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We present a new derivation of the kinetic equation for weak, non-hydrostatic internal
gravity wave turbulence. The equation is equivalent to the one obtained by Caillol &
Zeitlin (Dyn. Atmos. Oceans, vol. 32, issue 2, 2000, pp. 81–112), but it takes a canonical
form. We show that it conserves the energy without involving the resonance condition
in frequency, and look for the isotropic part of the steady, scale-invariant solutions. We
provide a parametrization of the resonant manifold of non-hydrostatic internal gravity
wave triadic interactions. This allows us to simplify the collision integral, and to evaluate
the transfer coefficients of all triadic interactions. In the hydrostatic limit, our equation
is equivalent to the Hamiltonian description of Lvov & Tabak (Phys. Rev. Lett., vol. 87,
issue 16, 2001, 168501).
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1. Introduction

Internal gravity waves (IGWs) propagate in stably stratified fluids. They are the
consequence of a restoring buoyancy force that makes fluid particles oscillate around
their floatability level. Internal gravity waves can be found in various environments,
including the atmosphere, oceans, lakes, rivers and industrial flows (Lelong & Riley 1991;
Staquet & Sommeria 2002). They can be excited by wind shear, buoyancy forcing due to
heating, topography or tides (Vallis 2017). They are important because they transport mass,
momentum and energy, which can significantly impact the large-scale features of stratified
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flows. The mutual nonlinear interactions between IGWs and with other flow components
can lead to the transfer of energy between different scales. This results in the generation
of smaller-scale waves and vortices.

Internal gravity waves have been studied from a variety of perspectives, including
observations (MacKinnon et al. 2013), experiments (Rodda et al. 2022; Lanchon et al.
2023), numerical simulations (Pan et al. 2020; Lam, Delache & Godeferd 2021) and
theoretical models (Caillol & Zeitlin 2000; Lvov & Tabak 2001; Dematteis & Lvov 2021).
Under the Boussinesq approximation, three key non-dimensional numbers drive stratified
flows. Namely, the Froude number Fr = U/(NL), the Reynolds number Re = UL/ν and
the Prandtl number Pr = ν/κ , where U is the typical velocity of the flow, L the size of the
domain, N the Brunt–Väisälä frequency, ν is the viscosity and κ is the scalar diffusivity.
When the flow is composed of waves only, being strongly stratified (i.e. Fr � 1), with
the viscosity and diffusivity being small (i.e. Re, PrRe � 1) but such that the dynamics
of energetic modes remains weakly nonlinear, a regime described by the weak wave
turbulence (WWT) theory is foreseen (Hasselmann 1966; Zakharov, L’vov & Falkovich
1992; Nazarenko 2011; Galtier 2022). In such a state, the energy is concentrated on the
linear dispersion relation for a continuum range of scales, as observed in the numerical
simulations of Le Reun, Favier & Le Bars (2018). It is characterized by interactions over
wave triads satisfying resonance conditions in wave vectors and frequencies. Note that,
in this theoretical description, we do not consider a shear flow and vortical modes (with
vorticity parallel to the vertical axis), so the typical velocity U corresponds to velocity
fluctuations of weakly nonlinear waves and not to a mean flow velocity.

The WWT theory for geophysical flows was developed notably in the 1960s by
Hasselmann (1966), who derived a general kinetic equation using a Lagrangian formalism
for several wave systems (Hasselmann 1967), including IGWs. Müller & Olbers (1975);
Olbers (1976) extended the work of Hasselmann to write the first kinetic equation for
internal waves, i.e. with rotation and stratification. Since then, the kinetic equation for
internal waves, with or without rotation and in or outside the hydrostatic limit, has been
re-derived using various approaches: Clebsch variables (Pelinovsky & Raevsky 1977;
Voronovich 1979); a decomposition between vertical velocity, the potential part of the
horizontal velocity and vertical vorticity (Caillol & Zeitlin 2000, 2001); and isopycnal
coordinates (Lvov & Tabak 2001, 2004; Medvedev & Zeitlin 2007). We refer the reader
to Lvov, Polzin & Yokoyama (2012) for a review of earlier IGW kinetic equations.
Three classes of triadic interactions corresponding to non-local transfers were identified
(McComas & Bretherton 1977). Induced diffusion (ID) occurs when one low-frequency
wave interacts with two approximately identical waves of much larger wavenumber and
frequency. Elastic scattering occurs when two waves which are nearly vertical reflections
of each other interact with a third wave which has a low frequency and almost twice
the vertical wavenumber of the other two waves. Finally, the parametric subharmonic
instability mechanism is an instability wherein a low wavenumber wave decays into
two high wave-vector waves of half its frequency. Recently, it has been found that local
interactions, i.e. involving waves with similar wave-vector amplitudes, are also very
important in the energy transfers (Dematteis & Lvov 2021; Wu & Pan 2023), particularly
those which lie on the same vertical plane.

Weak wave turbulence gives predictions, among other things, for the wave energy
spectrum ek. Usually, the theory is formulated in terms of the wave-action spectrum
nk = ek/ωk, with ωk being the wave frequency. Physically, nk is interpreted as the
number of waves with wave vector k. The theory gives the kinetic equation ṅk = Stk,
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Stk being the collision integral, describing the dynamics of the wave-action spectrum
on a long time scale due to wave–wave interactions. In particular, axisymmetric,
bihomogeneous, steady-state wave-action spectra nk ∝ kνh

h |kz|νz were previously obtained
as solutions of the kinetic equation in the hydrostatic limit. They correspond to the zeros
of the collision integral, including the thermal equilibrium spectrum (often called the
Rayleigh–Jeans (RJ) spectrum) or spectra associated with a non-zero energy flux (called
Kolmogorov–Zakharov (KZ) spectra). Using energy conservation, one KZ spectrum
was found analytically nk ∝ k−7/2

h |kz|−1/2. It is known as the Pelinovsky–Raevsky (PR)
spectrum (Pelinovsky & Raevsky 1977; Caillol & Zeitlin 2000; Lvov & Tabak 2001).
However, as we will explain in § 3.4, it has been found that this spectrum is not a
mathematically valid solution (Caillol & Zeitlin 2000; Lvov et al. 2010), and is thus
physically irrelevant. Using numerical integration, nk ∝ k−3.69

h actually turned out to be
the only zero of the collision integral (Lvov et al. 2010; Dematteis & Lvov 2021). More
recently, Lanchon & Cortet (2023) derived a stationary solution (nk ∝ k−3

h |kz|−1) of a
simplified kinetic equation describing the small scales of the non-local internal wave
turbulence problem. This derivation is based on the assumption that energy transfers are
driven only by ID triads, which lead to a scale separation in the kinetic equation.

As said earlier, there are already four ways of deriving the kinetic equation of IGW.
The Lagrangian approach (Hasselmann 1967; Olbers 1976) has the advantage of being
non-hydrostatic and takes into account rotation. Yet, the incompressibility has to be
treated perturbatively and some computations could be simplified by exploiting Hermitian
symmetries. Furthermore, even if it is not the purpose of the present study, the Lagrangian
formalism is not adapted if we want to include vertical vorticity (or geostrophic modes
when rotation is added) (Caillol & Zeitlin 2000). The approaches using Clebsch variables
(Pelinovsky & Raevsky 1977; Voronovich 1979) have the advantage of being Hamiltonian.
However, the decomposition does not apply to fields with vertical vorticity, the physical
meaning of the conjugate variables is less straightforward, and the references are not
easily available. The isopycnal coordinates (Lvov & Tabak 2001; Lvov, Polzin & Tabak
2004; Medvedev & Zeitlin 2007) have the advantages of being a canonical Hamiltonian
description of the flow and being able to take into account vertical vorticity (or geostrophic
modes), but only in the hydrostatic limit. Milder (1982) gave a Hamiltonian description
of the flow holding outside the hydrostatic limit, but it is not canonical and the kinetic
equation of IGW was not derived. The decomposition used by Caillol & Zeitlin (2000)
is the closest in spirit to the present study. It has the advantage of being derived in the
very common Eulerian coordinates system, to allow the description of vortical modes,
and to be valid outside the hydrostatic limit. Yet, the resulting kinetic equation was not
shown to have a canonical structure. We show here that it turns out to be the case (after
accounting for misprints which were corrected in an Erratum Caillol & Zeitlin 2001).
Here, we use the poloidal–toroidal decomposition (Godeferd, Delache & Cambon 2010),
also known as the Craya–Herring decomposition (Craya 1957; Herring 1974). As explained
later, it is particularly adapted to the derivation of the kinetic equation of IGWs. Namely, it
uses the common Eulerian coordinates system, offers a complete basis of the components
of stratified flows and takes into account incompressibility from the beginning. We also
simplify the notations when compared with the Lagrangian formalism by exploiting the
Hermitian symmetry satisfied by the velocity and buoyancy fields. These advantages allow
us to recast the kinetic equation of IGWs into a canonical form, that is more amenable to
analytical and numerical treatments.
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The remainder of the paper is as follows. In the next § 2, we present the poloidal–toroidal
decomposition, which is very convenient for studying IGWs and for writing the equations
of motion in the canonical variables. Section 3 is devoted to the kinetic description of weak
IGWs. The kinetic equation is derived in § 3.1 using standard assumptions of WWT. In
§ 3.2, we look for steady, scale-invariant solutions to the kinetic equation. We show in § 3.3
that, when evaluated on the resonant manifold, the interaction coefficients are symmetric
with respect to permutation of the wave vectors. It allows us to write the canonical form
of the kinetic equation. We also parametrize the resonant manifold, which allows us to
give a simplified version of the collisional integral for axisymmetric spectra, and to study
the transfer coefficients of triadic interactions. We study the hydrostatic limit in § 3.4. In
that limit, our kinetic equation is equivalent to many previous ones in that case. We show
that the PR spectrum (Pelinovsky & Raevsky 1977) can be obtained without using the
frequency resonance condition, which, up to our knowledge, was not remarked before. We
conclude in § 4. Technical details about the derivation of the kinetic equation are presented
in Appendix A.

2. Equations of motion

We start from the three-dimensional Boussinesq equations

∇ · u = 0, (2.1)

∂tu + u · ∇u = −∇p + b ez, (2.2)

∂tb + u · ∇b = −N2uz, (2.3)

where (x, y, z) denote the three spatial coordinates in the Cartesian frame (O, ex, ey, ez),
ez is the unitary vector along the stratification axis, u = (ux, uy, uz) the velocity, b the
buoyancy, p the total kinematic pressure and N the Brunt–Väisälä (or buoyancy) frequency.
The buoyancy is defined as b = −gρ′/ρ0, where g is the acceleration due to gravity,
ρ0 is the average density of the fluid at z = 0 and ρ′ is the density perturbation with
respect to the average linear density profile ρ̄(z) = ρ0 + (dρ̄/dz)z. It follows that N =√−(g/ρ0)(dρ̄/dz). Equations ((2.1)–(2.3)) conserve the total energy E and the potential
vorticity Π is a Lagrangian invariant (Bartello 1995), with

E ≡ 1
L3

∫ [
u2

2
+ b2

2N2

]
dx dy dz, Π = Ω ·

(
N2ez + ∇b

)
, (2.4)

with Ω = ∇ × u being the vorticity.
We consider a triply periodic domain with spatial periods Lx = Ly = Lz = L. The

Fourier transform of the velocity field ûk = (ûxk, ûyk, ûzk) can be written using the
poloidal–toroidal-shear decomposition (Craya 1957; Herring 1974; Godeferd et al. 2010),
which is now common in the study of stratified flows. Namely, we have

ûk =
{

ûpkepk + ûtketk, if kh /= 0,

ûsk = ûxkex + ûykey, if kh = 0,
(2.5)

where

ek = k
k
, epk = k × (k × ez)

|k × (k × ez)| , etk = ez × k
|ez × k| , (2.6a–c)
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kx

kyex

ez

ek etk

epkey

k

θk

ϕk

kz

Figure 1. Illustration of the poloidal–toroidal basis (ek, epk, etk) defined by (2.6a–c). Here, θk is the polar
angle (i.e. between ez and ek), and ϕk is the azimuthal angle (i.e. between ex and the horizontal projection
of k).

where ûpk is the poloidal component, ûtk the toroidal component, ûsk the shear

modes component, k = (kx, ky, kz) denotes the wave vector, k = |k| =
√

k2
x + k2

y + k2
z its

modulus and kh =
√

k2
x + k2

y . The basis (ek, epk, etk) is shown in figure 1.

In Fourier space, the equations of motion can be written as follows:⎧⎪⎨
⎪⎩

˙̂upk = −( ̂u · ∇u)k · epk − b̂k sin θk,

˙̂utk = −( ̂u · ∇u)k · etk,
˙̂bk = −(̂u · ∇b)k + N2ûpk sin θk,

if kh /= 0, (2.7a)

and { ˙̂usk = −( ̂u · ∇uh)k,
˙̂bk = −(̂u · ∇b)k,

if kh = 0, (2.7b)

where uh = (ux, uy, 0) is the horizontal component of u. In the linear regime, the poloidal
velocity and the buoyancy are coupled, while the toroidal velocity and shear modes are
decoupled and not evolving. The coupling between poloidal velocity and buoyancy is
responsible for the propagation of IGWs with frequency

±ωk ≡ ±N sin θk = ±N
kh

k
, (2.8)

where θk is the polar angle (figure 1). Equations (2.7) show that both shear modes and
toroidal components have zero frequency in the linear regime, and hence they are not
waves. More precisely, in the context of stratified turbulence, ûpk is the kinetic part
of linear waves (horizontal and vertical oscillations) while ûtk corresponds to vertical
vortices. It makes the poloidal-toroidal-shear decomposition particularly suitable for
studying IGWs and, more generally, flows with statistical axisymmetry (Godeferd et al.
2010; Yokoyama & Takaoka 2019; Maffioli, Delache & Godeferd 2020). When compared
with Caillol & Zeitlin (2000), the poloidal velocity encompasses both the potential part of
the horizontal velocity and the vertical velocity, which simplifies the computations.
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In this study, we consider a flow composed of waves only, such that there are no
toroidal and shear components. Neglecting the toroidal component is equivalent to
neglecting vertical vorticity (Caillol & Zeitlin 2000), or neglecting the ‘vortex’ part in
the ‘wave-vortex’ decomposition in isopycnal coordinates (Lvov & Tabak 2001). Ignoring
the shear and toroidal components constitutes a standard assumption in IGW turbulence
theory. Since the poloidal velocity and the buoyancy are real valued, their Fourier
transforms satisfy the Hermitian symmetry. This symmetry allows us, as customary in
WWT, to define the general complex wave mode ak = (1/

√
2ωk)(ûpk − i(b̂k/N)), which

fully determines the wave dynamics (including positive and negative frequency branches).
The poloidal and buoyancy modes then express as follows:

ûpk ≡
√

ωk

2

(
ak + a∗

−k
)

and
b̂k

N
≡ i

√
ωk

2

(
ak − a∗

−k
)
. (2.9a,b)

The dynamical equation then reads

ȧk = −iωkak − i
∑
1,2

Vk
12δ

k
12a1a2 − 2i

∑
1,2

Vk
12δ

1
k2a1a∗

2 − i
∑
1,2

Vk
12δ12ka∗

1a∗
2, (2.10)

with the interaction coefficients

Vk
k1k2

≡ Vk
12 =

√
ω1ω2

32ωk

[(
ep1 · k

) (
ep2 · epk

)
+ ep1 · k2 + (

ep2 · k
) (

ep1 · epk
)+ ep2 · k1

]
, (2.11)

and δk
12 (respectively δ12k) being the Kronecker symbol enforcing the condition k1 +

k2 = k (respectively k1 + k2 + k = 0). Note that (2.10) is equivalent to the Boussinesq
equations without toroidal velocity and shear modes. The sums represent nonlinear
interaction between the wave modes. This equation has a convenient structure for deriving
the wave-kinetic equation.

By construction, the interaction coefficients Vk
12 are symmetric with respect to the

permutation of lower indices, i.e. Vk
12 = Vk

21, but a priori not symmetric with respect to
the permutation between a lower index and the upper index. This complication prevents us
from writing a canonical Hamiltonian equation for ak. It is easy to show that the frequency
is homogeneous, ωμk = μαωk, with homogeneity degree α = 0. Also, the interaction
coefficients are homogeneous, i.e. Vμk

μk1μk2
= μβVk

12, with homogeneity degree β = 1.
Using the fact that epk · k = 0, it is easy to show that the interaction coefficients satisfy
the following useful relations:

δk
12

(
ωkVk

12 − ω1V1
k2 − ω2V2

k1

)
= 0 and δ12k

(
ωkVk

12 + ω1V1
k2 + ω2V2

k1

)
= 0.

(2.12a,b)

Note that such relations between interaction coefficients are common to fluid dynamical
systems with quadratic invariants (see Appendix B of Remmel & Smith (2009) for a
general proof). It allows us to prove that the wave-action equation (2.10) conserves the
energy (2.4)

E =
∑

k

[
|ûk|2

2
+ |b̂k|2

2N2

]
=
∑

k

ωk|ak|2. (2.13)

On the manifold k = k1 + k2 (or permutations), the interaction coefficients
are only functions of (kh, k1h, k2h, k1z, k2z) or, alternatively, of (kh, k1h, k2h, θ1, θ2).
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Figure 2. (a) Kinematic box defined by the conditions (2.14a–c). (b) Difference between the interaction
coefficients Vk

12 and V1
k2 when evaluated on the manifold k = k1 + k2 for (kh = 1, k1h, k2h, θ1 = π/4, θ2 =

π/6) and N = 1.

Because (kh, k1h, k2h) form a triangle, they must satisfy the triangular inequalities

kh ≤ k1h + k2h, k1h ≤ kh + k2h, k2h ≤ kh + k1h, (2.14a–c)

meaning that (k1h, k2h) must lie in the so-called ‘kinematic box’ (Lvov et al. 2012) shown
in figure 2(a). We have checked numerically that the interaction coefficients are not
fully symmetric with respect to permutations of indices, i.e. Vk

12δ
k
12 /= V1

k2δ
k
12 /= V2

k1δ
k
12,

as shown in figure 2(b).

3. Kinetic description

3.1. Wave-kinetic equation
The derivation of the kinetic equation is a long, but standard exercise in WWT
(Hasselmann 1966; Zakharov et al. 1992; Nazarenko 2011; Galtier 2022). Since the
present system does not have a canonical Hamiltonian structure, the final results cannot
be anticipated. Assuming a time scale separation between the linear and the nonlinear
times, we introduce the interaction representation variable as

ck = ak

ε
eiωkt, (3.1)

where the parameter ε � 1 quantifies the strength of the nonlinearity. For stratified flows,
ε corresponds to the Froude number Fr. Using (2.10), we obtain

ċk = −iε
∑
1,2

Vk
12δ

k
12c1c2eiωk

12t − 2iε
∑
1,2

Vk
12δ

1
k2c1c∗

2e−iω1
k2t − iε

∑
1,2

Vk
12δk12c∗

1c∗
2e−iωk12t,

(3.2)

where ωk
12 ≡ ωk − ω1 − ω2 and ωk12 ≡ −ωk − ω1 − ω2. The derivation of the kinetic

equation describing the evolution of the wave-action spectrum

nk ≡
(

2π

L

)3 〈
|ck|2

〉
, (3.3)
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in the infinite size limit (L → ∞) and in the small nonlinearity limit (ε → 0) is given
in Appendix A. These computations follow the steps described in Nazarenko (2011).
The final result is

ṅk = Stk =
∫ [

Rk
12 − Q1

k2 − Q2
k1

]
d3k1 d3k2, (3.4)

Rk
12 = 4πε2δ(k − k1 − k2)δ(ω

k
12)V

k
12

(
Vk

12n1n2 − V2
k1nkn1 − V1

k2nkn2

)
+ O(ε3),

(3.5)

Q1
k2 = 4πε2δ(k1 − k − k2)δ(ω

1
k2)V

k
12

(
V1

k2nkn2 − V2
k1n1nk − Vk

12n1n2

)
+ O(ε3).

(3.6)

It can be shown that this kinetic equation is equivalent to the one derived by Caillol
& Zeitlin (2000). Equations ((3.4)–(3.6)) are relatively compact and more suitable for
theoretical treatments. The total wave energy balance equation is

Ė =
∫

ωkṅk d3k =
∫

ωk

[
Rk

12 − Q1
k2 − Q2

k1

]
d3k d3k1 d3k2 (3.7)

=
∫ [

ωkRk
12 − ω1Qk

12 − ω2Qk
21

]
d3k d3k1 d3k2 (3.8)

= 4πε2
∫

δ(k − k1 − k2)δ(ω
k
12)

×
(
ωkVk

12 − ω1V1
k2 − ω2V2

k1

) (
Vk

12n1n2 − V2
k1nkn1 − V1

k2nkn2

)
d3k d3k1 d3k2,

(3.9)

which is zero because of the symmetry of the interaction coefficients (2.12a,b). Note that
it is not necessary to use the resonance condition in frequencies to prove that the kinetic
equation conserves energy; E is also an invariant of the Boussinesq equations ((2.1)–(2.3))
and of the wave-action equation (2.10).

For now, the kinetic equation ((3.4)–(3.6)) does not take a standard form typical for
canonical Hamiltonian systems, except if the relation Rk

12 = Qk
12 holds. For this to happen,

Vk
12 should be fully symmetric with respect to the 3 indices when evaluated on the

resonant manifold k = k1 + k2, ωk = ω1 + ω2 (or permutations) such that we could write
Vk

12 = V1
k2 = V2

k1 in Rk
12, Q1

k2 and Q2
k1. Such a symmetry could be expected since the

kinetic equation obtained in the Lagrangian formalism is almost canonical (Hasselmann
1967; Müller & Olbers 1975; Olbers 1976). As already shown in figure 2(b), a resonance
condition in wave vectors is not sufficient to have Vk

12 = V1
k2 = V2

k1. However, adding the
constraint of resonance condition in frequencies eventually allows to satisfy this symmetry,
as will be explained in the § 3.3.

3.2. Steady, scale-invariant spectra
Despite its compact form, analytical solution to the kinetic equation (3.4) are not easy
to find. The only exception is for nk ∝ 1/ωk, corresponding to the equilibrium (RJ)
spectrum with equipartition of energy. It is worth mentioning that this RJ spectrum can be
obtained without using the resonance condition in frequencies, but only the symmetry of
the interaction coefficients (2.12a,b) when the wave vector resonance condition is satisfied.
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On the kinetics of non hydrostatic internal gravity waves

We can try to find other steady-state solutions to the kinetic equation, in the
non-hydrostatic case, by using the ansatz

nk = kν f (θk, ϕk), (3.10)

corresponding to a separable, scale-invariant spectrum. We adapt the computations of
Shavit, Bühler & Shatah (2024) in order to find a possible value for the exponent ν. We first
write the evolution equation for the energy density averaged over angles e(k, t). Namely,

ė(k, t) =
∫

ωkṅk sin θk dθk dϕk

=
∫ [

ωkRk
12 − ωkQ1

k2 − ωkQ2
k1

]
d3k1 d3k2 sin θk dθk dϕk. (3.11)

In steady state, the integral on the right-hand side of (3.11) must be zero. If we assume
(3.10), this integral is also only a function of k and ν and depends on the angular variable
via some function f . To find possible values for ν, we adapt the Zakharov transformation,
so we replace

k1 → k
k1

k, k2 → k
k1

k2, (θk, ϕk) ↔ (θ1, ϕ1), (3.12)

in the integral with Q1
k2, and a similar transformation for the integral with Q2

k1 in (3.11).
We then obtain the stationarity condition

0 = 4πε2
∫

δ(k − k1 − k2)δ(ω
k
12)

×
[
ωkVk

12 −
(

k1

k

)χ

ω1V1
k2 −

(
k2

k

)χ

ω2V2
k1

]

×
(

Vk
12n1n2 − V2

k1nkn1 − V1
k2nkn2

)
d3k1 d3k2 sin θk dθk dϕk, (3.13)

where χ ≡ α − 2β − 2ν − 2d, with d = 3 being the number of spatial dimensions.
Condition (3.13) is satisfied when χ = 0 due to symmetry of the interaction coefficients
(2.12a,b). It leads to the exponent ν = −4, which is consistent with the high-frequency
limit of the Garrett–Munk spectrum (∝ k−4

h |kz|0), the PR spectrum (∝ k−7/2
h |kz|−1/2), the

spectrum obtained in the hydrostatic limit by considering ID triads only (Lanchon & Cortet
2023) (∝ k−3

h |kz|−1) and oceanic measurements (Lvov et al. 2004).
Testing the validity of ν = −4 is beyond the scope of this study. For this, we need

to show that the collision integral converges in the vicinity of ν = −4, for some yet
unknown f (θk, ϕk). This analysis has been done in the hydrostatic limit for bi-homogenous
spectra ∝ kνh

h |kz|νz , and it has been found that the line ν = νh + νz = −4 corresponds
to non-physical spectra because of collision integral divergences (Lvov et al. 2010;
Dematteis & Lvov 2021). Yet, the divergence in the hydrostatic limit does not imply that
ν = −4 is unrealizable outside this limit because the convergence conditions could be less
restrictive in the non-hydrostatic case. Moreover, the ansatz (3.10) is more general than
nk = Ckνh

h |kz|νz , which may allow other local spectra. Finally, it is important to note that
the angular dependence f (θk, ϕk) is embedded everywhere in the integrand in a non-trivial
way and could lead to a cancellation of the collisional integral for ν /=−4. Indeed, the
solution obtained by Lvov et al. (2010) and Dematteis & Lvov (2021) in the hydrostatic
limit is of such a type.
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V. Labarre, N. Lanchon, P.-P. Cortet, G. Krstulovic and S. Nazarenko

3.3. Canonical form and resonant manifold
We proceed now to show that Vk

12 = V1
k2 = V2

k1 on the resonant manifold, and thus that
the kinetic equation (3.4) can be written in a canonical form. We first use the symmetry
(2.12a,b), together with the resonance condition in frequencies ωk = ω1 + ω2, to readily
show that

δ(k − k1 − k2)δ(ω
k
12)

[
ω1(Vk

12 − V1
k2) + ω2(Vk

12 − V2
k1)
]

= 0. (3.14)

Equation (3.14) has a simple geometrical meaning: the vectors (Vk
12 − V1

k2, Vk
12 − V2

k1)
and (ω1, ω2 = ωk − ω1) are orthogonal for all points of the resonant manifold. Because
the ωk values only depend on the angles θk, to satisfy (3.14) while varying k and k1 (at
fixed angles), the vectors (Vk

12 − V1
k2, Vk

12 − V2
k1) must remain co-linear. The orthogonality

condition (3.14) thus leads to(
Vk

12 − V1
k2

Vk
12 − V2

k1

)∣∣∣∣∣
(k,k1,θk,θ1)

= g(k, k1)

(
Vk

12 − V1
k2

Vk
12 − V2

k1

)∣∣∣∣∣
(1,1,θk,θ1)

⊥
(

ω1

ω2

)
∀(ω1, ω2),

(3.15)

where g is an unknown function that depends on k and k1 only. We have used here the
fact that the resonant manifold can be parametrized using the variables (k, k1, θk, θ1).
Using (3.15) in (3.14), we see that whether g(k, k1) = 0, or ω1(Vk

12 − V1
k2)|(1,1,θk,θ1) +

ω2(Vk
12 − V2

k1)|(1,1,θk,θ1) = 0. Equation (3.15) therefore allows us to reduce the analysis
to (k, k1) = (1, 1). Using the symbolic computational capabilities of the Mathematica
software (Wolfram Research, Inc. 2024), we show in the supplementary material that(

Vk
12 − V1

k2

)∣∣∣
(1,1,θk,θ1)

= −
√

N
128

1
cos(2θk) + cos(2θ1) + 4 sin θk sin θ1

×
{[

csc
(

θk − θ1

2

)
sin

(
θk + θ1

2

)
× (9 cos(2θk) − 3 cos(θk − 3θ1) − 8 cos(2θk − 2θ1)

+ 16 cos(θk − θ1)

− 3(4 + cos (3θk − θ1) − 3 cos(2θ1) + 4 cos(θk + θ1)))

×
(√

− csc θk + csc θ1 − csc θ1

√
sin θ1 − csc θk sin2 θ1

)]}
= 0. (3.16)

It then follows from ((3.14)–(3.15)) that

δ(k − k1 − k2)δ(ω
k
12)V

k
12 = δ(k − k1 − k2)δ(ω

k
12)V

1
k2 = δ(k − k1 − k2)δ(ω

k
12)V

2
k1,
(3.17)

which is the desired symmetry to put the kinetic equation in a canonical form.
The kinetic equation (3.4) can therefore be rewritten

ṅk = Stk =
∫ [

Rk
12 − R1

k2 − R2
k1

]
d3k1 d3k2, (3.18)

Rk
12 = 4πε2δ(k − k1 − k2)δ(ω

k
12)|Vk

12|2 (n1n2 − nkn1 − nkn2) . (3.19)

Similarly to Rossby waves (Nazarenko 2011), the wave-action dynamics (2.10) does not
have a canonical Hamiltonian structure, but the kinetic equation (3.18) is the same as if
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On the kinetics of non hydrostatic internal gravity waves

the system were canonical because of the resonance condition in frequencies. Namely,
we could have obtained ((3.18)–(3.19)) by using the Hamilton equation iȧk = δHeff /δa∗

k
together with the effective Hamiltonian Heff = 1

2
∑

3 ω3|a3|3 +∑
1,2,3(δ

3
12V3

12a1a2a∗
3 +

δ1
23V1

23a∗
1a2a∗

3). Yet, it is not equivalent to the original wave mode equation (2.10) outside
the resonant manifold.

In the case of a wave-action spectrum invariant under rotation around the stratification
axis, i.e. nk = n(kh, kz, t), the kinetic equation ((3.18)–(3.19)) takes a simpler form after
integrating over azimuthal angles (ϕ1, ϕ2)

ṅk = St(h)
k =

∫ [
Rk(h)

12 − R1(h)
k2 − R2(h)

k1

]
k1hk2h dk1h dk1z dk2h dk2z, (3.20)

Rk(h)
12 = 8πε2δ(kz − k1z − k2z)δ(ω

k
12)

|Vk
12|2
Δ

(n1n2 − nkn1 − nkn2) , (3.21)

Δ = 1
2

√
(−kh + k1h + k2h)(kh − k1h + k2h)(kh + k1h − k2h)(kh + k1h + k2h). (3.22)

In the latter equations, the interaction coefficients are evaluated using kh = k1h + k2h,
and similar relations obtained by permutations of wave vectors. It follows that they are
functions of (kh, kz, k1h, k1z, k2h, k2z) only. The factor 2 arising in Rk(h)

12 (3.21) when
compared with Rk

12 (3.19) comes from the fact that there are two solutions (ϕ1, ϕ2) to
kh = k1h + k2h (or permutations of wave vectors) for each (kh, kz, k1h, k1z, k2h, k2z). Here,
Δ is the area of the triangle formed by the horizontal wave vectors. It arises from the
average of δ(kh − k1h − k2h). We can further simplify the collision integral (3.20) by
working with polar coordinates (kh, kz) = k(sin θk, cos θk), (k1h, k1z) = k1(sin θ1, cos θ1)
and (k2h, k2z) = k2(sin θ2, cos θ2). Because the last two terms of the collision integral are
symmetric with respect to k1 ↔ k2, we obtain

St(h)
k = Ik − 2Jk, (3.23)

Ik = 8πε2
∫

δ(k cos θk − k1 cos θ1 − k2 cos θ2)δ(N(sin θk − sin θ1 − sin θ2))

× |Vk
12|2
Δ

(n1n2 − nkn1 − nkn2) k2
1 sin θ1k2

2 sin θ2 dθ1 dk1 dθ2 dk2, (3.24)

Jk = 8πε2
∫

δ(k1 cos θ1 − k cos θk − k2 cos θ2)δ(N(sin θ1 − sin θk − sin θ2))

× |Vk
12|2
Δ

(nkn2 − n1nk − n1n2) k2
1 sin θ1k2

2 sin θ2 dθ1 dk1 dθ2 dk2. (3.25)

To go further, we need to parametrize the resonant manifold, corresponding to the set of
wave vectors (k, k1, k2) satisfying the resonant conditions{

k = k1 + k2

ωk = ω1 + ω2
or

{
k1 = k + k2

ω1 = ωk + ω2
. (3.26)

It appears that it is relatively easy to find (k2h, k2z) as a function of (kh, kz, k1h, k1z). This
leads to {

k2z = kz − k1z

k2h = |kz − k1z|| tan θ2| or

{
k2z = k1z − kz

k2h = |k1z − kz|| tan θ2|, (3.27)
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V. Labarre, N. Lanchon, P.-P. Cortet, G. Krstulovic and S. Nazarenko

with | tan θ2| = | sin θk − sin θ1|/
√

1 − (sin θk − sin θ1)2 and sin θ1 = k1h/k1. These
solutions are valid if and only if⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ωk ≥ ω1

kh ≤ k1h + k2h

k1h ≤ k2h + kh

k2h ≤ kh + k1h

or

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω1 ≥ ωk

k1h ≤ kh + k2h

kh ≤ k2h + k1h

k2h ≤ k1h + kh,

(3.28)

otherwise there is no solution. We can use the δ-Dirac function to perform integration over
k2h and k2z such that we finally obtain

Ik = 8πε2

N

∫
DI

k2
1 sin θ1k2

2 sin θ2

cos2 θ2Δ
|Vk

12|2 (n1n2 − nkn1 − nkn2) dθ1 dk1, (3.29)

Jk = 8πε2

N

∫
DJ

k2
1 sin θ1k2

2 sin θ2

cos2 θ2Δ
|Vk

12|2 (nkn2 − n1nk − n1n2) dθ1 dk1, (3.30)

where DI and DJ are the integration domains of the resonant manifold given by
conditions (3.28) detailed later and shown in figure 3. Note that it is possible to
parameterize the resonant manifold with the variables (k1, k2) instead of (k1, θ1). However,
it requires solution of a polynomial equation of order 4 to find the angles (θ1, θ2). Despite
the fact that it is mathematically possible, it leads to equations that are much more difficult
to use than the one obtained when we parameterize the resonant manifold using (k1, θ1).

For simplicity, in order to define analytically DI and DJ , we will assume that the
wave-action spectrum is invariant under the transformation kz → −kz, i.e. n(kh, kz) =
n(kh, −kz). In this way, we can restrict the study of the collision integral to kz ≥ 0 (i.e.
0 ≤ θk ≤ π/2). The study of the resonant surface when the wave-action spectrum does
not have this symmetry requires consideration of the case with kz ≤ 0 (i.e. π/2 ≤ θk ≤ π),
which is longer but technically not more difficult. The borders of the integration domains
DI and DJ correspond to the zeros of Δ given by (3.22). Note that the borders of the
resonant manifold are attained for wave triads with co-linear horizontal projection, i.e.
waves on the same vertical plane. They are easily obtained in the variable k1/k as a
function of (θk, θ1). For each (θk, θ1), the zeros of Δ are attained on two of the following
lines:

k1

k
= rα(θk, θ1) ≡

√
1 − (sin θk − sin θ1)2 sin(θk) − sin(θ1) cos(θk) + sin(2θk)/2√
1 − (sin θk − sin θ1)2 sin(θ1) + sin(θk) cos(θ1) − sin(2θ1)/2

,

(3.31)

k1

k
= rβ(θk, θ1) ≡

√
1 − (sin θk − sin θ1)2 sin(θk) + sin(θ1) cos(θk) − sin(2θk)/2√
1 − (sin θk − sin θ1)2 sin(θ1) − sin(θk) cos(θ1) + sin(2θ1)/2

,

(3.32)

k1

k
= rγ (θk, θ1) ≡ −

√
1 − (sin θk − sin θ1)2 sin(θk) − sin(θ1) cos(θk) + sin(2θk)/2√

1 − (sin θk − sin θ1)2 sin(θ1) + sin(θk) cos(θ1) − sin(2θ1)/2
,

(3.33)

k1

k
= rδ(θk, θ1) ≡ −

√
1 − (sin θk − sin θ1)2 sin(θk) + sin(θ1) cos(θk) − sin(2θk)/2√

1 − (sin θk − sin θ1)2 sin(θ1) − sin(θk) cos(θ1) + sin(2θ1)/2
,

(3.34)
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0 π/4 π/2 3π/4 π

10–2

10–1

100

101

102

θ1

0 π/4 π/2 3π/4 π

10–2

10–1

100

101

102

θ1

k 1
/
k

0 π/4 π/2 3π/4 π

10–2

10–1

100

101

102

0 π/4 π/2 3π/4 π

10–2

10–1

100

101

102

k 1
/
k

105

100

10–5

T1
k
2

(a) (b)

(c) (d)

rα, rβ, rγ, rδ
ω1 = ωk
ω1 = ωk/2
ω1 = 2ωk

Figure 3. Transfer coefficient on the integration domain of the collisional integral for several θk ∈ [0;π/2]:
(a) θk = π/12, (b) θk = π/6, (c) θk = π/4 and (d) θk = π/2. The borders of the domains are given by the
critical lines rα , rβ , rγ and rδ ((3.31)–(3.34)). Here, DI lies outside ω1 = ωk lines (white background), while
DJ is contained inside ω1 = ωk lines (green background).

leading to the subdomains of DI and DJ that are listed in table 1. It is worth mentioning
that the description of the resonant manifold of internal waves (accounting for rotation) in
the (k1/k, θk, θ1) variables is available in Olbers (1974) (see § 4 of this reference).

In figure 3, we represent the transfer coefficient T k
12 ≡ k2

1 sin θ1k2
2 sin θ2|Vk

12|2/(cos2 θ2Δ)

on the integration domains DI and DJ . Here, T k
12 measures the strength of the interaction

of the triad ((3.29)–(3.30)), which is important information for studying the evolution of
IGWs. As can be expected from earlier studies (McComas & Bretherton 1977; Müller
et al. 1986; Lvov et al. 2010; Eden, Pollmann & Olbers 2019; Olbers, Pollmann & Eden
2020; Lanchon & Cortet 2023), the transfer coefficient is important for triads with large
scale separation, i.e. when k1 or k2 � k. The transfer coefficient is also large for triads
with k ∼ k1 ∼ k2 at the border of the domain, corresponding to triads contained in a
vertical plane. It is in line with Dematteis & Lvov (2021), who showed that the dominant
contribution to the collision integral for the steady-state spectra, in the hydrostatic limit, is
due to the horizontally co-linear wave triads. It has also been shown that local interactions
correspond to an important part of the energy transfers for the Garrett–Munk spectrum
(Wu & Pan 2023).

3.4. Hydrostatic limit
In strongly stratified flows, the energy tends to concentrate in modes with wave vectors
such that the vertical component is much larger than the horizontal one. It is therefore
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DI DJ (θk ≤ π/6) DJ (θk ≥ π/6)

θ1 k1/k θ1 k1/k θ1 k1/k[
0; arcsin

(
sin θk

2

)]
[rα; rδ] [θk; arcsin(2 sin θk)] [rα; rβ ] [θk;π − θk] [rα; rβ ]

[arcsin(2 sin θk);[
arcsin

(
sin(θk)

2

)
; θk

]
[rα; rβ ] π − arcsin(2 sin θk)] [rδ; rβ ] — —

[π − arcsin(2 sin θk);[
π − θk;π − arcsin

(
sin(θk)

2

)]
[rβ; rα] π − θk] [rα; rβ ] — —

[
π − arcsin

(
sin(θk)

2

)
;π

]
[rβ; rγ ] — — — —

Table 1. Subdomains of the resonant manifolds DI and DJ for θk ∈ [0;π/2].

worth considering the almost vertical propagation hypothesis (or hydrostatic limit) with
|kz| � kh, and so ωk = Nkh/k � Nkh/|kz|. In that limit, our kinetic equation is equivalent
to other kinetic equations of IGW turbulence (Müller & Olbers 1975; Caillol & Zeitlin
2000; Lvov & Tabak 2001), as shown in the review of Lvov et al. (2012). We have
checked that our interaction coefficients are equal to the one of Lvov & Tabak (2001)
up to machine precision in the hydrostatic limit, when evaluated on the resonant manifold.
In the hydrostatic limit, we can find stationary, axisymmetric, bi-homogeneous solutions
nk = n(kh, kz) ∝ kνh

h |kz|νz to the wave-kinetic equation. This theoretical and numerical
work has already been achieved in earlier studies (Pelinovsky & Raevsky 1977; Caillol
& Zeitlin 2000; Lvov & Tabak 2001; Lvov et al. 2004, 2010; Dematteis & Lvov 2021), so
we will not repeat all the computations here. Instead, we show that the KZ spectrum can
be obtained without involving resonance condition in frequencies.

In the hydrostatic limit, we have the following simplifications:

ep1 · k2 = k1z

k1k1h
k1h · k2h − k1hk2z

k1
� k1z

|k1z|k1h
k1h · k2h − k1hk2z

|k1z| , (3.35)

ep1 · ep2 = 1
k1k2

(
k1zk2z

k1h · k2h

k1hk2h
+ k1hk2h

)
� k1zk2z

|k1z||k2z|
k1h · k2h

k1hk2h
, (3.36)

and similar relations after permutations of wave vectors. Note that the scalar products
of horizontal wave vectors (e.g. k1h · k2h) are determined by the resonance condition
for horizontal wave vectors, and are only functions of (kh, k1h, k2h). Outside the
hydrostatic limit, the wave frequency and interaction coefficients are homogeneous in
wave-vector amplitudes (k, k1, k2), but not in (kh, k1h, k2h) and (|kz|, |k1z|, |k2z|) separately.
Contrarily, in the hydrostatic limit, the wave frequency and interaction coefficients are
bi-homogeneous, i.e. are homogeneous in (kh, k1h, k2h) and (|kz|, |k1z|, |k2z|) separately.
More precisely, the transformation (kh, k1h, k2h) → μh(kh, k1h, k2h), (kz, k1z, k2z) →
μz(kz, k1z, k2z) changes the frequency and interaction coefficients in the following way:

ωk → μαωk and Vk
12 → μβVk

12, (3.37a,b)

998 A17-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

80
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.802


On the kinetics of non hydrostatic internal gravity waves

where we have used the notation of Balk & Nazarenko (1990) μα ≡ μ
αh
h μ

αz
z , with α =

(1, −1) and β = (3
2 , −1

2 ). The homogeneity degrees inside and outside the hydrostatic
limit are linked by αh + αz = α = 0 and βh + βz = β = 1.

We now perform the Zakharov-Kuznetsov transformation (Kuznetsov 1972) for
bi-homogenous spectra

k1h → kh

k1h
kh, k2h → kh

k1h
k2h, k1z → kz

k1z
kz, k2z → kz

k1z
k2z (3.38a–d)

to the integral with Q1
k2, and a similar transformation for the integral with Q2

k1 in the
wave-kinetic equation (3.4). After the ZK transformation (3.37a,b), the collision integral
becomes

Stk → 4πε2
∫

δ(k − k1 − k2)δ(ω
k
12)

×
[

Vk
12 − V1

k2

(
k1

k

)χ

− V2
k1

(
k2

k

)χ] (
Vk

12n1n2 − V1
k2nkn2 − V2

k1nkn1

)
dk1 dk2,

(3.39)

with d = (2, 1) and χ = α − 2β − 2ν − 2d. The integrand in (3.39) is zero when −ν = α
(nk ∝ 1/ωk), which corresponds to the RJ spectrum, and when χ = α, which leads to
the KZ spectrum nk ∝ k−7/2

h |kz|−1/2. Interestingly, we obtain the RJ and the KZ spectra
by using the symmetry of the interaction coefficients (2.12a,b), and not the resonance
on frequencies, which is unusual in WWT theory. As said in the introduction, the same
theoretical spectrum was first obtained by Pelinovsky & Raevsky (1977), and later by
Caillol & Zeitlin (2000) and Lvov & Tabak (2001) using different formalisms. Yet, the
ZK transformation (3.38a,b) is a non-identity transformation that takes the limit of zero
wavenumbers to infinity and vice versa, which may lead to the cancellation of oppositely
signed divergences. If the original collision integral converges and is equal to zero, then
the found spectrum is indeed a valid solution, in which case the spectrum is called local. If
not, then the spectrum in question is a spurious solution; it is called a non-local spectrum
(Nazarenko 2011) and is not physically realizable. It turned out that the KZ (or PR)
spectrum is non-local (Caillol & Zeitlin 2000).

The collision integral is expected to have other zeros. This situation is typical for
anisotropic media (Kuznetsov 1972; Balk & Nazarenko 1990; Lvov et al. 2004). To find
these spectra, we need to compute the collision integral to find its zeros in the (νh, νz)
plane. It is important to note that the integrand in the collision integral can diverge if
k1h or k2h → 0 which corresponds to infrared (IR) divergence, and when k1h, k2h → ∞
which correspond to ultraviolet (UV) divergence. Depending on (νh, νz), the divergences
can be integrable (in which case the spectrum is local), or non-integrable (in which case
the spectrum is non-local). To identify these divergences, we need to analyse the terms
of the collision integral and see for which values of (νh, νz) they lead to non-integrable
divergences. The locality conditions have been obtained by Lvov et al. (2010), and it was
shown that another steady-state solution exists due to the opposite signs of IR and UV
divergences. More precisely, the collision integral converges only on the segment νz = 0,
−4 < νh < −3 and the steady-state spectrum nk ∝ k−3.69

h has been obtained by finding the
zero of the collision integral on this segment numerically (Lvov et al. 2010; Dematteis &
Lvov 2021). Yet, any spectrum with νz /= 0 around that solution would lead to a divergent
collision integral. It means that the collision integral is not differentiable with respect to
νz and νh for spectra with νz = 0 and, therefore, the energy flux integrals are divergent
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(see Zakharov et al. 1992, § 3.32). This rules out realizability of these spectra. Since our
formalism is equivalent to Lvov & Tabak (2001) in the hydrostatic limit, the same results
are expected.

4. Discussion and conclusions

We have presented a new derivation of the kinetic equation describing the weak
internal gravity wave turbulence using poloidal–toroidal-shear decomposition (Craya
1957; Herring 1974; Godeferd et al. 2010). This decomposition is particularly well adapted
to the problem because it offers a complete basis of the flow modes, uses standard
Eulerian coordinates and the poloidal velocity is the kinetic part of the wave mode
coupled to the buoyancy. The resulting kinetic equation has an advantage of holding in the
non-hydrostatic case. It is equivalent to the one obtained by Caillol & Zeitlin (2000), but is
considerably more compact than the latter. The interaction coefficients satisfy symmetries
(Remmel & Smith 2009) that impose energy conservation both at the wave-action equation
level, and at the kinetic equation level. It results that energy conservation in the kinetic
equation can be demonstrated without using the resonance condition in frequencies, which
is unusual in WWT theory. Similarly, we show that Rayleigh–Jeans and KZ spectra can
be obtained using this symmetry, without involving resonance condition in frequencies.
Adapting the computations of Shavit et al. (2024), we obtain a stationarity condition for
a scale-invariant spectra nk = kν f (θk, ϕk), and show that ν = −4 is a good candidate,
in reasonably good agreement with known theoretical results and oceanic measurements
(Lvov et al. 2004). It is worth mentioning that, in the hydrostatic limit, these spectra are
known to lead to divergences of the collisional integral (Lvov et al. 2010; Dematteis &
Lvov 2021). Validity of a scale-invariant spectra of the form nk = k−4f (θk, ϕk) remains
to be checked. We have shown that the interaction coefficients are fully symmetric
with respect to permutation of wave vectors on the resonant manifold, even outside the
hydrostatic limit. It follows that the kinetic equation has a canonical structure, despite the
fact that the original equation does not have a canonical Hamiltonian structure. Namely,
the kinetic equation reads

ṅk = Stk =
∫ [

Rk
12 − R1

k2 − R2
k1

]
d3k1 d3k2, (4.1)

Rk
12 = 4πε2δ(k − k1 − k2)δ(ω

k
12)|Vk

12|2 (n1n2 − nkn1 − nkn2) , (4.2)

with ωk = N sin θk, and interaction coefficients Vk
12 given by (2.11). We have parametrized

the resonant manifold, allowing us to give a simplified version of the kinetic equation for
axisymmetric spectra. We have computed numerically the transfer coefficient, quantifying
the strength of the interaction, for all triads of the resonant manifold. Consistently with
earlier studies, we find that interactions corresponding to large scale separation (McComas
& Bretherton 1977; Müller et al. 1986; Lvov et al. 2010; Eden et al. 2019; Olbers et al.
2020; Lanchon & Cortet 2023) and local interactions (Dematteis & Lvov 2021; Wu & Pan
2023) both play an important role on the dynamics of IGW turbulence. In the hydrostatic
limit, our kinetic equation is equivalent to many other formalisms (Lvov & Tabak 2001;
Lvov et al. 2012) so we refer the reader to the numerous studies available in the literature,
in particular Lvov et al. (2010) and Dematteis & Lvov (2021).

Supplementary material. We provide the Mathematica script allowing us to prove analytically equation
(3.16), and a Jupyter notebook that allows us to check the symmetry of the interaction coefficients on the
resonant manifold by direct numerical computations.

Supplementary material is available at https://doi.org/10.1017/jfm.2024.802.
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Appendix A. Derivation of the wave-kinetic equation

Here, we derive the wave-kinetic equation ((3.4)–(3.6)) starting from the interaction
representation variable equation (3.2). Firstly, we remark that the last term will lead to
interaction between modes satisfying ωk + ω1 + ω2 = 0 after taking the limit ε → 0.
Since ωk ≥ 0, this term will therefore correspond to interactions between shear modes,
which are not taken into account here. For this reason, we do not need to consider the last
term of equation (3.2) to obtain the wave-kinetic equation. The next step is to consider an
intermediate (between linear and nonlinear) time T , 2π/ωk � T = 2π/εωk � 2π/ε2ωk,
use an expansion in ε up to second order, ck(T) = c(0)

k + εc(1)
k + ε2c(2)

k + O(ε3) and
obtain the following expression for the expansion of ck(T):

c(0)
k (T) = c(0)

k (0) = ck(0), (A1)

c(1)
k (T) = −i

∑
1,2

Vk
12δ

k
12c(0)

1 c(0)
2 ΓT(ωk

12) − 2i
∑
1,2

Vk
12δ

1
k2c(0)

1 c(0)∗
2 Γ ∗

T (ω1
k2), (A2)

c(2)
k (T) = −2

∑
1,2,3,4

Vk
12δ

k
12

[
V2

34δ
2
34c(0)

1 c(0)
3 c(0)

4 ΛT(ω2
34, ω

k
12)

+ 2V2
34δ

3
24c(0)

1 c(0)
3 c(0)∗

4 ΛT(−ω3
24, ω

k
12)
]

− 2
∑

1,2,3,4

Vk
12δ

1
k2

[
V1

34δ
1
34c(0)∗

2 c(0)
3 c(0)

4 ΛT(ω1
34, −ω1

k2)

+ 2V1
34δ

3
14c(0)∗

2 c(0)
3 c(0)∗

4 ΛT(−ω3
14, −ω1

k2)
]

+ 2
∑

1,2,3,4

Vk
12δ

1
k2

[
V2

34δ
2
34c(0)

1 c(0)∗
3 c(0)∗

4 ΛT(−ω2
34, −ω1

k2)

+ 2V2
34δ

3
24c(0)

1 c(0)∗
3 c(0)

4 ΛT(ω3
24, −ω1

k2)
]
, (A3)
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where ΓT(x) ≡ ∫ T
0 eixt dt and ΛT(x, y) ≡ ∫ T

0 ΓT(x)eiyt dt. We need to compute

〈
|ck|2

〉
=
〈∣∣∣c(0)

k

∣∣∣2〉+ ε
〈
c(0)∗

k c(1)
k + c.c.

〉
+ ε2

(〈∣∣∣c(1)
k

∣∣∣2〉+
〈
c(0)∗

k c(2)
k + c.c.

〉)
+ O(ε3),

(A4)

at time T , where 〈·〉 denotes an ensemble average over possible initial conditions. To
this end, we need a closure hypothesis to compute the correlations. In WWT, we use the
random phase and amplitude (RPA) hypothesis, which considers that waves have initially
random and independent amplitudes and phases, with the phases uniformly distributed in
[0, 2π[. Within this approximation, we have (Nazarenko 2011)

〈c1c2〉 = 0,
〈
c1c∗

2
〉 = 〈

|c(0)
1 |2

〉
δ12,

〈c1c2c3〉 = 〈
c1c2c∗

3
〉 = 0, 〈c1c2c3c4〉 = 〈

c1c2c3c∗
4
〉 = 0,〈

c1c2c∗
3c∗

4
〉 = δ13δ24

〈
|c(0)

1 |2
〉 〈

|c(0)
2 |2

〉
+ δ14δ23

〈
|c(0)

1 |2
〉 〈

|c(0)
2 |2

〉
− δ12δ13δ14

〈
|c(0)

1 |4
〉
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A5)

It is then possible to compute all the terms in (A4) using ((A1)–(A3)) and the previous
expressions (A5). The second term on the right-hand side in (A4) is

〈
c(0)∗

k c(1)
k + c.c.

〉
= 0, (A6)

because the triple correlations vanish under the RPA hypothesis. The third term is

〈∣∣∣c(1)
k

∣∣∣2〉 = 2
∑
1,2

|Vk
12|2δk

12|ΓT(ωk
12)|2

〈
|c(0)

1 |2
〉 〈

|c(0)
2 |2

〉

+ 4
∑
1,2

|Vk
12|2δ1

k2|ΓT(ω1
k2)|2

〈
|c(0)

1 |2
〉 〈

|c(0)
2 |2

〉

+
∑

1

|Vk
11|2δk

11|ΓT(ωk
11)|2

〈
|c(0)

1 |4
〉

+ 4
∑
1,3

Vk
11Vk

33δ
1
k1δ

3
k3Γ

∗
T (ω1

k1)ΓT(ω3
k3)

〈
|c(0)

1 |2
〉 〈

|c(0)
3 |2

〉

+ 4
∑

1

|Vk
11|2δ1

k1|ΓT(ω1
k1)|2

〈
|c(0)

1 |4
〉
. (A7)

At this point, we see that the last 3 lines will lead to interactions with shear modes.
Generally speaking, all terms where the same index is repeated more than two times in
a δ (e.g. δk

11, δ1
1k,. . . ) correspond to interactions with shear modes in the limit ε → 0. To

obtain the wave-kinetic equation, it is therefore sufficient to consider only the two first
terms of the above equation in the following computations. The last term to compute in
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(A4) is〈
c(0)∗

k c(2)
k + c.c.

〉
= −8

∑
1,2

δk
12Vk

12V2
k1Re

[
ΛT(−ωk

21, ω
k
12)
] 〈

|c(0)
1 |2

〉 〈
|c(0)

k |2
〉

− 8
∑
1,2

δ1
k2Vk

12V1
k2Re

[
ΛT(ω1

k2, −ω1
k2)
] 〈

|c(0)
2 |2

〉 〈
|c(0)

k |2
〉

+ 8
∑
1,2

δ1
k2Vk

12V2
k1Re

[
ΛT(ω1

k2, −ω1
k2)
] 〈

|c(0)
1 |2

〉 〈
|c(0)

k |2
〉
, (A8)

where we have omitted interactions with the shear modes. The wave-action spectrum (3.3),
therefore, satisfies the equation

nk(T) − nk(0) =
(

2π

L

)3

ε2
(〈∣∣∣c(1)

k

∣∣∣2〉+
〈
c(0)∗

k c(2)
k + c.c.

〉)
+ O(ε3). (A9)

The next step is to take the infinite size limit L → ∞, which is achieved by replacing∑
1,2 → (L/2π)6 ∫ d3k1 d3k2 and δk

12 → (2π/L)3δ(k − k1 − k2) in (A9). Secondly, we
take ε → 0 such that limT→∞ |ΓT(ω)|2 = 2πTδ(ω) and limT→∞ Re[ΛT(−ω, ω)] =
πTδ(ω). In the end, we obtain

nk(T) − nk(0)

T
= 4πε2

∫
d3k1 d3k2

×
{
|Vk

12|2δ(k − k1 − k2)δ(ωk − ω1 − ω2)n1(0)n2(0)

+ 2|Vk
12|2δ(k1 − k − k2)δ(ω1 − ωk − ω2)n1(0)n2(0)

− 2Vk
12V2

k1δ(k − k1 − k2)δ(ωk − ω1 − ω2)n1(0)nk(0)

− 2Vk
12V1

k2δ(k1 − k − k2)δ(ω1 − ωk − ω2)n2(0)nk(0)

+ 2Vk
12V2

k1δ(k1 − k − k2)δ(ω1 − ωk − ω2)n1(0)nk(0)
}

+ O(ε3).

(A10)

Using the approximation (nk(T) − nk(0))/T � ṅk and rearranging the terms allow us
to obtain the kinetic equation for weakly nonlinear IGWs ((3.4)–(3.6)).
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