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We present new constrained and free-swimming experiments and simulations in the
inertial regime, with Reynolds number Re = O(104), of a pair of two-dimensional and
three-dimensional pitching hydrofoils interacting in a minimal school. The hydrofoils
have an out-of-phase synchronisation, and they are varied through in-line, staggered and
side-by-side formations within the two-dimensional interaction plane. It is discovered
that there is a two-dimensionally stable equilibrium point for a side-by-side formation.
This formation is super-stable, meaning that hydrodynamic forces will passively maintain
this formation even under external perturbations, and the school as a whole has no net
forces acting on it that cause it to drift to one side or the other. Previously discovered
one-dimensionally stable equilibria driven by wake vortex interactions are shown to
be, in fact, two-dimensionally unstable, at least for an out-of-phase synchronisation.
Additionally, it is discovered that a trailing-edge vortex mechanism provides the restorative
force to stabilise a side-by-side formation. The stable equilibrium is further verified by
experiments and simulations for freely swimming foils where dynamic recoil motions
are present. When constrained, swimmers in compact side-by-side formations experience
collective efficiency and thrust increases up to 40 % and 100 %, respectively, whereas
slightly staggered formations output an even higher efficiency improvement of 84 %, with
an 87 % increase in thrust. Freely swimming foils in a stable side-by-side formation show
efficiency and speed enhancements of up to 9 % and 15 %, respectively. These newfound
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schooling performance and stability characteristics suggest that fluid-mediated equilibria
may play a role in the control strategies of schooling fish and fish-inspired robots.

Key words: swimming/flying

1. Introduction

Self-organisation of living systems is one of Nature’s most ubiquitous and mesmerising
phenomena. It arises across a wide range of spatial and temporal scales, from the cells
in our bodies (George, Bullo & Campàs 2017) and swarming of microorganisms (Koch
& Subramanian 2011), to the flocking of birds (Lissaman & Shollenberger 1970) and
schooling of fish (Weihs 1973). For macroscopic flyers and swimmers, a wide range of
hypotheses have attributed collective behaviour to social interactions (Wynne-Edwards
1962), protection against predators (Tinbergen 2012), food prospect optimisation (Pitcher,
Magurran & Winfield 1982), and/or energetic benefits (Weihs 1973, 1975). Our knowledge
of the latter hypothesis is limited since it is regulated by complex hydrodynamic
interactions. Yet both the spatial organisation (Lissaman & Shollenberger 1970; Badgerow
& Hainsworth 1981) and temporal synchronisation (Drucker & Lauder 2001; Portugal
et al. 2014; Ashraf et al. 2017) have emerged as factors influencing the hydrodynamic
interactions, and consequently the energetic cost of locomotion and travelling speed of
individuals in a collective.

Still, our understanding of the force production and energetics of schooling swimmers is
mostly limited to canonical spatial formations such as a leader–follower in-line formation
(Streitlien, Triantafyllou & Triantafyllou 1996; Akhtar et al. 2007; Boschitsch, Dewey &
Smits 2014; Muscutt, Weymouth & Ganapathisubramani 2017; Kurt & Moored 2018a;
Heydari & Kanso 2021) and a side-by-side formation (Dewey et al. 2014; Quinn et al.
2014; Ashraf et al. 2017; Kurt & Moored 2018b). The hydrodynamic performance of in-line
formations is dictated by the synchronisation between the vortices shed from the upstream
leading swimmer and the motion of the downstream following swimmer, which leads to
a sinusoidal variation in the follower performance as the separation distance is varied
(Boschitsch et al. 2014; Kurt & Moored 2018a; Alaminos-Quesada & Fernandez-Feria
2020, 2021; Arranz, Flores & Garcia-Villalba 2022; Baddoo et al. 2023). Thus the leader’s
wake wavelength can be chosen as the characteristic length scale to non-dimensionalise
the separation distance (Ramananarivo et al. 2016; Newbolt, Zhang & Ristroph 2019;
Alaminos-Quesada & Fernandez-Feria 2021; Arranz et al. 2022), and the optimal phase
difference to maximise the performance benefits of schooling follows a linear relationship
with this dimensionless distance (Boschitsch et al. 2014; Portugal et al. 2014; Kurt &
Moored 2018a; Li et al. 2020). In in-line formations, the leader is typically unaffected
by the presence of the follower except when they are compact and the follower is within
one wake wavelength of the leader (Boschitsch et al. 2014; Kurt & Moored 2018a; Kurt,
Mivehchi & Moored 2021). Side-by-side formations are also greatly influenced by the
phase synchrony between swimmers (Dong & Lu 2007; Raspa, Godoy-Diana & Thiria
2013; Bao et al. 2017; Godoy-Diana et al. 2019), and for two swimmers with anti-phase
kinematics the problem is analogous to swimming near a solid boundary for inviscid
flows, for which performance benefits can be achieved (Zhong et al. 2021; Han et al.
2023). In recent years, more attention has been paid to staggered, diamond and rectangular
formations that can exhibit features and performance benefits observed in both in-line and
side-by-side formations (Dai et al. 2018; Peng, Huang & Lu 2018; Verma et al. 2018;
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2-D stable self-organisation in simple schooling swimmers

Oza, Ristroph & Shelley 2019; Kurt, Panah & Moored 2020; Alben 2021; Arranz et al.
2022; Newbolt, Zhang & Ristroph 2022; Pan & Dong 2022; Baddoo et al. 2023; Kelly
et al. 2023; Kelly & Dong 2024).

In the existing literature, it is commonly presumed that the spatial organisation observed
in schools is driven by animals’ interest to maximise swimming efficiency or force
production. However, another explanation was first proposed by Sir James Lighthill
(1975). The so-called Lighthill conjecture (Ramananarivo et al. 2016) postulates that
the formations of fish in a school may be due to the interaction forces that push
and pull the swimmers into a particular stable formation, much like the atoms in a
crystal lattice. Indeed, this idea of passive self-organisation has shown promise in recent
studies where one-dimensional (1-D) streamwise stability has been observed in schools
of up to five in-line self-propelled foils (Becker et al. 2015; Ramananarivo et al. 2016;
Newbolt et al. 2024) or in small schools of various formations (Dai et al. 2018; Peng,
Huang & Lu 2018; Newbolt et al. 2022), as well as in pairs of in-line hydrofoils with
differing kinematics (Newbolt et al. 2019). While these studies have shown seminal
results supporting the Lighthill conjecture, they have only probed the 1-D stability of
formations. However, two-dimensionally or even three-dimensionally stable formations
are required for the passive self-organisation of schools that produce two-dimensional
(2-D) or three-dimensional (3-D) flows. In fact, 2-D stability of two pitching hydrofoils
has been found, albeit in 2-D simulations at low Reynolds numbers (Re = 200) outside
the inertial range typical of adult fish (Muller, van den Boogaart & van Leeuwen 2008;
Van Rees, Gazzola & Koumoutsakos 2013). This suggests that 2-D stability may apply to
hydrofoils and, ultimately, fish schools, yet this still has to be established in biologically
relevant regimes of 3-D inertial flows.

Here, we advance our understanding of the hydrodynamic interactions of schooling
inertial swimmers in two ways. First, we measure the 2-D stability of schooling formations
for constrained 2-D and freely swimming 3-D foils, which takes us closer to understanding
the role of the Lighthill conjecture in schooling formations. We discover that many of
the one-dimensionally stable formations previously observed are, in fact, unstable once
the cross-stream stability is considered. Yet we still find that a side-by-side formation
is two-dimensionally stable, providing support for the hypothesis that this formation
observed in real fish (Ashraf et al. 2017) may be due to passive self-organisation. Second,
we measure the force production and energetics of two interacting hydrofoils throughout
a plane of possible formations ranging from in-line to side-by-side by passing through the
possible staggered formations. We reveal that there is a thrust and efficiency optimum in a
slightly staggered formation where there is direct vortex impingement on the follower.

2. Methods

To examine the flow interactions that occur in schools, full swimmer models can be readily
used in numerical studies (Verma et al. 2018); however, these models are difficult to
implement experimentally. Instead, experiments typically use oscillating hydrofoils as a
simple model of the propulsive appendages of animals (Boschitsch et al. 2014; Dewey
et al. 2014; Quinn et al. 2014; Becker et al. 2015; Ramananarivo et al. 2016; Muscutt et al.
2017; Kurt & Moored 2018a; Kurt et al. 2019, 2020; Newbolt et al. 2019). Importantly,
these oscillating hydrofoils capture the salient unsteady fluid mechanics of the added mass
forces, circulatory forces and shed vortices.
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Figure 1. Schematics of the constrained-foil set-up: (a) side view and (b) top view. (c) The actuation
mechanism for the hydrofoils.

2.1. Constrained foil experiments
Following this simple model approach, experiments were conducted for a minimal school
or a minimal collective of a pair of sinusoidally pitching hydrofoils constrained in space
and immersed in a closed-loop water channel (test section with 2.4 m length, 0.91 m
width, 0.61 m depth). A constant flow speed U = 0.093 m s−1 was imposed, which gives
a chord-length-based Reynolds number Re = 9950. Figure 1 shows the constrained-foil
set-up installed in the water channel where two actuation mechanisms were secured on
aluminium profiles, and a surface and splitter plate were placed near the hydrofoil tips
to restrict the flow to be nominally 2-D. The actuation mechanisms oscillated a leader
and follower hydrofoil that had rectangular planforms and NACA 0012 cross-sections.
Each hydrofoil had chord length c = 0.095 m and span length s = 0.19 m (aspect ratio
AR = 2). The hydrofoils were 3-D-printed from acrylonitrile butadiene styrene (ABS) and
coated with a layer of clear acrylic paint to prevent water absorption and provide a smooth
surface finish. Slider attachments allowed for the manipulation of the hydrofoil positions
between experiments. The hydrofoils were moved from in-line to staggered to side-by-side
arrangements via the T-shaped slot on the surface plate, as shown in figure 1(b). The
distances were normalised by the chord length as X∗ = x/c and Y∗ = y/c. For streamwise
spacings, X∗ > 1.5, the follower hydrofoil was secured to a linear traverse system that
runs along the streamwise direction, automating the streamwise positioning between the
two hydrofoils throughout the experiment. In total, we considered 270 formations, with
different grid spacing depending on the proximity between the hydrofoils, as shown in
figure 2. Each dot represents the position of the leading edge of the follower relative to the
leading edge of the leader.
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Figure 2. Schematic of positions of the follower hydrofoil relative to the leader. Shown is a grid comprised of
three different spacings: a fine rectangular grid of 0.05c spacing close to the trailing edge of the leader, in the
range 1.05 ≤ X∗ ≤ 1.15, −0.15 ≤ Y∗ ≤ 0.15; a second region, with ranges −0.2 ≤ X∗ ≤ 2, 0.5 ≤ Y∗ ≤ 0.8
and 1.1 ≤ X∗ ≤ 2, −0.2 ≤ Y∗ ≤ 0.4, with a grid of 0.1c spacing; and a third region farther downstream, with
range 2.2 ≤ X∗ ≤ 3.8, −0.1 ≤ Y∗ ≤ 0.8, with a more coarse grid of 0.2c spacing. In total, there are 270 grid
points.

Each hydrofoil was actuated with sinusoidal pitching motions about an axis located
8.4 mm behind their leading edge with a servo motor (Dynamixel MX-64T). The leader
hydrofoil was prescribed a sinusoidal pitching motion θL(t) = θ0 sin(2πft), where f is the
oscillation frequency, and θ0 is the pitching amplitude. The follower was pitched similarly
as θF(t) = θ0 sin(2πft + φ) with fixed phase difference or synchrony φ = π throughout
the study. The peak-to-peak trailing edge amplitude of the hydrofoils can be defined
as A = 2c sin(θ0). The oscillation frequency and the dimensionless amplitude A∗ = A/c
were also fixed throughout the study, at f = 0.98 Hz and A∗ = 0.25, which gives a fixed
reduced frequency k = fc/U = 1, and a fixed Strouhal number St = fA/U = 0.25. These
dimensionless numbers are typical of efficient biological swimming (Webb 2002; Gazzola,
Argentina & Mahadevan 2014).

2.2. Force measurements and definition of constrained foil performance metrics
An ATI Nano43 six-axis force sensor was used to measure the thrust, lift and pitching
moment acting on each hydrofoil in all of the 270 formations. An optical encoder recorded
the angular position, which was then used to compute the angular velocity θ̇ for each
hydrofoil. The total instantaneous power input was then calculated as PT(t) = Mθ θ̇ , where
Mθ denotes the pitching moment. Here, the inertial power was determined from the same
experiments conducted in air, and was subtracted from the total power PT(t) to calculate
the instantaneous power input to the fluid, P(t). Force measurements were taken for 100
oscillation cycles from the leader and follower, and each experiment was repeated 10 times.
The time-averaged values were calculated for each of these trials, and their mean from
10 trials was calculated to determine the time-averaged total thrust, lift and power. The
profile drag was measured for the static foil in an imposed flow over 20 second intervals.
Net thrust was determined by subtracting the profile drag acting on the hydrofoils from the
time-averaged thrust: T̄net = T̄ − D̄. The definitions of the coefficients of net thrust CT ,
drag CD, lift CL, and power CP, and efficiency η, are given as follows for the individual
hydrofoils:

CT = T̄net

1
2ρU2cs

, CD = D̄
1
2ρU2cs

, CL = L̄
1
2ρU2cs

, CP = P̄
1
2ρU3cs

, η = CT

CP
,

(2.1a–e)
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where ρ is the fluid density, and s is the span length of the hydrofoils.
Here, we also report collective performance parameters, i.e. the average performance

from the leader and the follower. The collective force and power coefficients, as well as
the collective efficiency, are denoted with a C subscript, and defined as

CT,C = T̄net
L + T̄net

F
ρU2cs

, CL,C = L̄L + L̄F

ρU2cs
, CP,C = P̄L + P̄F

ρU3cs
, ηC = CT,C

CP,C
. (2.2a–d)

Note that here, the performance coefficients were defined with combined propulsor
area, i.e. 2cs, cancelling the one-half in the denominator. Collective thrust and power
coefficients, and efficiency, are reported as normalised values with the corresponding
isolated hydrofoil performance metric for comparison, and defined as

C∗
T = CT,C

Ciso
T

, C∗
P = CP,C

Ciso
P

, η∗ = ηC

ηiso . (2.3a–c)

Here, the collective performance metrics are compared with the collective of two
isolated hydrofoils, Ciso

T,C = Ciso
T . The isolated net thrust, drag, power and efficiency

are Ciso
T = 0.10 ± 0.015, Ciso

D = 0.03 ± 0.002, Ciso
P = 0.66 ± 0.0008 and ηiso = 0.15 ±

0.022, respectively.

2.3. Flow field measurements
Particle image velocimetry (PIV) measurements of the flow field were performed in the
horizontal plane at the mid-span of the foils. Phase-averaged results were calculated
from a total of 100 measurements for each flow field. A total of 16 distinct phases
(0, π/8, π/4, . . . , 15π/8) were captured for all schooling formations. The camera used
was an Imager sCMOS (2560 × 2560 pixels) paired with a lens of 50 mm focal length
and f-stop f# = 2.8. Magnification factor 0.135 yields a field of view of 3.64c × 3.07c.
The flow was seeded with hollow metallic coated plastic spheres of diameter 11 μm,
and was illuminated by a 200 mJ pulse−1 Nd:YAG laser. Multi-pass, cross-correlation
processing of the raw images was employed to obtain the resulting vector fields, with a
final interrogation window of 48 × 48 pixels.

2.4. Unconstrained (free-swimming) foil experiments
The unconstrained foil experiments were conducted on a pair of 3-D hydrofoils that are
free-to-move independently of each other in the horizontal x–y plane. Figure 3 shows the
experimental apparatus detailing the leader and follower platforms. A hydrofoil, servo
motor, micro-controller, and on-board battery were housed on each platform, which were
independently supported by low-friction dual-axis air-bearing stages. The air bearings ran
along stainless steel supporting shafts where the combined weight of the platforms acted
as a small but non-negligible bending force. To counteract bending in the shafts, weights
were attached to the ends, and the shafts were precision levelled to avoid tilting. These
measures were taken to minimise gravitational forces acting upon the swimmers.

Each hydrofoil was prescribed a sinusoidal pitching motion about its leading edge
using a Dynamixel MX-64AT servo motor as in the constrained experiments. The
input kinematic parameters and output variables for the free-swimming experiments are
presented in table 1. An Arduino micro-controller was used to control each servo, where
wireless start/stop commands were sent via infrared communication. The infrared signals
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Figure 3. Schematics of the apparatus for the unconstrained experiments. (a) Perspective view of the two
independent air-bearing platforms and the water channel. (b) Side view of the free-swimming apparatus. The
two propulsive foils are shown in red. The drag-generating foils are shown in purple. (c) Top view of the
apparatus. The streamwise and cross-stream shafts support the carriage systems in the x–y plane. (d) Detailed
schematics of one free-swimming carriage, actuation system and embedded electronics.

Parameter/variable Isolated Side-by-side

Inputs A∗ 0.35 0.35
f (Hz) 1.007 1.007
φ (rad) — π

Outputs U (m s−1) 0.097 (Uiso) 0.111 (1.15Uiso)
Re 10 380 11 940
St 0.36 0.31
k 0.99 0.86

(X∗
eq, Y∗

eq) — (−0.09, 0.99)

Table 1. Input kinematic parameter and output data from free-swimming experiments. The equilibrium
position is denoted as (X∗

eq, Y∗
eq), and the origin is defined at the leading edge of the leader.

synchronised the two independent hydrofoils and their respective electronic systems. The
wireless communication guaranteed that no wires connect the air-bearing platforms to the
laboratory-fixed framework, which would create small but non-negligible spring forces
acting on the hydrofoils. As in the constrained foil experiments, the hydrofoils had a
rectangular planform and a NACA 0012 cross-section; however, in these free-swimming
experiments, the hydrofoils had aspect ratio AR = 3, and there was no surface or splitter
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plate, which ensured that the flow remained 3-D. A propulsor aspect ratio AR = 3 is
representative of the caudal fins of a large number of fishes. Data for 63 species from
Sambilay (1990) report a mean aspect ratio AR = 4.2 ± 1.9, with median 3.7.

Laser distance sensors (Baumer OADM 20U2480/S14C and OADM 13U7480-S35A)
were used to measure the positions of the two hydrofoils, x(t) and y(t), in time. The sensors
were mounted to the framework, and laser beams were aimed at target surfaces connected
to the air-bearing platforms. The overall uncertainty in the reported relative positions is
smaller than 1 cm. A moving average filter was applied to the time-varying positions over
the window of one oscillation period to obtain the cycle-averaged trajectory of the follower.
The final equilibrium positions were determined based on the mean position of the last 40
cycles from converged trials. A trial is considered converged if the cycle-averaged position
remained within the range ±5 % of the chord length. Due to the latency of the electronic
components (IR sensor, Arduino and servo motor), the obtained synchrony φ was different
from the prescribed value φprescribed = π. Here, the reported results achieved synchronies
of φ = π ± 2.7 %, or 170◦ ≤ φ ≤ 190◦.

In free-swimming, the swimming speed of the interacting pair of foils, U, can be
different from that of an isolated swimmer with identical kinematics, Uiso, and reported
as the dimensionless speed u∗ = U/Uiso. This speed and its derivative dimensionless
numbers (Re, St and k) are dependent variables, which depend upon the balance of thrust
and drag of the swimmer. The thrust–drag balance is represented by the Lighthill number
(Moored & Quinn 2019),

Li = CDSwp, (2.4)

where CD is the free-swimming drag coefficient, and Swp = Sw/Sp is an area ratio of the
drag-generating wetted area Sw to the propulsive planform area Sp of the swimmer. For
the hydrofoils in the constrained experiments, Swp ≈ 2 since thin hydrofoils have a wetted
surface area that is approximately twice their planform area. If the same Swp were used for
the free-swimming experiments (given the same f and A), then the resulting swimming
speed would increase beyond the imposed flow speed of the constrained foils, given that
they generate a positive net thrust T̄net > 0, leading to lower St and k. In order to achieve St
and k comparable to the constrained-foil experiments, drag-generating foils were attached
to the streamwise carriage of the unconstrained foils. Three NACA 0012 foils of AR = 3
at zero angle of attack were used for this purpose. They had measured drag coefficient
CD = 0.035, and the drag-generating wetted area to propulsive planform area ratio would
then be Swp ≈ 8, leading to an estimated Lighthill number Li = 0.28. The drag-generating
foils were positioned sufficiently far away from the leader and the follower to prevent them
from disturbing the flow around the foils, at a minimum cross-stream distance of three
chords (figure 3), and constrained in the cross-stream direction to ensure that they only
generated static profile drag that was virtually independent of the system dynamics. In
fact, these drag-generating foils replicated the effect of a virtual drag force introduced in
the free-swimming simulations (see § 2.5) since the drag force is transmitted to the system
carriage without altering the flow field near the pitching foils.

2.5. Numerical methods
To model the flow over a foil unconstrained in both the streamwise and cross-stream
directions, we used a 2-D boundary element method (BEM) based on potential flow theory
in which the flow is assumed to be irrotational, incompressible and inviscid. Previously,
this method was used to model flow over unsteady hydrofoils (Katz & Plotkin 2001;
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Moored 2018; Moored & Quinn 2019) and their interaction with a solid boundary, and
the associated performance for constrained and unconstrained foils (Quinn et al. 2014;
Kurt et al. 2019).

As with the experiments, the freely swimming simulated foils were prescribed
sinusoidal pitching motions about their leading edge with an out-of-phase synchrony (φ =
π). Each foil was assigned a mass, in both the streamwise and cross-stream directions,
normalised by their characteristic added mass m∗ = m/(ρsc2) = 2.76 and 1.74 in each
direction, respectively, to match the unconstrained foil experiments. These mass ratios are
comparable to biology where, for example, m∗ = 3.86 was the mass ratio calculated for
cod (Akoz & Moored 2018). Note that constrained foils do not exhibit recoil motions,
so they have an effectively infinite dimensionless mass, m∗ = ∞. Since the simulated
hydrofoils are self-propelled, a drag force D was imposed, which is modelled with a high
Reynolds number drag law where D = 1

2 CDρU2Sw (Munson, Young & Okiishi 1998). The
drag force was thus determined by the Lighthill number of the virtual body, which was not
present in the computational domain. The Lighthill number in the simulations was set to
Li = 0.3, which was the lowest value achievable for the numerical stability of the current
BEM formulation. Further details about the numerical solver can be found in previous
work (Kurt et al. 2019; Moored & Quinn 2019).

For the unconstrained simulations, the time-averaged thrust T̄ was obtained from the
pressure forces acting on the swimmer projected in the streamwise direction. Note that for
steady-state free-swimming, the time-averaged net thrust is zero, i.e. T̄net = T̄ − D̄ = 0.
The power input to the fluid, P, was obtained by integrating the inner product between the
force vectors F e and velocity vectors ue of each panel element, e, along the foil surface S,
as P = − ∫

S F e · ue dS.
We can now define the efficiency η̃ for steady-state free-swimming as

η̃ = T̄ Ū
P̄

, (2.5)

where the free-swimming propulsive efficiency η̃ is the ratio of the useful locomotive
power to the total power input to the fluid and is well defined for steady free-swimming
despite the net thrust being zero. This definition is equivalent to that of a constrained foil
η = T̄net Ū/P̄. For the constrained experiments, the net thrust T̄net is the net propulsive
force available to propel a body that generates an equal resistive drag. Note that the
efficiency η̃ is reported only for the unconstrained simulations. Forces and moments were
not measured for the free-swimming experiments.

3. Follower force map

In order to probe the Lighthill conjecture in two dimensions, the relative forces acting on
the follower in the (x–y) interaction plane must be examined. This is done by constructing
a force map using the constrained-foil measurements.

Consider a frame of reference attached to the leader as in figure 2. The relative lift �L
in the cross-stream direction, and the relative thrust �T in the streamwise direction, are
defined simply as a difference between the forces acting on the two hydrofoils as �T =
TF − TL and �L = LF − LL, where forces acting on the leader and follower hydrofoils
are denoted with subscripts L and F, respectively. Figures 4(a,b) show the relative force
conditions that lead to the follower either moving towards or moving away from the leader
in the streamwise (x) and cross-stream (y) directions.
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(c) Follower force map:

Figure 4. Typical conditions leading to positive and negative relative (a) lift and (b) thrust. (c) Follower force
map with an out-of-phase synchrony between the leader and follower, i.e. φ = π. The arrows on the force
lines indicate the direction in which the follower would move relative to the leader if it were free-swimming.
The green, blue and red circles represent the 2-D stable equilibria, the 1-D stable/1-D unstable saddle point
equilibria, and the 2-D unstable equilibria, respectively.

First, consider the relative lift for the positive x–y plane. The follower is pushed away
from the leader in the cross-stream direction (�) when the relative lift force is greater than
zero (figure 4a). This condition arises either when lift forces acting on the foils are in the
same direction and LF > LL, or when they are acting in opposite directions and pointing
away from each other (LL < 0 ↓, LF > 0 ↑). In contrast, the follower is pulled towards
the leader when the lift forces are acting in the same direction and LL > LF, or acting in
opposite directions and pointing towards each other (LL > 0 ↑, LF < 0 ↓).

Next, consider the relative thrust force in the positive x–y plane. A positive relative
thrust force (�T > 0) acts to move the follower towards the leader, which arises when
TF > TL. In contrast, when TL > TF, the relative thrust force is negative (�T < 0), and the
follower moves away from the leader in the streamwise direction, as shown in figure 4(b).
If TL = TF, then the leader and follower swim at the same speed and do not move closer
or apart.

To visualise the directions of the relative forces acting on the follower throughout the
x–y plane, we constructed a force map, which is a novel visualisation made up of force
lines (figure 4c). Put simply, the force map conveys the direction that the follower would
move in as observed by the leader. The force map is constructed with the origin located
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2-D stable self-organisation in simple schooling swimmers

at the leading edge of the leader, and a relative force vector (F rel = −�T x̂ + �L ŷ) is
determined at each of the measurement positions detailed in figure 2, such that a relative
force vector field is created. The resulting vector field is provided in Appendix A. Force
lines are then graphed as lines that are everywhere tangent to the local relative force vector
field, analogous to streamlines. This novel visualisation tool uses time-averaged force data
to visualise the stability characteristics of constrained foils, yet it will be shown to be
indicative of the stability characteristics of unconstrained, freely swimming foils.

3.1. Observed equilibria
The force map reveals eight critical points or equilibria where the relative force vector
is equal to zero, i.e. �T = 0 and �L = 0, which are marked by green, blue and red
circles in figure 4(c). The first equilibrium point is located at (X∗, Y∗) = (0, 0.6) where the
leader and follower are interacting in a side-by-side formation. Interestingly, as the force
lines merge at this point, their direction indicates that this equilibrium point is a stable
sink point (green circle) in two dimensions. Therefore, when any perturbations move the
follower away from this point, forces will arise to return the foil back to this location.
Previous low Reynolds number simulations have also shown that side-by-side formations
of rigid (Lin et al. 2021, 2022) and flexing (Dai et al. 2018) foils are two-dimensionally
stable, albeit for 200 ≤ Re ≤ 500, which is outside the inertial regime characteristic of
fish schooling. Another critical point is located at (X∗, Y∗) = (1.2, 0) in the leader’s wake,
where the follower is directly in-line with the leader. This represents an equilibrium point
that is stable to streamwise perturbations, but unstable to cross-stream perturbations, i.e.
an unstable saddle point (blue circles). In fact, there are repeating unstable saddle points in
the wake zone (−0.2 ≤ Y∗ ≤ 0.2) that are spaced one wake wavelength apart, located at
X∗ = 2.2 and 3.2. Previous studies (Becker et al. 2015; Ramananarivo et al. 2016; Newbolt
et al. 2019, 2022) have shown that these equilibria are one-dimensionally stable in the
streamwise direction; however, we now reveal that they are unstable in the cross-stream
direction. Beyond unstable saddle points, there are also equilibrium points that are unstable
source points (red circles). These are locations of unstable equilibria in both the streamwise
and cross-stream directions, with force lines radiating outwards from them.

3.2. Flow mechanisms behind the stable formation
To understand the flow mechanisms behind the stable side-by-side formation, PIV
measurements are employed around the mid-span of the hydrofoils. The flow was seeded
with micro-particles, and high-speed cameras were used to capture the motion of the
particles consecutively to obtain the instantaneous evolution of the velocity field over one
oscillation cycle.

Figure 5(a) presents the vorticity shed from the leader and follower at the stable
side-by-side equilibrium at a dimensionless time t∗ = t/T = 0.5, where the foils are
pitching away from each other. As expected, both foils generate a reverse von Kármán
street, which is the signature of thrust production in the wake of the foils. However, due to
interaction between the hydrofoils in side-by-side formation, the forming clockwise vortex
of the follower and anticlockwise vortex of the leader mutually induce each other in a way
that slows their downstream advection. These vortices then pair with their counter-rotating
counterparts shed half a cycle later. The pairs mutually induce away from the symmetry
line between the foils, leading to momentum jets behind the foils that deflect away from the
symmetry line. The deflected jet and vortex pairing mechanism was observed first in Quinn
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Figure 5. (a) Vorticity field for the stable side-by-side formation X∗ = 0, Y∗ = 0.6 at t∗ = 0.5 when the foils
are pitching away from each other. (b) Vorticity field for the formation for X∗ = 0.1, Y∗ = 0.6 at t∗ = 0.5.
(c) Schematic of the proposed trailing-edge (TE) vortex mechanism responsible for a restorative force back to
the stable side-by-side formation.

et al. (2014) and later in subsequent work (Bao et al. 2017). The cross-stream stability of
the side-by-side formation is mediated by a balance of the wake-induced forces from the
deflected jet and the quasi-steady forces, i.e. the body–body flow interaction between the
foils (Kurt et al. 2019; Han et al. 2023).

We can now establish the mechanism that generates restorative streamwise forces for
the leader and follower in a side-by-side formation to bring them back into equilibrium
when one is perturbed downstream of the other. For instance, when the follower is located
slightly downstream of the side-by-side formation (figure 5b), there are the same vortex
pairs as observed at the equilibrium formation only with a slight asymmetry, which brings
the forming anticlockwise vortex of the leader closer to the leading edge of the follower
(figure 5c). This leads to an increase in the effective angle of attack and thrust of the
follower. Concurrently, the forming clockwise vortex of the follower is farther from the
leading edge of the leader than at the equilibrium formation. This decreases the effective
angle of attack and thrust of the leader. Taken together, the increased thrust of the follower
and decreased thrust of the leader act to restore them back to their equilibrium formation.
Two-dimensional simulations at low Reynolds number (Lin et al. 2021) show very similar
behaviour for the side-by-side formation with anti-phase kinematics.

4. Dynamic schooling interactions

Through the use of the force map, only one two-dimensionally stable equilibrium point
for a side-by-side formation has been discovered within the interaction plane. However,
the force map assumes two simplifications compared to a freely swimming, dynamical
system: (1) it filters out the time-varying forces by using time-averaged data; and
(2) it removes the dynamic recoil motion of freely swimming foils due to the fluctuating
forces described in Appendix B. Dynamic recoil motion occurs when a two-dimensionally
unconstrained pitching hydrofoil, for example, pitches through its downstroke. During this
stroke, a positive lift force is generated, leading to a recoil motion where the body will
heave upwards in response to the lift. In this sense, the recoil motion introduces heaving
that lags the pitching motion by nearly 180◦, which is known to lower the thrust production
(Buren, Floryan & Smits 2019) and may alter the lift and, importantly, the stability of
equilibria. In order to explore the effect of these dynamic recoil motions on the stability
of the side-by-side equilibrium, to further verify the findings from the force map, and to
determine the free-swimming performance benefits of the side-by-side formation, freely
swimming experiments are developed, and companion simulations were performed.
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Figure 6. (a) Equilibrium distance of the in-line arrangement for streamwise unconstrained and cross-stream
constrained experiments. The distance S is a function of the synchrony phase φ. Marker colour is mapped
to the initial schooling number. The phases φ = π/2, π and 3π/2 are highlighted in blue, red and green,
respectively, as examples all showing multiple equilibrium solutions, as well as all phases in between these.
(b) Time-varying trajectories of a fully unconstrained follower (free to move in the X∗–Y∗ plane) starting from
six different in-line arrangements. The markers represent the positions of the follower’s leading edge, and their
colour is mapped to the dimensionless time t/T . Dashed lines represent the domain boundaries.

Experimental measurements of the 2-D stability of freely swimming foils are achieved
by mounting each foil actuation mechanism on a novel double air-bearing stage for nearly
frictionless motion, with on-board batteries and wireless communication to eliminate
forces due to electronic wiring. Exceptional care is taken to align, level and counter-bend
the air-bearing rails to minimise these sources of non-hydrodynamic forces acting on the
foils.

4.1. In-line formation
To verify that the novel dual-axis air-bearing experiments are measuring the actual
hydrodynamic forces acting on interacting foils instead of being corrupted by
non-hydrodynamic forces, such as settling to a false equilibrium due to rail bending,
we have reproduced results of flow-mediated streamwise stable equilibria discovered in
Newbolt et al. (2019). Figure 6(a) presents data from experiments where the follower
foil is downstream of the leader in an in-line arrangement. Importantly, the follower is
constrained in the cross-stream direction, but unconstrained in the streamwise direction.
The graph shows the final dimensionless gap distance of the follower and its final
dimensionless streamwise spacing on the vertical left and right axes, respectively, as a
function of the synchrony of the follower. The gap distance g = c(X∗ − 1) (Newbolt et al.
2019) is defined as the distance from the trailing edge of the leader to the leading edge of
the follower, and the vortex wake wavelength λ = 1.18U/f (found from PIV measurements
of an isolated pitching foil) defines the dimensionless gap distance or so-called schooling
number S = g/λ (Becker et al. 2015). The initial schooling number defined by the initial
distance between the leader and the follower is denoted from small to large values by
markers coloured from black to white. Note that for these measurements, the entire range
of synchrony (0–2π) was examined.

Depending upon the initial schooling number and the synchrony, the follower settles
to a streamwise stable equilibrium in O(10) cycles. The final schooling number follows
a linear relationship with the synchrony, and multiple equilibria exist for all values of φ,
as discovered previously (Becker et al. 2015). For example, for an anti-phase synchrony
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(φ = π and −π), there are multiple final locations for the follower, depending upon its
initial schooling number. In fact, the final schooling numbers for anti-phase synchrony
within the data range are S = 1.5 and 2.5, which are precisely the same schooling numbers
found in Newbolt et al. (2019) for out-of-phase heaving foils. These results validate the
capability of the experiments to measure flow-mediated equilibria instead of experimental
artefacts.

In a second experiment, the follower starts at a range of in-line arrangements, but it
is unconstrained in both the streamwise and cross-stream directions. This experiment
examines the 2-D stability of in-line arrangements, which the force map data predict to
be unstable saddle points. Figure 6(b) presents the time-varying trajectories in the X∗–Y∗
plane of the follower starting from various initial arrangements. Each datum marks the
cycle-averaged position and is coloured by the dimensionless time. Depending upon the
initial starting position, the follower will move either towards or away from the leader,
indicating that there is a streamwise unstable equilibrium between the starting position
clusters. However, the follower gets diverted in the cross-stream direction from the Y∗ = 0
position, and does not settle to a two-dimensionally stable equilibrium within the domain
boundary as predicted by the force map data. This verifies the finding that equilibria in the
wake of the leader are indeed two-dimensionally unstable even up to X∗ = 4.5.

4.2. Side-by-side formation
Next, we present experimental measurements and companion simulations of two pitching
hydrofoils that start near the stable equilibrium point and are free to move in the
x–y plane. Companion simulations are run with a flow solver calculating the unsteady
potential flow, i.e. the inviscid, irrotational and incompressible flow produced by a
pair of pitching hydrofoils. Further details of the numerical method can be found
in § 2.5. In both the simulations and experiments, multiple trials of varying initial
conditions consistently evolve to approximately the same final states (figure 7a) with
a mean experimental equilibrium position (X̄∗

eq, Ȳ∗
eq) = (−0.09, 0.99) and a numerical

equilibrium position (X∗
eq, Y∗

eq) = (0, 0.90), within 10 % of the separation distance
measured in the experiments. While the final state of the experimental foils has a consistent
relative spacing from trial to trial, two example time-varying trajectories (figure 7b) show
that the time evolutions of the foils’ absolute positions within the experimental domain can
be quite different. This supports the assertion that the experiments are not contaminated
with false equilibrium positions that are artefacts of rail bending, tilting, etc. Both
the experiments and simulations show that a side-by-side stable formation does indeed
exist even when there is dynamic recoil motion, and for both 2-D flows (simulations)
and 3-D flows (experiments, AR = 3). Movies of the dynamical interactions leading to
two-dimensionally stable formations from the experiments and simulations can be found
in the supplementary materials available at https://doi.org/10.1017/jfm.2024.1086. Since
the simple potential flow simulations can closely predict the equilibrium formation, this
further shows that the physics driving the stable side-by-side formation is dominated by
inviscid mechanisms. This supports the proposed inviscid mechanism discussed in § 3.2.
Figure 7(c) shows the wake flows generated by the interacting freely swimming pitching
foils. These simulated wake flows are characteristically the same as those highlighted in
the PIV experiments presented earlier.

To better understand the connection between the kinematics and the stable equilibrium
position, we considered five additional simulation cases with varying dimensionless
amplitude, as summarised in table 2. The simulation data generated for case II are shown
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Figure 7. (a) Equilibrium positions for two fully unconstrained hydrofoils, free to move in the X∗–Y∗
plane with phase synchrony φ = 180◦, graphed in a relative frame of reference. The equilibrium positions
from individual experiments are represented by the green circles, while the experimental mean equilibrium
position (X̄∗

eq, Ȳ∗
eq) = (−0.09, 0.99) is represented by the yellow square, and the numerical equilibrium

position (X∗
eq, Y∗

eq) = (0, 0.90) is represented by the purple triangle. The resulting stable side-by-side formation
achieves a normalised swimming speed u∗

exp = 1.15 in the experiments, which is 15 % higher than that of
an isolated swimmer. (b) Trajectories for two experimental trials graphed in an absolute frame of reference.
The markers are coloured from blue to red based on the dimensionless time, and each marker represents the
cycle-averaged positions of the swimmers. After approximately 70 cycles, the relative position of the swimmers
remains constant; hence an equilibrium configuration is achieved. (c) Simulated vortex wake evolution for two
free-swimming hydrofoils mirrors the wake measurements of constrained foils seen in figure 5.

Parameters Case I Case II Case III Case IV Case V

A∗ 0.30 0.33 0.40 0.45 0.50
St 0.27 0.30 0.28 0.32 0.29
k 0.90 0.87 0.70 0.64 0.29
(X∗

eq, Y∗
eq) (0, 0.68) (0, 0.90) (0, 0.99) (0, 1.14) (0, 1.28)

u∗ 1.10 1.08 1.07 1.06 1.05
η̃∗ 1.09 1.06 1.06 1.05 1.04
η̃iso 0.32 0.31 0.32 0.31 0.30
Uiso (m s−1) 0.097 0.102 0.128 0.142 0.157

Table 2. Simulation input and output data for five cases of varying amplitude. The equilibrium position is
denoted as (X∗

eq, Y∗
eq), and the origin is defined at the leading edge of the leader. Data for an isolated swimmer

are denoted with a superscript iso.

in figure 7(a) along with the corresponding free-swimming experiments. For each case,
regardless of the change in amplitude, the freely swimming foils are found to converge
to an equilibrium point in a side-by-side formation. As the amplitude is increased, the
Strouhal number remains nearly constant at St ≈ 0.3, since the swimming speed is an
output of freely swimming simulations, and U scales with the amplitude and the pitching
frequency as U ∝ fA (Bainbridge 1958; Saadat et al. 2017; Moored & Quinn 2019). Since
the speed increases with increasing amplitude, the reduced frequency decreases over the
range 0.90 ≥ k ≥ 0.29. The data show that in each equilibrium formation, the cross-stream
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foil spacing increases as the reduced frequency decreases. This is the same trend observed
previously for a pitching foil in ground effect (Kurt et al. 2019).

5. Schooling performance

Beyond probing the Lighthill conjecture in two dimensions, hydrofoil performance
was also measured for the free-swimming experiments and simulations, as well as for
the constrained experiments for formations throughout the interaction plane. First, the
free-swimming experiments show that swimming side-by-side increases the swimming
speed of the pair of foils by 15 % compared to an isolated foil. Swimming speed
improvements of ≈20 % are reported for two side-by-side heaving hydrofoils with the same
lateral distance and comparable Re, St and A∗ (Newbolt et al. 2022). The simulations also
show a swimming speed benefit, though reduced from the experiments, of 5–10 % for a
pair of foils, with more compact formations leading to increased gains. The reduced speed
benefit in the simulations is likely due to the modelling simplifications as 2-D inviscid
flow, while the unconstrained experimental foils experience 3-D flows and some degree of
spanwise bending of the driving shafts, which can affect the recoil motion and therefore
the speed and efficiency performance. Still, the simulations capture the same trends as the
experiments and provide further information, showing that the efficiency can also increase
by 4–9 % for a freely swimming pair of foils.

The free-swimming performance data from the experiments and simulations, while
important, can be measured only at equilibrium formations. However, the constrained foil
measurements can be leveraged to investigate the performance landscape at all possible
formations over the interaction plane, including out-of-equilibrium conditions. This can
provide a map that can be used to highlight high-performance zones and their connection
to stable formations.

Figure 8(a) presents the normalised collective thrust C∗
T,C, power C∗

P,C, and efficiency
η∗

C, and the collective lift CL,C, as a contour map of (X∗, Y∗). The normalised
performance metrics, thrust, power and efficiency, compare the collective performance
of the leader–follower pair with that of two isolated hydrofoils. Across the (X∗, Y∗)
contour maps, a normalised performance metric equal to 1 means that the collective
of leader–follower is operating at the isolated foil levels. The collective lift CL,C is
defined as the mean lift generated by the leader and follower and not normalised, since
the time-averaged lift generated by the isolated foil is zero. Note that in contrast to the
relative forces that were discussed in the previous section, a collective lift of zero does not
necessarily mean zero lift for the foils individually.

Generally, the normalised collective thrust stays within the range 1 ≤ C∗
T,C ≤ 2, except

for sparse formations where the follower is farther than one chord downstream of the
leader. In fact, the thrust, efficiency and lift all show a sinusoidal variation with the
separation distance, which has been widely reported in previous work (Boschitsch et al.
2014; Kurt & Moored 2018a; Alaminos-Quesada & Fernandez-Feria 2020, 2021; Arranz
et al. 2022; Baddoo et al. 2023). This indicates that the collective performs better than two
hydrofoils in isolation throughout much of the interaction plane considered here. Previous
work has also observed similar thrust enhancements, albeit for a limited set of data of one
side-by-side and two staggered formations at Y∗ = 1 (Huera-Huarte 2018), and also for
simulations of tetra fish (Li et al. 2019). The peaks in collective thrust can be grouped into
two regions. First, there is a region enclosing the side-by-side formations along the line
of X∗ = 0 (vertical dash-dotted line), where the collective is found to achieve 40–100 %
higher thrust than in isolation. Recent work has established (Mivehchi et al. 2021) that the
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Figure 8. (a) Contour maps arranged from top to bottom of normalised collective thrust, power and efficiency,
and collective lift. The black dashed lines show the locations corresponding to Y∗ = 0.125, which is the
maximum trailing edge position of the leader foil. The leader position, size and amplitude of motion are shown
for reference. The green, blue and red circles represent the 2-D stable, 1-D stable/1-Dunstable and unstable
equilibria, respectively, from figure 4. (b) Vorticity fields at the end of a cycle during the leader’s up-stroke and
the follower’s down-stroke for, from left to right, the in-line formation of X∗ = 1.7 and Y∗ = 0.0, the staggered
formation of X∗ = 1.7 and Y∗ = 0.125, and the staggered formation of X∗ = 1.7 and Y∗ = 0.25.

thrust increase for out-of-phase pitching foils in this region originates from an increase
in their added mass. It was determined that the added mass thrust dominates the thrust
production of pitching foils, and thereby wake effects play no significant role in their
thrust increase. However, for heaving or combined heaving and pitching foils, wake effects
and circulatory forces, in general, are expected to be important for thrust production in
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a side-by-side formation (Ayancik, Fish & Moored 2020). A second region corresponds
to the direct wake interactions enclosing the in-line and slightly staggered formations
within the region 0 ≤ Y∗ ≤ 0.3. For the in-line formation at X∗ = 1.6, the collective
thrust reaches a 77 % peak increase over the hydrofoils in isolation, whereas the thrust
reaches a 87 % peak increase for the slightly staggered formation along the Y∗ = 0.125
line. This line is where direct wake vortex impingement onto the follower occurs, as shown
in figure 8(b). It has already been established that wake–body impingement interactions
generate increased thrust through an increase in the effective angle of attack of the
follower, and are therefore circulatory in nature (Boschitsch et al. 2014; Muscutt et al.
2017). One wake wavelength downstream of the primary thrust peak at X∗ = 2.8, there is
a second thrust peak reaching a reduced collective thrust benefit from the primary peak of a
39 % increase over two isolated foils. This highlights that the highest performance benefits
of schooling occur in compact formations. For near-wake interactions where the collective
is in in-line or staggered formation (X∗ > 1.1 and any Y∗), the normalised collective power
exhibits little variation from the isolated case, whereas the side-by-side formations result
in up to a 60 % increase in power.

The collective efficiency is observed to increase by 10–40 % over that of isolated foils
for the side-by-side interaction region, which has been observed previously (Huera-Huarte
2018). In the in-line interaction region at X∗ = 1.6, even higher peak efficiency increases
are identified, with up to a 73 % increase for in-line interactions, and an 84 % increase
for slightly staggered formations along the Y∗ = 0.125 dashed line. It is clear that while
both the side-by-side and in-line interaction regions see comparable thrust increases, the
efficiency increase in the side-by-side interaction is tempered by a concurrent rise in
power, whereas the efficiency increase in the in-line interaction region is driven solely
by the increase in thrust, an effect also previously observed experimentally for foils of
AR = 2 (Kurt & Moored 2018a) and 2-D potential flow simulations (Baddoo et al. 2023).
Some previous work has not observed an efficiency benefit for staggered formations
with Y∗ = 1 (Huera-Huarte 2018), which is reflected in the small efficiency gains of
approximately 10–20 % on the edge of the current experimental domain at Y∗ = 0.8. This
efficiency benefit would presumably decay further towards 0 % at Y∗ = 1. However, in
the near-wake interactions probed in the current study with Y∗ ≤ 0.8, it is revealed that
the greatest efficiency benefits are observed for slightly staggered formations where both
foils contribute to the increase of the collective performance (see Appendix C for extra
information on the time-average wakes and time-varying thrust coefficient of the two foils
for slightly staggered formations). Moreover, as seen in the thrust data, there is a secondary
efficiency peak located one wake wavelength downstream of the primary efficiency peak,
but with a reduced maximum efficiency increase of 37 %.

For side-by-side formations, where a stable equilibrium point is located, the collective
lift generation is found to be negligible. This means that when two individuals are
swimming in this stable formation, the formation is, in fact, super-stable, i.e. the relative
distances between the swimmers do not change, and the pair of swimmers will remain
swimming forward without a collective drift to one side or another. Likewise, around
the in-line interaction region, where unstable saddle points are located, collective lift
generation is found to be negligible as well.

6. Conclusions and discussion

In this study, we have discovered that a side-by-side formation of pitching foils swimming
in the inertial regime, Re = O(104), is not only two-dimensionally stable, but also
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two-dimensionally super-stable where their relative distance stays constant and the school
as a whole does not have forces acting on it to drift to one side or the other during
locomotion. Indeed, the school is shown to be super-stable for freely swimming foils
in both 2-D and 3-D flows, which also enjoy modest speed and efficiency gains over
swimming in isolation. This provides new evidence that the Lighthill conjecture (Lighthill
1975) may play a role in school formation and spatial patterns of inertial swimmers, even
if only in a statistical sense akin to birds in a V-formation (Portugal et al. 2014). Indeed,
it has been observed (Ashraf et al. 2017) that above a critical swimming speed, tetra fish
organise in a side-by-side line-up (or phalanx formation as described in the study), and that
they enjoy some energetic benefit. Our findings support these previous works and provide
a new viewpoint that perhaps the self-organisation of the tetra fish is passive in nature and
not an active control strategy by the fish.

While this is a provocative result, there are many differences between schooling pitching
foils and schooling tetra fish that make it difficult to draw a direct conclusion about the
fish. One important difference is that the fish are composed of a body and fins, with their
caudal fin undergoing a combined heaving and pitching motion. However, recent work
has shown that both purely heaving and purely pitching foils experience 1-D stability in
an in-line formation (Heydari & Kanso 2021), so perhaps the difference in kinematics is
not consequential for the existence of stable equilibria. Still, further work should aim to
examine the passive stability of truly fish-like swimmers to answer this question directly.

Another complicating factor is that a majority of the studies on schooling are 2-D.
A significant body of literature exists for 3-D oscillating panels covering a wide range
of Reynolds and Strouhal numbers, and aspect ratios (Buchholz & Smits 2006, 2008;
Green & Smits 2008; Kumar, King & Green 2016; King, Kumar & Green 2018; Kurt et al.
2020), but studies of 3-D foils and their wakes interacting in a school are still scarce.
It has been argued that 3-D swimmers in an infinite school experience breakdown of
their shed wake vortices (Daghooghi & Borazjani 2015), thereby disrupting the coherent
vortex–body interactions that drive the in-line and staggered formation interactions. The
side-by-side interactions, though, are dominated by oscillating dipole flow fields produced
from motions of the nearby bodies, which cannot break down like wake vortices. This may
mean that a stable side-by-side formation and its performance benefits would hold even for
3-D swimmers in dense schools of more than two swimmers. Further work in this direction
is also warranted to provide some understanding of how the two-bodied interactions of the
current study translate to many-bodied interactions. Future work should also measure the
3-D wake structures for the stable side-by-side formation. Studying the 3-D evolution of
the wake–wake interactions will help, for example, to explain the discrepancies between
the free-swimming speeds of the school obtained from the 2-D simulations versus the 3-D
experiments.

Previous work (Becker et al. 2015; Ramananarivo et al. 2016; Newbolt et al. 2019) has
shown that in-line formations have multiple one-dimensionally stable equilibria, while
the current results show that those equilibria are, in fact, unstable in the cross-stream
direction. However, this does not indicate that these one-dimensionally stable points are
irrelevant. Instead, this work highlights that the degree of stability falls along a spectrum.
For instance, a fish swimming in the wake of another fish may need to actively control
only its cross-stream position in order to maintain a schooling formation, which requires
less control effort than actively controlling two degrees of freedom, but more effort
than controlling none. While higher degrees of stability can relieve the need for control
strategies for swimmers and lead to completely passive self-organisation, lesser degrees of
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stability may more subtly sculpt the schooling patterns observed in fish by influencing the
trajectory manifolds or the statistical positioning of swimmers. Beyond the translational
stability of formations, it is unclear whether the orientation of a swimmer will also
be stable to perturbations since it is unstable, at least for some synchronisations and
formations (Gazzola et al. 2011).

Interestingly, when the thrust and propulsive efficiency are considered, the ideal
formation for maximising performance is not the super-stable side-by-side formation,
though modest thrust and efficiency benefits can be reaped in this formation. The
optimal thrust and efficiency performance occurs for a slightly staggered formation,
which gives rise to interesting questions about whether animals swim in energetically
optimal formations through more attentive control or in more stable formations with fewer
performance benefits.

This study provides a rich understanding of the interplay of stability and performance
in schooling pitching foils. These findings reveal hypotheses for understanding biological
schooling, and also provide insights that aid in the design of multi-finned or schools of
bio-inspired robots.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.1086.
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Appendix A. Vector field of relative forces

The thrust and lift forces acting on the follower relative to the leader are calculated for
all formations indicated in figure 4. The vector field of relative forces is presented in
figure 9. The colours and arrow lengths represent the magnitude of the relative force
vectors F rel = −�T̄net x̂ + �L ŷ normalised by the maximum measured force vector. The
force map presented in the main text is constructed by drawing lines that are tangent to the
local relative force vector field.

Appendix B. Fluctuating relative thrust and lift forces

Figure 10 shows the root mean square (r.m.s.) of the fluctuating thrust and lift for the leader
(figures 10a,b) and the follower (figures 10c,d) foils normalised by the corresponding
isolated foil metrics. The fluctuations in the forces were calculated by subtracting the
mean from each time series, T̂ = Tnet − T̄net and L̂ = L − L̄. The reported r.m.s. values
for the leader and follower were normalised by the corresponding isolated foil metrics,
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Figure 11. Vorticity field at t∗ = 1 during the leader’s up-stroke and the follower’s down-stroke for (a) the
in-line arrangement of X∗ = 1.7 and Y∗ = 0.0, (b) the staggered arrangement of X∗ = 1.7 and Y∗ = 0.125, and
(c) the staggered arrangement of X∗ = 1.7 and Y∗ = 0.25. Time-varying thrust coefficient of (d) the leader and
(e) the follower, for arrangements of X∗ = 1.7 and Y∗ = 0.0, 0.1, 0.2, 0.3. ( f ) The cycle average x-component
of velocity u/U∞ at the midpoint between the trailing edge of the leader and the leading edge of the follower
at X∗ = 1.35 for three arrangements of X∗ = 1.7 and Y∗ = 0.0, 0.125, 0.25. The u/U∞ presented in ( f ) is
calculated based on the time-averaged flow fields for the arrangements (g) X∗ = 1.7 and Y∗ = 0.0, (h) X∗ = 1.7
and Y∗ = 0.125, and (i) X∗ = 1.7 and Y∗ = 0.25.

Trms
iso = 0.043 N and Lrms

iso = 0.37 N. Generally, the r.m.s. values for the lift are found to be
an order of magnitude higher than the thrust forces for the constrained leader and follower.
Around the stable side-by-side equilibrium, the fluctuations in the thrust and lift exhibit
up to 30–40 % increase over the isolated foil. Surprisingly, around the in-line 1-D saddle
point equilibrium, where the leader and follower are in near-wake interactions, the force
fluctuations are reduced by 10–20 % for both of the interacting foils compared to a foil
in isolation. The fluctuations in lift experienced by the follower in the wake of the leader
within an in-line formation (figure 10d) exhibit a persistent impact downstream, extending
up to X∗ = 3.5. The changes in thrust fluctuations, on the other hand, are significant
only closer to the leader, up to X∗ = 1.8 (figure 10c). The data indicate that the lift
fluctuations are more sensitive to an impinging oscillatory wake than the thrust. At the
other unstable equilibria, the fluctuations retain the isolated foil levels. Additionally, the
follower experiences an increase in thrust and lift fluctuations by 20–40 % over an isolated
foil within the region 1.5 ≤ X∗ ≤ 2 in the leader’s wake, which interestingly corresponds
to the peak efficiency locations observed in figure 3(d). Overall, the data suggest that
reductions in the r.m.s. fluctuating forces do not seem to be related directly to the stability
of a given arrangement. The stability is determined primarily by the mean relative forces
between the two individuals, as presented in the force map (figure 2 of the main text).

Appendix C. Time-varying forces of in-line and slightly staggered formations, and
mean wake analysis

Figures 11(a), 11(b) and 11(c) present flow measurements around the high collective
efficiency arrangement where X∗ = 1.7 and Y∗ = 0, 0.125, 0.25, respectively, at the
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dimensionless time t∗ = 1. It is observed that the anticlockwise red vortex shed from
the leader impinges directly on the follower at Y∗ = 0.125. At approximately t∗ = 1,
the time-varying thrust of the follower presented in figure 11(d) is seen to maximise at
Y∗ = 0.1, with a pronounced reduction in the thrust for Y∗ > 0.2. This can be linked
to the impinging vortex, which, at this time, induces an upwash on the follower while the
follower is pitching through its down-stroke. The upwash then acts to increase the effective
angle of attack and thereby increase the thrust production. For the direct impingement
location Y∗ = 0.125, this effect is maximised, which helps to drive the high efficiency of
the collective. However, the leader’s thrust also plays a role since it increases slightly as
the follower moves away from the in-line arrangement to a slightly staggered arrangement.
Figure 11(e) shows that at approximately t∗ = 1, the time-varying thrust of the leader
is increased slightly when Y∗ ≥ 0.1. This can be understood by examining the mean
velocity in the x-direction, u, behind the leader shown in figures 11(g), 11(h) and 11(i).
The momentum jet behind the leader is observed to slightly increase its strength as the
follower moves away from the in-line arrangement to a slightly staggered arrangement.
This can be quantified by extracting mean velocity profiles at X∗ = 1.35, halfway between
the leader and follower, and calculating their momentum flux. The extracted profiles are
plotted in figure 11( f ), and they are used to calculate the momentum flux coefficient as

Cpx ≡ p̄x
1
2ρU2∞cs

=
∫

Y∗

(
u

U∞

)2

dY∗. (C1)

The momentum flux coefficients for the Y∗ = 0, 0.125 and 0.25 cases are Cpx = 2.74, 2.75
and 2.76, respectively. This shows a slight increase concurrent with the increase in thrust
of the leader as the follower moves from an in-line arrangement to a slightly staggered
arrangement. Taken together, the strengthening of the leader’s jet and the direct vortex
impingement on the follower lead to a maximum in the collective thrust and efficiency for
a slightly staggered arrangement at X∗ = 1.7 and Y∗ = 0.125.
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