟 , 𝑎 ⊕ 𝑢⊕𝑟 ),C) → 𝐻𝑖 (V𝔅 (𝑎 ⊕ 𝑢

⊕(𝑟+1) , 𝑎 ⊕ 𝑢⊕(𝑟+1) ),C)

is an epimorphism for all i with 𝑖 ≤ 𝑟
𝑘 and an isomorphism for all i with 𝑖 ≤ 𝑟−1

𝑘 .
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Here, we have introduced an upper bound N as the upper bound for l in Theorem 5.11 does not grow
linearly with r.

Indeed, examining the proof of Theorem 3.1 and Theorem 3.4 in [75], we see that, in the notation of
the proofs of [75, Theorems 3.1 and 3.4], the proofs of (a), (b), (c) and (d) work for r fixed. Moreover,
the proofs of (E𝐼 1) and (E𝐼 2) work for all r with 𝑟 + 1 ≤ 𝑁 . Similarly, the proofs of (I𝐼 1) and (I𝐼 2)
work for all r with 𝑟 + 1 ≤ 𝑁 . The proof of (I𝐼 3) works anyway.

It is now straightforward to derive the desired statement using Theorems 5.4, 5.10 and 5.11. �

Theorem 5.13. Suppose that G is an ample groupoid, with locally compact Hausdorff unit space, and
assume that G is minimal and has comparison. Moreover, assume that𝐺 (0) has no isolated points. Then
for all 𝑣, 𝑧 ∈ obj𝔅 with 𝑣 ≠ ∅, the canonical map 𝔅(𝑣, 𝑣) → 𝔅(𝑣 ⊕ 𝑧, 𝑣 ⊕ 𝑧) induces an 𝐻∗(�,C)-
isomorphism, that is, an isomorphism 𝐻∗(𝔅(𝑣, 𝑣),C) � 𝐻∗(𝔅(𝑣 ⊕ 𝑧, 𝑣 ⊕ 𝑧),C) for all ∗ ≥ 0.

Proof. In the following, we prove the statement for the case where 𝑣 = 𝑉 for some nonempty compact
open subspace 𝑉 ⊆ 𝐺 (0) . The general case is similar.

First of all, fix an index ∗ ≥ 0.
Since G is minimal,𝐺 (0) is totally disconnected, locally compact, Hausdorff, without isolated points,

given an arbitrary (big) natural number r, there exist a nonempty compact open subspace 𝑢 ⊆ 𝑣 and r
compact open bisections 𝜎𝑖 ⊆ 𝐺 with s(𝜎𝑖) = 𝑢 such that r(𝜎𝑖) are pairwise disjoint with r(𝜎𝑖) ⊆ 𝑣
and 𝑣 \

∐
𝑖 r(𝜎𝑖) ≠ ∅. Set 𝑎 := 𝑣 \

∐
𝑖 r(𝜎𝑖). Let 𝜎 be a compact open bisection with s(𝜎) = 𝑎 ⊕ 𝑢⊕𝑟

and r(𝜎) = 𝑣. Then conjugation with 𝜎, that is, 𝜎−1 � 𝜎 yields an isomorphism

𝔅(𝑣, 𝑣) � V𝔅 (𝑎 ⊕ 𝑢
⊕𝑟 , 𝑎 ⊕ 𝑢⊕𝑟 ).

By Corollary 5.12, for sufficiently big r (more precisely, for all r such that 𝑖(𝑟) ≥ ∗), we have that

� ⊕ 𝑢 : 𝔅(𝑣, 𝑣) → 𝔅(𝑣 ⊕ 𝑢, 𝑣 ⊕ 𝑢)

induces an 𝐻∗(�,C)-isomorphism. Hence, for all r sufficiently big and all 𝑚 ≥ 0,

� ⊕ 𝑢⊕𝑚 : 𝔅(𝑣, 𝑣) → 𝔅(𝑣 ⊕ 𝑢⊕𝑚, 𝑣 ⊕ 𝑢⊕𝑚)

induces an 𝐻∗(�,C)-isomorphism. Note that in these two statements, u depends on r.
Since G is minimal, there exists m large enough so that there exists a compact open bisection 𝜏 with

s(𝜏) = 𝑧 and r(𝜏) ⊆ 𝑢⊕𝑚. Now, the composite

𝔅(𝑣, 𝑣) �
� �� 𝔅(𝑣 ⊕ 𝑧, 𝑣 ⊕ 𝑧)

𝑣�(𝜏−1�𝜏) �� 𝔅(𝑣 ⊕ r(𝜏), 𝑣 ⊕ r(𝜏)) �
� �� 𝔅(𝑣 ⊕ 𝑢⊕𝑚, 𝑣 ⊕ 𝑢⊕𝑚)

(8)

is the canonical embedding � ⊕ 𝑢⊕𝑚.
It follows that 𝔅(𝑣, 𝑣) ↩→ 𝔅(𝑣 ⊕ 𝑧, 𝑣 ⊕ 𝑧) induces an injective map in 𝐻∗(�,C). But this holds for

arbitrary nonempty v and z. Hence, also 𝔅(𝑣 ⊕ r(𝜏), 𝑣 ⊕ r(𝜏)) ↩→ 𝔅(𝑣 ⊕ 𝑢⊕𝑚, 𝑣 ⊕ 𝑢⊕𝑚) induces an
injective map in 𝐻∗(�,C). But because � ⊕ 𝑢⊕𝑚 induces an 𝐻∗(�,C)-isomorphism and coincides with
the composition in (8), the map in 𝐻∗(�,C) induced by 𝔅(𝑣⊕ r(𝜏), 𝑣⊕ r(𝜏)) ↩→ 𝔅(𝑣⊕𝑢⊕𝑚, 𝑣⊕𝑢⊕𝑚) is
also surjective. Hence,𝔅(𝑣⊕r(𝜏), 𝑣⊕r(𝜏)) ↩→ 𝔅(𝑣⊕𝑢⊕𝑚, 𝑣⊕𝑢⊕𝑚) induces an𝐻∗(�,C)-isomorphism.
Therefore, since 𝑣 � (𝜏−1 � 𝜏) is an isomorphism, it follows that 𝔅(𝑣, 𝑣) ↩→ 𝔅(𝑣 ⊕ 𝑧, 𝑣 ⊕ 𝑧) induces
an 𝐻∗(�,C)-isomorphism, as desired. �

The following is now an immediate consequence because of Remark 3.3 (apply Theorem 5.13 to
𝑣 = 𝑈 and 𝑧 = 𝑉 \𝑈).

Theorem 5.14. Suppose that G is an ample groupoid, with locally compact Hausdorff unit space, and
assume that G is minimal and has comparison. Moreover assume that 𝐺 (0) has no isolated points.
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Then for all nonempty compact open subspaces 𝑈 ⊆ 𝑉 of 𝐺 (0) , the canonical map 𝑭(𝐺𝑈
𝑈 ) → 𝑭(𝐺𝑉

𝑉 )

induces an 𝐻∗(�,C)-isomorphism for all abelian groups C and all ∗ ≥ 0.

We obtain the following consequence.

Corollary 5.15. Suppose that G is an ample groupoid, with locally compact Hausdorff unit space, and
assume that G is minimal and has comparison. Moreover, assume that 𝐺 (0) has no isolated points. Let
H be an ample groupoid, with locally compact Hausdorff unit space, which is equivalent to G. Then
𝐻∗(𝑭(𝐺),C) � 𝐻∗(𝑭(𝐻),C) for all abelian groups C and all ∗ ≥ 0.

Proof. Given a (𝐺, 𝐻)-equivalence, let L be the corresponding linking groupoid as in [13, §4.1]. Then
L is an ample groupoid, with locally compact Hausdorff unit space without isolated points, which is
minimal and has comparison, because G has these properties. Similarly, H is minimal, has comparison,
and the unit space of H has no isolated points. Hence, Theorem 5.14 applies, and our claim follows
because G and H are isomorphic to reductions of L. �

Remark 5.16. The same arguments as above, using [75, Corollary 3.9], show that the analogues of
Theorem 5.14 and Corollary 5.15 are also true for the commutator subgroup in place of the topological
full group, that is, in the setting of Theorem 5.14 and Corollary 5.15, homology of commutator subgroups
of topological full groups is also Morita invariant.

5.4. Identifying homology of infinite loop spaces with homology of topological full groups

Let Ω∞0 K(𝔅) denote the connected component of the base point of Ω∞K(𝔅) (see §2.6).

Theorem 5.17. Let G be an ample groupoid, with locally compact Hausdorff unit space 𝐺 (0) , and
C an abelian group. Then there exists a map 𝐵𝑭(R × 𝐺) → Ω∞0 K(𝔅) which induces an 𝐻∗(�,C)-
isomorphism, that is,

𝐻∗(𝑭(R × 𝐺),C) � 𝐻∗(Ω∞0 K(𝔅),C).

Proof. The proof is as in [90] (compare [90, Theorem 5.4], which is based on [59, 74]). Let 𝑀 = |𝔅|
be the nerve or classifying space of 𝔅 as in §2.6. Let 𝑀∞ be the homotopy colimit of M with respect to
the maps given by � ⊕ 𝑣, for 𝑣 ∈ obj𝔅. The group completion theorem [59] (see also [74]) implies that
there exists a map

𝑀∞ → Ω∞K(𝔅) (9)

which induces an 𝐻∗(�,C)-isomorphism. The component of ∅ of 𝑀∞ can be identified with
𝐵𝑭(R × 𝐺) as

𝑭(R × 𝐺) = lim
−−→
𝑢

𝑭((R × 𝐺)𝑢𝑢 ) � lim
−−→
𝑢

𝔅(𝑢, 𝑢)

by definition (see also Remark 3.3) and because 𝔅, being a groupoid, is equivalent to
∐

𝑢 𝔅(𝑢, 𝑢),
where u runs through a system of representatives for the components of 𝔅.

Hence, restricting equation (9) to the component of ∅ of 𝑀∞ and the component of the base point
Ω∞0 K(𝔅) of Ω∞K(𝔅), our claim follows. �

Let us now combine Theorem 5.17 with Morita invariance from §5.3.

Theorem 5.18. Let G be an ample groupoid, with locally compact Hausdorff 𝐺 (0) without isolated
points. Assume that G is minimal and has comparison. Let C be an abelian group. Then 𝐻∗(𝑭(R ×
𝐺),C) � 𝐻∗(𝑭(𝐺),C). Hence, 𝐻∗(𝑭(𝐺),C) � 𝐻∗(Ω∞0 K(𝔅),C).
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Proof. By definition, 𝑭(𝐺) = lim
−−→𝑈

𝑭(𝐺𝑈
𝑈 ), where the limit is taken over all compact open subspaces

𝑈 ⊆ 𝐺 (0) . Furthermore, 𝑭(R × 𝐺) � lim
−−→𝑢

𝔅(𝑢, 𝑢), using Remark 3.3. Now, Theorem 5.14 implies
that for all ∅ ≠ 𝑈 ⊆ 𝐺 (0) , 𝐻∗(𝑭(𝐺),C) � 𝐻∗(𝑭(𝐺𝑈

𝑈 ),C). Moreover, for all 𝑧 ∈ obj𝔅, 𝔅(𝑈,𝑈) ↩→
𝔅(𝑈 ⊕ 𝑧,𝑈 ⊕ 𝑧) induces an 𝐻∗(�,C)-isomorphism, for all ∗ ≥ 0, by Theorem 5.13. It follows that
𝐻∗(𝑭(R × 𝐺),C) � 𝐻∗(𝑭(𝐺𝑈

𝑈 ),C) � 𝐻∗(𝑭(𝐺),C), for all ∗ ≥ 0. Now, apply Theorem 5.17. �

As explained in §2.4 and §2.5, interesting examples of infinite simple groups do not arise directly
from the construction of topological full groups; rather, they are given by alternating full groups 𝑨(𝐺)
for special ample groupoids G. For almost finite or purely infinite groupoids G which are minimal,
effective and Hausdorff, with unit space 𝐺 (0) homeomorphic to the Cantor space, the alternating full
group coincides with the commutator subgroup 𝑫 (𝐺) of 𝑭(𝐺) (see [57, 66]). The commutator subgroup
𝑫 (𝐺) (also called derived subgroup) is the subgroup of 𝑭(𝐺) generated by commutators of the form
𝜎𝜏𝜎−1𝜏−1 for 𝜎, 𝜏 ∈ 𝑭(𝐺). Let us now explain how our approach allows us to study homology of
𝑫 (𝐺) as well.

In the following, let Ω̃∞0 K(𝔅𝐺) be the universal cover of Ω∞0 K(𝔅𝐺).

Theorem 5.19. Let G be an ample groupoid, with locally compact Hausdorff unit space. Then

𝐻∗(𝑫 (R × 𝐺),C) � 𝐻∗(Ω̃∞0 K(𝔅𝐺),C)

for all abelian groups C and all ∗ ≥ 0.

Proof. We have

𝐻∗(𝑫 (R × 𝐺),C) � 𝐻∗(𝑭(R × 𝐺),Z[𝑭(R × 𝐺)/𝑫 (R × 𝐺)] ⊗ C)
� 𝐻∗(𝑭(R × 𝐺),Z[𝐻1 (𝑭(R × 𝐺))] ⊗ C)
� 𝐻∗(Ω∞0 K(𝔅𝐺),Z[𝐻1 (Ω

∞
0 K(𝔅𝐺))] ⊗ C).

For the first isomorphism, we used Shapiro’s lemma (see, for instance, [6, Chapter III, Proposition
(6.2)]). The second isomorphism is induced by the canonical identification 𝐻1 (𝑭(R × 𝐺)) � 𝑭(R ×
𝐺)/𝑫 (R×𝐺). The third isomorphism follows from the group completion theorem [59] (see also [74])
in the same way as Theorem 5.17 does (see also [74, Remark 2.5]).

In addition, we have

𝐻∗(Ω
∞
0 K(𝔅𝐺),Z[𝐻1 (Ω

∞
0 K(𝔅𝐺))] ⊗ C) � 𝐻∗(Ω∞0 K(𝔅𝐺),Z[𝜋1 (Ω

∞
0 K(𝔅𝐺))] ⊗ C)

� 𝐻∗(Ω̃∞0 K(𝔅𝐺),C).

The first isomorphism is induced by the Hurewicz isomorphism 𝜋1 (Ω∞0 K(𝔅𝐺)) � 𝐻1(Ω∞0 K(𝔅𝐺))

(using that 𝜋1 (Ω∞0 K(𝔅𝐺)) is abelian because Ω∞0 K(𝔅𝐺) is an infinite loop space). For the second
isomorphism, we refer the reader for instance to [36, Example 3H.2]. This proves our claim. �

Corollary 5.20. Let G be an ample groupoid, with locally compact Hausdorff unit space 𝐺 (0) without
isolated points. Assume that G is minimal and has comparison. Then

𝐻∗(𝑫 (𝐺),C) � 𝐻∗(𝑫 (R × 𝐺),C) � 𝐻∗(Ω̃∞0 K(𝔅𝐺),C)

for all abelian groups C and all ∗ ≥ 0.

Proof. As noted in Remark 5.16, using [75, Corollary 3.9], the same argument as for Theorem 5.18
implies that

𝐻∗(𝑫 (R × 𝐺),C) � 𝐻∗(𝑫 (𝐺𝑈
𝑈 ),C) � 𝐻∗(𝑫 (𝐺),C),
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for all nonempty compact open subspaces 𝑈 ⊆ 𝐺 (0) (see also the argument for [90, Corollary 6.7],
which is similar). �

6. Applications

Let us now derive consequences from our main results. Let G be an ample groupoid with locally compact
Hausdorff unit space.

First, note that Ω∞0 K(𝔅𝐺) inherits the structure of an infinite loop space from Ω∞K(𝔅𝐺). In
particular, Ω∞0 K(𝔅𝐺) is up to weak homotopy equivalence a homotopy-associative H-space. It can also
be derived directly from definitions (see for instance [89]) that Ω∞0 K(𝔅𝐺) inherits the structure of a
homotopy-associative H-space from Ω∞K(𝔅𝐺).

Moreover, observe that the H-space structure on Ω∞0 K(𝔅𝐺) can be lifted to the universal cover
Ω̃∞0 K(𝔅𝐺) (see, for instance, [36, Section 3.C, Exercise 4]). Moreover, because Ω̃∞0 K(𝔅𝐺) is the
universal cover of Ω∞0 K(𝔅𝐺), we have

𝜋∗(Ω̃
∞
0 K(𝔅𝐺)) �

{
𝜋∗(Ω∞0 K(𝔅𝐺)) if ∗ ≥ 2,
{0} if ∗ = 0, 1.

(10)

6.1. Rational homology

Let us start with rational computations. We need the following notation. Given an ample groupoid G
with locally compact Hausdorff unit space, we denote by 𝐻odd

∗ (𝐺,Q) the groupoid homology of G with
rational coefficients in odd degree, that is,

𝐻odd
∗ (𝐺,Q) :=

{
𝐻∗(𝐺,Q) if ∗ > 0 odd,
{0} else.

Similarly, let 𝐻even
∗ (𝐺,Q) be the groupoid homology of G with rational coefficients in (positive) even

degree, that is,

𝐻even
∗ (𝐺,Q) :=

{
𝐻∗(𝐺,Q) if ∗ > 0 even,
{0} else.

Corollary 6.1. Let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) . Then

𝐻∗(𝑭(R × 𝐺),Q) � Ext(𝐻odd
∗ (𝐺,Q)) ⊗ Sym(𝐻even

∗ (𝐺,Q))

as graded vector spaces over Q.
Suppose, in addition, that 𝐺 (0) does not have isolated points and that G is minimal and has compar-

ison. Then

𝐻∗(𝑭(𝐺),Q) � Ext(𝐻odd
∗ (𝐺,Q)) ⊗ Sym(𝐻even

∗ (𝐺,Q))

as graded vector spaces over Q.

Proof. [81, Chapter II, Proposition 6.30 (iii)]) implies that the Hurewicz maps induce isomorphisms

𝜋∗(K(𝔅𝐺)) ⊗ Q � 𝐻∗(K(𝔅𝐺),Q)

for all ∗ ≥ 0. Hence

𝜋∗(Ω
∞
0 K(𝔅𝐺)) ⊗ Q � 𝜋∗(Ω∞K(𝔅𝐺)) ⊗ Q � 𝜋∗(K(𝔅𝐺)) ⊗ Q � 𝐻∗(K(𝔅𝐺),Q) � 𝐻∗(𝐺,Q)
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for all ∗ > 0, where we applied Theorem 4.18. As explained above,Ω∞0 K(𝔅𝐺) is a homotopy-associative
H-space. Hence, the theorem in the appendix of [62] implies that 𝐻∗(Ω∞0 K(𝔅𝐺),Q) is isomorphic to
the universal enveloping algebra𝑈 (𝜋∗ (Ω∞0 K(𝔅𝐺)) ⊗Q) of 𝜋∗(Ω∞0 K(𝔅𝐺)) ⊗Q, which is a Lie algebra
with respect to the Samelson product (see for instance the appendix of [62]), that is,

𝐻∗(Ω
∞
0 K(𝔅𝐺),Q) � 𝑈 (𝜋∗ (Ω∞0 K(𝔅𝐺)) ⊗ Q).

Now, the Poincaré–Birkhoff–Witt theorem (see, for instance, [21, Theorem 21.1]) implies that

𝑈 (𝜋∗ (Ω
∞
0 K(𝔅𝐺)) ⊗ Q) � Λ(𝜋∗(Ω

∞
0 K(𝔅𝐺)) ⊗ Q),

where Λ stands for the free commutative graded algebra (see, for instance, [21, Chapter I, §3, Example
6]). Note that Λ(𝜋∗(Ω∞0 K(𝔅𝐺)) ⊗Q) is constructed from the vector space 𝜋∗(Ω∞0 K(𝔅𝐺)) ⊗Q and does
not use the Lie algebra structure of 𝜋∗(Ω∞0 K(𝔅𝐺)) ⊗ Q anymore. Finally, it follows from [21, Chapter
II, §12 (a)] that

Λ(𝜋∗(Ω
∞
0 K(𝔅𝐺)) ⊗ Q) � Ext(𝐻odd

∗ (𝐺,Q)) ⊗ Sym(𝐻even
∗ (𝐺,Q)).

All in all, using Theorem 5.17, we obtain

𝐻∗(𝑭(R × 𝐺),Q) � 𝐻∗(Ω∞0 K(𝔅𝐺),Q) � Ext(𝐻odd
∗ (𝐺,Q)) ⊗ Sym(𝐻even

∗ (𝐺,Q)),

and, if 𝐺 (0) does not have isolated points and G is minimal and has comparison, Theorem 5.18 implies

𝐻∗(𝑭(𝐺),Q) � 𝐻∗(Ω∞0 K(𝔅𝐺),Q) � Ext(𝐻odd
∗ (𝐺,Q)) ⊗ Sym(𝐻even

∗ (𝐺,Q)),

as desired. �

We record the following immediate consequence.

Corollary 6.2. Let G be an ample groupoid with locally compact Hausdorff unit space. 𝑭(R × 𝐺) is
rationally acyclic (that is, 𝐻∗(𝑭(R × 𝐺),Q) � {0} for all ∗ > 0) if and only if 𝐻∗(𝐺,Q) � {0} for all
∗ > 0.

Suppose, in addition, that 𝐺 (0) does not have isolated points and that G is minimal and has compar-
ison. Then 𝑭(𝐺) is rationally acyclic if and only if 𝐻∗(𝐺,Q) � {0} for all ∗ > 0.

Moreover, specializing to degree 1, we obtain the following consequence of Corollary 6.1.

Corollary 6.3. Let G be an ample groupoid, with locally compact Hausdorff unit space 𝐺 (0) . Then

𝐻1 (𝑭(R × 𝐺),Q) � 𝐻1 (𝐺,Q).

If, in addition, 𝐺 (0) has no isolated points, and G is minimal and has comparison, then

𝐻1 (𝑭(𝐺),Q) � 𝐻1 (𝐺,Q).

Furthermore, we obtain a formula for the Poincaré series

𝑃𝑭 (𝐺) (𝑡) :=
∞∑
𝑗=0

dim𝐻 𝑗 (𝑭(𝐺),Q)𝑡
𝑗 .

For that purpose, we define, for 𝑗 > 0,

𝑑 𝑗 := dim𝐻 𝑗 (𝐺,Q).
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Corollary 6.4. Let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) . Then

𝑃𝑭 (R×𝐺) (𝑡) =
∞∏
𝑗=1
(1 + (−1) 𝑗+1𝑡 𝑗 ) (−1) 𝑗+1𝑑 𝑗 = (1 + 𝑡1)𝑑1 (1 + 𝑡3)𝑑3 · · · (1 − 𝑡2)−𝑑2 (1 − 𝑡4)−𝑑4 · · · .

If, in addition, 𝐺 (0) has no isolated points, and G is minimal and has comparison, then

𝑃𝑭 (𝐺) (𝑡) =
∞∏
𝑗=1
(1 + (−1) 𝑗+1𝑡 𝑗 ) (−1) 𝑗+1𝑑 𝑗 = (1 + 𝑡1)𝑑1 (1 + 𝑡3)𝑑3 · · · (1 − 𝑡2)−𝑑2 (1 − 𝑡4)−𝑑4 · · · .

Proof. This is an immediate consequence of Corollary 6.1, together with known formulas for the
Poincaré series for exterior and symmetric algebras (see for instance [35, §5.7, equation (5.15)] and [35,
§9.11]). �

Let us now turn to rational computations for commutator subgroups. Given an ample groupoid G
with locally compact Hausdorff unit space, we denote by 𝐻odd

∗>1 (𝐺,Q) the groupoid homology of G with
rational coefficients in odd degree > 1, that is,

𝐻odd
∗>1(𝐺,Q) :=

{
𝐻∗(𝐺,Q) if ∗ > 1 odd,
{0} else.

Let 𝐻even
∗ (𝐺,Q) be defined as above.

Corollary 6.5. Let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) . Then

𝐻∗(𝑫 (R × 𝐺),Q) � Ext(𝐻odd
∗>1(𝐺,Q)) ⊗ Sym(𝐻even

∗ (𝐺,Q))

as graded vector spaces over Q.
If, in addition, 𝐺 (0) has no isolated points, and G is minimal and has comparison, then

𝐻∗(𝑫 (𝐺),Q) � Ext(𝐻odd
∗>1(𝐺,Q)) ⊗ Sym(𝐻even

∗ (𝐺,Q))

as graded vector spaces over Q.

Proof. The proof is similar to the one for Corollary 6.1. We have

𝜋∗(Ω̃
∞
0 K(𝔅𝐺)) ⊗ Q � 𝜋∗(Ω∞0 K(𝔅𝐺)) ⊗ Q � 𝜋∗(Ω∞K(𝔅𝐺)) ⊗ Q � 𝐻∗(K(𝔅𝐺),Q) � 𝐻∗(𝐺,Q)

for all ∗ > 1, where we applied Theorem 4.18. As explained above, Ω̃∞0 K(𝔅𝐺) is a homotopy-associative
H-space. Hence, the theorem in the appendix of [62] implies that 𝐻∗(Ω̃∞0 K(𝔅𝐺),Q) is isomorphic to
the universal enveloping algebra𝑈 (𝜋∗(Ω̃∞0 K(𝔅𝐺)) ⊗Q) of 𝜋∗(Ω̃∞0 K(𝔅𝐺)) ⊗Q, which is a Lie algebra
with respect to the Samelson product (see, for instance, the appendix of [62]). Now, the Poincaré–
Birkhoff–Witt theorem (see, for instance, [21, Theorem 21.1]) and [21, Chapter II, §12 (a)] imply that

𝑈 (𝜋∗(Ω̃
∞
0 K(𝔅𝐺)) ⊗ Q) � Λ(𝜋∗(Ω̃

∞
0 K(𝔅𝐺)) ⊗ Q) � Ext(𝐻odd

∗>1 (𝐺,Q)) ⊗ Sym(𝐻even
∗ (𝐺,Q)).

All in all, using equation (10) and Theorem 5.19, we obtain

𝐻∗(𝑫 (R × 𝐺),Q) � 𝐻∗(Ω̃∞0 K(𝔅𝐺),Q) � Ext(𝐻odd
∗>1 (𝐺,Q)) ⊗ Sym(𝐻even

∗ (𝐺,Q)),
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and, if 𝐺 (0) does not have isolated points and G is minimal and has comparison, equation (10) and
Corollary 5.20 imply

𝐻∗(𝑫 (𝐺),Q) � 𝐻∗(Ω̃∞0 K(𝔅𝐺),Q) � Ext(𝐻odd
∗>1 (𝐺,Q)) ⊗ Sym(𝐻even

∗ (𝐺,Q)),

as desired. �

We record the following immediate consequence, as above.

Corollary 6.6. Let G be an ample groupoid with locally compact Hausdorff unit space. 𝑫 (R × 𝐺) is
rationally acyclic if and only if 𝐻∗(𝐺,Q) � {0} for all ∗ > 1.

Suppose, in addition, that 𝐺 (0) does not have isolated points and that G is minimal and has compar-
ison. Then 𝑫 (𝐺) is rationally acyclic if and only if 𝐻∗(𝐺,Q) � {0} for all ∗ > 1.

As before, we obtain the following formula for the Poincaré series

𝑃𝑫 (𝐺) (𝑡) :=
∞∑
𝑗=0

dim𝐻 𝑗 (𝑫 (𝐺),Q)𝑡
𝑗 .

Recall that we defined 𝑑 𝑗 := dim𝐻 𝑗 (𝐺,Q) for 𝑗 > 0.

Corollary 6.7. Let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) . Then

𝑃𝑫 (R×𝐺) (𝑡) =
∞∏
𝑗=2
(1 + (−1) 𝑗+1𝑡 𝑗 ) (−1) 𝑗+1𝑑 𝑗 = (1 + 𝑡3)𝑑3 (1 + 𝑡5)𝑑5 · · · (1 − 𝑡2)−𝑑2 (1 − 𝑡4)−𝑑4 · · · .

If, in addition, 𝐺 (0) has no isolated points, and G is minimal and has comparison, then

𝑃𝑫 (𝐺) (𝑡) =
∞∏
𝑗=2
(1 + (−1) 𝑗+1𝑡 𝑗 ) (−1) 𝑗+1𝑑 𝑗 = (1 + 𝑡3)𝑑3 (1 + 𝑡5)𝑑5 · · · (1 − 𝑡2)−𝑑2 (1 − 𝑡4)−𝑑4 · · · .

6.2. Vanishing results

In the following, we write 𝐻∗(𝐺) := 𝐻∗(𝐺,Z) and 𝐻∗(𝑭(𝐺)) := 𝐻∗(𝑭(𝐺),Z).

Corollary 6.8. Let G be an ample groupoid with locally compact Hausdorff unit space 𝐺 (0) . Given
𝑘 ∈ Z with 𝑘 > 0, suppose that 𝐻∗(𝐺) � {0} for all ∗ < 𝑘 . Then 𝐻∗(𝑭(R×𝐺)) � {0} for all 0 < ∗ < 𝑘
and 𝐻𝑘 (𝑭(R × 𝐺)) � 𝐻𝑘 (𝐺). If, in addition, 𝐺 (0) has no isolated points and G is minimal and has
comparison, then 𝐻∗(𝑭(𝐺)) � {0} for all 0 < ∗ < 𝑘 and 𝐻𝑘 (𝑭(𝐺)) � 𝐻𝑘 (𝐺).

Proof. Assume that 𝐻∗(𝐺) � {0} for all ∗ < 𝑘 . Theorem 4.18 implies that �̃�∗(K(𝔅𝐺),Z) � {0} for
all ∗ < 𝑘 . Thus, we obtain, for all 1 ≤ ∗ ≤ 𝑘 , that

𝜋∗(Ω
∞
0 K(𝔅𝐺)) � 𝜋∗(Ω∞K(𝔅𝐺)) � 𝜋∗(K(𝔅𝐺)) � �̃�∗(K(𝔅𝐺),Z)

by applying the stable Hurewicz theorem (see, for instance, [81, Chapter II, Proposition 6.30 (i)])
inductively. Now, the usual Hurewicz theorem for spaces implies that, for all 1 ≤ ∗ ≤ 𝑘 ,

𝜋∗(Ω
∞
0 K(𝔅𝐺)) � 𝐻∗(Ω∞0 K(𝔅𝐺),Z).

Now, Theorem 5.17 implies that 𝐻∗(𝑭(R×𝐺)) � {0} for all 0 < ∗ < 𝑘 and 𝐻𝑘 (𝑭(R×𝐺)) � 𝐻𝑘 (𝐺).
And if, in addition,𝐺 (0) has no isolated points and G is minimal and has comparison, then Theorem 5.18
implies that 𝐻∗(𝑭(𝐺)) � {0} for all 0 < ∗ < 𝑘 and 𝐻𝑘 (𝑭(𝐺)) � 𝐻𝑘 (𝐺), as desired. �

We record the following immediate consequence.
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Corollary 6.9. Let G be an ample groupoid with locally compact Hausdorff unit space𝐺 (0) . If𝐻∗(𝐺) �
{0} for all ∗ ≥ 0, then 𝑭(R × 𝐺) is integrally acyclic, that is, 𝐻∗(𝑭(R × 𝐺)) � {0} for all ∗ > 0,
and 𝑭(R × 𝐺) = 𝑫 (R × 𝐺). If, in addition, 𝐺 (0) has no isolated points and G is minimal and has
comparison, then 𝑭(𝐺) is integrally acyclic, and 𝑭(𝐺) = 𝑫 (𝐺).

For commutator subgroups, we obtain the following consequences of Theorem 5.19, Corollary 5.20
and equation (10) as well as Corollary 6.8.

Corollary 6.10. Let G be an ample groupoid with locally compact Hausdorff unit space𝐺 (0) . We always
have 𝐻1(𝑫 (R × 𝐺)) � {0}, and if, in addition, 𝐺 (0) has no isolated points and G is minimal and has
comparison, then 𝐻1(𝑫 (𝐺)) � {0}.

Now, suppose that k is an integer with 𝑘 ≥ 2 and that 𝐻∗(𝐺) � {0} for all ∗ < 𝑘 . Then 𝑫 (R×𝐺) =
𝑭(R × 𝐺) and 𝐻∗(𝑫 (R × 𝐺)) � {0} for all 0 < ∗ < 𝑘 and 𝐻𝑘 (𝑫 (R × 𝐺)) � 𝐻𝑘 (𝐺), and if, in
addition, 𝐺 (0) has no isolated points and G is minimal and has comparison, then 𝑫 (𝐺) = 𝑭(𝐺) and
𝐻∗(𝑫 (𝐺)) � {0} for all 0 < ∗ < 𝑘 and 𝐻𝑘 (𝑫 (𝐺)) � 𝐻𝑘 (𝐺).

Remark 6.11. In particular, this means that 𝑫 (R × 𝐺) is always perfect and that 𝑫 (𝐺) is perfect if
𝐺 (0) has no isolated points and G is minimal and has comparison. Perfection is also discussed in [59,
74]. Note that Matui proved in [57] that for second countable, locally compact, Hausdorff, minimal
groupoids G which are almost finite or purely infinite, 𝑫 (𝐺) is even simple.

6.3. Low degree exact sequences

Theorem 6.12. Let G be an ample groupoid, with locally compact Hausdorff unit space 𝐺 (0) . There
exists an exact sequence

𝐻2(𝑫 (R × 𝐺)) �� 𝐻2 (𝐺) �� 𝐻0 (𝐺,Z/2)
𝜁 �� 𝐻1 (𝑭(R × 𝐺))

𝜂 �� 𝐻1 (𝐺) �� 0.

The map 𝜂 is determined by the property that the composition
𝐻1(𝑭(R × 𝐺))

𝜂 �� 𝐻1 (𝐺) �� 𝐻1(R × 𝐺) sends the class of an element 𝜎 ∈ 𝑭(R × 𝐺) to the
class of 1𝜎 in 𝐻1 (R × 𝐺), where the second map is induced by the canonical inclusion 𝐺 ↩→ R × 𝐺.

The map 𝜁 sends the class of 1𝑈 in 𝐻0(𝐺,Z/2) for a compact open subspace 𝑈 ⊆ 𝐺 (0) to the class
of the element 𝜏 � 𝜏−1 ∈ 𝑭((R × 𝐺)𝑈 ⊕𝑈𝑈 ⊕𝑈 ) ⊆ 𝑭(R × 𝐺), where 𝜏 =

{
s2,1

}
×𝑈.

Remark 6.13. Morita invariance of groupoid homology (see, for instance, [56, §3] or [61, §4]) implies
that the canonical inclusion𝐺 ↩→ R×𝐺 induces isomorphisms𝐻∗(𝐺) � 𝐻∗(R×𝐺) and𝐻0(𝐺,Z/2) �
𝐻0 (R × 𝐺,Z/2). This is the reason why 𝜂 is determined by the composition

𝐻1 (𝑭(R × 𝐺))
𝜂 �� 𝐻1 (𝐺) �� 𝐻1(R × 𝐺).

Proof of Theorem 6.12. Let S be the sphere spectrum. The Atiyah–Hirzebruch spectral sequence (see,
for instance, [1, Part III, §7]) has 𝐸2

𝑝,𝑞 = �̃�𝑝 (K(𝔅𝐺), 𝜋𝑞 (S)) and converges to 𝜋𝑝+𝑞 (K(𝔅𝐺)). Since the
Atiyah–Hirzebruch spectral sequence is a first quadrant spectral sequence (i.e., it satisfies 𝐸2

𝑝,𝑞 � {0}
whenever 𝑝 < 0 or 𝑞 < 0), we obtain a low degree exact sequence

𝜋2 (K(𝔅𝐺)) �� �̃�2(K(𝔅𝐺), 𝜋0 (S)) �� �̃�0(K(𝔅𝐺), 𝜋1 (S)) �� 𝜋1 (K(𝔅𝐺)) �� �̃�1(K(𝔅𝐺)) �� 0. (11)

Now, we plug in 𝜋0 (S) � Z and 𝜋1 (S) � Z/2 (see [36, §4.2]), �̃�∗(K(𝔅𝐺)) � 𝐻∗(𝐺),
�̃�0 (K(𝔅𝐺),Z/2) � 𝐻0 (𝐺,Z/2) from Theorem 4.18, as well as

𝜋1 (K(𝔅𝐺)) � 𝜋1 (Ω
∞K(𝔅𝐺)) � 𝜋1 (Ω

∞
0 K(𝔅𝐺)) � 𝐻1 (Ω

∞
0 K(𝔅𝐺)) � 𝐻1(𝑭(R × 𝐺)),
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where the third isomorphism is given by the Hurewicz homomorphism, the last isomorphism is from
Theorem 5.17, and

𝜋2 (K(𝔅𝐺)) � 𝜋2 (Ω
∞K(𝔅𝐺)) � 𝜋2 (Ω

∞
0 K(𝔅𝐺)) � 𝜋2 (Ω̃

∞
0 K(𝔅𝐺)) � 𝐻2(Ω̃

∞
0 K(𝔅𝐺))

� 𝐻2(𝑫 (R × 𝐺)),

where the third isomorphism is from equation (10), the fourth isomorphism is given by the Hurewicz
homomorphism and the last isomorphism is from Theorem 5.19. We obtain the exact sequence

𝐻2(𝑫 (R × 𝐺)) �� 𝐻2(𝐺) �� 𝐻0 (𝐺,Z/2)
𝜁 �� 𝐻1 (𝑭(R × 𝐺))

𝜂 �� 𝐻1 (𝐺) �� 0,

as desired. It remains to determine the maps 𝜁 and 𝜂.
Take a compact open subspace 𝑢 ⊆ N × 𝐺 (0) = (R × 𝐺) (0) and 𝜎 ∈ 𝑭((R × 𝐺)𝑢𝑢 ). Consider the

commutative diagram

𝑭((R × 𝐺)𝑢𝑢 )

��

�� 𝐻1 (𝑭((R × 𝐺)𝑢𝑢 ))

��
𝜋1 (|𝔅𝐺 |)

��

�� 𝐻1(|𝔅𝐺 |)

��
𝜋1 (Ω∞0 K(𝔅𝐺))

��

�� 𝐻1 (Ω∞0 K(𝔅𝐺))

��
𝜋1 (K(𝔅𝐺)) �� 𝐻1(K(𝔅𝐺)).

Here, the first horizontal map is the canonical quotient map, all other horizontal maps are given by
Hurewicz homomorphisms, and all vertical maps are the canonical ones. The diagram commutes by
naturality of Hurewicz homomorphisms (see, for instance, [84, Chapter 7, §4, Theorem 3]. Moreover,
note that the map 𝜋1 (K(𝔅𝐺)) → �̃�1 (K(𝔅𝐺)) in equation (11) is given by the stable Hurewicz
homomorphism. Hence, in order to determine 𝜂([𝜎]), view 𝜎 as an element of 𝐶1,0𝔑1𝔅𝐺 (where we
identify 𝔅𝐺 (𝑆

1
0) with 𝔅𝐺) and determine the image of [𝜎] under the isomorphism 𝐻1 (K(𝔅𝐺)) �

𝐻1 (𝐺) from Theorem 4.18.
We follow the proof of Theorem 4.18 and use the same notation. First, consider the exact sequence

0 �� ker 𝜕1 �� 𝐶∗,0𝔑∗𝔅
(1)
𝐺

𝜕1 �� 𝐶∗,0𝔑∗𝔅𝐺
�� 0.

In homology, we obtain the exact sequence

0 �� 𝐻1 (𝐶∗,0𝔑∗𝔅𝐺) �� 𝐻0 (ker 𝜕1) �� 𝐻0(𝐶∗,0𝔑∗𝔅
(1)
𝐺 )

�� 𝐻0(𝐶∗,0𝔑∗𝔅𝐺) �� 0.

We need the image of [𝜎] ∈ 𝐻1 (𝐶∗,0𝔑∗𝔅𝐺) under the map 𝐻1(𝐶∗,0𝔑∗𝔅𝐺) → 𝐻0(ker 𝜕1). Observe
that (𝜎, 𝑢) ∈ 𝔑1𝔅

(1)
𝐺 maps to 𝜎 ∈ 𝔑1𝔅𝐺 under 𝜕1. Under the map 𝐶1,0𝔑1𝔅

(1)
𝐺 → 𝐶0,0𝔑0𝔅

(1)
𝐺 ,

(𝜎, 𝑢) is mapped to 𝜎 − 𝑢. Hence, [𝜎] ∈ 𝐻1(𝐶∗,0𝔑∗𝔅𝐺) is mapped to [𝜎] − [𝑢] under the map
𝐻1 (𝐶∗,0𝔑∗𝔅𝐺) → 𝐻0(ker 𝜕1).

Next, consider the exact sequence

𝐶0,0𝔑0𝔅
(3)
𝐺

𝜕3 �� 𝐶0,0𝔑0𝔅
(2)
𝐺

𝜕2 �� ker 𝜕1 �� 0.
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In homology, 𝐻0(𝜕2) induces the identification coker𝐻0(𝜕3) � 𝐻0(ker 𝜕1). Now, 𝑢 ×s r𝜎 ∈ 𝐶0,0𝔑0𝔅
(2)
𝐺

is mapped to [𝜎] − [𝑢] under 𝜕2. Hence, 𝐻0 (𝜕2) sends [𝑢 ×s r 𝜎] to [𝜎] − [𝑢].
Now, consider the commutative diagram

�̃�0 (𝐶∗𝔑𝔅(2)𝐺 )
� ��

��

𝒞(𝐺 (1) )

��
�̃�0(𝐶∗𝔑𝔅(2)R×𝐺)

� �� 𝒞((R × 𝐺) (1) )

The horizontal maps are the isomorphisms �̃�0 (𝐶∗𝔑𝔅(2)𝐺 ) � 𝒞(𝐺 (1) ) and �̃�0(𝐶∗𝔑𝔅(2)R×𝐺) � 𝒞((R ×
𝐺) (1) ) from Theorem 4.14, and the vertical arrows are the maps induced by the canonical inclusion
𝐺 ↩→ R × 𝐺. The left vertical arrow sends [𝑢 ×s r 𝜎] to [𝑢 ×s r 𝜎] (now viewing 𝑢 ×s r 𝜎 as an element
of 𝐶0,0𝔑0𝔅

(2)
R×𝐺), which then is sent to [1𝜎] by the lower horizontal arrow.

So all in all, we conclude that the composition 𝐻1 (𝑭(R × 𝐺))
𝜂 �� 𝐻1 (𝐺) �� 𝐻1(R × 𝐺)

sends [𝜎] to [1𝜎] ∈ 𝐻1 (𝐺), as desired.
To determine 𝜁 , we use naturality of the Atiyah–Hirzebruch spectral sequence. Take a nonempty

compact open subspace 𝑈 ⊆ 𝐺 (0) . Let 𝔅{𝑈 } be the category consisting of direct sums of ∅ and
copies of U and morphisms given by permutations of summands of U. In other words, 𝔅{𝑈 } is the
small permutative category constructed in §3 for the discrete groupoid R × {𝑈}. We have a canonical
embedding 𝔅{𝑈 } ↩→ 𝔅𝐺 .

Since 𝔅{𝑈 } is the free permutative category on {∅,𝑈}, the category with two objects ∅ and U and
only identity morphisms, we have �̃�0 (K𝔅{𝑈 },Z/2) � Z/2, with generator [𝑈], �̃�2 (K𝔅{𝑈 }) � {0} and
�̃�1 (K𝔅{𝑈 }) � {0}. So the low degree exact sequence obtained from the Atiyah–Hirzebruch spectral
sequence for K𝔅{𝑈 } degenerates to the isomorphism

�̃�0(K𝔅{𝑈 },Z/2)
� �� 𝜋(K𝔅{𝑈 }) � 𝐻1 (𝑭(R))

sending the generator [𝑈] to the class of the nontrivial permutation 𝜋 : 𝑈 ⊕𝑈 � 𝑈 ⊕𝑈. Here, we have
applied Theorem 5.17 to the discrete groupoid R � R × {𝑈} and used that 𝑭(R) � 𝑆∞ =

⋃
𝑁 𝑆𝑁 ,

where 𝑆𝑁 is the symmetric group on a finite set of size N.
Hence, by naturality of the Atiyah–Hirzebruch spectral sequence, 𝜁 ([1𝑈 ]) = [𝜏 � 𝜏−1] because

under the maps induced by the canonical embedding 𝔅{𝑈 } ↩→ 𝔅𝐺 , [𝑈] is mapped to [1𝑈 ] and [𝜋] is
mapped to [𝜏 � 𝜏−1]. �

Corollary 6.14. Let G be an ample groupoid whose unit space 𝐺 (0) is locally compact Hausdorff and
has no isolated points. Assume that G is minimal and has comparison. Then there is an exact sequence

𝐻2(𝑫 (𝐺)) �� 𝐻2 (𝐺) �� 𝐻0 (𝐺,Z/2)
𝜁 �� 𝐻1 (𝑭(𝐺))

𝜂 �� 𝐻1(𝐺) �� 0.

The maps 𝜂 and 𝜁 coincide with the ones in [58, §2.3] and [66, §7].
In particular, Matui’s AH-conjecture is true for every ample groupoid G which is minimal, has

comparison and whose unit space is locally compact Hausdorff without isolated points.

In particular, this proves Matui’s AH-conjecture for all purely infinite minimal ample groupoids,
which was not known before. Corollary 6.14 also verifies the AH-conjecture for all minimal ample
groupoids which are𝜎-compact, Hausdorff and almost finite, and whose unit spaces are compact without
isolated points. Previously, this was only known under the additional assumption of principality [56].

Proof. We obtain the desired exact sequence by plugging in the isomorphism 𝐻∗(𝑭(𝐺)) � 𝐻∗(𝑭(R×
𝐺)) given by Theorem 5.18 into the exact sequence obtained in Theorem 6.12.

https://doi.org/10.1017/fmp.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.31


Forum of Mathematics, Pi 51

Let us explain why our maps 𝜂 and 𝜁 coincide with the maps in Matui’s AH-conjecture as in [58,
§2.3] and [66, §7]. This is straightforward to see for 𝜂, so it remains to consider 𝜁 . The corresponding
map in [58, §2.3] and [66, §7] is defined as follows: Given a compact open subspace𝑈 ⊆ 𝐺 (0) together
with a compact open bisection 𝜎 with s(𝜎) = 𝑈 and r(𝜎) ∩𝑈 = ∅, the map in [58, §2.3] and [66, §7]
sends [1𝑈 ] to 𝜎 � 𝜎−1. Let 𝜏 � 𝜏−1 be as above. Let �̃� be the composition

𝑉 (1,𝑈)𝜎�� (2,𝑈),��

where 𝑉 = r(𝜎). Then �̃�−1 is given by the composition

(2,𝑈) (1,𝑈)�� 𝑉.
𝜎−1

��

It follows that

(�̃� � �̃�−1) (𝜎 � 𝜎−1) (�̃� � �̃�−1) = 𝜏 � 𝜏−1.

Hence, [𝜏�𝜏−1] = [𝜎�𝜎−1] in 𝐻1(𝑭(R×𝐺)). So our map 𝜁 indeed coincides with the corresponding
one in [58, §2.3] and [66, §7].

Our claim about Matui’s AH-conjecture follows immediately. (Note that the AH-conjecture is some-
times formulated with𝐻0 (𝐺) ⊗ (Z/2) instead of𝐻0(𝐺,Z/2). However, these two groups are canonically
isomorphic by the Künneth formula.) �

Remark 6.15. An immediate consequence of Theorem 6.12 and Corollary 6.14 is that the stable version
of Matui’s AH-conjecture (with 𝐻1(𝑭(R × 𝐺)) in place of 𝐻1 (𝑭(𝐺))) is always true for all ample
groupoids. Equivalently, Matui’s AH-conjecture is always true for groupoids of the form R ×𝐺, where
G is an arbitrary ample groupoid.

Remark 6.16. Theorem 6.12 also implies that the strong AH-conjecture holds if 𝐻2(𝐺) � {0}. More
precisely, by exactness, the strong AH-conjecture holds (i.e., the map 𝐻0 (𝐺,Z/2) → 𝐻1 (𝑭(𝐺)) is
injective) if and only if the map 𝐻2 (𝐺) → 𝐻0(𝐺,Z/2) in Theorem 6.12 is the zero map.

In addition to the alternating full group 𝑨(𝐺), Nekrashevych also introduced the subgroup 𝑺(𝐺)
of 𝑭(𝐺), which is an analogue of the symmetric group. By definition, 𝑨(𝐺) ⊆ 𝑺(𝐺). Let 𝑲 (𝐺) be
the kernel of the index map (see [58, §2.3], the index map coincides with 𝜂 in Theorem 6.12 and
Corollary 6.14). Clearly, 𝑫 (𝐺) ⊆ 𝑲 (𝐺). As observed in [66], it is easy to see that 𝑺(𝐺) ⊆ 𝑲 (𝐺)
and 𝑨(𝐺) ⊆ 𝑫 (𝐺). Nekrashevych points out in [66] that ‘it would be interesting to understand when
the equalities 𝑨(𝐺) = 𝑫 (𝐺) and 𝑺(𝐺) = 𝑲 (𝐺) hold’. Our work yields the following result about the
relation between the subgroups 𝑨(𝐺), 𝑫 (𝐺), 𝑺(𝐺) and 𝑲 (𝐺) of 𝑭(𝐺).

Corollary 6.17. Let G be an ample groupoid whose unit space 𝐺 (0) is locally compact Hausdorff and
has no isolated points. Assume that G is minimal and has comparison. Then 𝑲 (𝐺) is generated by 𝑺(𝐺)
and 𝑫 (𝐺). Moreover, the following are equivalent:

(i) 𝑫 (𝐺) ⊆ 𝑺(𝐺),
(ii) 𝑺(𝐺) = 𝑲 (𝐺),

(iii) 𝑨(𝐺) = 𝑫 (𝐺).

Proof. That 𝑲 (𝐺) is generated by 𝑺(𝐺) and 𝑫 (𝐺) follows by combining the exact sequence in Corollary
6.14 with [66, Theorem 7.2].

(i)⇒ (ii) is clear because 𝑲 (𝐺) is generated by 𝑺(𝐺) and 𝑫 (𝐺). To see (ii)⇒ (iii), observe that (ii)
produces an embedding 𝑫 (𝐺)/𝑨(𝐺) ↩→ 𝑲 (𝐺)/𝑨(𝐺) = 𝑺(𝐺)/𝑨(𝐺). It follows that 𝑫 (𝐺)/𝑨(𝐺) is
abelian because [66, Theorem 7.2] implies that 𝑺(𝐺)/𝑨(𝐺) is abelian. At the same time, we know that
𝐻1 (𝑫 (𝐺)) � {0} by Corollary 6.10. Hence, 𝑫 (𝐺)/𝑨(𝐺) � {0}, that is, 𝑨(𝐺) = 𝑫 (𝐺).

(iii)⇒ (i) is clear because 𝑨(𝐺) ⊆ 𝑺(𝐺). �
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6.4. Examples

In the following, we present a few examples to illustrate our main results.
Let Z � 𝑋 be a Cantor minimal system and 𝐺 := Z� 𝑋 the corresponding transformation groupoid.

As mentioned in §2.3.2, 𝐻1 (𝐺) � Z and 𝐻∗(𝐺) � {0} for all ∗ > 1. Thus, by Corollary 6.1,

𝐻∗(𝑭(𝐺),Q) �

{
Q if ∗ = 0 or ∗ = 1,
{0} else.

Moreover, Corollary 6.6 implies that 𝑫 (𝐺) is rationally acyclic, that is, 𝐻∗(𝑫 (𝐺),Q) � {0} for all
∗ > 0. In particular, this computes the rational homology of the examples of finitely generated infinite
simple amenable groups found in [39].

If G is the transformation groupoid of a Cantor minimal Z𝑑-system with 𝑑 > 1, we have 𝐻𝑑 (𝐺) � Z
so that 𝐻𝑑 (𝑫 (𝐺),Q) � {0} by Corollary 6.5, and hence 𝑫 (𝐺) is not rationally acyclic.

For tiling groupoids as in §2.2.3, explicit groupoid homology computations in, for instance, [26, 22,
23, 25] and Corollaries 6.1 and 6.5 lead to rational group homology computations for the corresponding
topological full groups and their commutator subgroups. For instance, let G be the groupoid attached to
the classical Penrose tiling. Then

𝐻∗(𝐺) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z8 if ∗ = 0,
Z5 if ∗ = 1,
Z if ∗ = 2,
{0} else.

Hence, by Corollary 6.4, the Poincaré series for 𝐻∗(𝑭(𝐺),Q) is given by (1 + 𝑡1)5 (1 − 𝑡2)−1. For
𝐻∗(𝑫 (𝐺),Q), the Poincaré series is given by (1 − 𝑡2)−1 by Corollary 6.7 so that

𝐻∗(𝑫 (𝐺),Q) �

{
Q if ∗ is even,
{0} if ∗ is odd.

Let 𝐺𝐴 be an SFT groupoid as in §2.2.4, where the transition matrix A is irreducible and not a
permutation matrix. Let d be the rank of ker (𝑖𝑑 − 𝐴𝑡 ). Then, using the groupoid homology results in
§2.3.2, Corollary 6.1 implies that 𝐻∗(𝑭(𝐺𝐴),Q) � Q(

𝑑
∗) , and Corollary 6.6 implies that 𝑫 (𝐺𝐴) is

rationally acyclic.
Given a one vertex k-graph Λ as in §2.3.2, the groupoid homology results in §2.3.2, Corollary 6.2 and

Corollary 6.8 imply that 𝑭(𝐺Λ) is always rationally acyclic and that 𝑭(𝐺Λ) is even integrally acyclic
if gcd(𝑁1, . . . , 𝑁𝑘 ) = 0. In particular, the Brin–Higman–Thompson groups 𝑛𝑉𝑘,𝑟 are always rationally
acyclic, and 𝑛𝑉𝑘,𝑟 are even integrally acyclic if 𝑘 = 2. Note that Brin’s groups 𝑛𝑉 from [5] coincide
with 𝑛𝑉2,1 and hence are integrally acyclic. Moreover, Theorem 5.14 implies that 𝐻∗(𝑛𝑉𝑘,𝑟 ,C) does not
depend on r, for all abelian groups C and ∗ ≥ 0. More precisely, for all 𝑟 ≤ 𝑠, the canonical embedding
𝑛𝑉𝑘,𝑟 ↩→ 𝑛𝑉𝑘,𝑠 induces isomorphisms 𝐻∗(𝑛𝑉𝑘,𝑟 ,C) � 𝐻∗(𝑛𝑉𝑘,𝑠 ,C) for all abelian groups C and ∗ ≥ 0.

Consider a Katsura–Exel–Pardo groupoid 𝐺𝐴,𝐵 as in §2.2.6, where A and B are row-finite matrices
with integer entries, and all entries of A are nonnegative. Suppose that for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , 𝐵𝑖, 𝑗 = 0 if and
only if 𝐴𝑖, 𝑗 = 0. Further assume that A is irreducible and not a permutation matrix. Let 𝑑𝐴 be the rank
of ker (𝑖𝑑 − 𝐴𝑡 ) and 𝑑𝐵 the rank of ker (𝑖𝑑 − 𝐵𝑡 ). Then, using the groupoid homology results in §2.3.2,
Corollary 6.4 implies that the Poincaré series of 𝐻∗(𝑭(𝐺𝐴,𝐵),Q) is given by (1 + 𝑡)𝑑𝐴+𝑑𝐵 (1 − 𝑡2)−𝑑𝐵 ,
and Corollary 6.7 implies that the Poincaré series of 𝐻∗(𝑫 (𝐺𝐴,𝐵),Q) is given by (1 − 𝑡2)−𝑑𝐵 .

Let us now discuss groupoids arising from piecewise affine transformations on the unit interval as in
§2.2.7. First, let 𝜆 be an algebraic integer with 1 ≠ 𝜆 ∈ (0,∞) whose minimal polynomial is given by
𝑓 (𝑇) = 𝑇𝑑 + 𝑎𝑑−1𝑇

𝑑−1 + . . . + 𝑎1𝑇 + 𝑎0. Let G be the groupoid from §2.2.7 for parameter 𝜆 (see also
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[50]). The concrete computations of groupoid homology in [50, §5.2] and Corollaries 6.1, 6.2, 6.5 and
6.6 imply the following:

• If 𝑑 = 2 and 𝑎0 ≠ 1, then 𝑭(𝐺) and 𝑫 (𝐺) are rationally acyclic.
• If 𝑑 = 2 and 𝑎0 = 1, then 𝐻∗(𝑭(𝐺),Q) � Q for all ∗ ≥ 0, and 𝐻∗(𝑫 (𝐺),Q) � Q for all even ∗ ≥ 0

and 𝐻∗(𝑫 (𝐺),Q) � {0} for all odd ∗ ≥ 1.
• If 𝑑 = 3 and 𝑎0 ≠ −1, then 𝑭(𝐺) and 𝑫 (𝐺) are rationally acyclic.
• If 𝑑 = 3 and 𝑎0 = −1, then 𝐻∗(𝑭(𝐺),Q) � Q for all ∗ ≥ 0 with ∗ ≠ 1 and 𝐻1(𝑭(𝐺),Q) � {0}, and
𝐻∗(𝑫 (𝐺),Q) � Q for all ∗ ≥ 0 with ∗ ≠ 1 and 𝐻1 (𝑫 (𝐺)) � {0}.

If 𝜆 is transcendental and G is the groupoid from §2.2.7 for parameter 𝜆, then the computations
mentioned in [50, §6] and Corollaries 6.1, 6.5 imply that 𝐻∗(𝑭(𝐺),Q) �

⊕∞
𝑖=0 Q for all ∗ ≥ 0 and

𝐻∗(𝑫 (𝐺),Q) �
⊕∞

𝑖=0Q for all ∗ ≥ 0 with ∗ ≠ 1, and 𝐻1(𝑫 (𝐺)) � {0}.
Finally, we discuss examples where we can apply our vanishing and acyclicity results (Corollaries

6.8, 6.9, 6.10). Suppose A is a countably generated abelian group. Using Katsura–Exel–Pardo groupoids
and combining results in [41, §4], [42, §3] and [69], we can find purely infinite minimal groupoids
𝐺 (0,A) and 𝐺 (1,Z) such that

𝐻∗(𝐺 (0,A)) �

{
A if ∗ = 0,
{0} else,

and 𝐻∗(𝐺 (1,Z)) �

{
Z if ∗ = 1,
{0} else.

Given 𝑘 ∈ Z with 𝑘 > 0, the Künneth formula (see [58, Theorem 2.4]) implies that

𝐻∗(𝐺 (1,Z)𝑘 × 𝐺 (0,A)) �

{
{0} if ∗ < 𝑘,
A if ∗ = 𝑘.

Hence, Corollary 6.8 implies that

𝐻∗(𝑭(𝐺 (1,Z)𝑘 × 𝐺 (0,A))) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z if ∗ = 0,
{0} if ∗ < 𝑘,
A if ∗ = 𝑘,

and, if 𝑘 ≥ 2, Corollary 6.10 implies that 𝑫 (𝐺 (1,Z)𝑘 × 𝐺 (0,A)) = 𝑭(𝐺 (1,Z)𝑘 × 𝐺 (0,A)).
Let us now turn to acyclicity results. Let 𝐺2 be the Deaconu–Renault groupoid for the one-sided full

shift on two symbols (this is a special case of an SFT groupoid as in §2.2.4, where A is the 1× 1 matrix
with entry 2). Let G be an arbitrary minimal ample groupoid. Then 𝐺2 × 𝐺 is purely infinite minimal.
Moreover, the Künneth formula (see [58, Theorem 2.4]) implies that 𝐻∗(𝐺2 × 𝐺) � {0} for all ∗ ≥ 0.
Hence, Corollary 6.9 implies that 𝑭(𝐺2 × 𝐺) is integrally acyclic and 𝑭(𝐺2 × 𝐺) = 𝑫 (𝐺2 × 𝐺).

Remark 6.18. In combination with the groupoids constructed in [10, §9.2], we obtain continuum many
pairwise nonisomorphic infinite simple groups which are all integrally acyclic. Indeed, consider the
groupoids of the form 𝐺2 × GΓ from [10, §9.2], where Γ is an abelian, torsion-free, finite rank group
which is not free abelian. By construction, these groupoids are ample, locally compact, Hausdorff,
purely infinite, topologically free, with unit space homeomorphic to the Cantor space. Moreover, as
observed above, 𝑭(𝐺2×GΓ) is integrally acyclic, and 𝑭(𝐺2×GΓ) = 𝑫 (𝐺2×GΓ). Hence, [57, Theorem
4.16] implies that 𝑭(𝐺2 × GΓ) is simple. Now, the rigidity results in [57, Theorem 3.10] and [66,
Theorem 3.11] together with the argument for [10, Theorem 9.3] imply that, for two abelian, torsion-
free, finite rank groups Γ and Λ which are not free abelian, 𝑭(𝐺2 × GΓ) � 𝑭(𝐺2 × GΛ) if and only if
𝐺2 × GΓ � 𝐺2 × GΛ if and only if Γ � Λ. Thus, we obtain continuum many pairwise nonisomorphic
infinite simple, integrally acyclic groups because there are continuum many pairwise nonisomorphic
abelian, torsion-free, finite rank groups which are not free abelian.
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